DS90LVRA2 [TI]

1.8V、600Mbps LVDS 双路差分线路接收器;
DS90LVRA2
型号: DS90LVRA2
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1.8V、600Mbps LVDS 双路差分线路接收器

文件: 总19页 (文件大小:1239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
DS90LVRA2 LVDS 双路差分线路接收器  
1 特性  
3 说明  
600Mbps (300MHz) 转换速率  
50ps 差分延迟典型值)  
0.1ns 通道间延迟典型值)  
1.8V 电源  
• 直通引脚排列  
• 在断电模式下LVDS 输入端具有高阻抗  
• 输出压摆率控制  
LVDS 输入可接LVDS/CML/LVPECL 信号  
• 符ANSI/TIA/EIA-644 标准  
• 引脚DS90LV028A-Q1 兼容  
OPN 型号  
DS90LVRA2 是一款专为需要高输入共模范围、高数据  
速率和具有压摆率控制 CMOS 输出的应用而设计的双  
CMOS 差分线路接收器。该器件旨在利用低电压差  
分信号 (LVDS) 技术支持 600Mbps (300MHz) 的数据  
速率。  
DS90LVRA2 可接受低电压350mV 典型值差分输  
入信号并根据电源电压将其转换1.8V CMOS 输出  
电平。DS90LVRA2 采用直通式设计可简化 PCB 布  
局。  
DS90LVRA2 和 配 套 的 LVDS 线 路 驱 动 器  
DS90LV027AQ 可为高速点对点接口应用提供针对高  
PECL/ECL 器件的全新替代方案。  
– 标准0°C 70°C  
– 工业-40°C +85°C  
封装信息(1)  
2 应用  
封装尺寸标称值)  
器件型号  
DS90LVRA2  
封装  
通信设备  
企业系统  
工业  
DEMWSON82.00mm × 2.00mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
个人电子产品  
RIN1-  
RIN1+  
RIN2-  
RIN2+  
R
ROUT1  
R
ROUT2  
功能图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS728  
 
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes............................................9  
9 Application and Implementation..................................10  
9.1 Application Information............................................. 10  
9.2 Typical Application.................................................... 10  
9.3 Application Curves.................................................... 11  
10 Power Supply Recommendations..............................11  
11 Layout........................................................................... 11  
11.1 Layout Guidelines....................................................11  
11.2 Layout Examples.....................................................12  
12 Device and Documentation Support..........................13  
12.1 Documentation Support.......................................... 13  
12.2 接收文档更新通知................................................... 13  
12.3 支持资源..................................................................13  
12.4 Trademarks.............................................................13  
12.5 静电放电警告.......................................................... 13  
12.6 术语表..................................................................... 13  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................5  
6.7 Typical Characteristics................................................7  
7 Parameter Measurement Information............................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
Information.................................................................... 13  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DS90LVRA2  
English Data Sheet: SNLS728  
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
RIN1-  
8
7
6
5
1
2
3
4
VCC  
RIN1+  
ROUT  
1
RIN2+  
RIN2-  
ROUT  
2
GND  
5-1. DEM Package, WSON 8 Pin (Top View)  
5-1. Pin Functions  
DESCRIPTION  
PIN  
TYPE(1)  
NAME  
GND  
NO.  
5
G
I
Ground pin  
RIN1-  
RIN2-  
RIN1+  
RIN2+  
1
Inverting receiver input pin  
4
I
2
I
Non-inverting receiver input pin  
3
I
ROUT  
ROUT  
VCC  
2
6
O
O
P
Receiver output pin  
Power supply pin  
1
7
8
(1) I = input, O = output, G = ground  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DS90LVRA2  
English Data Sheet: SNLS728  
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)((1))  
MIN  
0.3  
5  
MAX  
4
UNIT  
V
Supply Voltage (VCC  
)
6
V
Input Voltage (RIN+, RIN)  
0
3
V
Differential Voltage (RIN+ - RIN) for LVDS  
Output Voltage (ROUT  
)
1.98  
260  
135  
150  
V
0.3  
Lead Temperature Range Soldering  
Maximum Junction Temperature  
Storage temperature, Tstg  
(4 sec.)  
°C  
°C  
°C  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, and performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±5000  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JS-002((2))  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. .  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.62  
0
NOM  
MAX  
1.98  
3.0  
70  
UNIT  
V
VCC  
VR  
Supply voltage (1.8 V mode)  
1.80  
Receiver input voltage (LVDS)  
Operating free-air temperature (Standard)  
Operating free-air temperature (Industrial)  
PCB temperature (Standard)  
V
TA  
0
°C  
°C  
°C  
°C  
°C  
°C  
TA  
85  
40  
TPCB  
TPCB  
TJ  
80  
PCB temperature (Industrial)  
95  
Junction temperature (Standard)  
Junction temperature (Industrial)  
95  
TJ  
110  
6.4 Thermal Information  
DEM  
THERMAL METRIC(1)  
(WSON)  
8 PINS  
143.7  
77.9  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-board thermal resistance  
69.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
5.0  
69.6  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS728  
4
Submit Document Feedback  
Product Folder Links: DS90LVRA2  
 
