DS90C189-Q1 [TI]

低功耗 1.8V 双像素 FPD 链接 (LVDS) 串行器;
DS90C189-Q1
型号: DS90C189-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗 1.8V 双像素 FPD 链接 (LVDS) 串行器

光电二极管
文件: 总36页 (文件大小:1546K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
DS90C189-Q1 低功耗、1.8V RGB Open LDI (LVDS) 桥接器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准包括以下规  
:  
DS90C189-Q1 是一款低功耗桥接器适用于汽车应  
可减小主机 GPU 与显示屏之间 RGB 接口的尺  
寸。  
– 器件温度等240°C +105°C 环境工作  
温度  
– 器HBM ESD 分类等±8kV  
– 器CDM ESD 分类等±750V  
185MHz 频率下的典型功耗150mWSIDO 模  
)  
DS90C189-Q1 桥接器旨在支持主机与平板显示器之间  
频率60Hz、分辨率高达 QXGA (2048x1536) 的单像  
素数据传输。该发送器可将高达 24 单像素 24 位  
颜色1.8V LVCMOS 数据转换成双通道 4 数据 +  
(4D+C) 宽度更低的接LVDS 兼容数据流。  
• 驱QXGA WQXGA 类显示器  
• 两种工作模式:  
DS90C189-Q1 2 种工作模式。  
• 在单输入像素/单输出像素模式下该器件能够以  
60Hz 的频率驱动高SXGA+ (1400x1050) 的分辨  
率。在该模式下该器件可以将一24 RGB  
数据转换成单通4D+C LVDS 数据流。  
• 在单输入像素/双输出像素模式下该器件能够以  
60Hz 的频率驱动高WUXGA+ (1920x1440) 的分  
辨率。在该配置下该器件可以提供单像素到双像  
素的转换将一24 RGB 数据转换成双通道  
4D+C LVDS 数据流其频率是像素时钟频率的一  
半。  
– 单输入像素、单输出像(SISO)最大105  
MHz  
– 单输入像素、双输出像(SIDO)最大185  
MHz  
• 支24 RGB  
• 支3D+C4D+C6D+C6D+2C8D+C 和  
8D+2C LVDS 配置  
FPD-Link 器件兼容  
1.8V 单电源供电  
• 直接1.8V LVCMOS 连接  
• 睡眠模式下的功耗低10mW  
• 与扩频时钟兼容  
对于所有模式该器件都支24bpp 颜色。  
DS90C189-Q1 采用小型 64 引脚 QFN 封装并由  
1.8V 单电源供电实现超低的功率损耗。  
• 小9mm × 9mm × 0.9mm 64 VQFN 封装  
2 应用  
器件信息(1)  
• 摄像头监控系(CMS)  
• 汽车音响主机  
• 智能后视镜  
封装尺寸标称值)  
器件型号  
封装  
VQFN (64)  
DS90C189-Q1  
9.00mm x 9.00mm  
• 仪表组  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
4 Typical Application Diagrams  
1.8 V LVCMOS  
(24 bit RGB + HS/VS/DE)  
2 Channels OLDI (LVDS)  
(4 Data + Clock)  
1.8 V LVCMOS  
(24 bit RGB + HS/VS/DE)  
2 Channels FPD-Link (LVDS)  
(4 Data + Clock)  
2 Lanes FPD-Link III  
1.8 V  
1.8 V  
Display (TCON)  
DS90C189-  
Q1  
DS90UB947  
-Q1 SER  
GPU œ Jacinto 6  
GPU  
Display (TCON)  
DS90C189-  
Q1  
Single Pixel  
R[7:0] G[7:0]  
B[7:0]  
L
A
T
C
H
LVDS  
4D+C  
(odd pixel)  
DOUT0+  
DOUT0-  
RIN0+  
L
A
T
C
H
RIN0-  
FPD-Link III  
Interface  
RIN1+  
RIN1-  
DOUT1+  
DOUT1-  
Single Pixel  
R[7:0] G[7:0]  
B[7:0]  
&
P
2
S
HS  
VS  
DE  
LVDS  
4D+C  
(even pixel)  
&
GPO/CNTL (L/R)  
PCLK  
P
2
S
HS  
PLL  
VS  
DE  
PDB  
GPO/CNTL (L/R)  
PCLK  
PLL  
Copyright © 2017, Texas Instruments Incorporated  
PDB  
Copyright © 2017, Texas Instruments Incorporated  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS584  
 
