DS90CR286ATDGGQ1 [TI]

3.3V 上升沿数据选通信号 LVDS 接收器 28 位 Channel Link 66MHz | DGG | 56 | -40 to 105;
DS90CR286ATDGGQ1
型号: DS90CR286ATDGGQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V 上升沿数据选通信号 LVDS 接收器 28 位 Channel Link 66MHz | DGG | 56 | -40 to 105

通信
文件: 总30页 (文件大小:1887K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
DS90CR286AT-Q1 3.3V 上升沿数据选通信号  
LVDS 接收器 28 Channel Link 66MHz  
1 特性  
3 说明  
1
20MHz 66MHz 移位时钟支持  
DS90CR286AT-Q1 接收器可将四条 LVDS(低压差分  
信令)数据流转换回 28 位并行 LVCMOS 数据。接收  
器数据在输出时钟的上升沿输出选通信号。  
接收器输出时钟的占空比为 50%  
接收端输出拥有出色的建立和保持时间  
66MHz(最差情况下)时的接收功耗 < 270mW  
(典型值)  
接收器 LVDS 时钟的工作速率为 20MHz 66MHz。  
DS90CR286AT-Q1 会锁相至输入 LVDS 时钟、对  
LVDS 数据线路上的串行位流进行采样、然后将其转换  
28 位并行输出数据。在 66MHz 的传入时钟速率  
下,每条 LVDS 输入线路均以 462Mbps 的位速率运  
行,最大吞吐量达 1.848Gbps。  
接收端省电模式 < 200μW(最大值)  
静电放电 (ESD) 额定值:4kV (HBM)1kV (CDM)  
锁相环 (PLL) 无需外部组件  
TIA/EIA-644 LVDS 标准兼容  
薄型 56 引脚 DGG (TSSOP) 封装  
工作温度范围:40°C +105°C  
符合汽车类 AEC-Q100 2 级标准  
DS90CR286AT-Q1 器件的接收器输出拥有更长的数据  
有效时间,相比上一代接收器有显著提升。  
DS90CR286AT-Q1 针对 PCB 电路板芯片间 OpenLDI  
RGB 桥接转化而设计。对于这款器件,不建议通过  
电缆互连的方式传输 LVDS 数据。  
2 应用  
视频显示  
车用信息娱乐  
用户使用兼容的 OpenLDI 发送器和 DS90CR286AT-  
Q1 接收器设计子系统时,需要确保偏差裕度预算  
(RSKM) 在可接受的范围内。有关 RSKM 的详细信  
息,可参见应用信息部分。  
工业用打印机和成像  
数字视频传输  
机器视觉  
OpenLDI RGB 桥接器  
器件信息(1)  
器件型号  
封装  
封装尺寸(标称值)  
DS90CR286AT-Q1  
TSSOP (56)  
14.00mm x 6.10mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型应用方框图  
ꢀ/. Çrꢁce  
5{90/w286!Ç-v1 28-.it wx  
24-.it wD. 5isplꢁy Ünit  
wxhÜÇꢂ27:0]  
[ë5{ 5ꢁtꢁ  
Graphics Processor Unit (GPU)  
28-Bit Tx Data  
(4 LVDS Data, 1 LVDS Clock)  
[ë5{ /lock  
wx/[Y  
PLL  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNLS498  
 
 
 
 
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
目录  
7.3 Feature Description................................................. 12  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application ................................................. 14  
Power Supply Recommendations...................... 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics.......................................... 6  
6.7 Typical Characteristics............................................ 10  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
8
9
10 Layout................................................................... 19  
10.1 Layout Guidelines ................................................. 19  
10.2 Layout Example .................................................... 19  
11 器件和文档支持 ..................................................... 21  
11.1 文档支持 ............................................................... 21  
11.2 社区资源................................................................ 21  
11.3 ....................................................................... 21  
11.4 静电放电警告......................................................... 21  
11.5 Glossary................................................................ 21  
12 机械、封装和可订购信息....................................... 21  
7
4 修订历史记录  
Changes from Original (November 2015) to Revision A  
Page  
已更改 产品预览至完整的数据表量产数据版本....................................................................................................................... 1  
2
Copyright © 2015, Texas Instruments Incorporated  
 
