DS90UB934-Q1 [TI]

适用于 1MP/60fps 和 2MP/30fps 摄像机的 12 位 100MHz FPD-Link III 解串器;
DS90UB934-Q1
型号: DS90UB934-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于 1MP/60fps 和 2MP/30fps 摄像机的 12 位 100MHz FPD-Link III 解串器

摄像机 光电二极管
文件: 总84页 (文件大小:3211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
DS90UB934-Q1 适用1MP/60fps 2MP/30fps 摄像机的  
12 100MHz FPD-Link III 解串器  
特性  
2 说明  
• 符合汽车应用要求  
• 符合面向汽车应用AEC-Q100 标准其中包括以  
下特性:  
DS90UB934-Q1 FPD-Link III 解串器与 DS90UB913A/  
933-Q1 串行器配合使用通过超高速正向通道和嵌入  
式双向控制通道来支持视频传输需求。DS90UB934-  
Q1 FPD-Link III 流转换到并CMOS 输出接口该  
接口旨在以 1MP/60fps 2MP/30fps 的分辨率支持高  
12 100MHz 汽车图像传感器。  
– 器件温度等240°C +105°C 环境工作  
温度范围  
– 器HBM ESD 分类等±2 kV  
– 器CDM ESD 分类等C4  
DS90UB933/934 芯片组完全符合 AEC-Q100 标准,  
旨在通过 50Ω 单端同轴电缆或 100Ω 屏蔽双绞线  
(STP) 电缆组件接收数据。DS90UB934-Q1 采用先进  
的自适应均衡器因此无需额外的编程即可支持各种电  
缆长度和类型。  
12 位模式下以高100MHz 的频率运行以支  
1MP/60fps 2MP/30fps 成像器以及卫星雷达  
• 可配置12 位并CMOS可与  
DS90UB913A/933 串行器兼容  
• 自适应均衡功能可补偿电缆老化和劣化效应  
• 具有数据保护功能的超低延迟双向控制数据通道  
• 电缆链路检测诊断  
• 支持同轴电缆供(PoC) 运行模式  
• 符ISO 10605 IEC 61000-4-2 ESD 标准  
• 低辐射发射和低传导发射  
DS90UB934-Q1 与先前几代的 ADAS FPD-Link III 解  
串器器件DS90UB914A-Q1相比有所改进具  
有更高的带宽支持和其他增强。  
器件信息  
(1)  
封装尺寸标称值)  
器件型号  
BIST内置自检)  
DS90UB934-Q1  
VQFN (48)  
7.00mm × 7.00mm  
1 应用  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 汽车  
– 后视摄像(RVC)  
– 环视系(SVS)  
– 摄像头监控系(CMS)  
– 前视摄像(FC)  
– 驾驶员监控系(DMS)  
– 卫星雷达模块  
• 安防和监控摄像头  
• 工业和医疗成像  
Parallel  
Parallel  
Data Out  
FPD-Link III  
Data In  
10 or 12  
10 or 12  
2
2
DS90UB933-Q1  
or  
Image Signal  
HSYNC,  
VSYNC  
4
HD Image  
Sensor  
HSYNC,  
DS90UB934-Q1  
Processor  
VSYNC  
DS90UB913A-Q1  
Bidirectional  
4
(ISP)  
GPO  
2
Control Channel  
GPIO  
2
Bidirectional  
Control Bus  
Bidirectional  
Control Bus  
Serializer  
Deserializer  
Copyright © 2017, Texas Instruments Incorporated  
典型应用原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS507  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
5.3 Feature Description...................................................18  
5.4 Device Functional Modes..........................................20  
5.5 Programming............................................................ 26  
5.6 Register Maps...........................................................33  
6 Application and Implementation..................................63  
6.1 Application Information............................................. 63  
6.2 Power Over Coax......................................................63  
6.3 Typical Application.................................................... 67  
6.4 System Examples..................................................... 69  
6.5 Power Supply Recommendations.............................70  
6.6 Layout....................................................................... 71  
7 Device and Documentation Support............................75  
7.1 Documentation Support............................................ 75  
7.2 术语表....................................................................... 75  
7.3 Receiving Notification of Documentation Updates....75  
7.4 支持资源....................................................................75  
7.5 Trademarks...............................................................75  
特性...................................................................................... 1  
1 应用................................................................................... 1  
2 说明................................................................................... 1  
3 Revision History.............................................................. 2  
Pin Configuration and Functions......................................4  
4 Specifications.................................................................. 8  
4.1 Absolute Maximum Ratings........................................ 8  
4.2 ESD Ratings............................................................... 8  
4.3 Recommended Operating Conditions.........................9  
4.4 Thermal Information....................................................9  
4.5 DC Electrical Characteristics...................................... 9  
4.6 AC Electrical Characteristics.....................................12  
4.7 Recommended Timing for the Serial Control Bus.....13  
4.8 Typical Characteristics..............................................16  
5 Detailed Description......................................................17  
5.1 Overview...................................................................17  
5.2 Functional Block Diagram.........................................18  
3 Revision History  
Changes from Revision B (October 2018) to Revision C (September 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Added description for reprogramming VIH and VIL thresholds and changed VDDIO to VI2C (pin 25) .............4  
Added description for reprogramming VIH and VIL thresholds (pins 1 and 2) .................................................. 4  
Added I2C target Operation description updated from DS90UB954 datasheet............................................... 28  
Added Remote target Operation information/description copied over from DS90UB954 data sheet...............28  
Added section on Remote I2C targets Data Throughput copied from the DS90UB954 data sheet................. 29  
Added section on Remote Target Addressing copied over from DS90UB954 data sheet................................29  
Added broadcast write to remote target devices. Copied from DS90UB954 data sheet..................................29  
Added section for Code Example for Broadcast Write. Copied from DS90UB954 data sheet......................... 30  
Added registers 0x3F to 0x43...........................................................................................................................34  
Changed I/O to VDDIO and added VDDIO to register 0x0D bits 7 and 6.........................................................34  
Added Indirect Access Registers Section ........................................................................................................59  
Added Indirect Access Register Map................................................................................................................60  
Added FPD3 Channel 0 Registers table...........................................................................................................60  
Added FPD3 Channel 1 Registers table...........................................................................................................61  
Added FPD3 RX Shared Registers table..........................................................................................................61  
Added reset information below power up sequencing figure. Copied from DS90UB914 data sheet................70  
Changes from Revision A (January 2017) to Revision B (October 2018)  
Page  
Added that unused GPIOs can be left open or floating...................................................................................... 4  
Added that PDB is internal pull down enabled....................................................................................................4  
Added description for selecting pull up resistor for OSS_SEL............................................................................4  
Added description for selecting pull up resistor for OEN.................................................................................... 4  
Removed S, PD type for RES (pin 44)............................................................................................................... 4  
Removed S, PD type for RES (pin 43) and added it must be tied to GND. .......................................................4  
Added PDB test conditions for the LVCMOS IO voltage parameter in the Absolute Maximum Ratings table ....  
8
Changed typical LVCMOS low-to-high transition time value from: 2.5 ns to: 2 ns............................................12  
Changed maximum LVCMOS low-to-high transition time value from: 4 ns to: 3 ns......................................... 12  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Changed typical LVCMOS high-to-low transition time value from: 2.5 ns to: 2 ns ...........................................12  
Changed maximum LVCMOS high-to-low transition time value from: 4 ns to: 3 ns ........................................ 12  
Changed receiver clock jitter test condition from: SSCG[3:0] = OFF to: SSCG[0] = OFF................................12  
Changed deserializer period jitter test condition from: SSCG[3:0] = OFF to: SSCG[0] = OFF.........................12  
Changed deserializer cycle-to-cycle clock jitter test condition from: SSCG[3:0] = OFF to: SSCG[0] = OFF....12  
Changed input jitter symbol from: TOLJIT to: TIJIT ............................................................................................12  
Added reference to compatibility with DS90UB953-Q1/935-Q1 serializers .....................................................17  
Added column for DS90UB953-Q1/935-Q1......................................................................................................20  
Added clarification on input mode selection .................................................................................................... 20  
Fixed typo in Figure 13 supply rail text ............................................................................................................ 20  
Changed pullup power supply node from VDDIO to V(I2C)............................................................................. 26  
Removed pullup resistor recommendation....................................................................................................... 26  
Updated description of clock frequency during BIST operation........................................................................32  
Fixed typos in register maps.............................................................................................................................33  
Updated register "TYPE" column per legend ...................................................................................................33  
Fixed typo in register name.............................................................................................................................. 34  
Added Power Over Coax section .....................................................................................................................63  
Updated return loss S11 values .......................................................................................................................63  
Added STP typical connection diagram ...........................................................................................................67  
Updated recommendation for common ground plane...................................................................................... 71  
Updated recommendation for bypass capacitors............................................................................................. 71  
Updated typical bypass capacitor value from 50 uF to 47 uF...........................................................................71  
Changes from Revision * (September 2016) to Revision A (January 2017)  
Page  
• 将“产品预发布”更改为“量产数据”...............................................................................................................1  
Fixed broken link in Power Over Coax section.................................................................................................63  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Pin Configuration and Functions  
MODE  
CMLOUTP  
CMLOUTN  
ROUT0  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
ROUT1  
ROUT2  
ROUT3  
DAP = GND  
VDD18_FPD0  
RIN0+  
VDD11  
ROUT4  
RIN0-  
DS90UB934-Q1  
48L QFN  
RES  
ROUT5  
VDD18  
ROUT6  
ROUT7  
ROUT8  
ROUT9  
RES  
VDD18_P0  
SEL  
PASS  
LOCK  
4-1. RGZ Package 48-Pin VQFN With Thermal Pad Top View  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
NAME  
4-1. Pin Functions  
PIN  
I/O  
TYPE  
DESCRIPTION  
NO.  
RECEIVE DATA PARALLEL OUTPUT  
ROUT0  
ROUT1  
ROUT2  
ROUT3  
ROUT4  
ROUT5  
ROUT6  
ROUT7  
ROUT8  
ROUT9  
ROUT10  
ROUT11  
HSYNC  
VSYNC  
PCLK  
24  
23  
22  
21  
19  
18  
16  
15  
14  
13  
12  
11  
10  
9
RECEIVE DATA OUTPUT: This signal carries data from the FPD-LINK III deserializer to the  
processor. Output is parallel, configurable for up to 12 bits (ROUT0 ROUT11) single  
ended outputs. VDDIO logic levels. For unused outputs leave as No Connect.  
O
O
O
O
Horizontal SYNC output. VDDIO logic levels.  
Vertical SYNC output. VDDIO logic levels.  
Pixel clock (PCLK) output. VDDIO logic levels.  
8
GPIO  
GPIO0  
GPIO1  
GPIO2  
28  
27  
General purpose input/output: Pins can be used to control and respond to various  
commands. They may be configured to be the input signals for the corresponding GPOs on  
the serializer or they may be configured to be outputs to follow local register settings. At  
power up the GPIO are disabled and by default include a 25-kΩ(typical) pulldown resistor.  
VDDIO logic levels. Unused GPIOs can be left open or floating.  
I/O, PD  
26  
GPIO3/INTB  
General purpose input/output: Pin GPIO3 can be configured to be an input signal for GPOs  
on the serializer. Pin 25 is shared with INTB. Pull up with 4.7 kΩto VI2C. Programmable  
input/output pin is an active-low open drain and controlled by the status registers. The INTB  
VIH and VIL thresholds will be set based on the VDDIO voltage as the default and can be  
reprogrammed by the IO_CTL register. Unused GPIOs can be left open or floating.  
I/O, Open  
Drain  
25  
FPD-LINK III INTERFACE  
RIN0+  
41  
42  
32  
33  
Receive input channel 0: Differential FPD-Link receiver and bidirectional control back  
channel output. The IO must be AC coupled. There is internal 100Ωdifferential termination  
between RIN0+ and RIN0-. For applications using single-ended coaxial channel connect  
RIN0+ with 100-nF, AC-coupling capacitor and terminate RIN0to GND with a 47-nF  
capacitor and 50-Ωresistor. For STP applications connect both RIN0+ and RIN0- with 100-  
nF, AC-coupling capacitor.  
RIN0–  
I/O  
I/O  
RIN1+  
Receive input channel 1: Differential FPD-Link receiver and bidirectional control back  
channel output. The IO must be AC coupled. There is internal 100Ωdifferential termination  
between RIN1+ and RIN1. For applications using single-ended coaxial channel connect  
RIN0+ with 100nF AC coupling capacitor and terminate RIN1- to Ground with a 47 nF  
capacitor and 50 ohm resistor. For STP applications connect both RIN1+ and RIN1with  
100 nF AC coupling capacitor.  
RIN1–  
I2C PINS  
I2C_SCL  
I2C serial clock: Clock line for the bidirectional control bus communication.  
External 2-kΩto 4.7-kΩpullup resistor to VI2C recommended per I2C interface standards.  
The I2C VIH and VIL thresholds will be set based on the VDDIO voltage as the default and  
can be reprogrammed by the IO_CTL register.  
I/O,  
Open  
Drain  
2
1
I2C_SDA  
I2C serial data: Data line for bidirectional control bus communication.  
External 2-kΩto 4.7-kΩpullup resistor to VI2C recommended per I2C interface standards.  
The I2C VIH and VIL thresholds will be set based on the VDDIO voltage as the default and  
can be reprogrammed by the IO_CTL register.  
I/O,  
Open  
Drain  
CONFIGURATION and CONTROL PINS  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4-1. Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
IDX  
Input. I2C serial control bus device ID address  
Connect to external pullup to VDD18 (pin 17) and pull down to GND to create a voltage  
divider. See 5-7.  
35  
S
S
MODE  
PDB  
Mode select configuration input to set operating mode based on input voltage level.  
Typically connected to voltage divider via external pullup to VDD18 (pin 17) and pulldown to  
GND See 5-2.  
37  
30  
Power-down inverted Input Pin. This pin is internal pull down enabled. When PDB input is  
brought HIGH, the device is enabled. Asserting PDB signal low powers down the device and  
consume minimum power. The default function of this pin is PDB = LOW; POWER DOWN.  
This pin has a 50-kΩ(typical) internal pulldown resistor. INPUT IS 3.3 V TOLERANT.  
PDB = 1.8 V, device is enabled (normal operation)  
S, PD  
S,PD  
PDB = 0, device is powered down.  
SEL  
MUX select: Digital input for selecting FPD Link input channel 0 (A) or channel 1 (B). The  
default state of SEL = L, selects RIN0, input A, as the active channel on the deserializer.  
Asserting SEL = H selects RIN1 input B as the active channel on the deserializer. This pin  
has a 25-kΩ(typical) internal pulldown resistor. VDDIO logic levels.  
46  
OSS_SEL  
OEN  
Output sleep state select pin for enabling output sleep state. This pin has a 25-kΩ(typical)  
internal pulldown resistor. If unused, connect to VDD. If using pullup resistor to connect to  
VDD, the resistor value should be <= 4.3-kΩ. VDDIO logic levels. See 5.4.2.  
4
5
S, PD  
S, PD  
Output enable. This pin has a 1-MΩ(typical) internal pulldown resistor. If unused, connect to  
VDD. If using pullup resistor to connect to VDD, the resistor value should be <= 4.3-kΩ.  
VDDIO logic levels. See 5.4.2.  
DIAGNOSTIC PINS  
CMLOUTP  
38  
39  
Channel monitor loop-through (CML) driver differential output. Typically routed to test points  
and not connected. For monitoring terminate CMLOUT with a 100-Ωdifferential load.  
O
CMLOUTN  
BISTEN  
BIST enable: BISTEN = H, BIST mode is enabled BISTEN = L, BIST mode is disabled. See  
5.5.2.4 for more information. This pin has a 25-kΩ(typ) internal pulldown resistor. VDDIO  
logic levels.  
6
S, PD  
PASS  
LOCK  
PASS Output: PASS = H, ERROR FREE transmission in forward channel operation. PASS =  
L, one or more errors were detected in the received payload. See 5.5.2.4 for more  
information. Leave No Connect if unused. Typically route to test point for monitoring. VDDIO  
logic levels.  
47  
48  
O
O
LOCK Status: Output pin for monitoring lock status of FPD-Link III channel. LOCK = H, PLL  
is Locked, outputs are active. LOCK = L, PLL is unlocked, may be used as link status.  
VDDIO logic levels.  
RES  
44  
43  
-
-
Reserved. Must be NC or tied to GND for normal operation.  
RES  
Reserved. This pin has internal pull-up resistor. Must be tied to GND for normal operation.  
POWER AND GROUND  
VDDIO  
VDDIO voltage supply input: The single-ended outputs and control input are powered from  
VDDIO. VDDIO can be connected to a 1.8-V, ±5% or 3-V to 3.6-V power rail. Each pin  
requires a minimum 10-nF capacitor to GND.  
7,29  
17  
P
VDD18  
1.8-V (±5%) power supply.  
Requires 1-μF, 0.1-μF, and 0.01-μF capacitors to GND at each VDD pin.  
P
P
P
D
D
D
VDD18_P0  
VDD18_P1  
1.8-V (±5%) PLL power supplies.  
Requires 1-μF, 0.1-μF, and 0.01-μF capacitors to GND at each VDD pin.  
45  
36  
VDD18_FPD0  
VDD18_FPD1  
1.8-V (±5%) high-speed transceiver (HSTRX) analog power supplies.  
Requires 10-μF, 0.1-μF, and 0.01-μF capacitors to GND at each VDD pin.  
40  
31  
VDD11_FPD  
VDD11_DVP  
VDD11_D  
Decoupling capacitor connection for internal analog regulator. Requires a minimum 4.7-μF  
capacitor to GND and must not be connected to other 1.1-V supply rails.  
34  
20  
3
Decoupling capacitor connection for internal mixed signal regulator. Requires a minimum 4.7-  
μF capacitor to GND and must not be connected to other 1.1-V supply rails.  
Decoupling capacitor connection for internal digital regulator. Requires a minimum 4.7-μF  
capacitor to GND and must not be connected to other 1.1-V supply rails.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4-1. Pin Functions (continued)  
PIN  
I/O  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND  
DAP is the large metal contact at the bottom side, located at the center of the QFN package.  
Connect to the ground plane (GND).  
DAP  
G
The definitions below define the functionality of the I/O cells for each pin. TYPE:  
I = Input  
O = Output  
I/O = Input/Output  
S = Configuration pin (All strap pins have internal pulldowns. If the default strap value needs to be changed then use an external  
resistor.)  
PD = Internal pulldown  
P, G = Power supply, ground  
D = Decoupling pin for internal voltage rail  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4 Specifications  
4.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.3  
0.3  
MAX  
2.16  
3.96  
UNIT  
VDD18 (VDD18, VDD18_P1 , VDD18_P0 ,  
VDD18_FPD0, VDD18_FPD1)  
Supply voltage  
V
VDDIO  
RIN0+, RIN0, RIN1+, RIN1–  
2.75  
1.45  
Device powered up (VDD18 and VDDIO within  
recommended operating conditions)  
0.3  
0.3  
RIN0+, RIN0, RIN1+, RIN1–  
Device powered down (VDD18 and VDDIO below  
recommended operating conditions)  
Transient Voltage  
FPD-Link III input voltage  
V
RIN0+, RIN0, RIN1+, RIN1–  
Device powered down (VDD18 and VDDIO below  
recommended operating conditions)  
DC Voltage  
1.35  
0.3  
0.3  
ROUT[11:0], PCLK, VSYNC, HSYNC, GPIO0,  
GPIO1, GPIO2, SEL, OSS_SEL, OEN, BISTEN,  
PASS, LOCK  
V(VDDIO) + 0.3  
LVCMOS IO voltage  
V
V
PDB  
3.96  
V(VDD18) + 0.3  
3.96  
0.3  
0.3  
0.3  
Configuration input voltage  
Open-drain voltage  
MODE, IDX  
GPIO3/INTB, I2C_SDA, I2C_SCL  
Junction temperature  
Storage temperature, Tstg  
150  
°C  
°C  
150  
65  
(1) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office or Distributors for availability and  
specifications.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under 4.3.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
4.2 ESD Ratings  
VALUE  
±2000  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC  
Q100-002(1)  
RIN0+, RIN0, RIN1+, RIN1–  
Other pins  
Charged device model (CDM), per AEC Q100-011  
Contact Discharge  
±8000  
(RIN0+, RIN0, RIN1+,  
RIN1)  
ESD Rating (IEC 61000-4-2)  
RD= 330 Ω, CS = 150 pF  
Air Discharge  
(RIN0+, RIN0, RIN1+,  
RIN1)  
±15000  
±8000  
V(ESD)  
Electrostatic discharge  
V
Contact Discharge  
(RIN0+, RIN0, RIN1+,  
RIN1)  
ESD Rating (ISO 10605)  
RD= 330 Ω, CS = 150 pF and 330 pF  
RD= 2 kΩ, CS = 150 pF and 330 pF  
Air Discharge  
(RIN0+, RIN0, RIN1+,  
RIN1)  
±15000  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.71  
3.0  
NOM  
1.8  
1.8  
3.3  
25  
MAX UNIT  
Supply voltage  
V(VDD18)  
1.89  
1.89  
3.6  
V
V
V(VDDIO) = 1.8 V  
V(VDDIO) = 3.3 V  
LVCMOS supply voltage  
V
Operating free-air temperature, TA  
Data rate  
105  
°C  
40  
0.7  
1.87 Gbps  
100 MHz  
PCLK frequency  
25  
Local I2C frequency, fI2C  
1
50  
50  
MHz  
V(VDD18)  
Supply Noise(1) (3)  
V(VDDIO)  
mVP-P  
Power-over-Coax noise(2)  
20  
RIN0+, RIN0, RIN1+, RIN1–  
(1) DC-50 MHz  
(2) Measured across RIN[1:0]+ and RIN[1:0]terminals  
(3) Specification is ensured by design and/or characterization and is not tested in production.  
4.4 Thermal Information  
DS90UB934-Q1  
THERMAL METRIC(1)  
RGZ (VQFN)  
48 PINS  
30.3  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-case (bottom) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(TOP)  
RθJC(BOT)  
RθJB  
12.3  
1.2  
6.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.2  
ψJT  
6.8  
ψJB  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics (SPRA953).  
4.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
TOTAL POWER CONSUMPTION  
V(VDD18)  
=
V(VDDIO) = 1.89  
V
500  
900  
685  
mW  
Total Power Consumption  
normal operation  
See 4-5  
Worst Case pattern  
Default registers  
PT  
V(VDD18) = 1.89  
V,  
1125  
V(VDDIO) = 3.6 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DS90UB934-Q1  
 