 
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................16  
8.5 Programming............................................................ 18  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
10 Power Supply Recommendations..............................24  
10.1 Power Up Sequence...............................................24  
10.2 Power Supply Filtering............................................24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 26  
12 Device and Documentation Support..........................27  
12.1 Documentation Support.......................................... 27  
12.2 接收文档更新通知................................................... 27  
12.3 支持资源..................................................................27  
12.4 Trademarks.............................................................27  
12.5 静电放电警告.......................................................... 27  
12.6 术语表..................................................................... 27  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Typical Application Diagrams........................................ 1  
5 Revision History.............................................................. 2  
6 Pin Configuration and Functions...................................3  
DS90C189 Pin Descriptions............................................. 4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................7  
7.6 Recommended Input Characteristics..........................7  
7.7 Switching Characteristics............................................9  
7.8 AC Timing Diagrams...................................................9  
7.9 Typical Characteristics..............................................13  
8 Detailed Description......................................................14  
8.1 Overview...................................................................14  
8.2 Functional Block Diagrams....................................... 14  
8.3 Feature Description...................................................15  
Information.................................................................... 27  
5 Revision History  
Changes from Revision A (August 2018) to Revision B (September 2020)  
Page  
Added note on GND tolerance to Abs Max table................................................................................................6  
Added clarifications on VDD starting from GND during power sequence and power down/power up  
conditions..........................................................................................................................................................24  
Changes from Revision * (May 2018) to Revision A (August 2018)  
Page  
• 将器件状态从“预告信息”更改为“量产数据”................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
2
Submit Document Feedback  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
OB_3-  
VDDTX  
OB_3+  
NC  
OA_0-  
OA_0+  
NC  
PDB  
VDD  
IN0  
MODE0  
RFB  
VODSEL  
IN_1  
IN_2  
IN_3  
IN_4  
IN_5  
IN_6  
IN_7  
IN_8  
NC  
DS90C189-Q1  
64 VQFN  
Top Down View  
IN_27  
IN_26  
IN_25  
IN_24  
IN_23  
IN_22  
IN_21  
DAP  
DE  
NC  
VDD  
6-1. RTD Package 64-Pin VQFN Top View  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
English Data Sheet: SNLS584  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
DS90C189 Pin Descriptions  
NAME  
NO.  
I/O  
DESCRIPTION  
1.8-V LVCMOS VIDEO INPUTS  
IN_[27:21],  
IN_[17:14],  
IN_[13:9],  
IN_[8:1]  
25-19,  
10-7,  
5-1,  
62-55,  
53  
Data Inputs  
Typically consists of 8 Red, 8 Green, 8 Blue and a general purpose or L/R control  
bit.  
Includes pull down.  
I
IN_[0]  
HS,  
VS ,  
DE  
12,  
13,  
18  
Video Control Signal Inputs -  
HS = Horizontal Sync, VS = Vertical SYNC, and DE = Data Enable  
I
I
Pixel Input Clock  
Includes pull down.  
IN_CLK  
6
1.8-V LVCMOS CONTROL INPUTS  
Mode Control Input (MODE0) -  
0= Single In / Single Out  
1= Single In / Dual Out  
Includes pull down.  
MODE0  
RFB  
27  
26  
52  
54  
I
I
I
I
Rising / Falling Clock Edge Select Input -  
0 = Falling Edge  
1 = Rising Edge  
Includes pull down.  
Power Down (Sleep) Control Input -  
0 = Sleep (Power Down mode)  
1 = Device Active (enabled)  
Includes pull down.  
PDB  
VOD Level Select Input -  
0 = Low swing  
1 = Normal swing  
Includes pull down.  
VODSEL  
N/C  
14, 15, 17, 29, 51,  
63  
I
I
No Connect Pin Leave Open  
Reserved Tie to Ground.  
RSVD  
11  
LVDS OUTPUTS  
OA_C+  
OA_C-  
43  
44  
Channel A LVDS Output Clock –  
Expects 100 termination.  
O
O
O
O
O
O
O
O
O
O
OA_[0]+,  
OA_[0]-  
50  
49  
Channel A LVDS Output Data –  
Expects 100 termination.  
OA_[1]+,  
OA_[1]-  
48  
47  
Channel A LVDS Output Data –  
Expects 100 termination.  
OA_[2]+,  
OA_[2]-  
46  
45  
Channel A LVDS Output Data –  
Expects 100 termination.  
OA_[3]+,  
OA_[3]-  
41  
42  
Channel A LVDS Output Data –  
Expects 100 termination.  
OB_C+,  
OB_C-  
33  
34  
Channel B LVDS Output Clock –  
Expects 100 termination.  
OB_[0]+,  
OB_[0]-  
39  
40  
Channel B LVDS Output Data –  
Expects 100 termination.  
OB_[1]+,  
OB_[1]-  
37  
38  
Channel B LVDS Output Data –  
Expects 100 termination.  
OB_[2]+,  
OB_[2]-  
35  
36  
Channel B LVDS Output Data –  
Expects 100 termination.  
OB_[3]+,  
OB_[3]-  
30  
32  
Channel B LVDS Output Data –  
Expects 100 termination.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
4
Submit Document Feedback  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
NAME  
NO.  
I/O  
DESCRIPTION  
POWER AND GROUND  
VDDTX  
VDD  
31  
28, 64  
16  
P
P
P
G
Power supply for LVDS Drivers, 1.8 V.  
Power supply pin for core, 1.8 V.  
Power supply pin for PLL, 1.8 V.  
Connect DAP to Ground plane.  
VDDP  
DAP  
DAP  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
English Data Sheet: SNLS584  
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
See (1) (2)  
MIN  
0.3  
0.3  
0.3  
MAX  
2.5  
UNIT  
Supply Voltage (VDD  
)
V
V
V
LVCMOS Input Voltage  
VDD + 0.3  
3.6  
LVDS Driver Output Voltage  
LVDS Output Short-Circuit Duration  
Junction Temperature  
Continuous  
150  
150  
°C  
°C  
Storage Temperature (Tstg  
)
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or anyother conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) GND tolerance +/-5mV compared to system GND  
7.2 ESD Ratings  
VALUE  
±8000  
±750  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101  
7.3 Recommended Operating Conditions  
MIN  
1.71  
40  
80  
NOM  
1.80  
+25  
MAX  
1.89  
+105  
120  
UNIT  
Supply Voltage  
V
Operating Free Air Temperature (TA)  
Differential Load Impedance  
Supply Noise Voltage  
°C  
100  
<90  
mVp-p  
7.4 Thermal Information  
DS90C189-Q1  
THERMAL METRIC(1)  
RTD (VQFN)  
64 PINS  
23.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
12.5  
7.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
ψJT  
7.9  
ψJB  
RθJC(bot)  
1.0  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
6
Submit Document Feedback  
 
 
 
 
 