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
5 Pin Configuration and Functions  
DGG Package  
56-Pin TSSOP  
Top View  
Pin Functions  
PIN  
I/O , TYPE  
PIN DESCRIPTION  
NAME  
NO.  
RxIN0+, RxIN0-,  
RxIN1+, RxIN1-,  
RxIN2+, RxIN2-,  
RxIN3+, RxIN3-  
10, 9,  
Positive and negative LVDS differential data inputs. 100 Ω termination resistors  
should be placed between RxIN+ and RxIN- receiver inputs as close as  
possible to the receiver pins for proper signaling.  
12, 11,  
16, 15,  
20, 19  
I, LVDS  
I, LVDS  
Positive and negative LVDS differential clock input. 100 Ω termination resistor  
should be placed between RxCLKIN+ and RxCLKIN- receiver inputs as close  
as possible to the receiver pins for proper signaling.  
RxCLKIN+,  
RxCLKIN-  
18,  
17  
7, 6, 5, 3,  
2, 1, 55, 54,  
53, 51, 50, 49,  
47, 46, 45, 43,  
42, 41, 39, 38,  
37, 35, 34, 33,  
32, 30, 29, 27  
RxOUT[27:0]  
O, LVCMOS  
LVCMOS level data outputs.  
RxCLK OUT  
PWR DWN  
VCC  
26  
O, LVCMOS  
I, LVCMOS  
Power  
LVCMOS Ievel clock output. The rising edge acts as the data strobe.  
LVCMOS level input. When asserted low, the receiver outputs are low.  
Power supply pins for LVCMOS outputs.  
25  
56, 48, 40, 31  
52, 44, 36,  
28, 4  
GND  
Power  
Ground pins for LVCMOS outputs.  
PLL VCC  
23  
Power  
Power  
Power  
Power  
Power supply for PLL.  
PLL GND  
LVDS VCC  
LVDS GND  
24, 22  
13  
Ground pin for PLL.  
Power supply pin for LVDS inputs.  
Ground pins for LVDS inputs.  
21, 14, 8  
Copyright © 2015, Texas Instruments Incorporated  
3
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
0.3  
0.3  
0.3  
MAX  
4
UNIT  
V
Supply Voltage (VCC  
)
LVCMOS Output Voltage  
(VCC + 0.3)  
(VCC + 0.3)  
150  
V
LVDS Receiver Input Voltage  
Operating Junction Temperature  
Lead Temperature (Soldering, 4 sec)  
Storage temperature, Tstg  
V
°C  
°C  
°C  
260  
65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
3.0  
40  
0
NOM  
3.3  
MAX  
3.6  
UNIT  
Supply Voltage (VCC  
)
V
°C  
Operating Free Air Temperature (TA)  
Receiver Input Range  
25  
105  
2.4  
V
Supply Noise Voltage (VNoise  
)
100  
mVp-p  
6.4 Thermal Information  
DS90CR286AT-Q1  
THERMAL METRIC(1)  
DGG (TSSOP)  
56 PINS  
64.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
20.6  
33.3  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
1.0  
ψJB  
33.0  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
6.5 Electrical Characteristics(1)(2)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS DC SPECIFICATIONS (For PWR DWN Pin)  
VIH  
VIL  
High Level Input Voltage  
Low Level Input Voltage  
Input Clamp Voltage  
2.0  
VCC  
0.8  
V
V
GND  
VCL  
ICL = 18 mA  
0.79  
+1.8  
0
1.5  
+10  
V
VIN = 0.4 V, 2.5 V or VCC  
V IN = GND  
μA  
μA  
IIN  
Input Current  
10  
LVCMOS DC SPECIFICATIONS  
VOH  
VOL  
IOS  
High Level Output Voltage  
Low Level Output Voltage  
Output Short Circuit Current  
IOH = 0.4 mA  
IOL = 2 mA  
2.7  
3.3  
0.06  
60  
V
V
0.3  
VOUT = 0 V  
120  
mA  
LVDS RECEIVER DC SPECIFICATIONS  
Differential Input High  
Threshold  
VCM = 1.2 V  
VCM = 1.2 V  
+100  
mV  
mV  
VTH  
Differential Input Low  
Threshold  
100  
VTL  
VIN = 2.4 V, VCC = 3.6 V  
VIN = 0V , VCC = 3.6 V  
±10  
±10  
65  
μA  
μA  
IIN  
Input Current  
CL = 8 pF, Worst Case Pattern,  
DS90CR286AT-Q1 (Figure 1  
Figure 2), TA=40°C to 105°C  
f = 33 MHz  
f = 40 MHz  
f = 66 MHz  
49  
53  
81  
mA  
mA  
mA  
Receiver Supply Current  
Worst Case  
ICCRW  
ICCRZ  
70  
105  
Receiver Supply Current  
Power Down  
PWR DWN = Low; Receiver Outputs Stay Low  
during Power Down Mode  
10  
55  
μA  
(1) Typical values are given for VCC = 3.3 V and TA = 25ºC.  
(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground  
unless otherwise specified (except VOD and ΔV OD).  
Copyright © 2015, Texas Instruments Incorporated  
5
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CLHT  
LVCMOS Low-to-High Transition Time  
2
5
ns  
(Figure 2)  
CHLT  
LVCMOS High-to-Low Transition Time  
(Figure 2)  
1.8  
1.4  
5
ns  
ns  
RSPos0  
Receiver Input Strobe Position for Bit 0  
1.01  
2.45  
(Figure 8)  
RSPos1  
RSPos2  
RSPos3  
RSPos4  
RSPos5  
RSPos6  
RSPos0  
Receiver Input Strobe Position for Bit 1  
Receiver Input Strobe Position for Bit 2  
Receiver Input Strobe Position for Bit 3  