 
 
 
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4.5 DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
f = 100 MHz, 10-bit  
mode  
V(VDD18) = 1.89 V  
Worst Case Pattern,  
Default Registers  
CL = 8 pF  
V(VDDIO) = 1.89  
V OR 3.6 V  
VDD18  
VDDIO  
250  
V(VDDIO) = 1.89  
V
60  
145  
270  
V(VDDIO) = 3.6 V VDDIO  
f = 100 MHz, 12-bit HF V(VDDIO) = 1.89  
mode  
V(VDD18) = 1.89 V  
Worst Case Pattern,  
Default Registers  
CL = 8 pF  
VDD18  
VDDIO  
V OR 3.6 V  
Deserializer Supply  
Current (includes load  
current). See 4-5.  
V(VDDIO) = 1.89  
V
IDD  
mA  
90  
V(VDDIO) = 3.6 V VDDIO  
170  
240  
f = 50 MHz, 12-bit LF V(VDDIO) = 1.89  
mode  
V(VDD18) = 1.89 V  
Worst Case Pattern,  
Default Registers  
CL = 8 pF  
VDD18  
VDDIO  
V OR 3.6 V  
V(VDDIO) = 1.89  
V
80  
V(VDDIO) = 3.6 V VDDIO  
155  
30  
V(VDD18) = 1.89 V, V(VDDIO) = 3.6V  
PDB = L, All other LVCMOS inputs = 0V,  
Default Registers  
VDD18  
VDDIO  
Deserializer Power Down  
Supply Current  
IDDZ  
mA  
10  
1.8-V LVCMOS I/O(1)  
V(VDDIO)  
0.45  
High Level Output  
Voltage  
V(VDDIO) = 1.71  
IOH = 2 mA  
ROUT[11:0],  
HSYNC,  
VSYNC, LOCK,  
PASS  
VOH  
VOL  
VIH  
VIL  
V(VDDIO)  
V
V
V
V
V to 1.89 V  
V(VDDIO) = 1.71  
V to 1.89 V  
Low Level Output Voltage IOL = 2 mA  
GND  
0.45  
0.65 ×  
V(VDDIO)  
GPIO[3:0], PDB,  
OEN, SEL,  
OSS_SEL,  
BISTEN  
High Level Input Voltage V(VDDIO) = 1.71 V to 1.89 V  
Low Level Input Voltage V(VDDIO) = 1.71 V to 1.89 V  
V(VDDIO)  
0.35 ×  
V(VDDIO)  
GND  
GPIO[3:0](4)  
OEN  
,
20  
20  
GPIO[2:0](5)  
SEL, PDB,  
OSS_SEL,  
BISTEN  
,
IIH  
Input High Current  
Input Low Current  
VIN = 1.71 V to 1.89 V  
μA  
μA  
100  
100  
20  
GPIO[3:0], PDB,  
OEN, SEL,  
OSS_SEL,  
BISTEN  
IIL  
VIN = 0 V  
20  
20  
Output Short Circuit  
Current  
IOS  
IOZ  
VOUT = 0 V  
mA  
17  
TRI-STATE Output  
Current  
VOUT = 0 V or V(VDDIO), PDB = L  
20  
μA  
3.3-V LVCMOS I/O(6)  
High Level Output  
Voltage  
V(VDDIO) = 3.0 V GPIO[3:0],  
VOH  
2.4  
V(VDDIO)  
V
V
IOH = 4 mA  
to 3.6 V  
ROUT[11:0],  
HSYNC,  
V(VDDIO) = 3.0 V  
to 3.6 V  
VSYNC, LOCK,  
PASS  
VOL  
Low Level Output Voltage IOL = 4 mA  
GND  
0.4  
GPIO[3:0], OEN,  
SEL, OSS_SEL,  
BISTEN  
2
V(VDDIO)  
V(VDDIO)  
VIH  
High Level Input Voltage V(VDDIO) = 3.0 V to 3.6 V  
V
PDB  
1.17  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4.5 DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PIN OR  
FREQUENCY  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GPIO[3:0], OEN,  
SEL, OSS_SEL,  
BISTEN  
GND  
0.8  
V
VIL  
Low Level Input Voltage V(VDDIO) = 3.0 V to 3.6 V  
PDB  
GND  
-20  
0.63  
20  
GPIO[3:0](4)  
OEN, PDB  
,
GPIO[2:0](5)  
SEL, OSS_SEL,  
BISTEN  
,
IIH  
Input High Current  
Input Low Current  
VIN = 3.0 V to 3.6 V  
μA  
190  
190  
20  
GPIO[3:0], OEN,  
SEL, OSS_SEL,  
BISTEN, PDB  
IIL  
VIN = 0 V  
20  
μA  
Output Short Circuit  
Current  
IOS  
IOZ  
VOUT = 0 V  
mA  
40  
TRI-STATE Output  
Current  
VOUT = 0 V or V(VDDIO), PDB = LOW  
60  
60  
μA  
I2C SERIAL CONTROL BUS(2)  
0.7 ×  
V(VDDIO)  
VIH  
Input High Level  
V(VDDIO)  
V
0.3 ×  
V(VDDIO)  
VIL  
Input Low Level  
Input Hysteresis  
Output Low Level  
GND  
50  
V
mV  
V
VHY  
VOL  
I2C_SDA,  
I2C_SCL  
Standard/Fast Mode - IOL = 4 mA; Fast  
Plus Mode - IOL = 20 mA  
0
0.4  
IIH  
Input High Current  
Input Low Current  
Input Capacitance(3)  
VIN = V(VDDIO)  
VIN = 0V  
10  
10  
10  
µA  
µA  
pF  
10  
10  
IIL  
CIN  
5
FPD-LINK III INPUT  
Common Mode Voltage  
VCM  
1.2  
V
See 4-2.  
Single Ended  
Differential  
40  
80  
50  
60  
Internal Termination  
Resistor  
RT  
100  
120  
FPD-LINK III BIDIRECTIONAL CONTROL CHANNEL  
Back Channel Single-  
Ended Output Voltage  
RL = 50 Ω, Coaxial configuration,  
forward channel disabled  
VOUT-BC  
VOD-BC  
RIN0+, RIN1+  
190  
380  
260  
520  
mV  
mV  
Back Channel Differential  
Output Voltage  
RIN0+, RIN0–  
RIN1+, RIN1–  
RL = 100 Ω, STP configuration, forward  
channel disabled  
(1) V(VDDIO) = 1.8 V ± 5%  
(2) V(VDDIO) = 1.8 V ± 5% OR 3.0 V to 3.6 V  
(3) Specification is ensured by design and/or characterization and is not tested in production.  
(4) GPIO[2:0] Pulldown disabled; Register 0xBE = 0x03  
(5) GPIO[2:0] Pulldown enabled; Register 0xBE = 0x00  
(6) V(VDDIO) = 3.0 V to 3.6 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN OR FREQUENCY  
MIN  
TYP  
MAX UNIT  
LVCMOS I/O  
10-bit Mode  
PCLK, 50 - 100 MHz  
PCLK, 37.5 - 100 MHz  
PCLK, 25 - 50 MHz  
10  
10  
20  
Receiver Output Clock Period.  
See 4-7.  
tRCP  
12-bit HF Mode  
12-bit LF Mode  
10-bit Mode  
26.7  
40  
ns  
20  
45%  
40%  
50%  
50%  
55%  
60%  
tPDC  
PCLK Duty Cycle(1)  
PCLK  
PCLK  
12-bit HF or LF Mode  
LVCMOS Low-to-High  
Transition Time(1)  
See 4-1.  
tCLH  
2
2
2
2
2.8  
2.8  
3
ns  
ns  
ns  
ns  
LVCMOS High-to-Low  
Transition Time(1)  
See 4-1.  
tCHL  
tCLH  
tCHL  
PCLK  
V(VDDIO) = 1.71 V to 1.89 V  
OR  
V(VDDIO) = 3.0 V to 3.6 V  
CL = 8 pF (lumped load)  
Default Registers  
LVCMOS Low-to-High  
Transition Time(1)  
See 4-1.  
ROUT[11:0], HSYNC,  
VSYNC, GPIO[2:0]  
LVCMOS High-to-Low  
Transition Time(1)  
See 4-1.  
ROUT[11:0], HSYNC,  
VSYNC, GPIO[2:0]  
3
ROUT Setup Data to PCLK(1)  
See 4-7.  
PCLK, ROUT[11:0],  
HSYNC, VSYNC  
tROS  
tROH  
0.38T  
0.38T  
0.5T  
0.5T  
ns  
ns  
ROUT Hold Data to PCLK(1)  
See 4-7.  
PCLK, ROUT[11:0],  
HSYNC, VSYNC  
10-bit mode  
175T  
100T  
65T  
185T  
115T  
80T  
22  
Deserializer Delay(1)  
See 4-6.  
tDD  
Default Registers (RRFB = 1) 12-bit HF mode  
12-bit LF mode  
ns  
ms  
ps  
ps  
ps  
10-bit mode  
Deserializer Data Lock Time  
See 4-3.  
Digital Reset, or PDB = HIGH  
to LOCK = HIGH  
tDDLT  
tRCJ  
tDPJ  
tDCCJ  
12-bit HF mode  
22  
12-bit LF mode  
10-bit mode  
22  
40  
52  
70  
Receiver Clock Jitter(1)  
PCLK, SSCG[0] = OFF  
PCLK, SSCG[0] = OFF  
PCLK, SSCG[0] = OFF  
12-bit HF mode  
12-bit LF mode  
10-bit mode  
90  
45  
85  
885  
420  
400  
1360  
1280  
890  
1020  
880  
515  
1800  
1500  
1150  
Deserializer Period Jitter(1)  
12-bit HF mode  
12-bit LF mode  
10-bit mode  
Deserializer Cycle-to-Cycle  
Clock Jitter(1) (2)  
12-bit HF mode  
12-bit LF mode  
Spread Spectrum Clocking  
Deviation Frequency  
See 4-9.  
LVCMOS Output Bus,  
SSCG[0] = ON  
±0.5% to  
±2.5%  
fdev  
25 - 100 MHz  
25 - 100 MHz  
Spread Spectrum Clocking  
Modulation Frequency  
See 4-9.  
LVCMOS Output Bus,  
SSCG[0] = ON  
fmod  
5 to 50  
kHz  
mV  
FPD-Link III  
Coaxial configuration. 1010  
pattern applied to the far end  
of a 15 meter cable.  
VIN measured after the cable,  
at the deserializer input pins.  
Single Ended Input Voltage  
VIN  
50  
See 4-2.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
4.6 AC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN OR FREQUENCY  
MIN  
TYP  
MAX UNIT  
LVCMOS I/O  
STP Configuration. 1010  
pattern applied to the far end  
of a 15 meter cable.  
VID measured after the cable,  
at the deserializer input pins.  
Differential Input Voltage  
See 4-2.  
VID  
100  
mV  
RIN0+, RIN0–  
RIN1+, RIN1–  
Back Channel Frequency  
Back Channel Jitter(1)  
Input Jitter  
3.5  
5.5  
15  
MHz  
ns  
ƒBC  
TJ  
7
10MHz Sinusoidal Jitter  
applied to FPD-Link III input  
TIJIT  
0.4  
UI(3)  
(1) Specification is ensured by design and/or characterization and is not tested in production.  
(2) Specification is ensured by characterization  
(3) 1UI = 1 bit time of FPD-Link Forward channel  
4.7 Recommended Timing for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
MAX  
UNIT  
kHz  
µs  
I2C SERIAL CONTROL BUS (4-4)  
Standard-mode  
>0  
>0  
100  
400  
fSCL  
SCL Clock Frequency  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
>0  
1000  
4.7  
1.3  
0.5  
4
tLOW  
SCL Low Period  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
SCL High Period  
0.6  
0.26  
4
µs  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Hold time for a start or a repeated start condition  
Set Up time for a start or a repeated start condition  
Data Hold Time  
0.6  
0.26  
4.7  
0.6  
0.26  
0
µs  
Fast-mode Plus  
Standard-mode  
Fast-mode  
µs  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
µs  
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
250  
100  
50  
Data Set Up Time  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
4
Set Up Time for STOP Condition  
Bus Free Time Between STOP and START  
0.6  
0.26  
4.7  
1.3  
0.5  
µs  
Fast-mode Plus  
Standard-mode  
Fast-mode  
µs  
Fast-mode Plus  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Over I2C supply and temperature ranges unless otherwise specified.  
MIN  
MAX  
UNIT  
ns  
I2C SERIAL CONTROL BUS (4-4)  
Standard-mode  
1000  
300  
120  
300  
300  
120  
400  
400  
550  
50  
tr  
SCL and SDA Rise Time  
SCL and SDA Fall Time  
Fast-mode  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tf  
ns  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Cb  
Capacitive Load for Each Bus Line(1)  
Input Filter(1)  
pF  
ns  
Fast-mode Plus  
Fast-mode  
tSP  
Fast-mode Plus  
50  
(1) Specification is ensured by design and/or characterization and is not tested in production.  
V
(VDDIO)  
80%  
20%  
GND  
t
t
CHL  
CLH  
4-1. LVCMOS Transition Times  
R
IN+  
Single Ended  
V
IN  
V
IN  
or R  
IN-  
V
ö
CM  
0V  
Differential  
V
ID  
0V  
(R +) - (R  
IN  
)
IN-  
4-2. FPD-Link III Receiver VID, VIN, VCM  
PDB=H  
t
DDLT  
RIN  
LOCK  
V(VDDIO)/2  
4-3. Deserializer Data Lock Time  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
r
f
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
4-4. I2C Serial Control Bus Timing  
Signal Pattern  
Device Pin Name  
tRCP  
PCLK  
RRFB (0x3B[0]) = 1  
ROUTn  
4-5. SSO Test Pattern for Power Consumption  
SYMBOL N  
SYMBOL N + 1  
SYMBOL N + 2  
SYMBOL N + 3  
SYMBOL N + 3  
RIN  
0V  
t
DD  
PCLK  
V(VDDIO)/2  
SYMBOL N - 3  
SYMBOL N - 2  
SYMBOL N - 1  
SYMBOL N  
SYMBOL N+1  
ROUTn  
4-6. Deserializer Delay  
t
RCP  
V
(VDDIO)  
PCLK  
1/2 V  
1/2 V  
(VDDIO)  
(VDDIO)  
0V  
V
(VDDIO)  
ROUT[n],  
VS, HS  
1/2 V  
(VDDIO)  
1/2 V  
(VDDIO)  
0V  
t
t
ROH  
ROS  
4-7. Deserializer Output Setup/Hold Times  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
PDB= H  
OEN  
OSS_SEL  
RIN  
(Diff.)  
Don‘t Care  
LOCK  
PASS  
TRI-STATE  
LOW  
TRI-STATE  
LOW  
HIGH  
ACTIVE  
HIGH  
HIGH  
ROUT[0:11],  
HS, VS  
LOW  
LOW  
LOW  
LOW  
TRI-STATE  
TRI-STATE  
TRI-STATE  
TRI-STATE  
ACTIVE  
ACTIVE  
PCLK  
RRFB (0x3B[0]) = 1  
4-8. Output State (Setup and Hold) Times  
Frequency  
F
F
F
PCLK+  
fdev (max)  
PCLK  
fdev  
PCLK-  
fdev (min)  
Time  
1 / fmod  
4-9. Spread Spectrum Clock Output Profile  
4.8 Typical Characteristics  
ROUT0  
Output  
(2 V/DIV)  
100 MHz  
Pixel Clock  
Output  
(2 V/DIV)  
4-10. CMLOUTP/N Loop-through Eye Diagram at  
Time (5 ns/DIV)  
1.867 Gbps  
4-11. ROUT0 Data Sampled by 100-MHz PCLK  
RRFB (0x3B[0]) = 1  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5 Detailed Description  
5.1 Overview  
The DS90UB934-Q1 FPD-Link III deserializer, in conjunction with the DS90UB913A/933-Q1 serializers, supports  
the video transport needs with a ultra-high-speed forward channel and an embedded bidirectional control  
channel. The DS90UB934-Q1 deserializer selects data streams from dual camera sources and outputs the  
recovered data onto a parallel LVCMOS output data bus. The DS90UB934-Q1 is designed to interface with the  
DS90UB933-Q1 device and is backwards compatible with the DS90UB913A-Q1 device using a 50-Ω coax  
interface. The DS90UB934-Q1 also works with the DS90UB933-Q1 or DS90UB913A-Q1 using an STP interface.  
The DS90UB934-Q1 can also work with the DS90UB953-Q1 or DS90UB935-Q1 in the backwards compatible  
mode (see the Backwards Compatibility Modes for Operation with Parallel Output Deserializers (SNLA270)). The  
DS90UB933/934 FPD-link III chipsets are intended to link mega-pixel camera imagers and video processors in  
ECUs. The serializer/deserializer chipset can operate from 25-MHz to 100-MHz pixel clock frequency.  
5.1.1 Functional Description  
The DS90UB934-Q1 converts the FPD-Link III stream into a parallel CMOS output interface designed to support  
automotive image sensors up to 12 bits at 100 MHz with resolutions including 1MP/60fps and 2MP/30fps. The  
DS90UB934-Q1 device recovers a high-speed FPD-Link III forward channel signal and outputs a 10- or 12-bit  
wide parallel LVCMOS data bus along with generating a bidirectional control channel control signal in the  
reverse channel direction. The high-speed, serial-bit stream contains an embedded clock and DC-balanced  
information which enhances signal quality to support AC coupling. The DS90UB934 deserializer can accept up  
to:  
12 bits of DATA + 2 SYNC bits for an input PCLK range of 37.5 MHz to 100 MHz in the 12-bit high frequency  
mode. Note: No HS/VS restrictions (raw).  
10 bits of DATA + 2 SYNC bits for an input PCLK range of 50 MHz to 100 MHz in the 10-bit mode. Note:  
HS/VS restricted to no more than one transition per 10 PCLK cycles.  
12 bits of DATA + 2 bits SYNC for an input PCLK range of 25 MHz to 50 MHz in the 12-bit low frequency  
mode. Note: No HS/VS restrictions (raw).  
The DS90UB934-Q1 device has a 2:1 multiplexer, which allows customers to select between two serializer  
inputs. The control channel function of the DS90UB933/DS90UB934-Q1 chipset provides bidirectional  
communication between the image sensor and ECUs. The integrated bidirectional control channel transfers data  
bidirectionally over the same channel used for video data interface. This interface offers advantages over other  
chipsets by eliminating the need for additional wires for programming and control. The bidirectional control  
channel bus is controlled via an I2C port. The bidirectional control channel offers asymmetrical communication  
and is not dependent on video blanking intervals. The DS90UB933/934 chipset offer customers the choice to  
work with different clocking schemes. The DS90UB933/934 chipsets can use an external oscillator as the  
reference clock source for the PLL or PCLK from the imager as primary reference clock to the PLL (see the  
DS90UB933-Q1 data sheet).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.2 Functional Block Diagram  
10 or  
12  
ROUT  
R
R
T
T
HSYNC  
RIN0+  
RIN0-  
VSYNC  
4
GPIO[3:0]  
PCLK  
Clock  
Gen  
RIN1+  
RIN1-  
CDR  
OSS_SEL  
PDB  
OEN  
MODE  
Timing and  
Control  
SEL  
IDX  
I2C_SDA  
I2C_SCL  
CMLOUTP  
CMLOUTN  
LOCK  
PASS  
BISTEN  
Diagnostics  
5.3 Feature Description  
The DS90UB934-Q1 device has a 2:1 multiplexer that allows customers to select between two serializer inputs  
for camera applications. Frequency range operates up to 100 MHz in 12-bit mode or in 10-bit mode to support  
1MP/60fps and 2MP/30fps imagers. The device accepts FPD-Link III inputs compatible to  
DS90UB933/913A/935/953 serializers. The received camera data stream from the selected input port is output  
onto the parallel interface.  
5.3.1 Serial Frame Format  
The high-speed forward channel is composed of 28 bits of data containing video data, sync signals, I2C, and  
parity bits. This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized,  
DC-balanced, and scrambled. The 28-bit frame structure changes in the 12-bit, low-frequency mode, 12-bit,  
high-frequency mode and the 10-bit mode internally and is seamless to the customer. The bidirectional control  
channel data is transferred over the single serial link along with the high-speed forward data. This architecture  
provides a full duplex low-speed forward and backward path across the serial link together with a high-speed  
forward channel without the dependence on the video blanking phase.  
5.3.2 Line Rate Calculations for the DS90UB933/934  
The DS90UB933-Q1 device divides the clock internally by divide-by-1 in the 12-bit low-frequency mode, by  
divide-by-2 in the 10-bit mode, and by divide-by-1.5 in the 12-bit high-frequency mode. Conversely, the  
DS90UB934-Q1 multiplies the recovered serial clock to generate the proper pixel clock output frequency. Thus  
the maximum line rate in the three different modes remains 1.867 Gbps. The following are the formulae used to  
calculate the maximum line rate in the different modes:  
For the 12-bit mode: Line rate = ƒPCLK × (2/3) × 28; for example, ƒPCLK = 100 MHz, line rate = (100 MHz) ×  
(2/3) × 28 = 1.87 Gbps  
For the 10-bit mode: Line rate = ƒPCLK / 2 × 28; for example, ƒPCLK = 100 MHz, line rate = (100 MHz/2) × 28 =  
1.4 Gbps  
5.3.3 Deserializer Multiplexer Input  
The DS90UB934-Q1 offers a 2:1 multiplexer that can be used to select which camera is used as the input. 图  
5-1 shows the operation of the 2:1 multiplexer in the deserializer. The selection of the camera can be pin  
controlled as well as register controlled. Only one deserializer input can be selected at a time. If the serializer A  
is selected as the active serializer, the back-channel for deserializer A turns ON and vice versa. To switch  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
between the two cameras, first the serializer B must be selected using the SEL pin/register on the deserializer.  
After that the back channel driver for deserializer B has to be enabled using the register in the deserializer.  
Camera A  
Serializer A  
Deserializer  
CMOS  
Image  
Sensor  
DATA  
PCLK  
DATA  
PCLK  
FSYNC  
FSYNC  
2
I C  
I2C  
ECU  
Module  
Camera B  
Serializer B  
CMOS  
Image  
Sensor  
DATA  
PCLK  
FSYNC  
2
I C  
mC  
5-1. Using the Multiplexer on the Deserializer to Enable a Two-Camera System  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DS90UB934-Q1  
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.4 Device Functional Modes  
DS90UB934-Q1 supports the use cases shown in 5-1:  
5-1. PCLK Frequency Modes  
PCLK FREQUENCY RANGE  
DS90UB934-Q1 DEVICE  
MODE  
DS90UB913A-Q1 PARTNER  
DS90UB933-Q1 PARTNER  
DS90UB953-Q1/DS90UB935-Q1  
PARTNER  
37.5 MHz - 100 MHz  
N/A  
RAW12 High-Frequency (HF)  
RAW12 Low-Frequency (LF)  
RAW10  
37.5 MHz - 75 MHz  
25 MHz - 50 MHz  
50 MHz - 100 MHz  
37.5 MHz - 100 MHz  
N/A  
50 MHz - 100 MHz  
50 MHz - 100 MHz  
The modes control the FPD-Link III receiver operation of the device. In each of the cases, the output format for  
the device is parallel.  
The input mode of operation is controlled by the MODE strap pin. The input mode may also be overridden and  
configured by FPD3_MODE (Register 0x6D[1:0]) setting in the Port Configuration register.  
5.4.1 RX MODE Pin  
Configuration of the device may be done via the MODE input strap pin, or via the configuration register bits. A  
pullup resistor and a pulldown resistor of suggested values may be used to set the voltage ratio of the MODE  
input (VTARGET) and V(VDD18) (pin 17) to select one of the 6 possible selected modes. Possible configurations  
are:  
FPD-Link III coax or STP  
12-bit HF / 12-bit LF / 10-bit DVP modes  
V
VDD18  
R
HIGH  
MODE  
or IDX  
V
TARGET  
R
LOW  
Deserializer  
GND  
5-2. Strap Pin Connection Diagram  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-2. Strap Configuration Mode Select  
VTARGET VOLTAGE RANGE  
VTARGET  
STRAP  
SUGGESTED STRAP  
RESISTORS (1% TOL)  
MODE  
NO.  
COAX/  
STP  
VOLTAGE  
RX MODE  
VMIN  
VTYP  
VMAX  
(V); V(VDD18)  
1.8 V  
=
RHIGH (k)  
RLOW (k)  
0
1
RESERVED  
0.374  
0.179 ×  
V(VDD18)  
0.213 ×  
V(VDD18)  
0.247 ×  
V(VDD18)  
88.7  
75  
23.2  
35.7  
56.2  
STP  
STP  
STP  
RAW12 LF  
RAW12 HF  
RAW10  
2
3
0.296 ×  
V(VDD18)  
0.330 ×  
V(VDD18)  
0.362 ×  
V(VDD18)  
0.582  
0.792  
0.412 ×  
V(VDD18)  
0.443 ×  
V(VDD18)  
0.474 ×  
V(VDD18)  
71.5  
4
5
RESERVED  
0.642 ×  
V(VDD18)  
0.673 ×  
V(VDD18)  
0.704 ×  
V(VDD18)  
1.202  
1.42  
1.8  
39.2  
25.5  
10  
78.7  
95.3  
COAX  
COAX  
COAX  
RAW12 LF  
RAW12 HF  
RAW10  
6
7
0.761 ×  
V(VDD18)  
0.792 ×  
V(VDD18)  
0.823 ×  
V(VDD18)  
0.876 ×  
V(VDD18)  
V(VDD18)  
V(VDD18)  
OPEN  
The strapped values can be viewed and/or modified in the following locations:  
Coax Port configuration COAX_MODE (Register 0x6D[2])  
RX mode Port configuration FPD3_MODE (Register 0x6D[1:0])  
5.4.2 DVP Output Control  
The LVCMOS outputs are controlled via the OEN and OSS_SEL pins or via register override of these values.  
Register override is controlled by bits in the General Configuration register (0x02).  
5-3. Output States  
INPUTS  
OUTPUTS  
DATA  
SERIAL  
INPUTS  
PDB  
OEN  
OSS_SEL  
LOCK  
PASS  
PCLK  
X
0
1
1
1
1
1
1
X
0
0
1
1
1
1
X
0
1
0
1
0
1
Z
L
Z
L
Z
L
Z
Z
L
X
L
Z
X
Z
L
Z
static  
static  
active  
active  
L
L
L
previous state  
L
L
H
H
L
L
L
valid  
valid  
valid  
5.4.2.1 LOCK Status  
In 12-bit HF mode, the LOCK pin is only high if there is a link with a serializer that has an active PCLK input.  
LOCK is low if there is a serializer connected and there is a link established using the internal oscillator of the  
serializer. Therefore, when using this mode, it is preferred to use the port specific LOCK_STS register (0x4D[0]),  
which is high when linked to a serializer with internal oscillator. This LOCK_STS signal can also be output to a  
GPIO pin for monitoring in real time. Once LOCK_STS is high for a specific port, remote I2C is available to that  
serializer.  
In 12-bit LF or 10-bit modes, the LOCK pin is high when there is a link with a serializer regardless of whether  
there is an active PCLK input. The port specific LOCK_STS register is also valid in either of these modes.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.4.3 Input Jitter Tolerance  
Input jitter tolerance is the ability of the CDR PLL of the receiver to track and recover the incoming serial data  
stream. Jitter tolerance at a specific frequency is the maximum jitter permissible before data errors occur. 5-3  
and 5-4 show the allowable total jitter of the receiver inputs and must be less than the values in 5-4.  
Amplitude  
(UI p-p)  
A1  
A2  
Ö (MHz)  
Ö1  
Ö2  
5-3. Input Jitter Tolerance Plot  
5-4. Input Jitter Tolerance Limit  
INTERFACE  
JITTER AMPLITUDE (UI p-p)  
FREQUENCY (MHz) (1)  
A1  
1
A2  
ƒ1  
FPD3_PCLK / 80  
ƒ2  
FPD3  
0.4  
FPD3_PCLK / 15  
(1) FPD3_PCLK is equivalent to PCLK frequency based on the operating MODE:  
10-bit mode: PCLK_Freq. /2  
12-bit HF mode: PCLK_Freq. x 2/3  
12-bit LF mode: PCLK_Freq.  
5.4.4 Adaptive Equalizer  
The receiver inputs provide an adaptive equalization filter in order to compensate for signal degradation from the  
interconnect components. In order to determine the maximum cable reach, factors that affect signal integrity  
such as jitter, skew, ISI, crosstalk, etc. must be taken into consideration. The receiver incorporates an adaptive  
equalizer (AEQ), which continuously monitors cable characteristics for long-term cable aging and temperature  
changes. The AEQ attempts to optimize the equalization setting of the RX receiver.  
If the deserializer loses LOCK, the adaptive equalizer resets and performs the LOCK algorithm again to  
reacquire the serial data stream being sent by the serializer.  
5.4.5 Channel Monitor Loop-Through Output Driver  
The DS90UB934-Q1 includes an internal channel monitor loop-through output on the CMLOUTP/N pins. A  
buffered loop-through output driver is provided on the CMLOUTP/N for observing jitter after equalization for each  
of the two RX receive channels. The CMLOUT monitors the post EQ stage, thus providing the recovered input of  
the deserializer signal. The measured serial data width on the CMLOUT loop-through is the total jitter including  
the internal driver, AEQ, back channel echo, etc. Each channel also has its own CMLOUT monitor and can be  
used for debug purposes. This CMLOUT is useful in identifying gross signal conditioning issues. The intrinsic  
jitter, JCML, represents the amount of jitter seen with a clean serial stream applied to the FPD-Link III input pins.  
When the total jitter is measured on CMLOUTP and CMLOUTN, the typical intrinsic jitter value can be subtracted  
to get an approximation of how much jitter is seen at the RIN[1:0]± input pins.  
5-6 includes details on selecting the corresponding RX receiver of CMLOUTP/N configuration.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-5. CML Monitor Output Driver  
PARAMETER  
TEST CONDITIONS  
PIN  
MIN  
TYP  
MAX UNIT  
Clean clock fed into FPD-Link III  
input  
RL = 100 Ω  
(5-4)  
CMLOUT Differential Output  
Intrinsic Jitter  
CMLOUTP,  
CMLOUTN  
JCML  
0.15  
UI(1)  
(1) UI Unit interval is equivalent to one ideal serialized data bit width. The UI scales with serializer input PCLK frequency.  
10-bit mode: 1 UI = 1 / ( PCLK_Freq. /2 x 28 )  
12-bit HF mode: 1 UI = 1 / ( PCLK_Freq. x 2/3 x 28 )  
12-bit LF mode: 1 UI = 1 / ( PCLK_Freq. x 28 )  
VOD (+)  
JCML  
0V  
VOD (-)  
t
(1 UI)  
BIT  
5-4. CMLOUT Output Driver  
5-6. Channel Monitor Loop-Through Output Configuration  
FPD3 RX Port 0  
FPD3 RX Port 1  
0xB0 = 0x14  
0xB1 = 0x00  
0xB2 = 0x80  
0xB0 = 0x14  
0xB1 = 0x00  
0xB2 = 0x80  
ENABLE MAIN LOOPTHRU DRIVER  
0xB1 = 0x02  
0xB2 = 0x20  
0xB1 = 0x03  
0xB2 = 0x28  
0xB1 = 0x04  
0xB2 = 0x28  
0xB1 = 0x02  
0xB2 = 0xA0  
0xB1 = 0x03  
0xB2 = 0x28  
0xB1 = 0x04  
0xB2 = 0x28  
SELECT CHANNEL MUX  
0xB0 = 0x18  
0xB1 = 0x0F  
0xB2 = 0x01  
0xB1 = 0x10  
0xB2 = 0x02  
0xB0 = 0x18  
0xB1 = 0x0F  
0xB2 = 0x01  
0xB1 = 0x10  
0xB2 = 0x02  
SELECT RX PORT  
5.4.5.1 Code Example for CMLOUT FPD3 RX Port 0:  
board.WriteReg(0xB0,0x14)  
board.WriteReg(0xB1,0x00)  
board.WriteReg(0xB2,0x80)  
board.WriteReg(0xB1,0x02)  
board.WriteReg(0xB2,0x20)  
board.WriteReg(0xB1,0x03)  
board.WriteReg(0xB2,0x28)  
board.WriteReg(0xB1,0x04)  
board.WriteReg(0xB2,0x28)  
board.WriteReg(0xB0,0x18)  
board.WriteReg(0xB1,0x0F)  
board.WriteReg(0xB2,0x01)  
board.WriteReg(0xB1,0x10)  
board.WriteReg(0xB2,0x02)  
5.4.6 GPIO Support  
The DS90UB934-Q1 supports 4 pins programmable for use in multiple options through the GPIOx_PIN_CTL  
registers.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.4.6.1 Back Channel GPIO  
The DS90UB934-Q1 can input data on the GPIO pins to send on the back channel to remote serializers. Each  
GPIO pin can be programmed for input mode. In addition, the back channel for each FPD3 port can be  
programmed to send any of the 4 GPIO pins data. The same GPIO pin can be connected to multiple back  
channel GPIO signals.  
In addition to sending GPIO from pins, an internally generated frame synchronization signal (FrameSync) signal  
may be sent on any of the back-channel GPIOs.  
For each port, the following GPIO control is available through the BC_GPIO_CTL0 register 0x6E and  
BC_GPIO_CTL1 register 0x6F.  
5.4.6.2 GPIO Pin Status  
GPIO pin status may be read through the GPIO_PIN_STS register 0x0E. This register provides the status of the  
GPIO pin independent of whether the GPIO pin is configured as an input or output.  
5.4.6.3 Other GPIO Pin Controls  
Each GPIO pin has a input disable and a pulldown disable. By default, the GPIO pin input paths are enabled and  
the internal pulldown circuit in the GPIO is enabled. The GPIO_INPUT_CTL register 0x0F and GPIO_PD_CTL  
register 0xBE allow control of the input enable and the pulldown respectively. For most applications, there is no  
need to modify the default register settings.  
5.4.6.4 FrameSync Operation  
A FrameSync signal can be sent via the back channel using any of the back channel GPIOs. The signal can be  
generated in two different methods. The first option offers sending the external FrameSync using one of the  
available GPIO pins on the DS90UB934-Q1 and mapping that GPIO to a back channel GPIO on one of the FPD-  
Link III ports.  
The second option is to have the DS90UB934-Q1 internally generate a FrameSync signal to send via GPIO to  
one of the attached serializers.  
5.4.6.4.1 External FrameSync Control  
In external FrameSync mode, an external signal is input to the DS90UB934-Q1 via one of the GPIO pins on the  
device. The external FrameSync signal may be propagated to either of the attached FPD3 serializers via a GPIO  
signal in the back channel.  
Enabling the external FrameSync mode is done by setting the FS_MODE control in the FS_CTL (0x18) register  
to a value between 0x8 (GPIO0 pin) to 0xB (GPIO3 pin). Set FS_GEN_ENABLE to 0 for this mode.  
To send the FrameSync signal on the BC_GPIOx signal of a port, the BC_GPIO_CTL0 or BC_GPIO_CTL1  
register must be programmed for that port to select the FrameSync signal.  
5.4.6.4.2 Internally Generated FrameSync  
In internal FrameSync mode, an internally generated FrameSync signal is sent to one or more of the attached  
FPD3 serializers via a GPIO signal in the back channel.  
FrameSync operation is controlled by the FS_CTL 0x18, FS_HIGH_TIME_x, and FS_LOW_TIME_x 0x190x1A  
registers. The resolution of the FrameSync generator clock (FS_CLK_PD) is derived from the back channel  
frame period (BC_FREQ_SELECT register). For 2.5-Mbps back-channel operation, the frame period is 12 µs (30  
bits × 400 ns/bit).  
Once enabled, the FrameSync signal is sent continuously based on the programmed conditions.  
Enabling the internal FrameSync mode is done by setting the FS_GEN_ENABLE control in the FS_CTL (0x18)  
register to a value of 1. The FS_MODE field controls the clock source used for the FrameSync generation. The  
FS_GEN_MODE field configures whether the duty cycle of the FrameSync is 50/50 or whether the high and low  
periods are controlled separately. The FrameSync high and low periods are controlled by the FS_HIGH_TIME  
and FS_LOW_TIME registers.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
The accuracy of the internally generated FrameSync is directly dependent on the accuracy of the internal  
oscillator used to generate the back-channel reference clock. The internal oscillator has ±5% variation over  
process, voltage, and temperature.  
FS_HIGH  
FS_LOW  
FS_LOW = FS_LOW_TIME * FS_CLK_PD  
FS_HIGH = FS_HIGH_TIME * FS_CLK_PD  
where FS_CLK_PD is the resolution of the FrameSync generator clock  
5-5. Internal FrameSync Signal  
The following example shows generation of a FrameSync signal at 60 pulses per second. Mode settings:  
Programmable high/low periods: FS_GEN_MODE 0x18[1]=0  
Use port 0 back channel frame period: FS_MODE 0x18[7:4]=0x0  
Back channel rate of 2.5 Mbps: BC_FREQ_SELECT for port 0 0x58[2:0]=0x0  
Initial FS state of 0: FS_INIT_STATE 0x18[2]=0  
Based on mode settings, the FrameSync is generated based upon FS_CLK_PD of 12 μs.  
The total period of the FrameSync is (1 sec / 60 Hz) / 12 µs or approximately 1,389 counts.  
For a 10% duty cycle, set the high time to 139 (0x008A) cycles, and the low time to 1,250 (0x04E1) cycles:  
FS_HIGH_TIME_1: 0x19 = 0x00  
FS_HIGH_TIME_0: 0x1A = 0x8A  
FS_LOW_TIME_1: 0x1B = 0x04  
FS_LOW_TIME_0: 0x1C = 0xE1  
5.4.6.4.2.1 Code Example for Internally Generated FrameSync  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x6E,0xAA) # BC_GPIO_CTL0: FrameSync signal to GPIO0/1  
WriteI2C(0x10,0x91) # FrameSync signal; Device Status; Enabled  
WriteI2C(0x58,0x58) # BC FREQ SELECT: 2.5 Mbps  
WriteI2C(0x19,0x00) # FS_HIGH_TIME_1  
WriteI2C(0x1A,0x8A) # FS_HIGH_TIME_0  
WriteI2C(0x1B,0x04) # FS_LOW_TIME_1  
WriteI2C(0x1C,0xE1) # FS_LOW_TIME_0  
WriteI2C(0x18,0x01) # Enable FrameSync  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.5 Programming  
5.5.1 Serial Control Bus  
The DS90UB934-Q1 implements an I2C-compatible serial control bus. The I2C is for local device configuration  
and incorporates a bidirectional control channel (BCC) that allows communication with a remote serializers as  
well as remote I2C target devices.  
The device address is set via a resistor divider (RHIGH and RLOW see 5-6) connected to the IDX pin.  
VDD18  
R
HIGH  
VI2C VI2C  
IDX  
RPU  
RPU  
R
LOW  
HOST  
Deserializer  
SCL  
SDA  
SCL  
SDA  
To other Devices  
5-6. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a serial bus clock input. SDA is the serial  
bus data input/output signal. Both SCL and SDA signals require an external pullup resistor to 1.8-V or 3.3-V  
V(VI2C). The pullup resistor value may be adjusted for capacitive loading and data rate requirements. The signals  
are either pulled high or driven low.  
The IDX pin configures the control interface to one of 8 possible device addresses. A pullup resistor and a  