 
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
LVCMOS DC SPECIFICATIONS  
VIH  
VIL  
IIN  
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
0.66VDD  
GND  
VDD  
0.35VDD  
+10  
V
V
VIN = 0V or VDD = 1.71 V to 1.89 V  
- 10  
±1  
µA  
LVDS DRIVER DC SPECIFICATIONS  
160  
(320)  
340  
(680)  
500  
mV  
VODSEL = VDD  
RL = 100Ω  
(1000) (mVP-P  
400 mV  
(800) (mVP-P  
)
)
VOD  
Differential Output Voltage  
110  
(220)  
220  
(440)  
VODSEL = VGND  
Change in VOD between  
Complimentary Output States  
RL = 100Ω  
See 7-3  
50  
1.36  
50  
mV  
V
ΔVOD  
RL = 100Ω  
See 7-3  
VOS  
Offset Voltage  
1.09  
1.22  
Change in VOS between  
Complimentary Output States  
RL = 100Ω  
See 7-3  
mV  
mA  
ΔVOS  
IOS  
Output Short-Circuit Current  
VOUT = GND, VODSEL = VDD  
15.5  
SUPPLY CURRENT  
Checkerboard  
pattern,  
RL = 100 ,  
VODSEL = VDD  
VDD = 1.89 V,  
f = 105 MHz,  
MODE0 = GND  
(SISO)  
IDDT1  
50  
85  
mA  
Worst Case Supply Current  
(includes load current)  
,
f = 185 MHz,  
MODE0 = VDD  
(SIDO)  
IDDT2  
IDDTP  
80  
50  
140  
mA  
mA  
See Checker Board  
Test Pattern  
MODE0 = VDD  
(SIDO),  
f = 150 MHz,  
VODSEL = GND,  
VDD = 1.8  
RL = 100 ,  
PRBS-7 Pattern  
See Typ Current  
Draw - Single In/  
Dual Out Mode -  
PRBS-7 Data  
Pattern.  
Supply Current PRBS-7  
VODSEL = VDD  
VDD = 1.8  
,
70  
53  
mA  
mA  
MODE0 = VDD  
(SIDO),  
VODSEL = GND,  
VDD = 1.8  
f = 150 MHz,  
RL = 100 ,  
16 Grayscale Pattern  
IDDTG  
IDDZ  
Supply Current 16 Grayscale  
Power Down Supply Current  
VODSEL = VDD  
VDD = 1.8  
,
71  
6
mA  
µA  
PDB = GND  
800  
7.6 Recommended Input Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
MODE0 = GND  
MODE0 = VDD  
MODE0 = GND  
MODE0 = VDD  
1
1
4
2
IN_CLK Transition Time  
7-5  
TCIT  
TCIP  
ns  
9.53  
5.40  
0.35T  
0.35T  
T(1)  
T
40  
ns  
IN_CLK Period  
7-6  
20  
ns  
TCIH  
TCIL  
IN_CLK High Time  
IN_CLK Low Time  
0.5T  
0.5T  
0.65T  
0.65T  
ns  
See 7-6  
ns  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
English Data Sheet: SNLS584  
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
MIN  
TYP  
MAX  
0.3T  
UNIT  
TXIT  
IN_n Transition Time  
1.5  
ns  
See 7-5  
(1) T = Typical Period of the input Clock.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
8
Submit Document Feedback  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7.7 Switching Characteristics  
Over recommended operating supply and temperature ranges unlessotherwise specified.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
ns  
TSTC  
THTC  
IN_n Setup to IN_CLK  
IN_n Hold from IN_CLK  
0
See 7-6  
See 7-6  
2.5  
ns  
LVDS Low-to-High Transition Time  
See 7-4  
LLHT  
LHLT  
0.33  
0.33  
ns  
ns  
LVDS High-to-Low Transition Time  
See 7-4  
MODE0 = GND  
MODE0 = VDD  
1/7 TCIP  
2/7 TCIP  
ns  
ns  
TBIT  
LVDS Output Bit Width  
Transmitter Output Pulse Positions Normalized  
for Bit 0  
TPPOS0  
TPPOS1  
TPPOS2  
TPPOS3  
TPPOS4  
TPPOS5  
TPPOS6  
1
2
3
4
5
6
7
UI  
UI  
UI  
UI  
UI  
UI  
UI  
See 7-9  
See 7-9  
See 7-9  
See 7-9  
See 7-9  
See 7-9  
See 7-9  
See 7-9  
Transmitter Output Pulse Positions Normalized  
for Bit 1  
Transmitter Output Pulse Positions Normalized  
for Bit 2  
Transmitter Output Pulse Positions Normalized  
for Bit 3  
Transmitter Output Pulse Positions Normalized  
for Bit 4  
Transmitter Output Pulse Positions Normalized  
for Bit 5  
Transmitter Output Pulse Positions Normalized  
for Bit 6  
Variation in Transmitter Pulse Position (Bit 6 —  
Bit 0)  
±0.06  
110  
UI  
ps  
UI  
Δ_TPPOS  
TCCS  
LVDS Channel to Channel Skew  
Jitter Cycle-to-Cycle  
MODE0 = GND,  
f = 105 MHz  
TJCC  
0.176  
1
TPLLS  
TPDD  
Phase Lock Loop Set (Enable Time)  
Powerdown Delay  
ms  
ns  
ns  
See 7-7  
See 7-8  
100  
MODE0 = GND  
See 7-11  
2*TCIP +  
10.54  
2*TCIP +  
19.38  
TSD  
Latency Delay  
MODE0 = VDD  
See 7-10  
ns  
Latency Delay for Single Pixel In / Dual Pixel Out  
Mode  
9*TCIP +  
4.19  
TLAT  
7.8 AC Timing Diagrams  
T
IN_CLK  
IN_n,  
n = ODD  
IN_n,  
n = EVEN  
Falling Edge CLK (RFB = GND) shown  
A. The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVCMOS/ I/O.  
B. 7-2 shows a falling edge data strobe (IN_CLK).  
7-1. Checker Board Test Pattern  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
English Data Sheet: SNLS584  
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Signal  
Signal Pattern  
Signal Frequency  
PCLK  
R0  
R1  
R2  
R3  
R4  
R5  
G0  
G1  
G2  
G3  
G4  
G5  
B0  
f
f / 16  
f / 8  
f / 4  
f / 2  
Steady State, Low  
Steady State, Low  
f / 16  
f / 8  
f / 4  
f / 2  
Steady State, Low  
Steady State, Low  
f / 16  
B1  
f / 8  
B2  
f / 4  
B3  
f / 2  
B4  
Steady State, Low  
Steady State, Low  
Steady State, High  
Steady State, High  
Steady State, High  
B5  
HS  
VS  
DE  
A. The worst case test pattern produces a maximum toggling of digital circuits, LVDS I/O and LVCMOS/ I/O.  
B. Recommended pin to signal mapping for 18 bits per pixel, customer may choose to define differently. The 16 grayscale test pattern tests  
device power consumption for a typicalLCD display pattern. The test pattern approximates signal switching needed to produce  
groups of 16 vertical stripes across the display.  
C. 7-2 shows a falling edge data strobe (IN_CLK).  
7-2. 16 Gray ScaleTest Pattern (Falling Edge Clock shown)  
OA/B_C+, OA/B_[3:0]+  
100W  
OA/B_C-, OA/B_[3:0]-  
7-3. DS90C189-Q1 (Transmitter) LVDS Output Load  
+VOD  
80%  
80%  
VSS = 2|VOD|  
0V  
20%  
20%  
-VOD  
LLHT  
LHLT  
7-4. LVDS Output Transition Times  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
10  
Submit Document Feedback  
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
VDD  
80%  
80%  
50%  
20%  
20%  
GND  
TCIT, or  
TXIT  
TCIT, or  
TXIT  
7-5. LVCMOS Input Transition Times  
TCIP  
TCIH  
TCIL  
VDD  
50%  
GND  
VDD  
50%  
GND  
VIHmin  
TSTC  
THTC  
VILmax  
Falling Edge CLK shown (RFB = GND)  
7-6. LVCMOS Input Setup/Hold and Clock High/Low Times (Falling Edge Strobe)  
1.8V  
VDD  
GND  
VDD  
IN_CLK  
GND  
VDD  
PDB  
GND  
TPLLS  
OCA/B  
(LVDS)  
(Diff.)  
7-7. Start Up / Phase Lock Loop Set Time  
GND  
VDD  
IN_CLK  
GND  
VDD  
PDB  
50%  
GND  
TPDD  
OCA/B  
(Diff.)  
(LVDS)  
7-8. Sleep Mode / Power Down Delay  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
English Data Sheet: SNLS584  
 