Receiver Input Strobe Position for Bit 4  
Receiver Input Strobe Position for Bit 5  
Receiver Input Strobe Position for Bit 6  
4.52  
8.08  
5.0  
8.5  
5.99  
9.35  
ns  
ns  
ns  
ns  
ns  
ns  
f = 40 MHz, T = 25ºC  
f = 66 MHz, T = -40ºC  
f = 66 MHz, T = 25ºC  
f = 66 MHz, T = 105ºC  
11.59  
15.15  
18.86  
22.34  
11.9  
15.6  
19.2  
22.9  
12.89  
16.53  
20.20  
23.91  
Receiver Input Strobe Position for Bit 0  
(Figure 8)  
0.58  
1.1  
1.55  
ns  
RSPos1  
RSPos2  
RSPos3  
RSPos4  
RSPos5  
RSPos6  
RSPos0  
Receiver Input Strobe Position for Bit 1  
Receiver Input Strobe Position for Bit 2  
Receiver Input Strobe Position for Bit 3  
Receiver Input Strobe Position for Bit 4  
Receiver Input Strobe Position for Bit 5  
Receiver Input Strobe Position for Bit 6  
2.77  
5.01  
3.3  
5.4  
3.80  
5.77  
ns  
ns  
ns  
ns  
ns  
ns  
7.11  
7.5  
7.88  
9.24  
9.7  
10.12  
12.32  
14.50  
11.44  
13.62  
11.9  
14.1  
Receiver Input Strobe Position for Bit 0  
(Figure 8)  
0.68  
1.2  
1.64  
ns  
RSPos1  
RSPos2  
RSPos3  
RSPos4  
RSPos5  
RSPos6  
RSPos0  
Receiver Input Strobe Position for Bit 1  
Receiver Input Strobe Position for Bit 2  
Receiver Input Strobe Position for Bit 3  
Receiver Input Strobe Position for Bit 4  
Receiver Input Strobe Position for Bit 5  
Receiver Input Strobe Position for Bit 6  
2.88  
5.08  
3.4  
5.5  
3.88  
5.87  
ns  
ns  
ns  
ns  
ns  
ns  
7.20  
7.6  
7.98  
9.30  
9.7  
10.24  
12.40  
14.57  
11.50  
13.70  
12.0  
14.2  
Receiver Input Strobe Position for Bit 0  
(Figure 8)  
0.84  
1.3  
1.74  
ns  
RSPos1  
RSPos2  
RSPos3  
RSPos4  
RSPos5  
RSPos6  
RCOP  
Receiver Input Strobe Position for Bit 1  
Receiver Input Strobe Position for Bit 2  
Receiver Input Strobe Position for Bit 3  
Receiver Input Strobe Position for Bit 4  
Receiver Input Strobe Position for Bit 5  
Receiver Input Strobe Position for Bit 6  
RxCLK OUT Period (Figure 3)  
3.00  
5.14  
7.30  
9.42  
11.59  
13.83  
15  
3.6  
5.6  
4.05  
6.02  
8.14  
10.40  
12.57  
14.73  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
7.8  
9.9  
12.1  
14.3  
RCOH  
RCOL  
RxCLK OUT High Time (Figure 3)  
RxCLK OUT Low Time (Figure 3)  
10.0  
10.0  
6.5  
12.2  
11.0  
11.6  
11.6  
7.6  
f = 40 MHz  
f = 66 MHz  
RSRC  
RxOUT Setup to RxCLK OUT (Figure 3)  
RxOUT Hold to RxCLK OUT (Figure 3)  
RxCLK OUT High Time (Figure 3)  
RxCLK OUT Low Time (Figure 3)  
RHRC  
6.0  
RCOH  
RCOL  
5.0  
5.0  
6.3  
RSRC  
RxOUT Setup to RxCLK OUT (Figure 3)  
RxOUT Hold to RxCLK OUT (Figure 3)  
4.5  
7.3  
RHRC  
4.0  
6.3  
6
Copyright © 2015, Texas Instruments Incorporated  
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
Switching Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RCCD  
RxCLK IN to RxCLK OUT Delay at 25°C,  
3.5  
5.0  
7.5  
ns  
VCC = 3.3V(1) (Figure 4)  
RPLLS  
RPDD  
Receiver Phase Lock Loop Set (Figure 5)  
Receiver Power Down Delay (Figure 7)  
10  
1
ms  
μs  
(1) Total latency for the channel link chipset is a function of clock period and gate delays through the transmitter (TCCD) and receiver  
(RCCD). The total latency for the DS90CR285 transmitter and DS90CR286AT-Q1 receiver is: (T + TCCD) + (2*T + RCCD), where T =  
Clock period. If another transmitter is used, the alternative transmitter's TCCD must be used to calculate total latency.  
Figure 1. "Worst Case" Test Pattern  
[ë/ah{ hutput  
Figure 2. LVCMOS Output Load and Transition Times  
Figure 3. Setup/Hold and High/Low Times  
Copyright © 2015, Texas Instruments Incorporated  
7
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Figure 4. Clock In to Clock Out Delay  
Figure 5. Phase Lock Loop Set Time  
wx/[Y Lb  
(ꢁifferential)  
wxLb3  
({ingle-ꢀnded)  
wxhÜÇ5-1  
wxhÜÇ20-1  
wxhÜÇ9-1  
wxhÜÇ1-1  
wxhÜÇ23  
wxhÜÇ26  
wxhÜÇ18  
wxhÜÇ7  
wxhÜÇ16  
wxhÜÇ24  
wxhÜÇ14  
wxhÜÇ4  
wxhÜÇ5  
wxhÜÇ20  
wxhÜÇ9  
wxhÜÇ1  
wxhÜÇ27-1  
wxhÜÇ19-1  
wxhÜÇ8-1  
wxhÜÇ0-1  
wxhÜÇ17  
wxhÜÇ25  
wxhÜÇ15  
wxhÜÇ6  
wxhÜÇ11  
wxhÜÇ22  
wxhÜÇ13  
wxhÜÇ3  
wxhÜÇ10  
wxhÜÇ21  
wxhÜÇ12  
wxhÜÇ2  
wxhÜÇ27  
wxhÜÇ19  
wxhÜÇ8  
wxhÜÇ0  
wxLb2  
({ingle-ꢀnded)  
wxLb1  
({ingle-ꢀnded)  
wxLb0  
({ingle-ꢀnded)  
Figure 6. Mapping of 28 LVCMOS Parallel Data to 4D + C LVDS Serialized Data  
8
Copyright © 2015, Texas Instruments Incorporated  
 