pulldown resistor may be used to set the appropriate voltage ratio between the IDX input pin (V(IDX)) and V(VI2C)  
,
each ratio corresponding to a specific device address (see 5-7).  
5-7. Serial Control Bus Addresses for IDX  
VIDX TARGET  
VOLTAGE  
SUGGESTED STRAP  
RESISTORS (1% TOL)  
VIDX VOLTAGE RANGE  
ASSIGNED I2C ADDRESS  
7-BIT 8-BIT  
0x30 0x60  
(V); V(VDD18)  
1.8 V  
=
NO.  
0
VMIN  
VTYP VMAX  
RHIGH (k)  
OPEN  
RLOW (k)  
10.0  
0
0
0.131 × V(VDD18)  
0.247 × V(VDD18)  
0
0.179 ×  
V(VDD18)  
0.213 ×  
V(VDD18)  
1
0.374  
88.7  
23.2  
0x32  
0x34  
0x36  
0x38  
0x3A  
0x3C  
0x64  
0x68  
0x6C  
0x70  
0x74  
0x78  
0.296 ×  
V(VDD18)  
0.330 ×  
V(VDD18)  
2
3
4
5
6
0.362 × V(VDD18)  
0.474 × V(VDD18)  
0.592 × V(VDD18)  
0.704 × V(VDD18)  
0.823 × V(VDD18)  
0.582  
0.792  
0.995  
1.202  
1.420  
75.0  
71.5  
78.7  
39.2  
25.5  
35.7  
56.2  
97.6  
78.7  
95.3  
0.412 ×  
V(VDD18)  
0.443 ×  
V(VDD18)  
0.525 ×  
V(VDD18)  
0.559 ×  
V(VDD18)  
0.642 ×  
V(VDD18)  
0.673 ×  
V(VDD18)  
0.761 ×  
V(VDD18)  
0.792 ×  
V(VDD18)  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-7. Serial Control Bus Addresses for IDX (continued)  
VIDX TARGET  
VOLTAGE  
SUGGESTED STRAP  
RESISTORS (1% TOL)  
VIDX VOLTAGE RANGE  
ASSIGNED I2C ADDRESS  
7-BIT 8-BIT  
0x3D 0x7A  
(V); V(VDD18)  
1.8 V  
=
NO.  
VMIN  
VTYP  
VMAX  
RHIGH (k)  
RLOW (k)  
0.876 ×  
V(VDD18)  
7
V(VDD18)  
V(VDD18)  
1.8  
10  
OPEN  
The serial bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SDA transitions low while SCL is high. A STOP occurs when SDA transitions high while SCL is also high. See 图  
5-7.  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
5-7. START and STOP Conditions  
To communicate with a remote device, the host controller (controller) sends the target address and listens for a  
response from the target. This response is referred to as an acknowledge bit (ACK). If a target on the bus is  
addressed correctly, it acknowledges (ACKs) the controller by driving the SDA bus low. If the address does not  
match the target address of a device, it not-acknowledges (NACKs) the controller by letting SDA be pulled High.  
ACKs also occur on the bus when data is being transmitted. When the controller is writing data, the target ACKs  
after every data byte is successfully received. When the controller is reading data, the controller ACKs after  
every data byte is received to let the target know it wants to receive another data byte. When the controller  
wants to stop reading, it NACKs after the last data byte and creates a stop condition on the bus. All  
communication on the bus begins with either a START condition or a REPEATED-START condition. All  
communication on the bus ends with a STOP condition. A READ is shown in 5-8 and a WRITE is shown in 图  
5-9.  
N
A
C
K
Bus Activity:  
Controller  
Register  
Address  
Target  
Address  
Target  
Address  
S
P
SDA  
Line  
S
7-bit Address  
7-bit Address  
0
1
A
C
K
A
C
K
A
C
K
Data  
Bus Activity:  
Target  
5-8. Serial Control Bus READ  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Bus Activity:  
Controller  
Register  
Address  
Target  
Address  
Data  
SDA Line  
7-bit Address  
P
S
0
A
C
K
A
C
K
A
C
K
Bus Activity:  
Target  
5-9. Serial Control Bus WRITE  
SDA  
SCL  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
r
f
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
5-10. Basic Operation  
The I2C controller located at the deserializer must support I2C clock stretching. For more information on I2C  
interface requirements and throughput considerations, refer to AN-2173 I2C Communication Over FPD-Link III  
with Bidirectional Control Channel (SNLA131).  
5.5.1.1 I2C Target Operation  
The DS90UB934-Q1 implements an I2C-compatible target capable of operation compliant to the Standard, Fast,  
and Fast-plus modes of operation allowing I2C operation at up to 1-MHz clock frequencies. Local I2C  
transactions to access DS90UB934-Q1 registers can be conducted 2 ms after power supplies are stable and  
PDB is brought high. For accesses to local registers, the I2C target operates without stretching the clock. The  
primary I2C target address is set through the IDx pin. The primary I2C target address is stored in the I2C Device  
ID register at address 0x0. In addition to the primary I2C target address, the DS90UB934-Q1 may be  
programmed to respond to up to two other I2C addresses. The two RX Port ID addresses provide direct access  
to the Receive Port registers without needing to set the paging controls normally required to access the port  
registers.  
5.5.1.2 Remote Target Operation  
The Bidirectional control channel provides a mechanism to read or write I2C registers in remote devices over the  
FPD-Link III interface. The I2C controller located at the Deserializer must support I2C clock stretching. Accesses  
to serializer or remote target devices over the Bidirectional Control Channel will result in clock stretching to allow  
for response time across the link. The DS90UB934-Q1 acts as an I2C target on the local bus, forwards read and  
write requests to the remote device, and returns the response from the remote device to the local I2C bus. To  
allow for the propagation and regeneration of the I2C transaction at the remote device, the DS90UB934-Q1 will  
stretch the I2C clock while waiting for the remote response. To communicate with a remote target device, the Rx  
Port which is intended for messaging also must be selected in register 0x4C. The I2C address of the currently  
selected RX Port serializer will be populated in register 0x5B of the DS90UB934-Q1. The BCC_CONFIG register  
0x58 also must have bit 6, I2C_PASS_THROUGH set to one. If enabled, local I2C transactions with valid  
address decode will then be forwarded through the Bidirectional Control Channel to the remote I2C bus. When  
I2C PASS THROUGH is set, the deserializer will only propagate messages that it recognizes, such as the  
registered serializer alias address (SER ALIAS), or any registered remote target alias attached to the serializer  
I2C bus (target ALIAS) assigned to the specific Rx Port0 or Port 1. Setting PASS THROUGH ALL and AUTO  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
ACK are less common use cases and primarily used for debugging I2C messaging as they will respectively pass  
all addresses regardless of valid I2C address (PASS_THROUGH_ALL) and acknowledge all I2C commands  
without waiting for a response from serializer (AUTO_ACK).  
5.5.1.3 Remote I2C Targets Data Throughput  
Since the BCC buffers each I2C data byte and regenerates the I2C protocol on the remote side of the link, the  
overall I2C throughput will be reduced. The reduction is dependent on the operating frequencies of the local and  
remote interfaces. The local I2C rate is based on the host controller clock rate, while the remote rate depends on  
the settings for the proxy I2C controller (SCL frequency).  
For purposes of understanding the effects of the BCC on data throughput from a host controller to a remote I2C  
controller, the approximate bit rate including latency timings across the control channel can be calculated by the  
following:  
9 bits / ((Host_bit * 9) + (Remote_bit * 9) + FCdelay + BCCdelay)  
Example of DS90UB934/933 chipset:  
For the 100 kbit/s (100 kHz) :  
Host_bit = 10us (100 kHz)  
Remote_bit = 13us (77 kHz)  
FCdelay = 1us (max)  
BCCdelay = 12us (typical value for 2.5 Mbps back channel rate)  
Effective rate = 9bits / (90us + 117us + 1us + 12us) = 41 kbit/s  
5-8. Typical Achievable Bit Rates  
Host I2C rate  
100 kbit/s  
400 kbit/s  
1 Mbit/s  
Remote I2C rate  
77 kbit/s (default settings)  
100 kbit/s  
Net bit rate  
41 kbit/s  
71.7 kbit/s  
80.3 kbit/s  
202.2 kbit/s  
290.3 kbit/s  
100 kbit/s  
1 Mbit/s  
400 kbit/s  
1 Mbit/s  
1 Mbit/s  
Since the I2C protocol includes overhead for sending address information as well as START and STOP bits, the  
actual data throughput depends on the size and type of transactions used. Use of large bursts to read and write  
data will result in higher data transfer rates.  
5.5.1.4 Remote Target Addressing  
Various system use cases require multiple sensor devices with the same fixed I2C target address to be remotely  
accessible from the same I2C bus at the deserialilzer. The DS90UB934-Q1 provides target ID virtual addressing  
to differentiate target target addresses when connecting two or more remote devices. Eight pairs of targetAlias  
and targetID registers are allocated for each FPD-Link III Receive port in registers 0x5C through 0x6C. The  
targetAlias register allows programming a virtual address which the host controller uses to access the remote  
device. The targetID register provides the actual target address for the device on the remote I2C bus. Since  
eight pairs of registers are available for each port (total of 16 pairs), multiple devices may be directly accessible  
remotely without need for reprogramming. Multiple targetAlias can be assigned to the same targetID as well.  
5.5.1.5 Broadcast Write to Remote Target Devices  
The DS90UB934-Q1 provides a mechanism to broadcast I2C writes to remote devices (either remote targets or  
serializers). For each Receive port, the targetID and targetAlias register pairs would be programmed with the  
same targetAlias value so they would each respond to the local I2C access. The targetID value would match the  
intended remote device address, either remote target or serializers. For each receive port, on of the targetAlias  
registers is set with an Alias value. For each port, the targetID value is set to the address of the remote device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
These values may be the same. To access the remote serializer registers rather than a remote target, the  
serializer ID (SER_IDX or SER_IDY) would be used as the targetID value.  
5.5.1.6 Code Example for Broadcast Write  
#
"FPD3_PORT_SEL Boardcast RX0/1"  
WriteI2C(0x4c,0x0f) # RX_PORT0 read; RX0/1 write  
"enable pass through"  
#
WriteI2C(0x58,0x58) # enable pass through  
WriteI2C(0x5c,0x18) # "SER_ALIAS_ID"  
WriteI2C(0x5d,0x60) # "targetID[0]"  
WriteI2C(0x65,0x60) # "targetAlias[0]"  
WriteI2C(0x7c,0x01) # "FV_POLARITY"  
WriteI2C(0x70,0x1f) # RAW10_datatype_yuv422b10_VC0  
5.5.2 Interrupt Support  
Interrupts can be brought out on the INTB pin as controlled by the INTERRUPT_CTL 0x23 and  
INTERRUPT_STS 0x24 registers. The main interrupt control registers provide control and status for interrupts  
from each of the two FPD3 receive ports. Clearing interrupt conditions requires reading the associated status  
register for the source. The setting of the individual interrupt status bits is not dependent on the related interrupt  
enable controls. The interrupt enable controls whether an interrupt is generated based on the condition, but does  
not prevent the interrupt status assertion.  
For an interrupt to be generated based on one of the interrupt status assertions, both the individual interrupt  
enable and the INT_EN control must be set in the INTERRUPT_CTL 0x23 register. For example, to generate an  
interrupt if IS_RX0 is set, both the IE_RX0 and INT_EN bits must be set. If IE_RX0 is set but INT_EN is not, the  
INT status is indicated in the INTERRUPT_STS register, and the INTB pin does not indicate the interrupt  
condition.  
See INTERRUPT_CTL 0x23 and INTERRUPT_STS 0x24 in 5-10 for details.  
5.5.2.1 Code Example to Enable Interrupts  
# RX0/1 INTERRUPT_CTL enable  
# "RX0 INTERRUPT_CTL enable"  
WriteI2C(0x4C,0x01) # RX0  
WriteI2C(0x23,0x81) # RX0 & INTB PIN EN  
# "RX1 INTERRUPT_CTL enable"  
WriteI2C(0x4C,0x12) # RX1  
WriteI2C(0x23,0x82) # RX1 & INTB PIN EN  
5.5.2.2 FPD-Link III Receive Port Interrupts  
For each FPD-Link III receive port, multiple options are available for generating interrupts. Interrupt generation is  
controlled via the PORT_ICR_HI 0xD8 and PORT_ICR_LO 0xD9 registers. In addition, the PORT_ISR_HI 0xDA  
and PORT_ISR_LO 0xDB registers provide read-only status for the interrupts. Clearing of interrupt conditions is  
handled by reading the RX_PORT_STS and RX_PORT_STS2 registers. The status bits in the  
PORT_ISR_HI/LO registers are copies of the associated bits in the main status registers.  
To enable interrupts from one of the receive port interrupt sources:  
1. Enable the interrupt source by setting the appropriate interrupt enable bit in the PORT_ICR_HI or  
PORT_ICR_LO register  
2. Set the RX port X Interrupt control bit (IE_RXx) in the INTERRUPT_CTL register  
3. Set the INT_EN bit in the INTERRUPT_CTL register to allow the interrupt to assert the INTB pin low  
To clear interrupts from one of the receive port interrupt sources:  
1. (optional) Read the INTERRUPT_STS register to determine which RX port caused the interrupt  
2. (optional) Read the PORT_ISR_HI and PORT_ISR_LO registers to determine source of interrupt  
3. Read the appropriate RX_PORT_STS1, RX_PORT_STS2 register to clear the interrupt.  
The first two steps are optional. The interrupt could be determined and cleared by just reading the status  
registers.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.5.2.3 Code Example to Readback Interrupts  
INTERRUPT_STS = ReadI2C(0x24) # 0x24 INTERRUPT_STS  
if ((INTERRUPT_STS & 0x80) >> 7):  
print "# GLOBAL INTERRUPT DETECTED "  
if ((INTERRUPT_STS & 0x02) >> 1):  
print "# IS_RX1 DETECTED "  
if ((INTERRUPT_STS & 0x01) ):  
print "# IS_RX0 DETECTED "  
# "################################################"  
#
"RX0 status"  
# "################################################"  
WriteReg(0x4C,0x01) # RX0  
PORT_ISR_LO = ReadI2C(0xDB)  
print "0xDB PORT_ISR_LO : ", hex(PORT_ISR_LO) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA)  
print "0xDA PORT_ISR_HI : ", hex(PORT_ISR_HI) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
print "# NO_FPD3_CLK DETECTED "  
################################################  
# "################################################"  
#
"RX1 status"  
# "################################################"  
WriteReg(0x4C,0x12) # RX1  
PORT_ISR_LO = ReadI2C(0xDB) # PORT_ISR_LO readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_LO & 0x04) >> 2):  
print "# IS_FPD3_PAR_ERR DETECTED "  
if ((PORT_ISR_LO & 0x02) >> 1):  
print "# IS_PORT_PASS DETECTED "  
if ((PORT_ISR_LO & 0x01) ) :  
print "# IS_LOCK_STS DETECTED "  
################################################  
PORT_ISR_HI = ReadI2C(0xDA) # readout; cleared by RX_PORT_STS2  
if ((PORT_ISR_HI & 0x04) >> 2):  
print "# IS_FPD3_ENC_ERR DETECTED "  
if ((PORT_ISR_HI & 0x02) >> 1):  
print "# IS_BCC_SEQ_ERR DETECTED "  
if ((PORT_ISR_HI & 0x01) ) :  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
print "# IS_BCC_CRC_ERR DETECTED "  
################################################  
RX_PORT_STS1 = ReadI2C(0x4D) # R/COR  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 1:  
print "# RX_PORT_NUM = RX1"  
elif ((RX_PORT_STS1 & 0xc0) >> 6) == 0:  
print "# RX_PORT_NUM = RX0"  
if ((RX_PORT_STS1 & 0x20) >> 5):  
print "# BCC_CRC_ERR DETECTED "  
if ((RX_PORT_STS1 & 0x10) >> 4):  
print "# LOCK_STS_CHG DETECTED "  
if ((RX_PORT_STS1 & 0x08) >> 3):  
print "# BCC_SEQ_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x04) >> 2):  
print "# PARITY_ERROR DETECTED "  
if ((RX_PORT_STS1 & 0x02) >> 1):  
print "# PORT_PASS=1 "  
if ((RX_PORT_STS1 & 0x01) ):  
print "# LOCK_STS=1 "  
################################################  
RX_PORT_STS2 = ReadI2C(0x4E)  
if ((RX_PORT_STS2 & 0x20) >> 5):  
print "# FPD3_ENCODE_ERROR DETECTED "  
if ((RX_PORT_STS2 & 0x04) >> 2):  
print "# FREQ_STABLE DETECTED "  
if ((RX_PORT_STS2 & 0x02) >> 1):  
print "# NO_FPD3_CLK DETECTED "  
################################################  
5.5.2.4 Built-In Self Test (BIST)  
An optional at-speed BIST feature supports testing of the high-speed serial link and the back channel without  
external data connections. This is useful in the prototype stage, equipment production, in-system test, and  
system diagnostics.  
5.5.2.4.1 BIST Configuration and Status  
The BIST mode is enabled by BIST configuration register 0xB3. The test may select either an external PCLK or  
the internal oscillator clock (OSC) frequency in the serializer. In the absence of PCLK, the user can select the  
internal OSC frequency at the deserializer through the BIST configuration register. When BIST is activated at the  
deserializer, a BIST enable signal is sent to the serializer through the back channel. The serializer outputs a  
continuous stream of a pseudo-random sequence and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The serializer also tracks errors indicated by the CRC fields in each back  
channel frame. While the lock indications are required to identify the beginning of proper data reception, for any  
link failures or data corruption, the best indication is the contents of the error counter in the BIST_ERR_COUNT  
register 0x57 for each RX port.  
The clock frequency that is output onto the PCLK pin during BIST mode is based on an internal FPD-Link III  
clock, and may not match the expected PCLK coming from the serializer.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.6 Register Maps  
In the register definitions under the TYPE and DEFAULT heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
R/RC = Read only access, Read to Clear  
(R/W)/SC = Read / Write access, Self-Clearing bit  
(R/W)/S = Read / Write access, Set based on strap pin configuration at startup  
LL = Latched Low and held until read  
LH = Latched High and held until read  
S = Set based on strap pin configuration at startup  
5.6.1 Register Description  
The DS90UB934-Q1 implements the following register blocks, accessible via I2C as well as the bi-directional  
control channel:  
Main registers  
FPD3 RX port registers (separate register block for each of the two RX ports)  
DVP port registers  
5-9. Main Register Map Descriptions  
ADDRESS RANGE  
0x00-0x31  
DESCRIPTION  
ADDRESS MAP  
Digital Shared Registers  
Shared  
0x32-0x3A  
Reserved  
Reserved  
Shared  
0x3B-0x3F  
Digital DVP Registers  
Digital AEQ Registers  
0x40-0x43  
Shared  
0x4C-0x7F  
Digital RX Port Registers  
(paged)  
FPD3 RX Port 0  
R: 0x4C[5:4]=00  
W: 0x4C[0]=1  
FPD3 RX Port 1  
R: 0x4C[5:4]=01  
W: 0x4C[1]=1  
0x80-0xAF  
0xB0-0xB2  
0xB0-0xBF  
0xC0-0xCF  
0xD0-0xDF  
0xE0-0xEF  
0xF0-0xF5  
0xF6-0xF7  
0xF8-0xFB  
0xFC-0xFF  
Reserved  
Reserved  
Indirect Access Registers  
Digital Share Registers  
Reserved  
Shared  
Shared  
Reserved  
Digital RX Port Test Mode Registers  
Reserved  
FPD3 RX Port 0  
FPD3 RX Port 1  
Reserved  
Shared  
FPD3 RX ID  
Reserved  
Reserved  
Shared  
Port I2C Addressing  
Reserved  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.6.2 Registers  
5-10. Serial Control Bus Registers  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
7:1 DEVICE ID  
Type  
Default Description  
Share 0x00 I2C Device ID  
(R/W)/S 0x3D  
7-bit I2C ID of deserializer  
Defaults to address configured by IDX strap  
pin.  
This field always indicates the current value of  
the I2C ID. When bit 0 of this register is 0, this  
field is read-only and shows the strapped ID.  
When bit 1 of this register is 1, this field is read/  
write and can be used to assign any valid I2C  
ID.  
0
DES ID  
R/W  
R/W  
0x0  
0x0  
0: Device ID is from IDX strap pin  
1: Register I2C device ID overrides strapped  
value  
Share 0x01 Reset  
7:3  
2
RESERVED  
Reserved  
RESTART_AUTOLOA (R/W)/S 0x0  
Restart ROM auto-load  
D
C
Setting this bit to 1 causes a re-load of the  
ROM. This bit is self-clearing. Software may  
check for auto-load complete by checking the  
CFG_INIT_DONE bit in the DEVICE_STS  
register.  
1
0
DIGITAL RESET1  
DIGITAL RESET0  
(R/W)/S 0x0  
C
Digital reset  
Resets the entire digital block including  
registers. This bit is self-clearing.  
1: Reset  
0: Normal operation  
(R/W)/S 0x0  
C
Digital reset  
Resets the entire digital block except registers.  
This bit is self-clearing.  
1: Reset  
0: Normal operation  
Share 0x02 General Configuration  
7
6
5
INPUT_PORT_OVER R/W  
RIDE  
0x0  
0x0  
0x0  
Input port override bit allows control of the input  
port selection via the INPUT_PORT_SEL bit in  
this register.  
INPUT_PORT_SEL  
R/W  
Input port select. This bit either controls the  
input mode (if INPUT_PORT_OVERRIDE is  
set) or indicates the status of the SEL pin.  
OUTPUT_OVERRIDE R/W  
Output Control Override bit. The  
OUTPUT_ENABLE and  
OUTPUT_SLEEP_STATE_SEL values typically  
come from the device input pins. If this bit is  
set, the register values in this register will be  
used instead.  
4
3
RESERVED  
R/W  
R/W  
0x1  
0x1  
Reserved  
OUTPUT_ENABLE  
Output enable control (in conjunction with  
output sleep state select)  
If OUTPUT_SLEEP_STATE_SEL is set to 1  
and this bit is set to 0, the TX outputs will be  
forced into a high impedance state. If  
OUTPUT_OVERRIDE is 0, this register  
indicates the value on the OEN pin. See 5-3.  
2
OUTPUT_SLEEP_ST R/W  
ATE_SEL  
0x1  
OSS Select controls the output state when  
LOCK is low (used in conjunction with Output  
Enable)  
When this bit is set to 0, the TX outputs is  
forced into a HS-0 state. If  
OUTPUT_OVERRIDE is 0, this register  
indicates the value on the OSS_SEL pin. See  
5-3.  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
1
RX_PARITY_CHECK R/W  
ER_EN  
0x1  
FPD3 Receiver Parity Checker Enable. When  
enabled, the parity check function is enabled for  
the FPD3 receiver. This allows detection of  
errors on the FPD3 receiver data bits.  
0: Disable  
1: Enable  
0
Reserved  
R/W  
R
0x0  
0x0  
Reserved  
Share 0x03 Revision/Mask ID  
Share 0x04 DEVICE_STS  
7:4  
REVISION_ID  
Revision ID  
0000: Production release  
3:0  
7
RESERVED  
R
R
0x0  
0x1  
Reserved  
CFG_CKSUM_STS  
Config Checksum passed  
This bit is set following initialization if the  
configuration data in the eFuse ROM had a  
valid checksum  
6
CFG_INIT_DONE  
R
0x1  
Power-up initialization complete  
This bit is set after Initialization is complete.  
Configuration from eFuse ROM has completed.  
5:4  
3
RESERVED  
PASS  
R
0x0  
0x0  
Reserved  
R, LH  
Device PASS status This bit indicates the PASS  
status for the device. The value in this register  
matches the indication on the PASS pin.  
2
LOCK  
R, LH  
0x0  
Device LOCK status This bit indicates the  
LOCK status for the device. The value in this  
register matches the indication on the LOCK  
pin.  
1:0  
RESERVED  
R
0x0  
Reserved  
Share 0x05 PAR_ERR_THOLD_HI 7:0  
PAR_ERR_THOLD_H R/W  
I
0x01  
FPD3 parity error threshold high byte  
This register provides the 8 most significant bits  
of the parity error threshold value. For each  
port, if the FPD-Link III receiver detects a  
number of parity errors greater than or equal to  
this value, the PARITY_ERROR flag is set in  
the RX_PORT_STS1 register.  
Share 0x06 PAR_ERR_THOLD_L 7:0  
O
PAR_ERR_THOLD_L R/W  
O
0x0  
FPD3 parity error threshold low byte  
This register provides the 8 least significant bits  
of the parity error threshold value. For each  
port, if the FPD-Link III receiver detects a  
number of parity errors greater than or equal to  
this value, the PARITY_ERROR flag is set in  
the RX_PORT_STS1 register.  
Share 0x07 BCC Watchdog  
Control  
7:1  
BCC WATCHDOG  
TIMER  
R/W  
0x7F  
The watchdog timer allows termination of a  
control channel transaction if it fails to complete  
within a programmed amount of time. This field  
sets the bidirectional control channel watchdog  
timeout value in units of 2 milliseconds. Do not  
set this field to 0.  
0
7
BCC WATCHDOG  
TIMER DISABLE  
R/W  
R/W  
0x0  
0x0  
Disable bidirectional control channel watchdog  
timer  
1: Disables BCC watchdog timer operation  
0: Enables BCC watchdog timer operation  
Share 0x08 I2C Control 1  
LOCAL WRITE  
DISABLE  
Disable remote writes to local registers  
Setting this bit to a 1 prevents remote writes to  
local device registers from across the control  
channel. This prevents writes to the deserializer  
registers from an I2C controller attached to the  
serializer. Setting this bit does not affect remote  
access to I2C targets at the deserializer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
6:4  
3:0  
7:4  
I2C SDA HOLD  
R/W  
0x1  
0xC  
0x1  
Internal SDA hold time  
This field configures the amount of internal hold  
time provided for the SDA input relative to the  
SCL input. Units are 50 nanoseconds.  
I2C FILTER DEPTH  
SDA Output Setup  
R/W  
R/W  
I2C glitch filter depth  
This field configures the maximum width of  
glitch pulses on the SCL and SDA inputs that  
will be rejected. Units are 5 nanoseconds.  
Share 0x09 I2C Control 2  
Remote Ack SDA output setup  
When a control channel (remote) access is  
active, this field configures setup time from the  
SDA output relative to the rising edge of SCL  
during ACK cycles. Setting this value will  
increase setup time in units of 640ns. The  
nominal output setup time value for SDA to  
SCL when this field is 0 is 80 ns.  
3:2  
SDA Output Delay  
R/W  
0x0  
SDA output delay  
This field configures additional delay on the  
SDA output relative to the falling edge of SCL.  
Setting this value increases output delay in  
units of 40 ns. Nominal output delay values for  
SCL to SDA are:  
00: 240 ns  
01: 280 ns  
10: 320 ns  
11: 360 ns  
1
0
I2C BUS TIMER  
SPEEDUP  
R/W  
R/W  
0x0  
0x0  
Speed up I2C bus watchdog timer  
1: Watchdog Timer expires after approximately  
50 microseconds  
0: Watchdog Timer expires after approximately  
1 second.  
I2C BUS TIMER  
DISABLE  
Disable I2C bus watchdog timer  
When enabled the I2C Watchdog Timer may be  
used to detect when the I2C bus is free or hung  
up following an invalid termination of a  
transaction. If SDA is high and no signaling  
occurs for approximately 1 second, the I2C bus  
is assumed to be free. If SDA is low and no  
signaling occurs, the device will attempt to clear  
the bus by driving 9 clocks on SCL.  
Share 0x0A SCL High Time  
7:0  
SCL HIGH TIME  
R/W  
0x7A  
I2C controller SCL high time  
This field configures the high pulse width of the  
SCL output when the Serializer is the controller  
on the local I2C bus. Units are 40 ns for the  
nominal oscillator clock frequency. The default  
value is set to approximately 100 kHz with the  
internal oscillator clock running at nominal 25  
MHz. Delay includes 4 additional oscillator  
clock periods.  
Nominal High Time = 40 ns × (TX_SCL_HIGH  
+ 4)  
The internal oscillator has ±10% variation which  
must be taken into account when setting the  
SCL High and Low Time registers.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
Share 0x0B SCL Low Time  
7:0  
SCL LOW TIME  
R/W  
0x7A  
I2C SCL low time  
This field configures the low pulse width of the  
SCL output when the serializer is the controller  
on the local I2C bus. This value is also used as  
the SDA setup time by the I2C target for  
providing data prior to releasing SCL during  
accesses over the Bidirectional control channel.  
Units are 40 ns for the nominal oscillator clock  
frequency. The default value is set to  
approximately 100 kHz with the internal  
oscillator clock running at nominal 25 MHz.  
Delay includes 4 additional clock periods.  
Nominal low time = 40 ns × (TX_SCL_LOW +  
4)  
The internal oscillator has ±10% variation which  
must be taken into account when setting the  
SCL High and Low Time registers.  
Share 0x0C RESERVED  
Share 0x0D IO_CTL  
7:0  
7
RESERVED  
SEL3P3V  
R/W  
R/W  
0x0  
0x0  
Reserved  
3.3-V I/O Select on pins INTB, I2C  
0: 1.8-V I/O Supply  
1: 3.3-V I/O Supply  
If IO_SUPPLY_MODE_OV is 0, a read of this  
register returns the detected VDDIO voltage  
level.  
6
IO_SUPPLY_MODE_ R/W  
OV  
0x0  
0x0  
Override I/O Supply Mode bit  
If set to 0, the detected VDDIO voltage level is  
used for both SEL3P3V and  
IO_SUPPLY_MODE controls.  
If set to 1, the values written to the SEL3P3V  
and IO_SUPPLY_MODE fields is used.  
5:4  
IO_SUPPLY_MODE  
R/W  
I/O supply mode  
00: 1.8 V  
11: 3.3 V  
If IO_SUPPLY_MODE_OV is 0, a read of this  
register returns the detected VDDIO voltage  
level.  
3:0  
7:4  
3:0  
RESERVED  
RESERVED  
GPIO_STS  
R/W  
R/W  
R
0x9  
0x0  
0x0  
Reserved  
Reserved  
Share 0x0E GPIO_PIN_STS  
Share 0x0F GPIO_INPUT_CTL  
GPIO pin status  
This register reads the current values on each  
of the 4 GPIO pins. Bit 3 reads GPIO3 and bit 0  
reads GPIO0.  
7:4  
3
RESERVED  
R/W  
R/W  
0x7  
0x1  
Reserved  
GPIO3_INPUT_EN  
GPIO3 input enable  
0: Disabled  
1: Enabled  
2
1
0
GPIO2_INPUT_EN  
GPIO1_INPUT_EN  
GPIO0_INPUT_EN  
R/W  
R/W  
R/W  
0x1  
0x1  
0x1  
GPIO2 input enable  
0: Disabled  
1: Enabled  
GPIO1 input enable  
0: Disabled  
1: Enabled  
GPIO0 input enable  
0: Disabled  
1: Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
Share 0x10 GPIO0_PIN_CTL  
7:5  
GPIO0_OUT_SEL  
R/W  
0x0  
GPIO0 output select  
Determines the output data for the selected  
source.  
If GPIO0_OUT_SRC is set to 0xx (one of the  
RX Ports), the following selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX port lock indication  
101 : RX port pass indication  
110- 111 : Reserved  
If GPIO0_OUT_SRC is set to 100 (Device  
Status), the following selections apply:  
000 : Value in GPIO0_OUT_VAL  
001 : Logical OR of Lock indication from  
enabled RX ports  
010 : Logical AND of Lock indication from  
enabled RX ports  
011 : Logical AND of Pass indication from  
enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
4:2  
GPIO0_OUT_SRC  
GPIO0_OUT_VAL  
R/W  
R/W  
0x0  
0x0  
GPIO0 Output source select  
Selects output source for GPIO0 data:  
000 : RX Port 0  
001 : RX Port 1  
01x : Reserved  
100 : Device status  
101 - 111 : Reserved  
1
GPIO0 output value  
This register provides the output data value  
when the GPIO pin is enabled to output the  
local register controlled value.  
0
GPIO0_OUT_EN  
GPIO1_OUT_SEL  
R/W  
R/W  
0x0  
0x0  
GPIO0 Output Enable  
0: Disabled  
1: Enabled  
Share 0x11 GPIO1_PIN_CTL  
7:5  
GPIO1 Output Select  
Determines the output data for the selected  
source.  
If GPIO1_OUT_SRC is set to 0xx (one of the  
RX Ports), the following selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX Port Lock indication  
101 : RX Port Pass indication  
110- 111 : Reserved  
If GPIO1_OUT_SRC is set to 100 (Device  
Status), the following selections apply:  
000 : Value in GPIO1_OUT_VAL  
001 : Logical OR of Lock indication from  
enabled RX ports  
010 : Logical AND of Lock indication from  
enabled RX ports  
011 : Logical AND of Pass indication from  
enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
4:2 GPIO1_OUT_SRC  
Type  
Default Description  
(hex)  
R/W  
0x0  
GPIO1 Output Source Select  
Selects output source for GPIO1 data:  
000 : RX port 0  
001 : RX port 1  
01x : Reserved  
100 : Device status  
101 - 111 : Reserved  
1
GPIO1_OUT_VAL  
R/W  
0x0  
GPIO1 output value  
This register provides the output data value  
when the GPIO pin is enabled to output the  
local register controlled value.  
0
GPIO1_OUT_EN  
GPIO2_OUT_SEL  
R/W  
R/W  
0x0  
0x0  
GPIO1 output enable  
0: Disabled  
1: Enabled  
Share 0x12 GPIO2_PIN_CTL  
7:5  
GPIO2 output select  
Determines the output data for the selected  
source.  
If GPIO2_OUT_SRC is set to 0xx (one of the  
RX Ports), the following selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX port lock indication  
101 : RX port pass indication  
110- 111 : Reserved  
If GPIO2_OUT_SRC is set to 100 (Device  
Status), the following selections apply:  
000 : Value in GPIO2_OUT_VAL  
001 : Logical OR of Lock indication from  
enabled RX ports  
010 : Logical AND of Lock indication from  
enabled RX ports  
011 : Logical AND of Pass indication from  
enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
4:2  
GPIO2_OUT_SRC  
R/W  
0x0  
GPIO2 output source select  
Selects output source for GPIO2 data:  
000 : RX port 0  
001 : RX port 1  
01x : Reserved  
100 : Device status  
101 - 111 : Reserved  
1
0
GPIO2_OUT_VAL  
GPIO2_OUT_EN  
R/W  
R/W  
0x0  
0x0  
GPIO2 output value  
This register provides the output data value  
when the GPIO pin is enabled to output the  
local register controlled value.  
GPIO2 output enable  
0: Disabled  
1: Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