 
 
 
 
 
 
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Positive-going differential input  
voltage threshold  
VITH  
100  
VIB = -1 V or 2 V, VCC = 1.62 V to 1.98 V  
mV  
Negative-going differential input  
VITL  
voltage  
threshold  
-100  
20  
Differential input voltage  
hysteresis,  
VIT1 VIT2  
VCC = 1.62 V to 1.98 V  
VCC = 1.62 - 1.98 V  
VHYS  
40  
90  
2
mV  
V
Input common mode voltage  
range  
VCM_RANGE  
-1  
1.2  
VOH_1V8  
VOL_1V8  
High-level output voltage  
Low-level output voltage  
1.3  
V
V
IOH = 4 mA, VCC=1.8 V ±10%  
IOL = 4 mA, VCC=1.8 V ±10%  
0.2  
25  
VCC = 1.98 V, No load, Steady-state,  
VID=200 mV/-200 mV  
ICC_ACTIVE  
Supply current  
mA  
µA  
µA  
µA  
µA  
Input current  
(A or B inputs)  
II  
VI = -1.0 V, Other input open  
VI = 2.0 V, Other input open  
VY or VZ = 1.98 V, VCC = 0 V  
VA or VB = -1 V or 2.0 V, VCC = 0 V  
±35  
±20  
±20  
±35  
Input current  
(A or B inputs)  
II  
Power-off output current  
(Y or Z outputs)  
II(OFF)  
II(OFF)  
Power-off input current  
(A or B inputs)  
(1) All typical values are at 25°C and with a 1.8 V supply.  
6.6 Switching Characteristics  
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.(2) (3) (4)  
Symbol  
tPHLD_1p8  
tPHLD_1p8_5  
tPLHD_1p8  
Parameter  
Conditions  
MIN  
TYP  
MAX UNIT  
VID = 200 mV, CL = 10 pF,  
trf=1 ns, VCC 1.8 V ±10%  
Differential Propagation Delay High to Low  
2.7  
2.8  
4.3  
7.7  
7.1  
7.7  
7.1  
500  
400  
ns  
ns  
ns  
ns  
ps  
ps  
VID = 200 mV, CL = 10 pF,  
trf=1 ns, VCC 1.8 V ±5%  
Differential Propagation Delay High to Low  
Differential Propagation Delay Low to High  
4.3  
4.4  
4.4  
VID = 200 mV, CL = 10 pF,  
trf=1 ns, VCC 1.8 V ±10%  
2.7  
VID = 200 mV, CL = 10 pF,  
trf=1 ns, VCC 1.8 V ±5%  
tPLHD_1p8_5  
tSKD1_1p8_S  
tSKD1_1p8_5_S  
Differential Propagation Delay Low to High  
2.8  
VID = 200 mV, CL = 10 pF,  
trf=1 ns, VCC=1.8 V±10%  
((7))  
-500  
-400  
Differential Pulse Skew (tPHLD tPLHD  
Differential Pulse Skew (tPHLD tPLHD  
)
VID = 200 mV, CL = 10 pF,  
trf=1 ns, VCC=1.8 V±5%  
((7))  
((7))  
)
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns DR=400M,  
VCC=1.8 V±10%  
tSKD1_1p8_S_400  
-500  
-400  
500  
400  
0.5  
ps  
ps  
ns  
Differential Pulse Skew (tPHLD tPLHD  
)
M
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns  
DR=400M,VCC=1.8  
V±5%  
tSKD1_1p8_5_S_4  
((7))  
Differential Pulse Skew (tPHLD tPLHD  
)
00M  
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns VCC=1.8  
V±10%  
tSKD2_1p8  
Differential Channel-to-Channel Skew-same device (6)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DS90LVRA2  
English Data Sheet: SNLS728  
 