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
Figure 7. Power Down Delay  
Figure 8. LVDS Input Strobe Position  
Copyright © 2015, Texas Instruments Incorporated  
9
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
6.7 Typical Characteristics  
2
4.5  
4
1.5  
1
3.5  
3
Max  
Max  
0.5  
0
2.5  
2
Nominal  
Min  
Nominal  
Min  
20  
50  
80  
110  
20  
50  
80  
110  
œ40  
œ10  
œ40  
œ10  
Temperature (°C)  
Temperature (°C)  
C001  
C002  
Figure 9. Rx Strobe Position 0 versus Temperature  
Operating Frequency: 66 MHz  
Figure 10. Rx Strobe Position 1 versus Temperature  
Operating Frequency: 66 MHz  
6.5  
8.5  
6
5.5  
5
8
7.5  
7
Max  
Max  
4.5  
4
Nominal  
Min  
Nominal  
Min  
6.5  
20  
50  
80  
110  
20  
50  
80  
110  
œ40  
œ10  
œ40  
œ10  
Temperature (°C)  
Temperature (°C)  
C003  
C004  
Figure 11. Rx Strobe Position 2 versus Temperature  
Operating Frequency: 66 MHz  
Figure 12. Rx Strobe Position 3 versus Temperature  
Operating Frequency: 66 MHz  
10.5  
13  
12.5  
10  
9.5  
9
12  
11.5  
11  
Max  
Max  
Nominal  
Min  
Nominal  
Min  
8.5  
10.5  
20  
50  
80  
110  
20  
50  
80  
110  
œ40  
œ10  
œ40  
œ10  
Temperature (°C)  
Temperature (°C)  
C005  
C006  
Figure 13. Rx Strobe Position 4 versus Temperature  
Operating Frequency: 66 MHz  
Figure 14. Rx Strobe Position 5 versus Temperature  
Operating Frequency: 66 MHz  
10  
Copyright © 2015, Texas Instruments Incorporated  
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
Typical Characteristics (continued)  
15  
14.5  
14  
Max  
13.5  
Nominal  
Min  
13  
20  
50  
80  
110  
œ40  
œ10  
Temperature (°C)  
C007  
Figure 15. Rx Strobe Position 6 versus Temperature  
Operating Frequency: 66 MHz  
Çime (20.0 ns/5Lë)  
Çime (5.0 ns/ꢀLë)  
Figure 16. Parallel PRBS-7 on LVCMOS Outputs at 66 MHz  
Figure 17. Typical RxOUT Timing Diagram at 66 MHz  
Çime (5.0 ns/ꢀLë)  
Çime (5.0 ns/ꢀLë)  
Figure 18. Typical RxOUT Setup Time at 66 MHz  
(RSRC = 7.1 ns)  
Figure 19. Typical RxOUT Hold Time at 66 MHz  
(RHRC = 7.0 ns)  
Copyright © 2015, Texas Instruments Incorporated  
11  
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90CR286AT-Q1 is an AEC-Q100 Grade 2 receiver that converts four LVDS (Low Voltage Differential  
Signaling) data streams back into parallel 28 bits of LVCMOS data (24 bits of RGB and 4 bits of HSYNC,  
VSYNC, DE, and CNTL). An internal PLL locks to the incoming LVDS clock ranging from 20 to 66 MHz. The  
locked PLL then ensures a stable clock to sample the output LVCMOS data on the Receiver Clock Out rising  
edge. The DS90CR286AT-Q1 features a PWR DWN pin to put the device into low power mode when there is no  
active input data.  
7.2 Functional Block Diagram  
4 x [ë5{ 5ꢀtꢀ  
(140 to 462 abps on  
9ꢀcꢁ [ë5{ /ꢁꢀnnel)  
28 x [ë/ah{  
hutputs  
[ë5{ /lock  
(20 to 66 aIz)  
PLL  
weceiver /lock hut  
ꢂíw 5íꢃ  
Figure 20. DS90CR286AT-Q1 Block Diagram  
7.3 Feature Description  
The DS90CR286AT-Q1 consists of several key blocks:  
LVDS Receivers  
Phase Locked Loop (PLL)  
Serial LVDS-to-Parallel LVCMOS Converter  
LVCMOS Drivers  
7.3.1 LVDS Receivers  
There are five differential LVDS inputs to the DS90CR286AT-Q1. Four of the LVDS inputs contain serialized data  
originating from a 28-bit source transmitter. The remaining LVDS input contains the LVDS clock associated with  
the data pairs.  
12  
Copyright © 2015, Texas Instruments Incorporated  
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
Feature Description (continued)  
7.3.1.1 Input Termination  
The DS90CR286AT-Q1 requires a single 100 Ω terminating resistor across the positive and negative lines on  
each differential pair of the receiver input. To prevent reflections due to stubs, this resistor should be placed as  
close to the device input pins as possible. Figure 21 shows an example.  
wxLb+  
ÇxhÜÇ+  
100 Q  
[ë5{ Lnterface  
wxLb-  
ÇxhÜÇ-  
Figure 21. LVDS Serialized Link Termination  
7.3.2 Phase Locked Loop (PLL)  
The Channel Link I devices use an internal PLL to recover the clock transmitted across the LVDS interface. The  
recovered clock is then used as a reference to determine the sampling position of the seven serial bits received  
per clock cycle. The width of each bit in the serialized LVDS data stream is one-seventh the clock period.  
Differential skew (Δt within one differential pair), interconnect skew (Δt of one differential pair to another), and  
clock jitter will all reduce the available window for sampling the LVDS serial data streams. Individual bypassing of  
each VCC to ground will minimize the noise passed on to the PLL, thus creating a low jitter LVDS clock to  
improve the overall jitter budget.  
7.3.3 Serial LVDS-to-Parallel LVCMOS Converter  
After the PLL locks to the incoming LVDS clock, the receiver deserializes each LVDS differential data pair into  
seven parallel LVCMOS data outputs per clock cycle. For the DS90CR286AT-Q1, the LVDS data inputs map to  
LVCMOS outputs according to Figure 6.  
7.3.4 LVCMOS Drivers  
The LVCMOS outputs from the DS90CR286AT-Q1 are the deserialized single-ended data from the serialized  
LVDS data pairs. Each LVCMOS output is clocked by the PLL and should be strobed on the RxCLKOUT rising  
edge by the endpoint device. All unused DS90CR286AT-Q1 RxOUT outputs can be left floating.  
7.4 Device Functional Modes  
7.4.1 Power Down Mode  
The DS90CR286AT-Q1 receiver may be placed into a power down mode at any time by asserting the PWR  
DWN pin (active low). The DS90CR286AT-Q1 is also designed to protect from accidental loss of power to either  
the transmitter or receiver. If power to the transmitter is lost, the receiver clocks (input and output) stop. The data  
outputs (RxOUT) retain the states they were in when the clocks stopped. When the receiver loses power, the  
receiver inputs are shorted to VCC through an internal diode. Current is limited to 5 mA per input, thus avoiding  
the potential for latch-up when powering the device.  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The DS90CR286AT-Q1 is designed for a wide variety of data transmission applications. The use of serialized  
LVDS data lines in these applications allows for efficient signal transmission over a narrow bus width, thereby  
reducing cost, power, and space. The DS90CR286AT-Q1 is designed for PCB board chip-to-chip OpenLDI-to-  