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Cycle N  
OA_C+/-,  
or OB_C+/-  
OA[3:0]+/-, or  
OB[3:0]+/-  
bit 1  
n-1  
bit 0  
n-1  
bit 6  
n
bit 5  
n
bit 4  
n
bit 3  
n
bit 2  
n
bit 1  
n
bit 0  
n
1UI  
2UI  
3UI  
4UI  
5UI  
6UI  
7UI  
7-9. LVDS Serial Bit Positions  
IN_CLK  
IN_n  
DE  
Pixel 1  
Pixel 2  
TLAT  
Pixel 3  
Pixel 4  
OA/B_C+/  
-
OA_n+/-  
Pixel 1  
Pixel 2  
Pixel 3  
Pixel 4  
OB_n+/-  
7-10. Single In, Dual Out Mode Timing and Latency  
IN_CLK  
IN_n  
Pixel n-1  
Pixel n  
Pixel n+1  
Pixel n+2  
Pixel n+3  
TSD  
OA/B_C+/-  
OA/B_n+/-  
Pixel n  
Pixel n+1  
7-11. Single In, Single Out Mode Timing and Latency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
12  
Submit Document Feedback  
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7.9 Typical Characteristics  
110  
100  
90  
60  
VODSEL = L  
VODSEL = H  
VODSEL = L  
VODSEL = H  
55  
50  
45  
40  
35  
30  
25  
20  
80  
70  
60  
50  
40  
30  
40 60 80 100 120 140 160 180 200  
FREQUENCY (MHz)  
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
7-12. Typical Current Draw Single In/Dual Out 7-13. Typical Current Draw Single In/Single  
Mode PRBS-7 Data Pattern  
Out Mode PRBS-7 Data Pattern  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
English Data Sheet: SNLS584  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
DS90C189-Q1 converts a wide parallel LVCMOS input bus into banks of OLDI (LVDS) data. The device can be  
configured to support RGB-888 (24-bit color) in two main configurations: single pixel in / single pixel out; single  
pixel in / dual pixel out. The DS90C189-Q1 has power saving features including: selectable VOD and a power  
down pin control.  
8.2 Functional Block Diagrams  
LVCMOS INPUTS  
RED  
GREEN  
IN_[27:21],  
IN_[17:0]  
BLUE  
DATA (LVDS)  
CNTRL (L/R)  
HS  
VS  
DE  
IN_CLK  
PLL  
CLOCK (LVDS)  
PDB  
VODSEL  
RFB  
MODE0  
DS90C189-Q1  
Single Pixel In / Single Pixel Out  
(SISO)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
14  
Submit Document Feedback  
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
LVCMOS INPUTS  
RED  
GREEN  
IN_[27:21],  
IN_[17:0]  
BLUE  
CNTRL (L/R)  
HS  
VS  
DE  
DATA (LVDS)  
CLOCK (LVDS)  
PLL  
IN_CLK  
PDB  
VODSEL  
RFB  
MODE0  
DS90C189-Q1  
Single Pixel In / Dual Pixel Out (SIDO)  
8.3 Feature Description  
8.3.1 AEC-Q100 Qualified  
The DS90C189-Q1 is qualified to AEC-Q100 Grade 2 standards and operates from -40°C to +105°C.  
8.3.2 ESD Protection  
The DS90C189-Q1 has a HBM ESD Classification Level of ±8 kV and CDM ESD Classification Level of ±750 V.  
8.3.3 Operating Modes  
The DS90C189-Q1 has two operating modes: Single Pixel In, Single Pixel Out (SISO), 25 MHz 105 MHz and  
Single Pixel In, Dual Pixel Out (SIDO), 50 MHz 185 MHz.  
8.3.4 LVDS Configurations  
The DS90C189-Q1 supports 3D+C, 4D+C, 6D+C, 6D+2C, 8D+C, and 8D+2C LVDS configurations.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
English Data Sheet: SNLS584  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.4 Device Functional Modes  
8.4.1 Device Configuration  
The MODE0 pin is used to configure the DS90C189-Q1 into the two main operation modes as shown in the table  
below.  
8-1. Mode Configurations  
MODE0  
CONFIGURATION  
0
1
Single Pixel Input, Single Pixel Output (SISO)  
Single Pixel Input, Dual Pixel Output (SIDO)  
8.4.2 Single Pixel Input / Single Pixel Output  
When MODE0 is set to low, data from IN_[27:21], IN_[17:0], HS, VS and DE is serialized and driven out on  
OA_[3:0]+/- with OA_C+/-.  
In this configuration IN_CLK can range from 25 MHz to 105 MHz, resulting in a total maximum payload of 700  
Mbps (28 bits * 25MHz) to 2.94 Gbps (28 bits * 105 MHz). Each LVDS driver will operate at a speed of 7 bits per  
input clock cycle, resulting in a serial line rate of 175 Mbps to 735 Mbps. OA_C+/- will operate at the same rate  
as IN_CLK with a duty cycle ratio of 57:43.  
8.4.3 Single Pixel Input / Dual Pixel Output  
When MODE0 is HIGH, data from IN_[27:21], IN_[17:0], HS, VS and DE is serialized and driven out on  
OA_[3:0]+/- and OB_[3:0]+/- with OA_C+/- and OB_C+/-. The input LVCMOS data is split into odd and even  
pixels starting with the odd (first) pixel outputs OA_[3:0]+/- and then the even (second) pixel outputs OB_[3:0]+/-.  
The splitting of the data signals starts with DE (data enable) transitioning from logic LOW to HIGH indicating  
active data (see 7-10). The number of clock cycles during blanking must be an EVEN number. This  
configuration will allow the user to interface with two FPD-Link receivers or other dual pixel inputs.  
In this configuration IN_CLK can range from 50 MHz to 185 MHz, resulting in a total maximum payload of 1.4  
Gbps (28 bits * 50 MHz) to 5.18 Gbps (28 bits * 185 MHz). Each LVDS driver will operate at a speed of 7 bits per  
2 input clock cycles, resulting in a serial line rate of 175 Mbps to 647.5 Mbps. OA_C+/- and OA_B+/- will operate  
at ½ the rate as IN_CLK with a duty cycle ratio of 57:43.  
In the Single Pixel Input / Dual Pixel Output mode OA_x and OB_x can become misaligned if the clock or data is  
interrupted or PDB is toggled. If the clock or data is interrupted or PDB is toggled to prevent misalignment the  
following should be done:  
1. Disable the clock and data.  
2. Toggle PDB to Low and then High.  
3. After PDB settles reset the data pattern and enable the clock and data.  
8.4.4 Pixel Clock Edge Select (RFB)  
The RFB pin determines the edge that the input LVCMOS data is latched on. If RFB is HIGH, input data is  
latched on the RISING EDGE of the pixel clock (IN_CLK). If RFB is LOW, the input data is latched on the  
FALLING EDGE of the pixel clock. Note: This can be set independently of receivers output clock strobe.  
8-2. Pixel Clock Edge  
RFB  
Result  
0
1
FALLING edge  
RISING edge  
8.4.5 Power Management  
The DS90C189-Q1 has several features to assist with managing power consumption. The device can be  