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
MAX UNIT  
6.6 Switching Characteristics (continued)  
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.(2) (3) (4)  
Symbol  
Parameter  
Conditions  
MIN  
TYP  
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns VCC=1.8  
V±5%  
tSKD2_1p8_5  
Differential Channel-to-Channel Skew-same device ((8))  
0.4  
2.7  
ns  
ns  
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns VCC=1.8  
V±5% at same  
tSKD3_1p8_5  
Differential Part to Part Skew ((9))  
temperature  
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns VCC=1.8  
V±5% at TJ =25℃  
tSKD3_1p8_5_25C Differential Part to Part Skew ((9))  
tSKD3_1p8_5_70C Differential Part to Part Skew ((9))  
2.6  
2.7  
2.7  
ns  
ns  
ns  
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns VCC=1.8  
V±5% at TJ =70℃  
VID = 200 mV, CL = 10 pF,  
trf=0.25 ns VCC=1.8  
V±5% at TJ= 125℃  
tSKD3_1p8_5_125  
Differential Part to Part Skew ((9))  
C
tTLH_1p8  
tTHL_1p8  
fMAX  
Rise Time  
250  
250  
300  
500  
500  
720  
720  
ps  
ps  
Fall Time  
Maximum Operating Frequency ((11))  
MHz  
(1) Absolute Maximum Ratingsare those values beyond which the safety of the device cannot be ensured. They are not meant to  
imply that the devices should be operated at these limits. Electrical Characteristics specifies conditions of device operation.  
(2) All typicals are given for: VCC = 1.8V and TA = +25°C.  
(3) CL includes probe and jig capacitance.  
(4) Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO = 50Ω, tr and tf (0% to 100%) 3 ns for RIN.  
(5) tSKD1 is the magnitude difference in differential propagation delay time between the positive-going-edge and the negative-going-edge  
of the same channel.  
(6) tSKD2 is the differential channel-to-channel skew of any event on the same device. This specification applies to devices having multiple  
receivers within the integrated circuit.  
(7) tSKD3, part to part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices  
at the same VCC and within 5°C of each other within the operating temperature range.  
(8) fMAX generator input conditions: tr = tf < 1 ns (0% to 100%), 50% duty cycle, differential (1.05V to 1.35 peak to peak). Output criteria:  
60%/40% duty cycle, VOL (max), VOH (min), load = 15 pF (stray plus probes).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS728  
6
Submit Document Feedback  
Product Folder Links: DS90LVRA2  
 
 
 
 
 
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
6.7 Typical Characteristics  
Typical power supply current -vs- data rate (VCC 1.8 V, 5 pF output load, 2 channels)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DS90LVRA2  
English Data Sheet: SNLS728  
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
7-1. Receiver Propagation Delay and Transition Time Test Circuit  
7-2. Receiver Propagation Delay and Transition Time Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS728  
8
Submit Document Feedback  
Product Folder Links: DS90LVRA2  
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
9-1 shows how LVDS drivers and receivers are intended to be primarily used in a simple point-to-point  
configuration. This configuration provides a clean signaling environment for the fast edge rates of the drivers.  
The receiver is connected to the source through a impedance controlled 100 Ω differential PCB traces. A  
termination resistor of 100 Ω should be used, and is located as close to the receiver input pins as possible. The  
termination resistor converts the driver output (current mode) into a voltage that is detected by the receiver.  
8.2 Functional Block Diagram  
RIN1-  
R
ROUT1  
RIN1+  
RIN2-  
RIN2+  
R
ROUT2  
8.3 Feature Description  
The DS90LVRA2 differential line receiver is capable of detecting signals as low as 100 mV, over a common-  
mode range of 1 V to 2 V (VCC at 1.8 V). This is related to the driver offset voltage which is typically +1.2 V. The  
driven signal is centered around this voltage and may shift around this center point. The shifting may be the  
result of a ground potential difference between the driver's ground reference and the receiver's ground  
reference, the common-mode effects of coupled noise, or a combination of the two. The AC parameters of both  
receiver input pins are optimized for a recommended operating input voltage range of +0 V to +3 V (measured  
from each pin to ground).  
8.4 Device Functional Modes  
8-1. Truth Table  
INPUTS  
[RIN+] [RIN]  
VID 0.1 V  
OUTPUT  
ROUT  
H
L
VID 0.1 V  
(1)  
?
0.1 V VID 0.1 V  
(1) ? indicates state is indeterminate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DS90LVRA2  
English Data Sheet: SNLS728  
 