RGB (LVDS-to-parallel) bridge conversion. LVDS data transmission over cable interconnect is not recommended  
for this device. Users designing a sub-system with a compatible OpenLDI transmitter and DS90CR286AT-Q1  
receiver must ensure an acceptable skew margin budget (RSKM).  
8.2 Typical Application  
ꢀ/. Çrꢁce  
5{90/w286!Ç-v1 28-.it wx  
24-.it wD. 5isplꢁy Ünit  
wxhÜÇꢂ27:0]  
[ë5{ 5ꢁtꢁ  
Graphics Processor Unit (GPU)  
28-Bit Tx Data  
(4 LVDS Data, 1 LVDS Clock)  
[ë5{ /lock  
wx/[Y  
PLL  
Figure 22. Typical DS90CR286AT-Q1 Application Block Diagram  
8.2.1 Design Requirements  
For this design example, ensure that the following requirements are observed.  
Table 1. DS90CR286AT-Q1 Design Parameters  
DESIGN PARAMETER  
Operating Frequency  
Bit Resolution  
DESIGN REQUIREMENTS  
LVDS clock must be within 20-66 MHz.  
No higher than 24 bpp. The maximum supported resolution is 8-bit RGB.  
Determine the appropriate mapping required by the panel display following the  
DS90CR286AT-Q1 outputs.  
Bit Data Mapping  
Ensure that there is acceptable margin between Tx pulse position and Rx  
strobe position.  
RSKM (Receiver Skew Margin)  
100 Ω ± 10% resistor across each LVDS differential pair. Place as close as  
possible to IC input pins.  
Input Termination for RxIN±  
RxIN± Board Trace Impedance  
Design differential trace impedance with 100 Ω ± 5%.  
If unused, leave pins floating. Series resistance on each LVCMOS output  
optional to reduce reflections from long board traces. If used, 33 Ω series  
resistance is typical.  
LVCMOS Outputs  
Use a 0.1 µF capacitor to minimize power supply noise. Place as close as  
possible to Vcc pins.  
DC Power Supply Coupling Capacitors  
14  
Copyright © 2015, Texas Instruments Incorporated  
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
8.2.2 Detailed Design Procedure  
To begin the design process with the DS90CR286AT-Q1, determine the following:  
Operating Frequency  
Bit Resolution of the Panel  
Bit Mapping from Receiver to Endpoint Panel Display  
RSKM Interoperability with Transmitter Pulse Position Margin  
8.2.2.1 Bit Resolution and Operating Frequency Compatibility  
The bit resolution of the endpoint panel display reveals whether there are enough bits available in the  
DS90CR286AT-Q1 to output the required data per pixel. The DS90CR286AT-Q1 has 28 parallel LVCMOS  
outputs and can therefore provide a bit resolution up to 24 bpp (bits per pixel). In each clock cycle, the remaining  
bits are the three control signals (HSync, VSync, DE) and one spare bit.  
The number of pixels per frame and the refresh rate of the endpoint panel display indicate the required operating  
frequency of the receiver clock. To determine the required clock frequency, refer to the following formula:  
f_Clk = [H_Active + H_Blank] × [V_Active + V_Blank] × f_Vertical  
where  
H_Active = Active Display Horizontal Lines  
H_Blank = Blanking Period Horizontal Lines  
V_Active = Active Display Vertical Lines  
V_Blank = Blanking Period Vertical Lines  
f_Vertical = Refresh Rate (in Hz)  
f_Clk = Operating Frequency of LVDS clock  
(1)  
In each frame, there is a blanking period associated with horizontal rows and vertical columns that are not  
actively displayed on the panel. These blanking period pixels must be included to determine the required clock  
frequency. Consider the following example to determine the required LVDS clock frequency:  
H_Active = 640  
H_Blank = 40  
V_Active = 480  
V_Blank = 41  
f_Vertical = 59.95 Hz  
Thus, the required operating frequency is determined below:  
[640 + 40] x [480 + 41] x 59.95 = 21239086 Hz 21.24 MHz  
(2)  
Since the operating frequency for the PLL in the DS90CR286AT-Q1 ranges from 20-66 MHz, the  
DS90CR286AT-Q1 can support a panel display with the aforementioned requirements.  
If the specific blanking interval is unknown, the number of pixels in the blanking interval can be approximated to  
20% of the active pixels. The following formula can be used as a conservative approximation for the operating  
LVDS clock frequency:  
f_Clk H_Active x V_Active x f_Vertical x 1.2  
(3)  
Using this approximation, the operating frequency for the example in this section is estimated below:  
640 x 480 x 59.95 x 1.2 = 22099968 Hz 22.10 MHz  
(4)  
8.2.2.2 Data Mapping between Receiver and Endpoint Panel Display  
Ensure that the LVCMOS outputs are mapped to align with the endpoint display RGB mapping requirements  
following the deserializer. Two popular mapping topologies for 8-bit RGB data are shown below:  
1. LSBs are mapped to RxIN3±.  
2. MSBs are mapped to RxIN3±.  
The following tables depict how these two popular topologies can be mapped to the DS90CR286AT-Q1 outputs.  
Copyright © 2015, Texas Instruments Incorporated  
15  
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Table 2. 8-Bit Color Mapping with LSBs on RxIN3±  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
POSITION  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
TxIN0  
TxIN1  
RxOUT0  
RxOUT1  
RxOUT2  
RxOUT3  
RxOUT4  
RxOUT6  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT12  
RxOUT13  
RxOUT14  
RxOUT15  
RxOUT18  
RxOUT19  
RxOUT20  
RxOUT21  
RxOUT22  
RxOUT24  
RxOUT25  
RxOUT26  
RxOUT27  
RxOUT5  
RxOUT10  
RxOUT11  
RxOUT16  
RxOUT17  
RxOUT23  
R2  
R3  
TxIN2  
R4  
RxIN0  
TxIN3  
R5  
TxIN4  
R6  
TxIN6  
R7  
MSB  
MSB  
TxIN7  
G2  
TxIN8  
G3  
TxIN9  
G4  
TxIN12  
TxIN13  
TxIN14  
TxIN15  
TxIN18  
TxIN19  
TxIN20  
TxIN21  
TxIN22  
TxIN24  
TxIN25  
TxIN26  
TxIN27  
TxIN5  
G5  
RxIN1  
G6  
G7  
B2  
B3  
B4  
B5  
B6  
RxIN2  
B7  
MSB  
Horizontal Sync  
Vertical Sync  
Data Enable  
LSB  
HSYNC  
VSYNC  
DE  
R0  
R1  
TxIN10  
TxIN11  
TxIN16  
TxIN17  
TxIN23  
G0  
LSB  
LSB  
RxIN3  
G1  
B0  
B1  
GP  
General Purpose  
Table 3. 8-Bit Color Mapping with MSBs on RxIN3±  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
POSITION  
TxIN0  
RxOUT0  
RxOUT1  
RxOUT2  
RxOUT3  
RxOUT4  
RxOUT6  
RxOUT7  
RxOUT8  
RxOUT9  
RxOUT12  
RxOUT13  
RxOUT14  
RxOUT15  
RxOUT18  
R0  
R1  
R2  
R3  
R4  
R5  
G0  
G1  
G2  
G3  
G4  
G5  
B0  
B1  
LSB  
TxIN1  
TxIN2  
RxIN0  
TxIN3  
TxIN4  
TxIN6  
TxIN7  
LSB  
LSB  
TxIN8  
TxIN9  
TxIN12  
TxIN13  
TxIN14  
TxIN15  
TxIN18  
RxIN1  
16  
Copyright © 2015, Texas Instruments Incorporated  
 