configured through the MODE0 control pin to enable only the required number of LVDS drivers for each  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
16  
Submit Document Feedback  
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
application. If no clock is applied to the IN_CLK pin, the DS90C189-Q1 will enter a low power state. To place the  
DS90C189-Q1 in its lowest power state, the device can be powered down by driving the PDB pin to LOW.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
English Data Sheet: SNLS584  
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.4.6 Sleep Mode (PDB)  
The DS90C189-Q1 provides a power down feature. When the device has been powered down, current draw  
through the supply pins is minimized and the PLL is shut down. The LVDS drivers are also powered down with  
their outputs pulled to GND through 100-resistors (not tri-stated).  
8-3. Power Down Select  
PDB  
Result  
0
1
SLEEP Mode (default)  
ACTIVE (enabled)  
8.4.7 LVDS Outputs  
The DS90C189-Q1's LVDS drivers are compatible with ANSI/TIA/EIA-644-A LVDS receivers. The LVDS drivers  
can output a power saving low VOD, or a high VOD to enable longer trace and cable lengths by configuring the  
VODSEL pin.  
8-4. VOD Select  
VODSEL  
Result  
0
1
±220 mV (440 mVpp)  
±340 mV (680 mVpp)  
Any unused LVDS outputs that are not powered down due to the MODE0 pin should be externally terminated  
differentially with a 100 ohm resistor. For example, when driving a timing controller (TCON) that only requires an  
8D + C LVDS interface, rather than 8D + 2C, the unused clock line should be terminated near the package of the  
DS90C189-Q1. For more information regarding the electrical characteristics of the LVDS outputs, refer to the  
LVDS DC Characteristics and LVDS Switching Specifications.  
8.4.8 LVCMOS Inputs  
The DS90C189-Q1 has one bank of 24 data inputs, one set of video control signal (HS, VS and DE) inputs and  
several device configuration LVCMOS pins. All LVCMOS input pins are designed for 1.8 V LVCMOS logic. All  
LVCMOS inputs, including clock, data and configuration pins, have an internal pull down resistor to set a default  
state. If any inputs are unused, they can be left as no connect (NC) or connected to ground.  
8.5 Programming  
8.5.1 LVDS Interface / TFT Color Data Recommended Mapping  
Different color mapping options exist. Check with the color mapping of the Deserializer / TCON device that is  
used to ensure compatible mapping for the application. The DS90C189-Q1 supports two modes of operation for  
single and dual pixel applications supporting 24bpp color depths.  
In the Dual Pixel / 24bpp mode, eight LVDS data lines are provided along with two LVDS clock lines (8D+2C).  
The Deserializer may utilize one or two clock lines. The 53 bit interface typically assigns 24 bits to RGB for the  
odd pixel, 24 bits to RGB for the even pixel, 3 bits for the video control signals (HS, VS and DE), 1 bit for odd  
pixel and 1 bit for even pixel which can be ignored or used for general purpose data, control or L/R signaling.  
A reduced width input interface is also supported with a Single-to-Dual Pixel conversion where the data is  
presented at double rate (same clock edge, 2X speed, see 7-10) and the DE transition is used to flag the first  
pixel. Also note in the 8D+2C configuration, the three video control signals are sent over both the A and B  
outputs. The DES / TCON may recover one set, or both depending upon its implementation. The Dual Pixel /  
24bpp 8D+2C LVDS Interface Mapping is shown in 8-1.  
In the Single Pixel / 24bpp mode, four LVDS data lines are provided along with a LVDS clock line (4D+C). The  
28 bit interface typically assigns 24 bits to RGB color data, 3 bits to video control (HS, VS and DE) and one  
spare bit can be ignored, used for L/R signaling or function as a general purpose bit. The Single Pixel / 24bpp  
4D+C LVDS Interface Mapping is shown in 8-2.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
18  
Submit Document Feedback  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
OA_C+/-  
(Diff)  
Current Cycle  
IN_27 IN_26 IN_25 IN_24 IN_23 IN_22 IN_21  
OA_3+/-  
(SE)  
OA_2+/-  
(SE)  
DE  
VS  
HS IN_17 IN_16 IN_15 IN_14  
OA_1+/-  
(SE)  
IN_13 IN_12 IN_11 IN_10 IN_9 IN_8 IN_7  
IN_6 IN_5 IN_4 IN_3 IN_2 IN_1 IN_0  
IN_27 IN_26 IN_25 IN_24 IN_23 IN_22 IN_21  
OA_0+/-  
(SE)  
OB_3+/-  
(SE)  
OB_2+/-  
(SE)  
DE  
VS  
HS IN_17 IN_16 IN_15 IN_14  
OB_1+/-  
(SE)  
IN_13 IN_12 IN_11 IN_10 IN_9 IN_8 IN_7  
IN_6 IN_5 IN_4 IN_3 IN_2 IN_1 IN_0  
OB_0+/-  
(SE)  
OB_C+/-  
(Diff)  
8-1. Dual Pixel / 24bpp LVDS Mapping  
OA_C+/-  
(Diff)  
Current Cycle  
OA_3+/-  
(SE)  
IN_27 IN_26 IN_25 IN_24 IN_23 IN_22 IN_21  
OA_2+/-  
(SE)  
DE  
VS  
HS IN_17 IN_16 IN_15 IN_14  
OA_1+/-  
(SE)  
IN_13 IN_12 IN_11 IN_10 IN_9 IN_8 IN_7  
IN_6 IN_5 IN_4 IN_3 IN_2 IN_1 IN_0  
OA_0+/-  
(SE)  
8-2. Single Pixel / 24bpp LVDS Mapping  
8.5.1.1 Color Mapping Information  
A defacto color mapping is shown next. Different color mapping options exist. Check with the color mapping of  
the Deserializer / TCON device that is used to ensure compatible mapping for the application.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
English Data Sheet: SNLS584  
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8-5. Single Pixel Input / 24bpp / MSB on CH3  
DS90C189-Q1 Input  
Color Mapping Note  
IN_22  
IN_21  
IN_5  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DE  
VS  
HS  
GP  
MSB  
IN_4  
IN_3  
IN_2  
IN_1  
IN_0  
LSB  
IN_24  
IN_23  
IN_11  
IN_10  
IN_9  
MSB  
IN_8  
IN_7  
IN_6  
LSB  
IN_26  
IN_25  
IN_17  
IN_16  
IN_15  
IN_14  
IN_13  
IN_12  
DE  
MSB  
Data Enable(1)  
Vertical Sync  
VS  
HS  
Horizontal Sync  
General Purpose  
IN_27  
(1) See section 8.4.3.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
20  
Submit Document Feedback  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8-6. Single Pixel Input / 24bpp / LSB on CH3  