7:5 GPIO3_OUT_SEL  
Type  
Default Description  
Share 0x13 GPIO3_PIN_CTL  
R/W  
0x0  
GPIO3 output select  
Determines the output data for the selected  
source.  
If GPIO3_OUT_SRC is set to 0xx (one of the  
RX Ports), the following selections apply:  
000 : Received GPIO0  
001 : Received GPIO1  
010 : Received GPIO2  
011 : Received GPIO3  
100 : RX port lock indication  
101 : RX port pass indication  
110- 111 : Reserved  
If GPIO2_OUT_SRC is set to 100 (Device  
Status), the following selections apply:  
000 : Value in GPIO3_OUT_VAL  
001 : Logical OR of lock indication from  
enabled RX ports  
010 : Logical AND of lock indication from  
enabled RX ports  
011 : Logical AND of pass indication from  
enabled RX ports  
100 : FrameSync signal  
101 - 111 : Reserved  
4:2  
GPIO3_OUT_SRC  
R/W  
0x0  
GPIO3 output source select  
Selects output source for GPIO3 data:  
000 : RX port 0  
001 : RX port 1  
01x : Reserved  
100 : Device Status  
101 - 111 : Reserved  
1
0
GPIO3_OUT_VAL  
GPIO3_OUT_EN  
R/W  
R/W  
0x0  
0x0  
GPIO3 output value  
This register provides the output data value  
when the GPIO pin is enabled to output the  
local register controlled value.  
GPIO3 output enable  
0: Disabled  
1: Enabled  
Share 0x14 - RESERVED  
0x17  
7:0  
7:4  
RESERVED  
FS_MODE  
R/W  
R/W  
0x0  
0x0  
Reserved  
Share 0x18 FS_CTL  
FrameSync mode  
0000: Internal generated FrameSync, use back-  
channel frame clock from port 0  
0001: Internal generated FrameSync, use back-  
channel frame clock from port 1  
0010 : Reserved  
0011: Reserved  
01xx: Internal generated FrameSync, use 25-  
MHz (typical) clock  
1000: External FrameSync from GPIO0  
1001: External FrameSync from GPIO1  
1010: External FrameSync from GPIO2  
1011: External FrameSync from GPIO3  
1100 - 1111: Reserved  
3
FS_SINGLE  
(R/W)/S 0x0  
C
Generate single FrameSync pulse  
When this bit is set, a single FrameSync pulse  
is generated. The system waits for the full  
duration of the desired pulse before generating  
another pulse. When using this feature, the  
FS_GEN_ENABLE bit remains set to 0. This bit  
is self-clearing and always returns to 0.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
2
FS_INIT_STATE  
R/W  
0x0  
Initial State  
This register controls the initial state of the  
FrameSync signal.  
0: FrameSync initial state is 0  
1: FrameSync initial state is 1  
1
FS_GEN_MODE  
R/W  
0x0  
FrameSync Generation Mode  
This control selects between Hi/Lo and 50/50  
modes. In High/Lo mode, the FrameSync  
generator uses the FS_HIGH_TIME and  
FS_LOW_TIME register values to separately  
control the high and low periods for the  
generated FrameSync signal. In 50/50 mode,  
the FrameSync generator uses the values in  
the FS_HIGH_TIME_0, FS_LOW_TIME_1 and  
FS_LOW_TIME_0 registers as a 24-bit value  
for both the high and low periods of the  
generated FrameSync signal.  
0: Hi/Lo  
1: 50/50  
0
FS_GEN_ENABLE  
R/W  
0x0  
0x0  
FrameSync generation enable  
0: Disabled  
1: Enabled  
Share 0x19 FS_HIGH_TIME_1  
Share 0x1A FS_HIGH_TIME_0  
Share 0x1B FS_LOW_TIME_1  
Share 0x1C FS_LOW_TIME_0  
7:0  
FRAMESYNC_HIGH_ R/W  
TIME_1  
FrameSync high time bits 15:8  
The value programmed to the FS_HIGH_TIME  
register should be reduced by 1 from the  
desired delay. For example, a value of 0 in the  
FRAMESYNC_HIGH_TIME field results in a 1  
cycle high pulse on the FrameSync signal.  
7:0  
7:0  
7:0  
FRAMESYNC_HIGH_ R/W  
TIME_0  
0x0  
0x0  
0x0  
FrameSync High Time bits 7:0  
The value programmed to the FS_HIGH_TIME  
register should be reduced by 1 from the  
desired delay. For example, a value of 0 in the  
FRAMESYNC_HIGH_TIME field results in a 1  
cycle high pulse on the FrameSync signal.  
FRAMESYNC_LOW_ R/W  
TIME_1  
FrameSync Low Time bits 15:8  
The value programmed to the FS_LOW_TIME  
register should be reduced by 1 from the  
desired delay. For example, a value of 0 in the  
FRAMESYNC_LOW_TIME field results in a 1  
cycle low pulse on the FrameSync signal.  
FRAMESYNC_LOW_ R/W  
TIME_0  
FrameSync Low Time bits 7:0  
The value programmed to the FS_LOW_TIME  
register should be reduced by 1 from the  
desired delay. For example, a value of 0 in the  
FRAMESYNC_LOW_TIME field results in a 1  
cycle low pulse on the FrameSync signal.  
Share 0x1D - RESERVED  
0x22  
7:0  
7
RESERVED  
INT_EN  
R
0x00  
0x0  
Reserved  
Share 0x23 INTERRUPT_CTL  
R/W  
Global interrupt enable  
Enables interrupt on the interrupt signal to the  
controller.  
6:2  
1
RESERVED  
IE_RX1  
R/W  
R/W  
0x0  
0x0  
Reserved  
RX port 1 Interrupt:  
Enable interrupt from receiver port 1.  
0
IE_RX0  
R/W  
0x0  
RX Port 0 Interrupt:  
Enable interrupt from receiver port 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
Share 0x24 INTERRUPT_STS  
7
INT  
R
0x0  
Global Interrupt:  
Set if any enabled interrupt is indicated in the  
individual status bits in this register. The setting  
of this bit is not dependent on the INT_EN bit in  
the INTERRUPT_CTL register but does depend  
on the IE_xxx bits. For example, if IE_RX0 and  
IS_RX0 are both asserted, the INT bit is set to  
1.  
6:2  
1
RESERVED  
IS_RX1  
R
R
0x0  
0x0  
Reserved  
RX port 1 interrupt:  
An interrupt has occurred for receive port 1.  
This interrupt is cleared by reading the  
associated status register(s) for the event(s)  
that caused the interrupt. The status registers  
are RX_PORT_STS1 and RX_PORT_STS2.  
0
IS_RX0  
R
0x0  
RX Port 0 Interrupt:  
An interrupt has occurred for receive port 0.  
This interrupt is cleared by reading the  
associated status register(s) for the event(s)  
that caused the interrupt. The status registers  
are RX_PORT_STS1 and RX_PORT_STS2.  
Share 0x25 FS_CONFIG  
7
6
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
FS_POLARITY  
Framesync Polarity  
Indicates active edge of FrameSync signal  
0: Rising edge  
1: Falling edge  
5:0  
7:0  
RESERVED  
RESERVED  
R/W  
R/W  
0x00  
0x00  
Reserved  
Reserved  
Share 0x26 - RESERVED  
0x3A  
DVP 0x3B DVP_CLK_CTL  
7:1  
4
RESERVED  
R/W  
R/W  
0x00  
0x0  
Reserved  
ALLOW_PCLK  
1: Allow monitoring CDR/SSCG clock on PCLK  
Pin without LOCK  
0: Normal Mode"  
3:2  
OSC_PCLK_SEL  
R/W  
0x0  
Selects the frequency for the OSC clock out on  
PCLK when system is not locked and selected  
by OEN/OSS_SEL/OSC_PCLK_EN  
00: 50M (+/- 30%)  
01: 25M (+/- 30%)  
10: 100M (+/- 30%)  
11: 33.3M (+/- 30%)  
1
0
OSC_PCLK_EN  
RRFB  
R/W  
R/W  
0x0  
0x1  
1: Output OSC clock when not LOCKED and  
OSS_SEL = 0  
0: Only PCLK"  
Pixel clock edge select (relative to the sink)  
1: Parallel interface data is driven on the falling  
clock edge and sampled on the rising clock  
edge  
0: Parallel interface data is driven on the rising  
clock edge and sampled on the falling clock  
edge  
DVP 0x3C DVP_FREQ_DET0  
7:5  
4:0  
RESERVED  
R/W  
0x0  
Reserved  
FPD3_FREQ_LO_TH R/W  
R
0x14  
Frequency low threshold  
Sets the low threshold for the CDR Clock  
frequency detect circuit in MHz. This value is  
used to determine if the clock frequency is too  
low for proper operation.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
DVP 0x3D DVP_FREQ_DET1  
7:6  
5:0  
FPD3_FREQ_HYST R/W  
0x1  
Frequency Hysteresis in units of MHz  
FPD3_CLKIN_THR  
R/W  
0x2F  
Frequency Threshold for dividing the CDR  
clock to send to the DVP PLL. Divider is set to  
2 when CDR clock frequency is less than  
FPD3_CLKIN_THR, otherwise it is set to 3.  
DVP 0x3E DVP_SSCG_CTL  
7:6  
5
RESERVED  
R
0x0  
0x0  
0x0  
Reserved  
Reserved  
RESERVED  
R/W  
R/W  
4
SSCG_ENABLE  
Enable SSCG modulation  
0 : SSCG modulation is disabled  
1 : SSCG modulation is enabled  
Prior to enabling SSCG, the  
SSCG_MOD_RATE must be set. This requires  
a separate write to set the SSCG_MOD_RATE  
with SSCG disabled, then a write to set the  
SSCG_ENABLE with the same  
SSCG_MOD_RATE setting. In addition, when  
changing the SSCG_MOD_RATE, disable the  
SSCG first.  
3:1  
0
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
SSCG_MOD_RATE  
SSCG modulation frequency with its deviation  
0: Reserved  
1: frequency modulation PCLK/3168 ±1%  
DVP 0x3F DVP_FIFO_THOLD  
7:0  
DVP_FIFO_THRESH R/W  
OLD  
0x40  
Starting threshold value for the DVP FIFO.  
This value sets the threshold for starting to pull  
data from the DVP FIFO. Once the amount of  
data in the FIFO reaches this threshold, data  
will begin transmission on the DVP interface.  
The threshold is in units of FPD-Link III clock  
cycles. The FIFO has a depth of 256, so setting  
to 0x40 will set the threshold at 1/4 of the FIFO.  
Share 0x40 SFILTER_CTL  
7
SFIL_ALWAYS_ON  
SFIL_MEAS_ONLY  
R/W  
R/W  
0x0  
Enable SFILTER Always  
Setting this bit allows SFILTER adaption at all  
times, including prior to lock. This bit overrides  
the SFIL_ADAPT_MODE setting.  
1 : SFILTER adaption is always enabled  
0 : SFILTER adaption only after locked (based  
on SFIL_ADAPT_MODE setting)  
6
0x0  
0x0  
Enable SFILTER Measurement only  
Setting this bit allows SFILTER circuit to take  
mesaurements, but not update the SFILTER  
delay settings.  
1 : Measurements only  
0 : Allow adaption of SFILTER settings  
5:4  
SFIL_THRESH_CTL R/W  
SFILTER Threshold Control  
Sets the threshold for incrementing or  
decrimenting the SFILTER.  
00 : Use programmed threshold in  
SFIL_THRESHOLD register (default is 0)  
01 : 60% ratio of early vs late  
10 : 1/2 of previous opposite change  
(hysteresis)  
11 : equal previous opposite change (hystersis)  
3:2  
SFIL_SMPL_SIZE  
R/W  
0x0  
SFILTER Sample Size  
Sets the sample size in FPD3 clocks for the  
SFILTER adaption routine.  
00 : 256 samples  
01 : 512 samples  
10 : 1024 samples  
11 : 2048 samples  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
1
SFIL_ADAPT_MODE R/W  
0x0  
SFILTER adapt mode  
This bit controls when SFILTER adaption is  
activated. If set to 0, adaption will begin as  
soon as the clock recovery circuit indicates the  
frequency is locked. If set to 1, adaption will  
wait until the AEQ adaption is complete.  
1 : Wait for AEQ adaption complete  
0 : Adapt after clock is locked  
0
SFILTER_EN  
R/W  
R/W  
0x0  
0x8  
Enable Dynamic SFILTER adaption  
Setting this bit enables dynamic adaption of the  
SFILTER clock and data delays.  
1 : Enable SFILTER adaption  
0 : Disable SFILTER adaption  
Share 0x41 SFILTER_CFG  
7:4  
SFILTER_MAX  
SFILTER Maximum setting  
This field controls the maximum SFILTER  
setting. Allowed values are 0-14 with 7 being  
the mid point. These values are used for both  
AEQ adaption and dynamic SFILTER control. If  
AEQ_SFIL_ORDER is set in the AEQ_CTL  
register, the SFILTER_MAX value should not  
be set lower than 0x7  
3:0  
SFILTER_MIN  
R/W  
0x6  
SFILTER Minimum setting  
This field controls the minimum SFILTER  
setting. Allowed values are 0-14, where 7 is the  
mid point. These values are used for both AEQ  
adaption and dynamic SFILTER control. If  
AEQ_SFIL_ORDER is set in the AEQ_CTL  
register, the SFILTER_MIN value should not be  
set higher than 0x6  
Share 0x42 AEQ_CTL  
7
RESERVED  
R
0x0  
0x7  
Reserved  
6:4  
AEQ_ERR_CTL  
R/W  
AEQ Error Control  
Setting any of these bits will enable FPD3 error  
checking during the Adaptive Equalization  
process. Errors are accumulated over 1/2 of the  
period of the timer set by the  
ADAPTIVE_EQ_RELOCK_TIME filed in the  
AEQ_TEST register. If the number of errors is  
greater than the programmed threshold  
(AEQ_ERR_THOLD), the AEQ will attempt to  
increase the EQ setting. The errors may also  
be checked as part of EQ setting validation if  
AEQ_2STEP_EN is set. The following errors  
are checked based on this three bit field:  
[2] FPD3 clk1/clk0 errors  
[1] DCA sequence errors  
[0] Parity errors  
3
AEQ_SFIL_ORDER  
R/W  
0x0  
AEQ SFILTER Adapt order  
This bit controls the order of adaption for  
SFILTER values during Adaptive Equalization.  
0 : Default order, start at largest clock delay  
1 : Start at midpoint, no additional clock or data  
delay  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
2 AEQ_2STEP_EN  
Type  
Default Description  
(hex)  
R/W  
0x1 AEQ 2-step enable  
This bit enables a two-step operation as part of  
the Adaptive EQ algorithm. If disabled, the state  
machine will wait for a programmed period of  
time, then check status to determine if setting is  
valid. If enabled, the state machine will wait for  
1/2 the programmed period, then check for  
errors over an additional 1/2 the programmed  
period. If errors occur during the 2nd step, the  
state machine will immediately move to the next  
setting.  
0 : Wait for full programmed delay, then check  
instantaneous lock value  
1 : Wait for 1/2 programmed time, then check  
for errors over 1/2 programmed time. The  
programmed time is controlled by the  
ADAPTIVE_EQ_RELOCK_TIME field in the  
AEQ_TEST register  
1
AEQ_OUTER_LOOP R/W  
0x0  
AEQ outer loop control  
This bit controls whether the Equalizer or  
SFILTER adaption is the outer loop when the  
AEQ adaption includes SFILTER adaption.  
0 : AEQ is inner loop, SFILTER is outer loop  
1 : AEQ is outer loop, SFILTER is inner loop  
0
AEQ_SFILTER_EN  
R/W  
0x0  
0x1  
Enable SFILTER Adaption with AEQ  
Setting this bit allows SFILTER adaption as part  
of the Adaptive Equalizer algorithm.  
Share 0x43 AEQ_ERR_THOLD  
7:0  
AEQ_ERR_THRESH R/W  
OLD  
AEQ Error Threshold  
This register controls the error threshold to  
determine when to re-adapt the EQ settings.  
This register should not be programmed to a  
value of 0.  
Share 0x44 - RESERVED  
0x4B  
7:0  
7:6  
RESERVED  
R/W  
R
0x00  
0x0  
Reserved  
Share 0x4C FPD3_PORT_SEL  
PHYS_PORT_NUM  
Physical port number  
This field provides the physical port connection  
when reading from a remote device via the  
bidirectional control channel.  
When accessed via local I2C interfaces, the  
value returned is always 0. When accessed via  
bidirectional control channel, the value returned  
is the port number of the receive port  
connection.  
5
4
RESERVED  
Reserved  
RX_READ_PORT  
R/W  
0x0  
Select RX port for register read  
This bit selects one of the two RX port register  
blocks for readback. This applies to all paged  
FPD3 receiver port registers.  
0: Port 0 registers  
1: Port 1 registers  
When accessed via local I2C interfaces, the  
default setting is 0. When accessed via  
bidirectional control channel, the default value  
is the port number of the receive port  
connection.  
3:2  
RESERVED  
R/W  
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
1 RX_WRITE_PORT_1 R/W  
0x0  
Write Enable for RX port 1 registers  
This bit enables writes to RX port 1 registers.  
Any combination of RX port registers can be  
written simultaneously. This applies to all paged  
FPD3 Receiver port registers.  
0: Writes disabled  
1: Writes enabled  
When accessed via bidirectional control  
channel, the default value is 1 if accessed over  
RX port 1.  
0
RX_WRITE_PORT_0 R/W  
0x0  
Write Enable for RX port 0 registers  
This bit enables writes to RX port 0 registers.  
Any combination of RX port registers can be  
written simultaneously. This applies to all paged  
FPD3 receiver port registers.  
0: Writes disabled  
1: Writes enabled  
When accessed via Bidirectional Control  
Channel, the default value is 1 if accessed over  
RX port 0.  
RX  
0x4D RX_PORT_STS1  
7
6
RESERVED  
R
R
0x0  
0x0  
Reserved  
RX_PORT_NUM  
RX port number  
This read-only field indicates the number of the  
currently selected RX read port.  
5
BCC_CRC_ERROR  
R, LH  
0x0  
Bidirectional control channel CRC error  
detected  
This bit indicates a CRC error has been  
detected in the forward control channel. If this  
bit is set, an error may have occurred in the  
control channel operation. This bit is cleared on  
read.  
4
3
LOCK_STS_CHG  
R, LH  
R, LH  
0x0  
0x0  
Lock status changed  
This bit is set if a change in receiver lock status  
has been detected since the last read of this  
register. Current lock status is available in the  
LOCK_STS bit of this register  
This bit is cleared on read.  
BCC_SEQ_ERROR  
Bidirectional control channel sequence error  
detected  
This bit indicates a sequence error has been  
detected in the forward control channel. If this  
bit is set, an error may have occurred in the  
control channel operation. This bit is cleared on  
read.  
2
PARITY_ERROR  
R, LH  
0x0  
FPD3 parity errors detected  
This flag is set when the number of parity errors  
detected is greater than the threshold  
programmed in the PAR_ERR_THOLD  
registers.  
1: Number of FPD3 parity errors detected is  
greater than the threshold  
0: Number of FPD3 parity errors is below the  
threshold.  
This bit is cleared when the  
RX_PAR_ERR_HI/LO registers are cleared.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
1
PORT_PASS  
R
0x0  
Receiver PASS indication This bit indicates the  
current status of the Receiver PASS indication.  
The requirements for setting the Receiver  
PASS indication are controlled by the  
PORT_PASS_CTL register.  
1: Receive input has met PASS criteria  
0: Receive input does not meet PASS criteria  
0
LOCK_STS  
RESERVED  
R
R
0x0  
FPD-Link III receiver is locked to incoming data  
1: Receiver is locked to incoming data  
0: Receiver is not locked  
RX  
0x4E RX_PORT_STS2  
7:6  
5
0x0  
0x0  
Reserved  
FPD3_ENCODE_ER R, LH  
ROR  
FPD3 encoder error detected  
If set, this flag indicates an error in the FPD-  
Link III encoding has been detected by the  
FPD-Link III receiver.  
This bit is cleared on read.  
4:3  
2
RESERVED  
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
FREQ_STABLE  
NO_FPD3_CLK  
RESERVED  
Frequency measurement stable  
No FPD-Link III input clock detected  
Reserved  
1
0
RX  
RX  
0x4F RX_FREQ_HIGH  
0x50 RX_FREQ_LOW  
7:0  
FREQ_CNT_HIGH  
FPD Link-III frequency measurement high byte  
(MHz) The frequency counter reports the  
measured frequency for the FPD3 receiver.  
This portion of the field is the integer value in  
MHz. Frequency measurements scales with  
reference clock frequency.  
7:0  
FREQ_CNT_LOW  
R
0x0  
FPD Link-III frequency measurement low byte  
(1/256 MHz) The Frequency counter reports the  
measured frequency for the FPD3 Receiver.  
This portion of the field is the fractional value in  
1/256 MHz. Values scales with reference clock  
frequency.  
RX  
RX  
RX  
RX  
RX  
0x51 RESERVED  
0x52 RESERVED  
0x53 RESERVED  
0x54 RESERVED  
0x55 RX_PAR_ERR_HI  
7:0  
7:0  
7:0  
7:0  
7:0  
RESERVED  
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
Reserved  
RESERVED  
RESERVED  
RESERVED  
PAR ERROR BYTE 1  
Number of FPD3 parity errors 8 most  
significant bits.  
The parity error counter registers return the  
number of data parity errors that have been  
detected on the FPD3 Receiver data since the  
last detection of valid lock or last read of the  
RX_PAR_ERR_LO register. For accurate  
reading of the parity error count, disable the  
RX_PARITY_CHECKER_ENABLE bit in  
register 0x02 prior to reading the parity error  
count registers. This register is cleared upon  
reading the RX_PAR_ERR_LO register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
RX  
0x56 RX_PAR_ERR_LO  
7:0  
PAR ERROR BYTE 0  
R
0x0  
Number of FPD3 parity errors 8 least  
significant bits.  
The parity error counter registers return the  
number of data parity errors that have been  
detected on the FPD3 Receiver data since the  
last detection of valid lock or last read of the  
RX_PAR_ERR_LO register. For accurate  
reading of the parity error count, disable the  
RX_PARITY_CHECKER_ENABLE bit in  
register 0x02 prior to reading the parity error  
count registers. This register will be cleared on  
read.  
RX  
RX  
0x57 BIST_ERR_COUNT  
0x58 BCC_CONFIG  
7:0  
7
BIST ERROR COUNT R  
0x0  
0x0  
BIST error count  
Returns BIST error count  
I2C PASS THROUGH R/W  
ALL  
I2C pass-through all transactions  
0: Disabled  
1: Enabled  
6
5
I2C PASS THROUGH R/W  
0x0  
0x0  
I2C pass-through to serializer if decode  
matches  
0: Pass-through disabled  
1: Pass-through enabled  
AUTO ACK ALL  
R/W  
R/W  
Automatically acknowledge all I2C writes  
independent of the forward channel lock state  
or status of the remote acknowledge  
1: Enable  
0: Disable  
4
3
BACK CHANNEL  
ENABLE FOR  
0x1  
Back channel enable for camera mode (display  
mode BC is always enabled)  
1: Enable  
CAMERA MODE  
0: Disable  
BC CRC  
GENERATOR  
ENABLE  
R/W  
R/W  
0x1  
0x0  
Back Channel CRC Generator Enable  
0: Disable  
1: Enable  
2
RESERVED  
Reserved  
1:0  
BC FREQ SELECT  
(R/W)/S 0x0  
Back channel frequency select  
00: 2.5 Mbps (default)  
01: 1.5625 Mbps  
10 - 11 : Reserved  
Note that changing this setting results in some  
errors on the back channel for a short period of  
time. If set over the control channel, first  
program the deserializer to Auto-Ack operation  
to avoid a control channel timeout due to lack of  
response from the serializer.  
RX  
RX  
RX  
0x59 RESERVED  
0x5A RESERVED  
0x5B SER_ID  
7:0  
7:0  
7:1  
RESERVED  
RESERVED  
SER ID  
R/W  
R/W  
R/W  
0x0  
Reserved  
Reserved  
0x0  
0x00  
Remote serializer ID  
This field is normally loaded automatically from  
the remote serializer.  
0
FREEZE DEVICE ID R/W  
0x0  
Freeze serializer device ID  
Prevent auto-loading of the serializer device ID  
from the forward channel. The ID is frozen at  
the value written.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
RX  
0x5C SER_ALIAS_ID  
7:1  
SER ALIAS ID  
R/W  
0x0  
7-bit remote serializer alias ID  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote deserializer. The  
transaction will be remapped to the address  
specified in the target ID register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
SER AUTO ACK  
R/W  
R/W  
0x0  
0x0  
Automatically acknowledge all I2C writes to the  
remote serializer independent of the forward  
channel lock state or status of the remote  
serializer acknowledge  
1: Enable  
0: Disable  
RX  
RX  
RX  
RX  
RX  
0x5D targetID[0]  
0x5E targetID[1]  
0x5F targetID[2]  
0x60 targetID[3]  
0x61 targetID[4]  
7:1  
target ID0  
7-bit remote target device ID 0  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote serializer. If an I2C transaction is  
addressed to the target alias ID0, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
target ID1  
R
0x0  
0x0  
Reserved  
7:1  
R/W  
7-bit remote target device ID 1  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote Serializer. If an I2C transaction is  
addressed to the target alias ID1, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
target ID2  
R
0x0  
0x0  
Reserved  
7:1  
R/W  
7-bit remote target device ID 2  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote Serializer. If an I2C transaction is  
addressed to the target Alias ID2, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
target ID3  
R
0x0  
0x0  
Reserved  
7:1  
R/W  
7-bit remote target device ID 3  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote serializer. If an I2C transaction is  
addressed to the target alias ID3, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
target ID4  
R
0x0  
0x0  
Reserved  
7:1  
R/W  
7-bit remote target device ID 4  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote Serializer. If an I2C transaction is  
addressed to the target Alias ID4, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
R
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
RX  
0x62 targetID[5]  
0x63 targetID[6]  
0x64 targetID[7]  
0x65 targetAlias[0]  
7:1  
target ID5  
R/W  
0x0  
7-bit remote target device ID 5  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote serializer. If an I2C transaction is  
addressed to the target alias ID5, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
target ID6  
R
0x0  
0x0  
Reserved  
RX  
RX  
RX  
7:1  
R/W  
7-bit remote target device ID 6  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote serializer. If an I2C transaction is  
addressed to the target alias ID6, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
target ID7  
R
0x0  
0x0  
Reserved  
7:1  
R/W  
7-bit remote target device ID 7  
Configures the physical I2C address of the  
remote I2C target device attached to the  
remote serializer. If an I2C transaction is  
addressed to the target alias ID7, the  
transaction is remapped to this address before  
passing the transaction across the bidirectional  
control channel to the serializer.  
0
RESERVED  
R
0x0  
0x0  
Reserved  
7:1  
target ALIAS ID0  
R/W  
7-bit remote target device alias ID 0  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID0 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 0  
target ALIAS ID1  
R/W  
R/W  
0x0  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 0 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge.  
1: Enable  
0: Disable  
RX  
0x66 targetAlias[1]  
7:1  
7-bit remote target device alias ID 1  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID1 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 1  
R/W  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 1 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge  
1: Enable  
0: Disable  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
RX  
RX  
RX  
RX  
0x67 targetAlias[2]  
0x68 targetAlias[3]  
0x69 targetAlias[4]  
0x6A targetAlias[5]  
7:1  
target ALIAS ID2  
R/W  
0x0  
7-bit remote target device alias ID 2  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID2 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 2  
target ALIAS ID3  
R/W  
R/W  
0x0  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 2 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge  
1: Enable  
0: Disable  
7:1  
7-bit remote target device alias ID 3  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID3 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 3  
target ALIAS ID4  
R/W  
R/W  
0x0  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 3 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge.  
1: Enable  
0: Disable  
7:1  
7-bit remote target device alias ID 4  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID4 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 4  
target ALIAS ID5  
R/W  
R/W  
0x0  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 4 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge.  
1: Enable  
0: Disable  
7:1  
7-bit remote target device alias ID 5  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID5 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 5  
R/W  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 5 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge.  
1: Enable  
0: Disable  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
RX  
0x6B targetAlias[6]  
7:1  
target ALIAS ID6  
R/W  
0x0  
7-bit remote target device alias ID 6  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID6 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 6  
target ALIAS ID7  
R/W  
R/W  
0x0  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 6 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge.  
1: Enable  
0: Disable  
RX  
0x6C targetAlias[7]  
7:1  
7-bit remote target device alias ID 7  
Configures the decoder for detecting  
transactions designated for an I2C target  
device attached to the remote serializer. The  
transaction is remapped to the address  
specified in the target ID7 register. A value of 0  
in this field disables access to the remote I2C  
target.  
0
target AUTO ACK 7  
R/W  
R/W  
0x0  
Automatically acknowledge all I2C writes to the  
remote target 7 independent of the forward  
channel lock state or status of the remote  
serializer acknowledge.  
1: Enable  
0: Disable  
RX  
0x6D PORT_CONFIG  
7:3  
2
RESERVED  
0x0F  
Reserved  
COAX_MODE  
(R/W)/S 0x0  
Enable coax cable mode  
0: Shielded twisted pair (STP) mode  
1: Coax mode  
This bit is loaded from the MODE pin strap at  
power-up.  
1:0  
7:4  
FPD3_MODE  
(R/W)/S 0x0  
FPD3 input mode  
00: Reserved  
01: RAW12 LF mode  
10: RAW12 HF mode  
11: RAW10 mode  
This field is loaded from the MODE pin strap at  
power-up.  
RX  
0x6E BC_GPIO_CTL0  
BC_GPIO1_SEL  
R/W  
0x8  
Back channel GPIO1 select:  
Determines the data sent on GPIO1 for the port  
back channel.  
0000 : GPIO Pin 0  
0001 : GPIO Pin 1  
0010 : GPIO Pin 2  
0011 : GPIO Pin 3  
0100 - 0111 : Reserved  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
BC_GPIO0_SEL  
Type  
Default Description  
(hex)  
3:0  
7:4  
3:0  
R/W  
0x8  
0x8  
0x8  
Back channel GPIO0 Select:  
Determines the data sent on GPIO0 for the port  
back channel.  
0000 : GPIO Pin 0  
0001 : GPIO Pin 1  
0010 : GPIO Pin 2  
0011 : GPIO Pin 3  
0100 - 0111 : Reserved  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
RX  
0x6F BC_GPIO_CTL1  
BC_GPIO3_SEL  
R/W  
Back channel GPIO3 select:  
Determines the data sent on GPIO3 for the port  
back channel.  
0000 : GPIO Pin 0  
0001 : GPIO Pin 1  
0010 : GPIO Pin 2  
0011 : GPIO Pin 3  
0100 - 0111 : Reserved  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
BC_GPIO2_SEL  
R/W  
Back channel GPIO2 select:  
Determines the data sent on GPIO2 for the port  
back channel.  
0000 : GPIO Pin 0  
0001 : GPIO Pin 1  
0010 : GPIO Pin 2  
0011 : GPIO Pin 3  
0100 - 0111 : Reserved  
1000 : Constant value of 0  
1001 : Constant value of 1  
1010 : FrameSync signal  
1011 - 1111 : Reserved  
RX  
RX  
0x70 - RESERVED  
0x76  
7:0  
7:6  
RESERVED  
FREQ_HYST  
R/W  
R/W  
0x00  
0x3  
Reserved  
0x77 FREQ_DET_CTL  
Frequency detect hysteresis:  
The frequency detect hysteresis controls  
reporting of the FPD3 Clock frequency stability  
via the FREQ_STABLE status in the  
RX_PORT_STS2 register. The frequency is  
considered stable when the frequency remains  
within a range of +/- the FREQ_HYST value  
from the previous measurement. The  
FREQ_HYST setting is in MHz.  
5:4  
FREQ_STABLE_THR R/W  
0x0  
Frequency stability threshold:  
The frequency detect circuit can be used to  
detect a stable clock frequency. The stability  
threshold determines the amount of time  
required for the clock frequency to stay within  
the FREQ_HYST range to be considered  
stable:  
00 : 40 µs  
01 : 80 µs  
10 : 320 µs  
11 : 1.28 ms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
3:0  
7:0  
7:0  
7:0  
FREQ_LO_THR  
R/W  
0x5  
0x0  
0x01  
0x0  
Frequency low threshold:  
Sets the low threshold for the clock frequency  
detect circuit in MHz. If the input clock is below  
this threshold, the NO_FPD3_CLK status is set  
to 1.  
RX  
RX  
RX  
0x78 MAILBOX_1  
0x79 MAILBOX_2  
MAILBOX_0  
MAILBOX_1  
RESERVED  
R/W  
R/W  
R
Mailbox register  
This register is an unused read/write register  
that can be used for any purpose such as  
passing messages between I2C controllers on  
opposite ends of the link.  
Mailbox register  
This register is an unused read/write register  
that can be used for any purpose such as  
passing messages between I2C controllers on  
opposite ends of the link.  
0x7A - RESERVED  
0x7F  
Reserved  
Share 0xB0 IND_ACC_CTL  
7:6  
5:2  
RESERVED  
IA_SEL  
R
0x0  
0x0  
Reserved  
R/W  
Indirect Access register select:  
Selects target for register access  
0000 : Reserved  
0001 : FPD3 RX Port 0 registers  
0010 : FPD3 RX Port 1 registers  
0011 : Reserved  
0100 : Reserved  
0101 : FPD3 RX Shared registers  
0110 : Simultaneous write to FPD3 RX Port 0-1  
registers  
0111 : Reserved  
1
0
IA_AUTO_INC  
IA_READ  
R/W  
R/W  
0x0  
0x0  
Indirect access auto increment:  
Enables auto-increment mode. Upon  
completion of a read or write, the register  
address automatically increments by 1  
Indirect access read:  
Setting this allows generation of a read strobe  
to the selected register block upon setting of  
the IND_ACC_ADDR register. In auto-  
increment mode, read strobes is also asserted  
following a read of the IND_ACC_DATA  
register. This function is only required for blocks  
that need to pre-fetch register data.  
Share 0xB1 IND_ACC_ADDR  
Share 0xB2 IND_ACC_DATA  
7:0  
7:0  
IA_ADDR  
IA_DATA  
R/W  
R/W  
0x0  
0x0  
Indirect access register offset:  
This register contains the 8-bit register offset for  
the indirect access.  
Indirect access data:  
Writing this register causes an indirect write of  
the IND_ACC_DATA value to the selected  