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
Table 3. 8-Bit Color Mapping with MSBs on RxIN3± (continued)  
LVDS INPUT  
CHANNEL  
LVDS BIT STREAM  
POSITION  
LVCMOS OUTPUT  
CHANNEL  
COLOR MAPPING  
COMMENTS  
TxIN19  
TxIN20  
TxIN21  
TxIN22  
TxIN24  
TxIN25  
TxIN26  
TxIN27  
TxIN5  
RxOUT19  
RxOUT20  
RxOUT21  
RxOUT22  
RxOUT24  
RxOUT25  
RxOUT26  
RxOUT27  
RxOUT5  
B2  
B3  
B4  
RxIN2  
B5  
HSYNC  
VSYNC  
DE  
Horizontal Sync  
Vertical Sync  
Data Enable  
R6  
R7  
MSB  
MSB  
TxIN10  
TxIN11  
TxIN16  
TxIN17  
TxIN23  
RxOUT10  
RxOUT11  
RxOUT16  
RxOUT17  
RxOUT23  
G6  
RxIN3  
G7  
B6  
B7  
MSB  
GP  
General Purpose  
In situations where the DS90CR286AT-Q1 must support 18 bpp, Table 2 is commonly used. With this mapping,  
MSBs of RGB data are retained on RXIN0±, RXIN1±, and RXIN2± while the two LSBs for the original 8-bit RGB  
resolution are ignored from RxIN3±.  
8.2.2.3 RSKM Interoperability  
One of the most important factors when designing the receiver into a system application is assessing how much  
RSKM (Receiver Skew Margin) is available. In each LVDS clock cycle, the LVDS data stream carries seven  
serialized data bits. Ideally, the Transmit Pulse Position for each bit will occur every (n x T)/7 seconds, where n =  
Bit Position and T = LVDS Clock Period. Likewise, ideally the Receive Strobe Position for each bit will occur  
every ((n + 0.5) x T)/7 seconds. However, due to the effects of clock jitter and ISI, both LVDS transmitter and  
receiver in real systems will have a minimum and maximum pulse and strobe position, respectively, for each bit  
position. This concept is illustrated in Figure 23:  
wspos1  
wspos0  
max  
min  
max  
min  
Çppos0  
.it 0 [eft aꢀrgin  
.it 0 wight aꢀrgin  
Çppos1  
.it 1 [eft aꢀrgin  
.it 1 wight aꢀrgin  
Çppos2  
Ldeal wx {trobe  
ꢀosition  
Ldeal wx {trobe  
ꢀosition  
max  
max  
min  
min  
max  
min  
.it0  
.it1  
Figure 23. RSKM Measurement Example  
All left and right margins for Bits 0-6 must be considered in order to determine the absolute minimum for the  
whole LVDS bit stream. This absolute minimum corresponds to the RSKM.  
To improve RSKM performance between LVDS transmitter and receiver, designers may either advance or delay  
the LVDS clock compared to the LVDS data. Moving the LVDS clock compared to the LVDS data can improve  
the Rx strobe position compared to the Tx pulse position of the transmitter.  
Copyright © 2015, Texas Instruments Incorporated  
17  
 