DS90C189-Q1 Input  
Color Mapping Note  
IN_5  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
DE  
VS  
HS  
GP  
MSB  
IN_4  
IN_3  
IN_2  
IN_1  
IN_0  
IN_22  
IN_21  
IN_11  
IN_10  
IN_9  
LSB  
MSB  
IN_8  
IN_7  
IN_6  
IN_24  
IN_23  
IN_17  
IN_16  
IN_15  
IN_14  
IN_13  
IN_12  
IN_26  
IN_25  
DE  
LSB  
MSB  
Data Enable(1)  
Vertical Sync  
VS  
HS  
Horizontal Sync  
General Purpose  
IN_27  
(1) See section 8.4.3.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
English Data Sheet: SNLS584  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The DS90C189-Q1 is a Low Power Bridge for automotive application that reduces the size of the RGB interface  
between the host GPU and the Display. It is designed to support single pixel data transmission between Host  
and Flat Panel Display up to QXGA (2048x1536) at 60 Hz resolutions. The transmitter converts up to 24 bits  
(Single Pixel 24 bit color) of 1.8-V LVCMOS data into two channels of 4 data + clock (4D+C) reduced width  
interface LVDS compatible data streams.  
9.2 Typical Application  
1.8 V LVCMOS  
(24 bit RGB + HS/VS/DE)  
2 Channels FPD-Link (LVDS)  
(4 Data + Clock)  
1.8 V  
GPU  
Display (TCON)  
DS90C189-  
Q1  
LVDS  
4D+C  
(odd pixel)  
L
A
T
C
H
Single Pixel  
R[7:0] G[7:0]  
B[7:0]  
LVDS  
4D+C  
(even pixel)  
&
P
2
S
HS  
VS  
DE  
GPO/CNTL (L/R)  
PCLK  
PLL  
PDB  
Copyright © 2017, Texas Instruments Incorporated  
9-1. Single Pixel In Dual Pixel Out (SIDO) Mode  
9.2.1 Design Requirements  
The DS90C189-Q1 is used to convert 24-bit color to two channels of LVDS datastreams.  
9-1. Design Parameters  
DESIGN PARAMETER  
VALUE  
1.8V  
Supply  
Display Driven  
Pixel Depth  
SXGA+, WUXGA+  
24 bits  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
English Data Sheet: SNLS584  
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
9.2.2.1 LVDS Interconnect Guidelines  
Refer to the AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and Transmission  
Line RAPIDESIGNER Operation and Applications Guide (SNLA035) for full details.  
Use 100-coupled differential pairs  
Use differential connectors when above 500 Mbps  
Minimize skew within the pair  
Use the S/2S/3S rule in spacings  
S = space between the pairs  
2S = space between pairs  
3S = space to LVCMOS signals  
Place ground vias next to signal vias when changing between layers  
When a signal changes reference planes, place a bypass cap and vias between the new and old reference  
plane  
For more tips and detailed suggestions regarding high speed board layout principles, see the LVDS Owner's  
Manual at http://www.ti.com/lvds  
9.2.3 Application Curves  
110  
100  
90  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VODSEL = L  
VODSEL = H  
VODSEL = L  
VODSEL = H  
80  
70  
60  
50  
40  
30  
40 60 80 100 120 140 160 180 200  
FREQUENCY (MHz)  
20  
40  
60  
80  
100  
120  
FREQUENCY (MHz)  
9-2. Typical Current Draw - Single In/Dual Out 9-3. Typical Current Draw - Single In/Single Out  
Mode - PRBS-7 Data Pattern Mode - PRBS-7 Data Pattern  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
English Data Sheet: SNLS584  
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Up Sequence  
The VDD power supply ramp should start from GND +/-5mV and ramp monotonically to the recommended  
supply voltage. The VDD power supply pins do not require a specific power on sequence and can be powered on  
in any order. However, the PDB pin should only be set to logic HIGH once the power sent to all supply pins is  
stable. Active data inputs should not be applied to the DS90C189-Q1 until all of the input power pins have been  
powered on, settled to the recommended operating voltage and the PDB pin has be set to logic HIGH.  
The user experience can be impacted by the way a system powers up and powers down an LCD screen. The  
following sequence is recommended:  
Power up sequence (DS90C189-Q1 PDB input initially LOW):  
1. Ensure that all supply pins are at GND +/-5mV  
2. Ramp up LCD power (maybe 0.5ms to 10ms) but keep backlight turned off.  
3. Toggle DS90C189-Q1 power down pin to PDB = VDD  
.
4. Enable clock and wait for additional 0-200ms to ensure display noise wont occur.  
5. Enable video source output; start sending black video data.  
6. Send >1ms of black video data; this allows the DS90C189-Q1 to be phase locked, and the display to show  
black data first.  
7. Start sending true image data.  
8. Enable backlight.  
Power Down sequence (DS90C189-Q1 PDB input initially HIGH):  
1. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low.  
2. Video source output data switch from active video data to black image data (all visible pixel turn black); drive  
this for >2 frame times.  
3. Set DS90C189-Q1 power down pin to PDB = GND.  
4. Disable the video output of the video source.  
5. Remove power from the LCD panel for lowest system power.  
6. Ensure that VDD supply discharges to GND +/- 5mV before starting the next power up sequence. If rapid  
power off/on system behavior is required, then it is recommended to utilize a discharge circuit to ensure VDD  
returns to GND +/- 5mV between power off/on conditions  
10.2 Power Supply Filtering  
The DS90C189-Q1 has several power supply pins at 1.8 V. It is important that these pins all be connected and  
properly bypassed. Bypassing should consist of at least one 0.1μF capacitor placed on each pin, with an  
additional 4.7 μF - 22 μF capacitor placed on the PLL supply pin (VDDP). 0.01 μF capacitors are typically  
recommended for each pin. Additional filtering including ferrite beads may be necessary for noisy systems. It is  
recommended to place a 0 ohm resistor at the bypass capacitors that connect to each power pin to allow for  
additional filtering if needed. A large bulk capacitor is recommended at the point of power entry. This is typically  
in the 50 μF 100 μF range.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
24  
Submit Document Feedback  
 