 
 
 
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
For general application guidelines and hints about LVDS drivers and receivers, refer to the LVDS application  
notes and design guides.  
9.2 Typical Application  
½ DS90LVRX2  
9-1. Balanced System Point-to-Point Application  
9.2.1 Design Requirements  
When using LVDS devices, it is important to remember to specify controlled impedance PCB traces. All  
components of the transmission media must have a matched differential impedance of 100 Ω. They must not  
introduce major impedance discontinuities.  
9.2.2 Detailed Design Procedure  
9.2.2.1 Power Decoupling Recommendations  
Bypass capacitors must be used on power pins. Use high frequency ceramic (surface mount is recommended)  
0.1 μF and 0.01 μF capacitors in parallel at the power supply pin with the smallest value capacitor closest to  
the device supply pin. Additional scattered capacitors over the printed circuit board will improve decoupling.  
Multiple vias should be used to connect the decoupling capacitors to the power planes. A 10 μF (35 V) or  
greater solid tantalum capacitor should be connected at the power entry point on the printed circuit board  
between the supply and ground.  
9.2.2.2 Termination  
Use a termination resistor which best matches the differential impedance or your transmission line. The resistor  
should be between 90 and 110 . Remember that the current mode outputs need the termination resistor to  
generate the differential voltage. LVDS will not work correctly without resistor termination. Typically, connecting a  
single resistor across the pair at the receiver end will suffice.  
Surface mount 1% resistors are the best. PCB stubs, component lead, and the distance from the termination to  
the receiver inputs should be minimized. The distance between the termination resistor and the receiver should  
be < 10 mm (12 mm maximum).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS728  
10  
Submit Document Feedback  
Product Folder Links: DS90LVRA2  
 
 
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
9.2.2.3 Input Failsafe Biasing  
External pull up and pull down resistors may be used to provide enough of an offset to enable an input failsafe  
under open-circuit conditions. This configuration ties the positive LVDS input pin to VDD thru a pull up resistor  
and the negative LVDS input pin is tied to GND by a pull down resistor. The pull up and pull down resistors  
should be in the 5 kto 15 krange to minimize loading and waveform distortion to the driver. The common-  
mode bias point ideally should be set to approximately 1.2 V to be compatible with the internal circuitry. For more  
information, refer to application note AN-1194 Failsafe Biasing of LVDS Interfaces.  
9.2.2.4 Probing LVDS Transmission Lines  
Always use high impedance (> 100 k), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz)  
scope. Improper probing will give deceiving results.  
9.3 Application Curves  
9-2. Typical Propagation Delay -vs- Temperature (VCC 1.8 V, 10 pF Output Load, Average of 2  
Channels)  
10 Power Supply Recommendations  
Bypass capacitors must be used on power pins. TI recommends using high-frequency, ceramic, 0.1-µF and  
0.01-µF capacitors in parallel at the power supply pin with the smallest value capacitor closest to the device  
supply pin. Additional scattered capacitors over the printed-circuit board improves decoupling. Multiple vias must  
be used to connect the decoupling capacitors to the power planes. A 10-µF bulk capacitor, 35-V (or greater)  
solid tantalum capacitor must be connected at the power entry point on the printed-circuit board between the  
supply and ground.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Differential Traces  
Use controlled impedance traces which match the differential impedance of your transmission trace and  
termination resistor. Run the differential pair trace lines as close together as possible as soon as they leave the  
IC (stubs should be < 10 mm long). This will help eliminate reflections and ensure noise is coupled as common-  
mode. In fact, we have seen that differential signals which are 1 mm apart radiate far less noise than traces 3  
mm apart since magnetic field cancellation is much better with the closer traces. In addition, noise induced on  
the differential lines is much more likely to appear as common-mode which is rejected by the receiver.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DS90LVRA2  
English Data Sheet: SNLS728  
 