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
If there is less left bit margin than right bit margin, the LVDS clock can be delayed so that the Rx strobe position  
for incoming data appears to be delayed. If there is less right bit margin than left bit margin, all the LVDS data  
pairs can be delayed uniformly so that the LVDS clock and Rx strobe position for incoming data appear to  
advance. To delay an LVDS data or clock pair, designers can either add more PCB trace length or install a  
capacitor between the LVDS transmitter and receiver. It is important to note that when using these techniques, all  
serialized bit positions are shifted right or left uniformly.  
When designing the DS90CR286AT-Q1 receiver with a third-party OpenLDI transmitter, users must calculate the  
skew margin budget (RSKM) based on the Tx pulse position and the Rx strobe position to ensure error-free  
transmission. For more information about calculating RSKM, refer to Application Note SNLA249.  
8.2.3 Application Curves  
The following application curves are examples taken with a DS90C385 serializer interfacing to a DS90CR286AT-  
Q1 deserializer in nominal temperature (25ºC) at an operating frequency of 66 MHz.  
ÇxLb7  
ÇxLb6  
ÇxLb4  
ÇxLb3  
ÇxLb2  
ÇxLb1  
ÇxLb0  
Çime (ꢁ.0 nsꢀ5Lë)  
Çime (2.ꢂ nsꢀ5Lë)  
Figure 25. LVDS CLKIN aligned with LVCMOS RxCLKOUT  
Figure 24. LVDS RxIN0± aligned with LVCMOS RxCLKOUT  
Çime (ꢁ.0 nsꢀ5Lë)  
Çime (20.0 nsꢀ5Lë)  
Figure 26. RxOUT and RxCLKOUT Timing Diagram  
Figure 27. PRBS-7 Output on RxOUT Channels  
18  
Copyright © 2015, Texas Instruments Incorporated  
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
9 Power Supply Recommendations  
Proper power supply decoupling is important to ensure a stable power supply with minimal power supply noise.  
Bypassing capacitors are needed to reduce the impact of switching noise which could limit performance. For a  
conservative approach, three parallel-connected decoupling capacitors (Multi-Layered Ceramic type in surface  
mount form factor) between each VCC and the ground plane(s) are recommended. The three capacitor values are  
0.1 μF, 0.01 μF and 0.001 μF. The preferred capacitor size is 0402. An example is shown in Figure 28. The  
designer should place bypass capacitors as close as possible to the VCC pins and ensure each capacitor has its  
own via to connect the ground plane. If board space is limiting the number of bypass capacitors, the PLL VCC  
should receive the most filtering or bypassing. Next would be the LVDS VCC pins and finally the logic VCC pins.  
Figure 28. Recommended Bypass Capacitor Decoupling Configuration  
10 Layout  
10.1 Layout Guidelines  
As with any high speed design, board designers must maximize signal integrity by limiting reflections and  
crosstalk that can adversely affect high frequency and EMI performance. The following practices are  
recommended layout guidelines to optimize device performance.  
Ensure that differential pair traces are always closely coupled to eliminate noise interference from other  
signals and take full advantage of the common mode noise canceling effect of the differential signals.  
Maintain equal length on signal traces for a given differential pair.  
Limit impedance discontinuities by reducing the number of vias on signal traces.  
Eliminate any 90º angles on traces and use 45º bends instead.  
If a via must exist on one signal polarity, mirror the via implementation on the other polarity of the differential  
pair.  
Match the differential impedance of the selected physical media. This impedance should also match the value  
of the termination resistor that is connected across the differential pair at the receiver's input.  
When possible, use short traces for LVDS inputs.  
10.2 Layout Example  
The following images show an example layout of the DS90CR286AT-Q1. Traces in blue correspond to the top  
layer and the traces in green correspond to the bottom layer. Note that differential pair inputs to the  
DS90CR286AT-Q1 are tightly coupled and close to the connector pins. In addition, observe that the power  
supply decoupling capacitors are placed as close as possible to the power supply pins with through vias in order  
to minimize inductance.  
Copyright © 2015, Texas Instruments Incorporated  
19  
 