 
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS devices should be designed to provide low-noise power feed to  
the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved  
by using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. This practice is  
easier to implement in dense pcbs with many layers and may not be practical in simpler boards. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. It is recommended to connect power and ground pins  
directly to the power and ground planes with bypass capacitors connected to the plane with vias on both ends of  
the capacitor.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency. Some devices provide separate power and ground pins for different portions of  
the circuit. This is done to isolate switching noise effects between different sections of the circuit. Separate  
planes on the PCB are typically not required. Pin Description tables typically provide guidance on which circuit  
blocks are connected to which power pin pairs. In some cases, an external filter many be used to provide clean  
power to sensitive circuits such as PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the LVDS  
lines to prevent coupling from the LVCMOS lines to the LVDS lines. Closely coupled differential lines of 100  
Ohms are typically recommended for LVDS interconnect. The closely coupled lines help to ensure that coupled  
noise will appear as common mode and thus is rejected by the receivers. The tightly coupled lines will also  
radiate less.  
For more information on the VQFN package, refer to the AN-1187 Leadless Leadframe Package (LLP)  
application note (SNOA401).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
English Data Sheet: SNLS584  
 
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
11.2 Layout Example  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS584  
26  
Submit Document Feedback  
 
DS90C189-Q1  
ZHCSI69B JUNE 2018 REVISED SEPTEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see:  
LVDS Owner's Manual (SNLA187)  
AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008)  
Transmission Line RAPIDESIGNER Operation and Applications Guide (SNLA035)  
AN-1187 Leadless Leadframe Package (LLP) (SNOA401)  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
English Data Sheet: SNLS584  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90C189TWRTDRQ1  
DS90C189TWRTDTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RTD  
RTD  
64  
64  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 115  
-40 to 115  
DS90C189Q  
DS90C189Q  
Samples  
Samples  
NIPDAUAG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-May-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90C189TWRTDRQ1  
DS90C189TWRTDTQ1  
VQFN  
VQFN  
RTD  
RTD  
64  
64  
2500  
250  
330.0  
180.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90C189TWRTDRQ1  
DS90C189TWRTDTQ1  
VQFN  
VQFN  
RTD  
RTD  
64  
64  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RTD0064F  
VQFN - 0.9 mm max height  
SCALE 1.600  
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
0.15  
0.05  
0.05  
0.00  
PIN 1 ID  
(0.15)  
DETAIL  
A
S
C
A
L
E
2
0
.
0
0
0
DETAIL A  
TYPICAL  
9.1  
8.9  
(
8.75)  
0.2  
0.1  
(0.15)  
DETAIL  
B
S
C
A
L
E
2
0
.
0
0
0
DETAIL B  
TYPICAL  
0.9 MAX  
SEE DETAIL A  
SEE DETAIL B  
C
SEATING PLANE  
0.08 C  
(0.2)  
4X (45 X0.42)  
32  
17  
16  
33  
SYMM  
65  
4X  
5.75 0.1  
7.5  
1
48  
0.3  
64X  
64X 0.5  
64  
49  
0.2  
SYMM  
0.5  
0.3  
0.1  
C B  
C
A
64X  
PIN 1 ID  
(R0.2)  
0.05  
4223128/A 08/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RTD0064F  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
5.75)  
(1.36) TYP  
3X (1.265)  
49  
64X (0.6)  
64  
64X (0.25)  
1
48  
3X  
(1.265)  
60X (0.5)  
SYMM  
(1.36) TYP  
(8.8)  
65  
(
0.2) TYP  
VIA  
16  
33  
32  
17  
SYMM  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223128/A 08/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RTD0064F  
VQFN - 0.9 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.36)  
TYP  
64X (0.6)  
64X (0.25)  
64  
49  
1
48  
16X ( 1.16)  
(1.36)  
TYP  
60X (0.5)  
SYMM  
65  
(8.8)  
METAL  
TYP  
33  
16  
17  
32  
SYMM  
(8.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 65:  
65% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:8X  
4223128/A 08/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90C189TWRTDRQ1

