DS90UH925AQ-Q1 [TI]

具有 HDCP 的 5 到 85MHz 24 位彩色 FPD-Link III 串行器;
DS90UH925AQ-Q1
型号: DS90UH925AQ-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 HDCP 的 5 到 85MHz 24 位彩色 FPD-Link III 串行器

光电二极管
文件: 总54页 (文件大小:1034K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
DS90UH925AQ-Q1 720p 24 位彩色平面显示器-链路 (FPD-Link) III 串化  
器,支持高带宽数字内容保护技术 (HDCP)  
1 特性  
3 说明  
1
支持片上密钥存储的集成型 HDCP 密码引擎  
DS90UH925AQ 串化器,连同 DS90UH926Q 解串器  
一起,在汽车娱乐系统内为内容受保护数字视频的安全  
分发提供了一款解决方案。 这个芯片组将一个并行  
RGB 视频接口转换为一个单对高速串行化接口。 数字  
视频数据采用业界标准的 HDCP 复制保护方案加以保  
护。 串行总线方案,FPD-Link III,支持通过单个差分  
链路实现视频和音频数据传输以及包括 I2C 通信在内  
的全双工控制。 通过单个差分对实现视频数据和控制  
的整合可减少互连线尺寸和重量,同时还消除了偏差问  
题并简化了系统设计。  
具有 I2C 兼容串行控制总线的双向控制接口通道接  
支持高清 (720p) 数字视频格式  
支持 RGB888 + VSHSDE I2S 音频  
支持 5 85MHz 并行时钟 (PCLK)  
具有 1.8V 3.3V 兼容 LVCMOS I/O 接口的单个  
3.3V 电源运行  
长达 10 米的交流耦合生成树协议 (STP) 互连  
并行 LVCMOS 视频输出  
具有嵌入式时钟的直流均衡 & 扰频数据  
支持 HDCP 中继器应用  
DS90UH925AQ 串化器嵌入时钟,内容保护数据有效  
载荷,并将信号电平位移至高速低压差分信令。 高达  
24 位的 RGB 数据位连同 3 个视频控制信号和多达 2  
I2S 数据输入被一起串化。  
针对远程中断的专用中断引脚  
内部模式生成  
低功率模式最大限度地减少了功率耗散  
汽车应用级产品:符合 AEC-Q100 2 级要求  
低压差分信令的使用、数据换序和随机生成以及展频定  
时兼容性最大限度地减少了电磁干扰 (EMI)。  
>8kV 人体模型 (HBM) ISO 10605 静电放电  
(ESD) 等级  
串化器和解串器上都执行 HDCP 密码引擎。 HDCP 密  
钥被存储在片上存储器中。  
向后兼容模式  
2 应用范围  
来自下游 DS90UH926Q 解串器的远程中断被映射至一  
个本地输出引脚。  
汽车用触摸显示屏  
汽车导航显示屏  
后座娱乐系统  
器件信息(1)  
部件号  
封装  
封装尺寸(标称值)  
超薄四方扁平无引线  
(WQFN) RHS (48)  
DS90UH925AQ-Q1  
7.00mm x 7.00mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
典型眼图  
4 简化电路原理图  
V
DD33  
V
DDIO  
V
DD33  
V
DDIO  
(1.8Vor3.3V) (3.3V)  
(3.3V) (1.8Vor3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair /AC Coupled  
B[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
0.1 PF  
0.1 PF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
PCLK  
100 ohm STP Cable  
DS90UH925AQ  
Serializer  
DS90UH926Q  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
/
I2S AUDIO  
(STEREO)  
3
/
I2S AUDIO  
(STEREO)  
MCLK  
MODE_SEL  
MODE_SEL  
INTB  
REM_INTB  
INTB_IN  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
Time (100 ps/DIV)  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SNLS481  
 
 
 
 
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
目录  
7.11 Typical Characteristics ........................................ 15  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Device Functional Modes........................................ 23  
8.3 Programming........................................................... 27  
Application and Implementation ........................ 43  
9.1 Application Information............................................ 43  
9.2 Typical Application .................................................. 43  
1
2
3
4
5
6
7
特性.......................................................................... 1  
8
9
应用范围................................................................... 1  
说明.......................................................................... 1  
简化电路原理图........................................................ 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 Handling Ratings....................................................... 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 DC Electrical Characteristics ................................... 8  
7.6 AC Electrical Characteristics(1) (2) (3) ..................... 10  
7.7 Recommended Timing for the Serial Control Bus .. 11  
7.8 DC and AC Serial Control Bus Characteristics....... 12  
7.9 AC Timing Diagrams and Test Circuits................... 12  