analog block register. Reading this register  
returns the value of the selected block register  
Share 0xB3 BIST Control  
7:6  
BIST_OUT_MODE  
R/W  
0x0  
BIST output mode  
00 : No toggling  
01 : Alternating 1/0 toggling  
1x : Toggle based on BIST data  
5:4  
3
RESERVED  
R/W  
R/W  
0x0  
0x1  
Reserved  
BIST PIN CONFIG  
BIST Configured through pin  
1: BIST configured through pin  
0: BISTconfigured through bits 2:0 in this  
register  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
2:1  
BIST CLOCK  
R/W  
0x0  
BIST Clock Source  
SOURCE  
This register field selects the BIST clock source  
at the Serializer. These register bits are  
automatically written to the CLOCK SOURCE  
bits (register offset 0x14) in the serializer after  
BIST is enabled. See the appropriate serializer  
register descriptions for details.  
Note: When connected to a DS90UB913A or  
DS90UB933, a setting of 0x3 may result in a  
clock frequency that is too slow for proper  
recovery.  
0
7
BIST_EN  
R/W  
R
0x0  
0x1  
BIST Control  
1: Enabled  
0: Disabled  
Share 0xB8 MODE_IDX_STS  
IDX_DONE  
IDX Done:  
If set, indicates the IDX decode has completed  
and latched into the IDX status bits.  
6:4  
3
IDX  
R
R
0x0  
0x1  
IDX Decode  
3-bit decode from IDX pin  
MODE_DONE  
MODE Done:  
If set, indicates the MODE decode has  
completed and latched into the MODE status  
bits.  
2:0  
MODE  
R
0x0  
MODE Decode  
3-bit decode from MODE pin  
Share 0xBE GPIO_PD_CTL  
7:3  
2
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
GPIO2_PD_DIS  
GPIO2 pulldown resistor disable:  
The GPIO pins by default include a pulldown  
resistor that is automatically enabled when the  
GPIO is not in an output mode. When this bit is  
set, the pulldown resistor is also disabled when  
the GPIO pin is in an input only mode.  
1 : Disable GPIO pulldown resistor  
0 : Enable GPIO pulldown resistor  
1
GPIO1_PD_DIS  
R/W  
0x0  
GPIO1 pulldown resistor disable:  
The GPIO pins by default include a pulldown  
resistor that is automatically enabled when the  
GPIO is not in an output mode. When this bit is  
set, the pulldown resistor is also disabled when  
the GPIO pin is in an input only mode.  
1 : Disable GPIO pulldown resistor  
0 : Enable GPIO pulldown resistor  
0
GPIO0_PD_DIS  
R/W  
0x0  
GPIO0 pulldown resistor disable:  
The GPIO pins by default include a pulldown  
resistor that is automatically enabled when the  
GPIO is not in an output mode. When this bit is  
set, the pulldown resistor is also disabled when  
the GPIO pin is in an input only mode.  
1 : Disable GPIO pulldown resistor  
0 : Enable GPIO pulldown resistor  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
RX  
0xD0 PORT DEBUG  
7:6  
5
RESERVED  
SER BIST ACT  
R/W  
R
0x0  
0x0  
Reserved  
Serializer BIST Active  
This register indicates whether the serializer is  
in BIST mode.  
0: BIST mode not active  
1: BIST mode active  
If the deserializer is not in BIST mode, this bit  
being 1 could indicate an error condition.  
4:2  
1
RESERVED  
R/W  
0x0  
0x0  
Reserved  
FORCE BC ERRORS R/W  
This bit introduces continuous errors into the  
back channel frame.  
0
FORCE 1 BC ERROR (R/W)/S 0x0  
C
This bit introduces typically one, worst case  
two, errors into the back channel frame. Self  
clearing bit.  
RX  
0xD2 RESERVED  
7:0  
ADAPTIVE_EQ_REL R/W  
OCK_TIME  
0x4  
Time to wait for lock before incrementing the  
EQ to next setting  
000 : 164 us  
001 : 328 us  
010 : 655 us  
011 : 1.31 ms  
100 : 2.62 ms  
101 : 5.24 ms  
110 : 10.5ms  
111 : 21.0 ms  
4
AEQ_1ST_LOCK_MO R/W  
DE  
0x0  
AEQ First Lock Mode This register bit controls  
the Adaptive Equalizer algorithm operation at  
initial Receiver Lock.  
0 : Initial AEQ lock may occur at any value  
1 : Initial Receiver lock will restart AEQ at 0,  
providing a more deterministic initial AEQ value  
3
2
AEQ_RESTART  
(R/W)/S 0x0  
C
Set high to restart AEQ adaptation from initial  
value. This bit is self clearing. Adaption will be  
restarted.  
SET_AEQ_FLOOR  
R/W  
0x0  
AEQ adaptation starts from a pre-set floor value  
rather than from zero - good in long cable  
situations  
1:0  
7:6  
5:3  
2:0  
7:5  
RESERVED  
R
0x0  
0x0  
0x0  
0x0  
0x3  
Reserved  
RX  
RX  
0xD3 AEQ_STATUS  
RESERVED  
R
Reserved  
EQ_STATUS_1  
EQ_STATUS_2  
R
Adaptive EQ Status 1  
Adaptive EQ Status 2  
R
0xD4 ADAPTIVE EQ  
BYPASS  
EQ STAGE 1  
SELECT VALUE  
R/W  
EQ select value [5:3] - Used if adaptive EQ is  
bypassed.  
4
AEQ_LOCK_MODE  
R/W  
0x0  
Adaptive Equalizer lock mode  
When set to a 1, Receiver Lock status requires  
the Adaptive Equalizer to complete adaption.  
When set to a 0, Receiver Lock is based only  
on the Lock circuit itself. AEQ may not have  
stabilized.  
3:1  
0
EQ STAGE 2  
SELECT VALUE  
R/W  
R/W  
R/W  
0x0  
0x0  
0xF  
EQ select value [2:0] - Used if adaptive EQ is  
bypassed.  
ADAPTIVE EQ  
BYPASS  
1: Disable adaptive EQ  
0: Enable adaptive EQ  
RX  
0xD5 AEQ_MIN_MAX  
7:4  
AEQ_MAX  
Adaptive Equalizer Maximum value  
This register sets the maximum value for the  
Adaptive EQ algorithm.  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
3:0  
ADAPTIVE EQ  
R/W  
0x8  
When AEQ floor is enabled by register  
FLOOR VALUE  
configuration {reg_35[5:4]} the starting setting is  
given by this register.  
RX  
0xD8 PORT_ICR_HI  
7:3  
2
Reserved  
R
0x0  
0x0  
Reserved  
IE_FPD3_ENC_ERR R/W  
Interrupt on FPD-Link III receiver encoding  
error  
When enabled, an interrupt is generated on  
detection of an encoding error on the FPD-Link  
III interface for the receive port as reported in  
the FPD3_ENC_ERROR bit in the  
RX_PORT_STS2 register  
1
0
IE_BCC_SEQ_ERR  
IE_BCC_CRC_ERR  
R/W  
R/W  
0x0  
0x0  
Interrupt on BCC SEQ sequence error  
When enabled, an interrupt is generated if a  
sequence error is detected for the bidirectional  
control channel forward channel receiver as  
reported in the BCC_SEQ_ERROR bit in the  
RX_PORT_STS1 register.  
Interrupt on BCC CRC error detect  
When enabled, an interrupt is generated if a  
CRC error is detected on a bidirectional control  
channel frame received over the FPD-Link III  
forward channel as reported in the  
BCC_CRC_ERROR bit in the RX_PORT_STS1  
register.  
RX  
0xD9 PORT_ICR_LO  
7:3  
6
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
IE_LINE_LEN_CHG  
Interrupt on Video Line length  
When enabled, an interrupt will be generated if  
the length of the video line changes. Status is  
reported in the LINE_LEN_CHG bit in the  
RX_PORT_STS2 register.  
5
4
IE_LINE_CNT_CHG R/W  
0x0  
0x0  
Interrupt on Video Line count  
When enabled, an interrupt will be generated if  
the number of video lines per frame changes.  
Status is reported in the LINE_CNT_CHG bit in  
the RX_PORT_STS2 register.  
IE_BUFFER_ERR  
RESERVED  
R/W  
R/W  
Interrupt on Receiver Buffer Error  
When enabled, an interrupt will be generated if  
the Receive Buffer overflow is detected as  
reported in the BUFFER_ERROR bit in the  
RX_PORT_STS2 register.  
3
2
0x0  
0x0  
Reserved  
IE_FPD3_PAR_ERR R/W  
Interrupt on FPD-Link III receiver parity error  
When enabled, an interrupt is generated on  
detection of parity errors on the FPD-Link III  
interface for the receive port. Parity error status  
is reported in the PARITY_ERROR bit in the  
RX_PORT_STS1 register.  
1
IE_PORT_PASS  
IE_LOCK_STS  
Reserved  
R/W  
R/W  
R
0x0  
0x0  
0x0  
Interrupt on change in port PASS status  
When enabled, an interrupt is generated on a  
change in receiver port valid status as reported  
in the PORT_PASS bit in the PORT_STS1  
register.  
0
Interrupt on change in lock status  
When enabled, an interrupt is generated on a  
change in lock status. Status is reported in the  
LOCK_STS_CHG bit in the RX_PORT_STS1  
register.  
RX  
0xDA PORT_ISR_HI  
7:3  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
2
1
0
IS_FPD3_ENC_ERR  
R
0x0  
0x0  
0x0  
FPD-Link III receiver encode error interrupt  
status  
An encoding error on the FPD-Link III interface  
for the receive port has been detected. Status  
is reported in the FPD3_ENC_ERROR bit in the  
RX_PORT_STS2 register.  
This interrupt condition is cleared by reading  
the RX_PORT_STS2 register.  
IS_BCC_SEQ_ERR  
R
BCC CRC sequence error interrupt status  
A sequence error has been detected for the  
bidirectional control channel forward channel  
receiver. Status is reported in the  
BCC_SEQ_ERROR bit in the RX_PORT_STS1  
register.  
This interrupt condition is cleared by reading  
the RX_PORT_STS1 register.  
IS_BCC_CRC_ERR  
R
BCC CRC error detect interrupt status  
A CRC error has been detected on a  
bidirectional control channel frame received  
over the FPD-Link III forward channel. Status is  
reported in the BCC_CRC_ERROR bit in the  
RX_PORT_STS1 register.  
This interrupt condition is cleared by reading  
the RX_PORT_STS1 register.  
RX  
0xDB PORT_ISR_LO  
7:3  
6
Reserved  
R
R
0x0  
0x0  
Reserved  
IS_LINE_LEN_CHG  
Video Line Length Interrupt Status  
A change in video line length has been  
detected. Status is reported in the  
LINE_LEN_CHG bit in the RX_PORT_STS2  
register.  
This interrupt condition will be cleared by  
reading the RX_PORT_STS2 register.  
5
4
IS_LINE_CNT_CHG  
IS_BUFFER_ERR  
R
R
0x0  
0x0  
Video Line Count Interrupt Status  
A change in number of video lines per frame  
has been detected. Status is reported in the  
LINE_CNT_CHG bit in the RX_PORT_STS2  
register.  
This interrupt condition will be cleared by  
reading the RX_PORT_STS2 register.  
Receiver Buffer Error Interrupt Status  
A Receive Buffer overflow has been detected  
as reported in the BUFFER_ERROR bit in the  
RX_PORT_STS2 register. This interrupt  
condition will be cleared by reading the  
RX_PORT_STS2 register.  
3
2
RESERVED  
R
R
0x0  
0x0  
Reserved  
IS_FPD3_PAR_ERR  
FPD-Link III receiver parity error interrupt status  
A parity error on the FPD-Link III interface for  
the receive port has been detected. Parity error  
status is reported in the PARITY_ERROR bit in  
the RX_PORT_STS1 register.  
This interrupt condition is cleared by reading  
the RX_PORT_STS1 register.  
1
IS_PORT_PASS  
R
0x0  
Port valid interrupt status  
A change in receiver port valid status as  
reported in the PORT_PASS bit in the  
PORT_STS1 register. This interrupt condition is  
cleared by reading the RX_PORT_STS1  
register.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-10. Serial Control Bus Registers (continued)  
Addr  
Page  
Register Name  
Bit(s) Field  
Type  
Default Description  
(hex)  
0
IS_LOCK_STS  
R
0x0  
Lock interrupt status  
A change in lock status has been detected.  
Status is reported in the LOCK_STS_CHG bit  
in the RX_PORT_STS1 register.  
This interrupt condition is cleared by reading  
the RX_PORT_STS1 register.  
Share 0xF0 FPD3_RX_ID0  
Share 0xF1 FPD3_RX_ID1  
Share 0xF2 FPD3_RX_ID2  
Share 0xF3 FPD3_RX_ID3  
Share 0xF4 FPD3_RX_ID4  
Share 0xF5 FPD3_RX_ID5  
Share 0xF8 I2C_RX0_ID  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:1  
FPD3_RX_ID0  
FPD3_RX_ID1  
FPD3_RX_ID2  
FPD3_RX_ID3  
FPD3_RX_ID4  
FPD3_RX_ID5  
RX_PORT0_ID  
R
0x5F  
0x55  
0x42  
0x39  
0x33  
0x34  
0x00  
FPD3_RX_ID0: First byte ID code: _’  
FPD3_RX_ID1: 2nd byte of ID code: U’  
FPD3_RX_ID2: 3rd byte of ID code: B’  
FPD3_RX_ID3: 4th byte of ID code: 9’  
FPD3_RX_ID4: 5th byte of ID code: '3'  
FPD3_RX_ID5: 6th byte of ID code: '4'  
R
R
R
R
R
R/W  
7-bit Receive Port 0 I2C ID  
Configures the decoder for detecting  
transactions designated for Receiver port 0  
registers. This provides a simpler method of  
accessing device registers specifically for port 0  
without having to use the paging function to  
select the register page. A value of 0 in this  
field disables the Port0 decoder.  
0
RESERVED  
R
0x0  
Reserved  
Share 0xF9 I2C_RX1_ID  
7:1  
RX_PORT1_ID  
R/W  
0x00  
7-bit Receive Port 1 I2C ID  
Configures the decoder for detecting  
transactions designated for Receiver port 1  
registers. This provides a simpler method of  
accessing device registers specifically for port 1  
without having to use the paging function to  
select the register page. A value of 0 in this  
field disables the Port1 decoder.  
0
RESERVED  
R
0x0  
Reserved  
5.6.3 Indirect Access Registers  
Several functional blocks include register sets contained in the Indirect Access map (5.6.4); that is CSI-2  
timing and Analog controls. Register access is provided via an indirect access mechanism through the Indirect  
Access registers (IND_ACC_CTL, IND_ACC_ADDR, and IND_ACC_DATA). These registers are located at  
offsets 0xB0-0xB2 in the main register space.  
The indirect address mechanism involves setting the control register to select the desired block, setting the  
register offset address, and reading or writing the data register. In addition, an auto-increment function is  
provided in the control register to automatically increment the offset address following each read or write of the  
data register.  
For writes, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Write the data value to the IND_ACC_DATA register  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will write additional data bytes to  
subsequent register offset locations  
For reads, the process is as follows:  
1. Write to the IND_ACC_CTL register to select the desired register block  
2. Write to the IND_ACC_ADDR register to set the register offset  
3. Read from the IND_ACC_DATA register  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DS90UB934-Q1  
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
If auto-increment is set in the IND_ACC_CTL register, repeating step 3 will read additional data bytes from  
subsequent register offset locations.  
5.6.4 Indirect Access Register Map  
5-11. Indirect Register Map Description  
IA SELECT  
0xB0[5:2]  
PAGE/BLOCK  
INDIRECT REGISTERS  
ADDRESS RANGE  
DESCRIPTION  
Pattern Gen Registers  
0x01-0x1F  
0x40-0x48  
Digital Page 0 Reserved  
Registers  
0000  
0
CSI TX port 0 Timing Registers  
Test and Debug registers  
FPD-Link III Channel 0  
Registers  
0001  
0010  
1
2
0x00-0x14  
0x00-0x14  
FPD-Link III Channel 1  
Registers  
Test and Debug registers  
0011  
0100  
0101  
3
4
5
Reserved  
0x00-0x14  
0x00-0x14  
0x00-0x04  
Reserved  
Reserved  
Reserved  
FPD-Link III Shared Registers  
Test and Debug registers  
Write All FPD-Link III Channel  
Registers  
0110  
0111  
6
7
0x00-0x14  
0x00-0x1D  
Test and Debug registers  
Test and Debug registers  
CSI TX Reserved Registers  
5.6.4.1 FPD3 Channel 0 Registers  
5-12. FPD3 Channel 0 Registers  
Page  
Addr (hex) Register Name  
Bit(s)  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:1  
0
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
1
1
1
1
1
1
1
1
1
1
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EN_LOOP_DRV  
0x0  
0xE0  
0x0  
0x20  
0x3F  
0x0  
0x74  
0x0A  
0x0  
0x08-0x0E RESERVED  
0x0F  
ATP_CTL1  
0x0  
0x0  
Enable FPD3 data to loop through  
driver  
0: disabled (default)  
1: enabled  
1
0x10  
ATP_CTL2  
7:2  
1
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
EN_DATA_OUT  
Enable CMLOUT data output  
0: disabled (default)  
1: enabled  
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
0x0  
Reserved  
Reserved  
Reserved  
Reserved  
1
1
1
0x11-0x12 RESERVED  
7:0  
7:0  
7:0  
0x0  
0x13  
0x14  
RESERVED  
RESERVED  
0x20  
0x3F  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5.6.4.2 FPD3 Channel 1 Registers  
5-13. FPD3 Channel 1 Registers  
Page  
Addr (hex) Register Name  
Bit(s)  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:1  
0
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Default  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
2
2
2
2
2
2
2
2
2
2
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
EN_LOOP_DRV  
0x0  
0xE0  
0x0  
0x20  
0x3F  
0x0  
0x74  
0x0A  
0x0  
0x08-0x0E RESERVED  
0x0F  
ATP_CTL1  
0x0  
0x0  
Enable FPD3 data to loop through  
driver  
0: disabled (default)  
1: enabled  
2
0x10  
ATP_CTL2  
7:2  
1
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
EN_DATA_OUT  
Enable CMLOUT data output  
0: disabled (default)  
1: enabled  
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R/W  
R/W  
R/W  
R/W  
0x0  
Reserved  
Reserved  
Reserved  
Reserved  
2
2
2
0x11-0x12 RESERVED  
7:0  
7:0  
7:0  
0x0  
0x13  
0x14  
RESERVED  
RESERVED  
0x20  
0x3F  
5.6.4.3 FPD3 RX Shared Registers  
5-14. FPD3 RX Shared Registers  
Addr  
Page  
Register Name  
Bit(s)  
Field  
Type  
Default  
Description  
(hex)  
5
0x00  
REG_0_SH  
7
LOOP_EN  
R/W  
0x0  
Enable CMLOUT loop through driver  
0: disabled (default)  
1: enabled  
6
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
SEL_CHANNEL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
5
4
3
2:0  
7:0  
7
5
5
0x01  
0x02  
RESERVED  
REG_2_SH  
Loop through RX Monitor MUX  
0: CH0  
1: CH1  
6:5  
4:0  
RESERVED  
RESERVED  
R/W  
R/W  
0x1  
0x0  
Reserved  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
5-14. FPD3 RX Shared Registers (continued)  
Addr  
(hex)  
Page  
Register Name  
Bit(s)  
Field  
Type  
Default  
Description  
5
0x03  
REG3_SH_STP  
7:6  
5
RESERVED  
R/W  
R/W  
0x0  
0x0  
Reserved  
EN_TERM_STP  
Enable CMLOUT loop termination  
0: Disable  
1: Enable  
4
RESERVED  
R/W  
R/W  
R/W  
R/W  
0x0  
0x8  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
3:0  
RESERVED  
5
0x04  
REG3_SH_COAX 7:6  
5
RESERVED  
EN_TERM_COAX  
Enable CMLOUT loop termination  
0: Disable  
1: Enable  
4
RESERVED  
RESERVED  
R/W  
R/W  
0x0  
0x8  
Reserved  
Reserved  
3:0  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
6.1 Application Information  
The DS90UB933/934 chipset supports video transport and bidirectional control over a single coaxial or STP  
cable targeted at ADAS applications, such as front, rear, and surround-view cameras, camera monitoring  
systems, and sensor fusion.  
6.2 Power Over Coax  
The DS90UB34-Q1 is designed to support the Power-over-Coax (PoC) method of powering remote sensor  
systems. With this method, the power is delivered over the same medium (a coaxial cable) used for high-speed  
digital video data and bidirectional control and diagnostics data transmission. The method utilizes passive  
networks or filters that isolate the transmission line from the loading of the DC-DC regulator circuits and their  
connecting power traces on both sides of the link as shown in 6-1.  
Sensor Module  
Automotive ECU  
DC-DC  
Regulators  
Power  
Source  
PoC  
PoC  
Coaxial Cable  
POWER  
CAC1  
CAC1  
FPD-Link III  
Serializer  
FPD-Link III  
Deserializer  
Processor  
SoC  
Image Sensor  
FPD-Link III  
Braided  
Shield  
CAC2  
CAC2  
RTERM  
RTERM  
6-1. Power Over Coax (PoC) System Diagram  
The PoC networks' impedance of 2 kΩ over a specific frequency band is typically sufficient to isolate the  
transmission line from the loading of the regulator circuits. The lower limit of the frequency band is defined as ½  
of the frequency of the bidirectional control channel, fBCC. The upper limit of the frequency band is the frequency  
of the forward high-speed channel, fFC  
.
6-2 shows a PoC network recommended for a FPD-Link III consisting of DS90UB913A-Q1/DS90UB933-Q1  
and DS90UB934-Q1 pair with the bidirectional channel operating at 5 Mbps (½ fBCC = 2.5 MHz) and the forward  
channel operating at 1.87 Gbps (fFC = 1GHz).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
VPoC  
R1  
2.0 kW  
L1  
C1  
C2  
100 mH  
0.1 mF  
>10 mF  
R2  
L2  
2.0 kW  
4.7 mH œ 22 mH  
FB1  
CAC1  
RIN+  
RIN-  
100 nF  
CAC2  
R3  
49.9 W  
47 nF  
6-2. Typical PoC Network for a 2G FPD-Link III  
6-1 lists essential components for this particular PoC network.  
6-1. Suggested Components for a 2G FPD-Link III PoC Network  
COUNT REF DES  
DESCRIPTION  
PART NUMBER  
MFR  
Inductor, 100 µH, 0.310 Ωmaximum, 710 mA minimum (Isat, Itemp)  
7.2-MHz SRF typical, 6.6 mm × 6.6 mm, AEC-Q200  
1
1
L1  
L2  
MSS7341-104ML  
Coilcraft  
Inductor, 4.7 µH, 0.350 Ωmaximum, 700 mA minimum (Isat, Itemp)  
160-MHz SRF typical, 3.8 mm x 3.8 mm, AEC-Q200  
1008PS-472KL  
Coilcraft  
CBC3225T4R7MRV  
Taiyo Yuden  
Inductor, 4.7 µH, 0.130 Ωmaximum, 830 mA minimum (Isat, Itemp),  
70-MHz SRF typical, 3.2 mm × 2.5 mm, AEC-Q200  
Ferrite Bead, 1500 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500-mA at 85°C, SM0603, General-Purpose  
BLM18HE152SN1  
BLM18HE152SZ1  
Murata  
Murata  
1
FB1  
Ferrite Bead, 1500 kΩat 1 GHz, 0.5 Ωmaximum at DC  
500-mA at 85°C, SM0603, AEC-Q200  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Application report Sending Power over Coax in DS90UB913A Designs (SNLA224) discusses defining PoC  
networks in more detail.  
In addition to the PoC network components selection, their placement and layout play a critical role as well.  
Place the smallest component, typically a ferrite bead or a chip inductor, as close to the connector as  
possible. Route the high-speed trace through one of its pads to avoid stubs.  
Use the smallest component pads as allowed by manufacturer's design rules. Add anti-pads in the inner  
planes below the component pads to minimize impedance drop.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Consult with connector manufacturer for optimized connector footprint. If the connector is mounted on the  
same side as the IC, minimize the impact of the thru-hole connector stubs by routing the high-speed signal  
traces on the opposite side of the connector mounting side.  
Use coupled 100-Ωdifferential signal traces from the device pins to the AC-coupling caps. Use 50-Ωsingle-  
ended traces from the AC-coupling capacitors to the connector.  
Terminate the inverting signal traces close to the connectors with standard 49.9-Ωresistors.  
The suggested characteristics for single-ended PCB traces (microstrips or striplines) for serializer or deserializer  
boards are detailed in 6-2. The effects of the PoC networks need to be accounted for when testing the traces  
for compliance to the suggested limits.  
6-2. Suggested Characteristics for Single-Ended PCB Traces With Attached PoC Networks  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Ltrace Single-ended PCB trace length from the device pin to the connector pin  
Ztrace Single-ended PCB trace characteristic impedance  
5
55  
60  
cm  
45  
40  
50  
50  
Ω
Ω
Zcon  
Connector (mounted) characteristic impedance  
½ fBCC < f < 0.1 GHz  
dB  
20  
RL  
Return Loss, S11  
12+8*log(f)  
0.1 GHz < f < 1 GHz (f in GHz)  
dB  
f <0.5 GHz  
f=1 GHz  
-0.35  
dB  
dB  
IL  
Insertion Loss, S12  
0.6  
The VPOC noise needs to be kept to 10 mVp-p or lower on the source / deserializer side of the system. The VPOC  
fluctuations on the serializer side, caused by the transient current draw of the sensor and the DC resistance of  
cables and PoC components, need to be kept at minimum as well. Increasing the VPOC voltage and adding extra  
decoupling capacitance (> 10 µF) help reduce the amplitude and slew rate of the VPOC fluctuations.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.3 Typical Application  
VDD11_FPD [34]  
VDD11_D [3]  
[45] VDD18_P0  
1.8V  
0.01µF  
t 0.1µF  
C10  
C11  
C7  
C8  
FB1  
FB2  
4.7µF  
4.7µF  
0.1µF 1µF 10µF  
[36] VDD18_P1  
0.01µF  
t 0.1µF  
VDD11 [20]  
[40] VDD18_FPD0  
[31] VDD18_FPD1  
0.01µF  
t 0.1µF  
C12  
C9  
4.7µF  
0.1µF 1µF 10µF  
0.01µF  
t 0.1µF  
V(VDDIO)  
VDDIO [29]  
VDDIO [7]  
0.01µF  
t 0.1µF  
1µF  
0.1µF  
[17] VDD18  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB3  
0.1µF 1µF  
10µF  
R1  
R2  
C1  
C2  
RIN0+ [41]  
RIN0> [42]  
0.1µF  
R3  
R4  
RTERM  
[35] IDX  
C3  
C4  
FPD-Link III  
RIN1+ [32]  
[37] MODE  
0.1µF  
RIN1> [33]  
RTERM  
[24] ROUT0  
[23] ROUT1  
[22] ROUT2  
[21] ROUT3  
[19] ROUT4  
[18] ROUT5  
[16] ROUT6  
[15] ROUT7  
[14]ROUT8  
[13] ROUT9  
[12] ROUT10  
[11] ROUT11  
[10] HSYNC  
[9] VSYNC  
C5  
C6  
CMLOUTP [38]  
CMLOUTN [39]  
(TEST_PAD)  
4.7k 4.7k  
V(V  
I2C  
)
I2C_SDA [1]  
I2C_SCL [2]  
LVCMOS  
Video Output  
I2C  
1.8V  
10k  
PDB [30]  
>10µF  
BISTEN [6]  
10k  
[8] PCLK  
Control  
OSS_SEL [4]  
OEN [5]  
SEL [46]  
[48] LOCK  
[47] PASS  
Status  
V(VDDIO)  
4.7k  
GPIO3 / INTB [25]  
GPIO2 [26]  
GPIO1 [27]  
[43] RES  
[44] RES  
DAP  
NOTE:  
FB1-FB3: DCR<=25mQ; Z=120Q@100MHz  
GPIO / Status  
C1,C3,C5,C6  
C2,C4  
C7, C8, C9  
C10, C11, C12  
= 100nF (50 WV; 0402)  
= 47nF (50 WV; 0402)  
= 0.1 œ 0.47F  
GPIO0 [28]  
= 0.01 œ 0.047F  
R1 and R2 (see IDX Resistor Values Table)  
R3 and R4 (see MODE Resistor Values Table)  
RTERM = 50Ω  
Copyright © 2017, Texas Instruments Incorporated  
6-3. Typical Connection Diagram Coaxial  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DS90UB934-Q1  
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
VDD11_FPD [34]  
[45] VDD18_P0  
[36] VDD18_P1  
1.8V  
0.01µF  
t 0.1µF  
C10  
C11  
C7  
C8  
FB1  
FB2  
4.7µF  
4.7µF  
0.1µF 1µF 10µF  
VDD11_D [3]  
VDD11 [20]  
0.01µF  
t 0.1µF  
[40] VDD18_FPD0  
[31] VDD18_FPD1  
0.01µF  
t 0.1µF  
C12  
C9  
4.7µF  
0.1µF 1µF 10µF  
0.01µF  
t 0.1µF  
V(VDDIO)  
VDDIO [29]  
VDDIO [7]  
0.01µF  
t 0.1µF  
1µF  
0.1µF  
[17] VDD18  
0.01µF  
t 0.1µF  
0.01µF  
t 0.1µF  
FB3  
0.1µF 1µF  
10µF  
R1  
R2  
C1  
C2  
RIN0+ [41]  
RIN0> [42]  
0.1µF  
R3  
R4  
FPD-Link III  
[35] IDX  
C3  
C4  
RIN1+ [32]  
[37] MODE  
0.1µF  
RIN1> [33]  
[24] ROUT0  
[23] ROUT1  
[22] ROUT2  
[21] ROUT3  
[19] ROUT4  
[18] ROUT5  
[16] ROUT6  
[15] ROUT7  
[14]ROUT8  
[13] ROUT9  
[12] ROUT10  
[11] ROUT11  
[10] HSYNC  
[9] VSYNC  
C5  
C6  
CMLOUTP [38]  
CMLOUTN [39]  
(TEST_PAD)  
4.7k 4.7k  
V(V  
I2C  
)
I2C_SDA [1]  
I2C_SCL [2]  
LVCMOS  
Video Output  
I2C  
1.8V  
10k  
PDB [30]  
>10µF  
BISTEN [6]  
10k  
[8] PCLK  
Control  
OSS_SEL [4]  
OEN [5]  
SEL [46]  
[48] LOCK  
[47] PASS  
Status  
V(VDDIO)  
4.7k  
GPIO3 / INTB [25]  
GPIO2 [26]  
GPIO1 [27]  
[43] RES  
[44] RES  
DAP  
NOTE:  
FB1-FB3: DCR<=25mQ; Z=120Q@100MHz  
GPIO / Status  
C1,C3,C5,C6  
C2,C4  
C7, C8, C9  
C10, C11, C12  
= 100nF (50 WV; 0402)  
= 47nF (50 WV; 0402)  
= 0.1 œ 0.47F  
GPIO0 [28]  
= 0.01 œ 0.047F  
R1 and R2 (see IDX Resistor Values Table)  
R3 and R4 (see MODE Resistor Values Table)  
RTERM = 50Ω  
6-4. Typical Connection Diagram STP  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.3.1 Design Requirements  
For the typical FPD-Link III serializer and deserializer applications, use the input parameters in 6-3.  
6-3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
V(VI2C)  
1.8 V or 3.3 V  
V(VDD18)  
1.8 V  
AC-coupling capacitor for STP: RIN[1:0]±  
AC-coupling capacitor for coaxial: RIN[1:0]+  
AC-coupling capacitor for coaxial: RIN[1:0]-  
100 nF (50 WV 0402)  
100 nF (50 WV 0402)  
47 nF (50 WV 0402)  
6.3.2 Detailed Design Procedure  
The serializer and deserializer support only AC-coupled interconnects through an integrated DC-balanced  
decoding scheme. External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as  
shown in 6-5. For applications utilizing single-ended 50-Ω coaxial cable, terminate the unused data pins  
(RIN0, RIN1, RIN2, RIN3) with AC coupling capacitor and a 50-Ωresistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
6-5. AC-Coupled Connection (STP)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
6-6. AC-Coupled Connection (Coaxial)  
For high-speed FPDLink III transmissions, use the smallest available package for the AC-coupling capacitor.  
This helps minimize degradation of signal quality due to package parasitics.  
6.3.3 Application Curves  
ROUT0  
Output  
(2 V/DIV)  
100 MHz  
Pixel Clock  
Output  
(2 V/DIV)  
6-7. CMLOUTP/N Loop-through Eye Diagram at  
Time (5 ns/DIV)  
1.867 Gbps 15 Meters of DACAR 462 Cable  
6-8. ROUT0 Data Sampled by 100-MHz PCLK  
RRFB (0x3B[0]) = 1  
6.4 System Examples  
The DS90UB934-Q1 has two input ports that operate as a multiplexer controlled by the SEL pin. A single  
camera can be connected to either Rx input port 0 or Rx input port 1 (6-9).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Two cameras can be connected simultaneously, but only one is active at a time (6-10). The SEL pin can be  
toggled on-the-fly to select which camera is forwarded to the DVP output.  
DS90UB933-Q1  
Serializer  
Parallel LVCMOS  
Host / ISP  
DS90UB934-Q1  
6-9. DS90UB933-Q1 Camera Data to 1 Rx Port  
DS90UB933-Q1  
Serializer  
Parallel LVCMOS  
Host / ISP  
DS90UB933-Q1  
Serializer  
DS90UB934-Q1  
Copyright © 2016, Texas Instruments Incorporated  
6-10. Two DS90UB933-Q1 Camera Data to 2 Rx Ports  
6.5 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Configuration and Functions provide guidance on which circuit blocks are connected to which  
power pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such  
as PLLs.  
6.5.1 VDD Power Supply  
Each VDD power supply pin must have a 10-nF capacitor to ground connected as close as possible to the  
DS90UB934-Q1 device. TI recommends having additional decoupling capacitors (0.1 µF, 1 µF, and 10 µF) on it.  
It is also recommended to have the pins connected to a solid power plane.  
6.5.2 Power-Up Sequencing  
All inputs must not be driven until both power supplies have reached steady state. The power-up sequence for  
the DS90UB934-Q1 is as follows:  
6-4. Timing Diagram for the Power-Up Sequence  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
NOTES  
T0  
V(VDDIO) to V(VDD18)  
0
ms  
V(VDDIO) must come before (or  
at the same time as) V(VDD18)  
T1  
T2  
T3  
V(VDDIO) rise time  
1
1
0
ms  
ms  
ms  
rise time = 10/90%  
rise time = 10/90%  
V(VDD18) rise time  
V(VDDIO) / V(VDD18) stable to PDB  
PDB = H must come after  
supplies are stable  
T4  
PDB pulse width  
2
ms  
Hard reset  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
VDDIO  
VDD18  
PDB  
T0  
T1  
T2  
T3  
T4  
Hard  
Reset  
6-11. Power-Up Sequencing  
If the FPD-Link system is not initialized in the correct sequence, the DS90UB934-Q1 may need to be reset with  
signal present at the input to the Deserializer to optimize the link:  
1. Toggle the PDB power down reset pin, or:  
2. Perform Digital Reset 1 writing register 0x01[1] = 1 over I2C. It resets the entire digital block except registers  
in the 934. This is a self-clearing register bit.  
For the case of the loss of lock from cable when disconnecting and re-connecting FPD-Link cable, it is  
recommended to perform either PDB reset or digital reset via I2C when lock drops.  
6.5.3 PDB Pin  
The PDB pin is internal pull down enabled with 50k Ohm resistor. It is active HIGH and must remain LOW until  
the power supplies are within the recommended operating conditions. An external RC network on the PDB pin  
may be connected to ensure PDB arrives after all the supply pins have settled to the recommended operating  
voltage. When PDB pin is pulled up to VDD18, a 10-kΩ pullup and a >10-μF capacitor to GND are required to  
delay the PDB input signal rise.  
6.5.4 Ground  
TI recommends that common ground plane be used in the design. This provides the best image plane for signal  
traces running above the plane. Connect the thermal pad of the DS90UB934-Q1 to this plane with vias.  
6.6 Layout  
6.6.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices must be designed to provide low-noise power feed  
to the device. Good layout practice also separates high-frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback, and interference. Power system performance may be greatly improved  
by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies and makes the value and placement of external bypass capacitors less critical. External  
bypassing should be low-ESR ceramic capacitors with high-quality dielectric. Voltage rating of the tantalum  
capacitors must be at least 5× the power supply voltage being used  
TI recommends surface mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 47-µF to 100-µF range and smooths low frequency switching noise. TI recommends  
connecting power and ground pins directly to the power and connecting ground planes with bypass capacitors to  
the plane with via on both ends of the capacitor. Connecting power or ground pins to an external bypass  
capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small  
body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance  
frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DS90UB934-Q1  
 