低功耗 1.8V 双像素 FPD 链接 (LVDS) 串行器 | RTD | 64 | -40 to 115
TI

DS90C189TWRTDTQ1

低功耗 1.8V 双像素 FPD 链接 (LVDS) 串行器 | RTD | 64 | -40 to 115
TI

DS90C241

5-35MHZ DC-Balanced 24-bit LVDS Serializer and Deserializer LVDS差分转换芯片
NIEC

DS90C241

5-35MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer
NSC

DS90C241

5MHz 至 35MHz 直流平衡 24 位 FPD-Link II 串行器
TI

DS90C241-Q1

5MHz 至 35MHz 直流平衡 24 位汽车类 FPD-Link II 串行器
TI

DS90C241IVS

5-35MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer
NSC

DS90C241IVS/NOPB

5MHz 至 35MHz 直流平衡 24 位 FPD-Link II 串行器 | PFB | 48 | -40 to 105
TI

DS90C241IVSX

5-35MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer
NSC

DS90C241IVSX/NOPB

5MHz 至 35MHz 直流平衡 24 位 FPD-Link II 串行器 | PFB | 48 | -40 to 105
TI

DS90C241QVS

5-35MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer
NSC

DS90C241QVS/NOPB

5MHz 至 35MHz 直流平衡 24 位汽车类 FPD-Link II 串行器 | PFB | 48 | -40 to 105
TI