7.10 Switching Characteristics...................................... 15  
10 Power Supply Recommendations ..................... 46  
11 Layout................................................................... 47  
11.1 Layout Guidelines ................................................. 47  
11.2 Layout Example .................................................... 47  
12 器件和文档支持 ..................................................... 50  
12.1 Trademarks........................................................... 50  
12.2 Electrostatic Discharge Caution............................ 50  
12.3 术语表 ................................................................... 50  
13 机械封装和可订购信息 .......................................... 50  
5 修订历史记录  
日期  
修订版本  
注释  
2014 6 月  
*
最初发布。  
2
Copyright © 2014, Texas Instruments Incorporated  
 
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
6 Pin Configuration and Functions  
DS90UH925AQ Pin Diagram  
48 Pins  
Top View  
G2  
37  
MODE_SEL  
CMF  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
G3  
38  
G4  
39  
VDD33  
PDB  
G5  
40  
G6  
41  
DOUT+  
DOUT-  
G7  
42  
DS90UH925AQ  
RES1  
B0/GPO_REG4  
43  
44  
45  
46  
47  
48  
TOP VIEW  
CAPHS12  
REM_INTB  
RES0  
B1/I2S_DB/GPO_REG5  
B2  
B3  
B4  
B5  
DAP = GND  
CAPP12  
I2S_CLK  
Copyright © 2014, Texas Instruments Incorporated  
3
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Pin Functions  
PIN NAME  
PIN #  
I/O, TYPE  
DESCRIPTION  
LVCMOS PARALLEL INTERFACE  
R[7:0]  
G[7:0]  
B[7:0]  
HS  
34, 33, 32, 29, I, LVCMOS RED Parallel Interface Data Input Pins  
28, 27, 26, 25 w/ pull down Leave open if unused  
R0 can optionally be used as GPIO0 and R1 can optionally be used as GPIO1.  
42, 41, 40, 39, I, LVCMOS GREEN Parallel Interface Data Input Pins  
38, 37, 36, 35 w/ pull down Leave open if unused  
G0 can optionally be used as GPIO2 and G1 can optionally be used as GPIO3.  
BLUE Parallel Interface Data Input Pins  
46, 45, 44, 43 w/ pull down Leave open if unused  
B0 can optionally be used as GPO_REG4 and B1 can optionally be used as GPO_REG5.  
I, LVCMOS Horizontal Sync Input Pin  
2, 1, 48, 47,  
I, LVCOS  
3
w/ pull down Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
Control Signal Filter is enabled. There is no restriction on the minimum transition pulse when  
the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130 PCLKs.  
See Table 6  
VS  
DE  
4
5
I, LVCMOS Vertical Sync Input Pin  
w/ pull down Video control signal is limited to 1 transition per 130 PCLKs. Thus, the minimum pulse width  
is 130 PCLKs.  
I, LVCMOS Data Enable Input Pin  
w/ pull down Video control signal pulse width must be 3 PCLKs or longer to be transmitted when the  
Control Signal Filter is enabled. There is no restriction on the minimum transition pulse when  
the Control Signal Filter is disabled. The signal is limited to 2 transitions per 130 PCLKs.  
See Table 6  
PCLK  
10  
I, LVCMOS Pixel Clock Input Pin. Strobe edge set by RFB configuration register. See Table 6  
w/ pull down  
I2S_CLK,  
I2S_WC,  
I2S_DA  
13, 12, 11  
I, LVCMOS Digital Audio Interface Data Input Pins  
w/ pull down Leave open if unused  
I2S_WC can optionally be used as GPO_REG7, and I2S_DA can optionally be used as  
GPO_REG6.  
OPTIONAL PARALLEL INTERFACE  
I2S_DB  
44  
I, LVCMOS  
Second Channel Digital Audio Interface Data Input pin at 18–bit color mode and set by  
w/ pull down MODE_SEL pin or configuration register  
Leave open if unused  
I2S_DB can optionally be used as B1 or GPO_REG5.  