 
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the  
frequency of interest. At high frequency, it is also a common practice to use two vias from power and ground pins  
to the planes, reducing the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin function tables typically provide guidance on which circuit blocks are connected to which power pin  
pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs.  
Use at least a four-layer board with a power and ground plane. Locate LVCMOS signals away from the  
differential lines to prevent coupling from the LVCMOS lines to the differential lines. Differential impedance of  
100 Ω are typically recommended for STP interconnect and single-ended impedance of 50 Ω for coax  
interconnect. The closely coupled lines help to ensure that coupled noise appears as common-mode and thus is  
rejected by the receivers. The tightly coupled lines also radiate less.  
6.6.1.1 DVP Interface Guidelines  
1. Route ROUT[11:0] with controlled 50-Ωsingle-ended impedance (±15%).  
2. Keep away from other high speed signals.  
3. Keep lengths to within 5 mils of each other.  
4. Length matching must be near the location of mismatch.  
5. Separate each signal by at least by 3 times the signal trace width.  
6. Keep the use of bends in traces to a minimum. When bends are used, the number of left and right bends  
must be as equal as possible, and the angle of the bends must be 135 degrees. This arrangement  
minimizes any length mismatch caused by the bends, and therefore minimizes the impact that bends have  
on EMI.  
7. Route all signals on the same layer  
8. The number of vias should be kept to a minimum. TI recommends keeping the via count to 2 or fewer.  
9. Keep traces on layers adjacent to ground plane.  
10. Do NOT route signals over any GND plane split.  
11. Adding test points causes impedance discontinuity and therefore negatively impacts signal performance. If  
test points are used, place them in series and symmetrically. They must not be placed in a manner that  
causes a stub.  
Copyright © 2022 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
6.6.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the VQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP.  
6-12 shows a PCB layout example derived from the layout design of the DS90UB934-Q1EVM Evaluation  
Board. The graphic and layout description are used to determine proper routing when designing the board. The  
FPD-Link III traces leading to RIN0+, RIN0, RIN1+, RIN1carry critical high-speed signals, and have highest  
priority in routing.  
For STP applications, the positive and negative traces are tightly coupled with differential 100-Ω characteristic  
impedance.  
For coaxial applications, the FPD-Link III traces must have 50-Ω characteristic impedance. As a secondary  
priority, loosely couple the traces with differential 100-Ωcharacteristic impedance.  
6-12. DS90UB934-Q1 Example PCB Layout  
1. Place vias, AC-coupling capacitors, and common-mode chokes (if used) on the FPD-Link III traces closely  
together so that the impedance discontinuity appears as tightly grouped as possible.  
2. If PoC is used, place a ferrite bead placed as close as possible to the FPD-Link III trace to minimize the stub  
seen due to the filter network.  
3. The high-speed FPD-Link III traces are routed differentially up to the connector. For the layout of a coaxial  
interconnects, use coupled traces with the RINxtermination near to the connector.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DS90UB934-Q1  
 