 
 
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
Match electrical lengths between traces to reduce skew. It is important to note: skew between the signals of a  
pair means a phase difference between signals which destroys the magnetic field cancellation benefits of  
differential signals and EMI will result. (Note that the velocity of propagation, v = c/E r where c (the speed of light)  
= 0.2997 mm/ps or 0.0118 in/ps). Do not rely solely on the autoroute function for differential traces. Carefully  
review dimensions to match differential impedance and provide isolation for the differential lines. Minimize the  
number of vias and other discontinuities on the line.  
Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels.  
Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode  
rejection of the receivers. On the printed circuit board, this distance should remain constant to avoid  
discontinuities in differential impedance. Minor violations at connection points are allowable.  
11.1.2 PC Board Considerations  
Use at least 4 PCB board layers (top to bottom): LVDS signals, ground, power, and TTL signals.  
Isolate TTL signals from LVDS signals, otherwise the TTL signals may couple onto the LVDS lines. It is best to  
put TTL and LVDS signals on different layers which are isolated by one or more power or ground planes.  
11.2 Layout Examples  
Di eren al 100 Ω  
Single ended 50 Ω  
11-1. EVM Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SNLS728  
12  
Submit Document Feedback  
Product Folder Links: DS90LVRA2  
 
DS90LVRA2  
ZHCSRF0 DECEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Failsafe Biasing of LVDS Interfaces application note  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DS90LVRA2  
English Data Sheet: SNLS728  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Dec-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
D9LVRA2DEMR  
D9LVRA2DEMT  
D9LVRA2IDEMR  
D9LVRA2IDEMT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
DEM  
DEM  
DEM  
DEM  
8
8
8
8
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
0 to 70  
0 to 70  
LR2  
LR2  
LR2  
LR2  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
-40 to 85  
-40 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Dec-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
DEM0008A  
WSON - 0.8 mm max height  
S
C
A
L
E
6
.
0
0
0
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
PIN 1 INDEX AREA  
2.1  
1.9  
0.8  
0.7  
C
SEATING PLANE  
0.05 C  
0.05  
0.00  
SYMM  
(0.2) TYP  
4
5
SYMM  
2X 1.5  
6X 0.5  
8
1
0.3  
8X  
0.2  
0.1  
0.05  
PIN 1 ID  
(45 X 0.125)  
C A B  
0.85  
0.65  
8X  
4228323/A 12/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DEM0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SEE SOLDER MASK  
DETAIL  
SYMM  
8X (0.95)  
8
8X (0.25)  
1
SYMM  
6X (0.5)  
(R0.05) TYP  
4
5
(1.45)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 30X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4228323/A 12/2021  
NOTES: (continued)  
3. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DEM0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.95)  
8X (0.25)  
1
8
SYMM  
6X (0.5)  
(R0.05) TYP  
5
4
SYMM  
(1.45)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 30X  
4228323/A 12/2021  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90UA101-Q1

DS90UA101-Q1 Multi-Channel Digital Audio Link
TI

DS90UA101-Q1_14

Multi-Channel Digital Audio Link
TI

DS90UA101TRTVJQ1

DS90UA101-Q1 Multi-Channel Digital Audio Link
TI

DS90UA101TRTVRQ1

DS90UA101-Q1 Multi-Channel Digital Audio Link
TI

DS90UA101TRTVTQ1

DS90UA101-Q1 Multi-Channel Digital Audio Link
TI

DS90UA102-Q1

DS90UA102-Q1 Multi-Channel Digital Audio Link
TI

DS90UA102-Q1_14

Multi-Channel Digital Audio Link
TI

DS90UA102TRHSJQ1

DS90UA102-Q1 Multi-Channel Digital Audio Link
TI

DS90UA102TRHSRQ1

DS90UA102-Q1 Multi-Channel Digital Audio Link
TI

DS90UA102TRHSTQ1

DS90UA102-Q1 Multi-Channel Digital Audio Link
TI

DS90UB633A-Q1

DS90UB633A-Q1 FPD-Link III Serializer for 1-MP/60-fps Cameras 10/12 Bits,100 MHz
TI

DS90UB633A-Q1_V01

DS90UB633A-Q1 FPD-Link III Serializer for 1-MP/60-fps Cameras 10/12 Bits,100 MHz
TI