GPIO[3:0]  
36, 35, 26, 25 I/O, LVCMOS General Purpose IOs. Available only in 18-bit color mode, and set by MODE_SEL pin or  
w/ pull down configuration register. See Table 6  
Leave open if unused  
Shared with G1, G0, R1 and R0.  
GPO_REG[ 12, 11, 44, 43 O, LVCMOS General Purpose Outputs and set by configuration register. See Table 6  
7:4]  
w/ pull down Share with I2S_CLK, I2S_WC, I2S_DA, I2S_DB or B1, B0.  
CONTROL  
PDB  
21  
I, LVCMOS Power-down Mode Input Pin  
w/ pull-down PDB = H, device is enabled (normal operation)  
Refer to ”Power Up Requirements and PDB Pin” in the Applications Information Section.  
PDB = L, device is powered down.  
When the device is in the powered down state, the Driver Outputs are both HIGH, the PLL is  
shutdown, and IDD is minimized. Control Registers are RESET.  
MODE_SEL  
24  
6
I, Analog  
I, Analog  
Device Configuration Select. See Table 4  
I2C  
IDx  
I2C Serial Control Bus Device ID Address Select  
External pull-up to VDD33 is required under all conditions, DO NOT FLOAT.  
Connect to external pull-up and pull-down resistor to create a voltage divider. See Figure 20  
SCL  
SDA  
8
9
I/O, LVCMOS I2C Clock Input / Output Interface  
Open Drain Must have an external pull-up to VDD33, DO NOT FLOAT.  
Recommended pull-up: 4.7 kΩ.  
I/O, LVCMOS I2C Data Input / Output Interface  
Open Drain Must have an external pull-up to VDD33, DO NOT FLOAT.  
Recommended pull-up: 4.7 kΩ.  
4
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Pin Functions (continued)  
PIN NAME  
STATUS  
INTB  
PIN #  
I/O, TYPE  
DESCRIPTION  
31  
O, LVCMOS Interrupt. Read ISR register to determine source. Interrupt clears on ISR read.  
Open Drain INTB = H, normal  
INTB = L, Interrupt request  
Recommended pull-up: 4.7 kΩ to VDDIO  
REM_INTB  
16  
O, LVCMOS Interrupt. Mirrors status of INTB_IN from the remote deserializer. Note: REM_INTB will be  
driven LOW until lock is achieved with the downstream serializer.  
REM_INTB = H, normal  
REM_INTB = L, interrupt request  
FPD-Link III SERIAL INTERFACE  
DOUT+  
DOUT-  
CMF  
20  
19  
23  
O, LVDS  
O, LVDS  
Analog  
True Output  
The output must be AC-coupled with a 0.1µF capacitor.  
Inverting Output  
The output must be AC-coupled with a 0.1µF capacitor.  
Common Mode Filter.  
Connect 0.1µF to GND  
POWER(1) and GROUND  
VDD33  
VDDIO  
GND  
22  
30  
Power  
Power  
Ground  
Power to on-chip regulator 3.0 V - 3.6 V. Requires 4.7 uF to GND  
LVCMOS I/O Power 1.8 V ±5% OR 3.0 V - 3.6 V. Requires 4.7 uF to GND  
DAP  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
REGULATOR CAPACITOR  
CAPHS12,  
CAPP12  
17, 14  
CAP  
CAP  
Decoupling capacitor connection for on-chip regulator. Requires a 4.7uF to GND at each  
CAP pin.  
CAPL12  
7
Decoupling capacitor connection for on-chip regulator. Requires two 4.7uF to GND at this  
CAP pin.  
OTHERS  
RES[1:0]  
18, 15  
GND  
Reserved. Tie to Ground.  
(1) The VDD (VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. Refer to Power Up Requirements and  
PDB Pin for details.  