DS90CR286AT-Q1  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
www.ti.com.cn  
Layout Example (continued)  
Figure 29. Example Layout with DS90CR286AT-Q1 (U1).  
100-Q [ë5{  
Çerminations close to  
wxLb pins  
33 Q {ꢀŒ]ꢀ• wꢀ•]•š}Œ•  
occasionally used to  
reduce reflections  
Figure 30. Example Layout Close-up.  
20  
版权 © 2015, Texas Instruments Incorporated  
DS90CR286AT-Q1  
www.ti.com.cn  
ZHCSET3A NOVEMBER 2015REVISED DECEMBER 2015  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档ꢀ  
应用报告《IC 封装热指标》SPRA953  
《如何计算和提高 Channel Link I 器件的接收器偏差裕度》应用笔记,SNLA249  
11.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.3 商标  
E2E is a trademark of Texas Instruments.  
11.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
21  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90CR286ATDGGQ1  
DS90CR286ATDGGRQ1  
ACTIVE  
TSSOP  
TSSOP  
DGG  
56  
56  
34  
RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 105  
-40 to 105  
DS90CR286ATQ  
DGG  
ACTIVE  
DGG  
2000 RoHS & Green  
SN  
DS90CR286ATQ  
DGG  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90CR286ATDGGRQ1 TSSOP  
DGG  
56  
2000  
330.0  
24.4  
8.6  
14.5  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TSSOP DGG 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 45.0  
DS90CR286ATDGGRQ1  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
DGG TSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
DS90CR286ATDGGQ1  
56  
34  
495  
10  
2540  
5.79  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DS90CR286ATDGGRQ1

3.3V 上升沿数据选通信号 LVDS 接收器 28 位 Channel Link 66MHz | DGG | 56 | -40 to 105
TI

DS90CR286A_09

+3.3V Rising Edge Data Strobe LVDS Receiver 28-Bit Channel Link-66 MHz, +3.3V Rising Edge Strobe LVDS Receiver 21-Bit Channel Link-66 MHz
NSC

DS90CR286MTD

+3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz
NSC

DS90CR286MTD

DS90CR285/DS90CR286 3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz
TI

DS90CR286MTD/NOPB

DS90CR285/DS90CR286 3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz
TI

DS90CR286MTDX

Video Link Interface
ETC

DS90CR286MTDX/NOPB

DS90CR285/DS90CR286 3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-66 MHz
TI

DS90CR287

+3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-85 MHZ
NSC

DS90CR287

+3.3V 上升沿数据选通 LVDS 28 位频道链接发送器 - 85MHz
TI

DS90CR287MTD

+3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link-85 MHZ
NSC

DS90CR287MTD

DS90CR287/DS90CR288A 3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link - 85MHz
TI

DS90CR287MTD/NOPB

DS90CR287/DS90CR288A 3.3V Rising Edge Data Strobe LVDS 28-Bit Channel Link - 85MHz
TI