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
MECHANICAL DATA  
RHS0048A  
SQA48A (Rev B)  
Copyright © 2022 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DS90UB934-Q1  
DS90UB934-Q1  
ZHCSG37C SEPTEMBER 2016 REVISED DECEMBER 2022  
www.ti.com.cn  
7 Device and Documentation Support  
7.1 Documentation Support  
7.1.1 Related Documentation  
For related documentation see the following:  
DS90UB934-Q1EVM User's Guide  
FPD-Link Learning Center  
Backwards Compatibility Modes for Operation with Parallel Output Deserializers  
I2C over DS90UB913/4 FPD-Link III with Bidirectional Control Channel  
Sending Power Over Coax in DS90UB913A Designs  
I2C Bus Pullup Resistor Calculation  
Soldering Specifications Application Report  
Semiconductor and IC Package Thermal Metrics Application Report  
Leadless Leadframe Package (LLP) Application Report  
LVDS Owner's Manual  
An EMC/EMI System-Design and Testing Methodology for FPD-Link III SerDes  
Ten Tips for Successfully Designing with Automotive EMC/EMI Requirements  
7.2 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
7.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
7.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
7.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: DS90UB934-Q1  
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UB934TRGZRQ1  
DS90UB934TRGZTQ1  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
UB934Q  
UB934Q  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Nov-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UB934TRGZRQ1  
DS90UB934TRGZTQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
330.0  
180.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.1  
1.1  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UB934TRGZRQ1  
DS90UB934TRGZTQ1  
VQFN  
VQFN  
RGZ  
RGZ  
48  
48  
2500  
250  
367.0  
210.0  
367.0  
185.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DS90UB934TRGZRQ1

适用于 1MP/60fps 和 2MP/30fps 摄像机的 12 位 100MHz FPD-Link III 解串器 | RGZ | 48 | -40 to 105
TI

DS90UB934TRGZTQ1

适用于 1MP/60fps 和 2MP/30fps 摄像机的 12 位 100MHz FPD-Link III 解串器 | RGZ | 48 | -40 to 105
TI

DS90UB935-Q1

适用于 1MP、60fps 且具有 CSI-2 接口的 FPD-Link III 3Gbps 串行器
TI

DS90UB935TRHBRQ1

适用于 1MP、60fps 且具有 CSI-2 接口的 FPD-Link III 3Gbps 串行器 | RHB | 32 | -40 to 105
TI

DS90UB935TRHBTQ1

适用于 1MP、60fps 且具有 CSI-2 接口的 FPD-Link III 3Gbps 串行器 | RHB | 32 | -40 to 105
TI

DS90UB936-Q1

适用于 1MP/60fps 和 2MP/30fps 摄像头的 1MP MIPI CSI-2 FPD-Link III 解串器
TI

DS90UB936TRGZRQ1

适用于 1MP/60fps 和 2MP/30fps 摄像头的 1MP MIPI CSI-2 FPD-Link III 解串器 | RGZ | 48 | -40 to 105
TI

DS90UB936TRGZTQ1

适用于 1MP/60fps 和 2MP/30fps 摄像头的 1MP MIPI CSI-2 FPD-Link III 解串器 | RGZ | 48 | -40 to 105
TI

DS90UB940-Q1

1080p 双路 FPD-Link III 转 CSI-2 解串器
TI

DS90UB940N-Q1

1080p 双路 FPD-Link III 转 CSI-2 解串器
TI

DS90UB940NTNKDRQ1

1080p 双路 FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105
TI

DS90UB940NTNKDTQ1

1080p 双路 FPD-Link III 转 CSI-2 解串器 | NKD | 64 | -40 to 105
TI