Copyright © 2014, Texas Instruments Incorporated  
5
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
PARAMETER  
MIN  
–0.3  
–0.3  
MAX  
+4.0  
+4.0  
UNIT  
V
VDD33  
VDDIO  
Supply Voltage  
Supply Voltage  
V
VDDIO  
0.3  
+
LVCMOS I/O Voltage  
–0.3  
–0.3  
V
Serializer Output Voltage  
Junction Temperature  
+2.75  
+150  
V
TJ  
°C  
For soldering specifications:  
see product folder at www.ti.com and www.ti.com/lit/an/snoa549c/snoa549c.pdf  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 Handling Ratings  
MIN  
-65  
-8  
MAX  
+150  
+8  
UNIT  
Tstg  
Storage temperature range 48 Lead WQFN Package  
Human body model (HBM), per AEC Q100-002(1)  
°C  
kV  
V
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per AEC Q100-011  
Machine Model  
-1.25  
-250  
-15  
-8  
+1.25  
+250  
+15  
Air Discharge (DOUT+, DOUT-  
Contact Discharge (DOUT+, DOUT-  
Air Discharge (DOUT+, DOUT-  
Contact Discharge (DOUT+, DOUT-  
)
ESD Rating (IEC 61000-4-2)  
RD = 330Ω, CS = 150pF  
kV  
)
)
+8  
ESD Rating (ISO10605)  
RD = 330Ω, CS = 150pF  
RD = 2KΩ, CS = 150pF or 330pF  
)
-15  
+15  
kV  
-8  
+8  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
3.0  
TYP  
3.3  
MAX  
3.6  
UNIT  
V
Supply Voltage (VDD33  
)
LVCMOS Supply Voltage (VDDIO  
)
)
3.0  
3.3  
3.6  
V
OR  
LVCMOS Supply Voltage (VDDIO  
1.71  
40  
5
1.8  
1.89  
+105  
85  
V
Operating Free Air Temperature (TA)  
PCLK Frequency  
Supply Noise(1)  
+25  
°C  
MHz  
mVP-P  
100  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the VDD33 and VDDIOsupplies  
with amplitude = 100 mVp-p measured at the device VDD33 and VDDIO pins. Bit error rate testing of input to the Ser and output of the  
Des with 10 meter cable shows no error when the noise frequency on the Ser is less than 50 MHz. The Des on the other hand shows no  
error when the noise frequency is less than 50 MHz.  
6
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
7.4 Thermal Information  
WQFN  
THERMAL METRIC(1)  
UNIT  
48 PINS  
35  
RθJA  
Junction-to-ambient thermal resistance  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
5.2  
5.5  
°C/W  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
5.5  
RθJC(bot)  
1.3  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
Copyright © 2014, Texas Instruments Incorporated  
7
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
(1) (2) (3)  
7.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
LVCMOS I/O DC SPECIFICATIONS  
VIH  
VIL  
IIN  
High Level Input Voltage  
Low Level Input Voltage  
Input Current  
VDDIO = 3.0 to 3.6 V  
2.0  
GND  
10  
2.0  
VDDIO  
0.8  
V
V
VDDIO = 3.0 to 3.6 V  
PDB  
VIN = 0 V or VDDIO = 3.0 to 3.6 V  
VDDIO = 3.0 to 3.6 V  
±1  
+10  
μA  
V
VDDIO  
VIH  
High Level Input Voltage  
Low Level Input Voltage  
0.65*  
VDDIO  
VDDIO = 1.71 to 1.89 V  
VDDIO = 3.0 to 3.6 V  
VDDIO = 1.71 to 1.89 V  
VDDIO  
0.8  
V
V
V
R[7:0], G[7:0],  
B[7:0], HS, VS,  
DE, PCLK,  
I2S_CLK,  
GND  
VIL  
0.35*  
VDDIO  
GND  
I2S_WC,  
I2S_DA,  
I2S_DB  
VDDIO = 3.0  
to 3.6 V  
10  
10  
2.4  
±1  
±1  
+10  
+10  
μA  
μA  
V
IIN  
Input Current  
VIN = 0 V or VDDIO  
VDDIO = 1.71  
to 1.89 V  
VDDIO = 3.0  
to 3.6 V  
VDDIO  
VDDIO  
0.4  
VOH  
High Level Output Voltage IOH = 4 mA  
VDDIO = 1.71  
to 1.89 V  
VDDIO  
0.45  
-
V
VDDIO = 3.0  
to 3.6 V  
GND  
GND  
V
GPIO[3:0],  
GPO_REG[7:4],  
REM_INTB  
VOL  
Low Level Output Voltage IOL = +4 mA  
VDDIO = 1.71  
to 1.89 V  
0.35  
V
Output Short Circuit  
VOUT = 0 V  
IOS  
IOZ  
50  
mA  
μA  
Current  
TRI-STATE® Output  
VOUT = 0 V or VDDIO, PDB = L,  
10  
+10  
Current  
FPD-LINK III CML DRIVER DC SPECIFICATIONS  
Differential Output Voltage  
(DOUT+) – (DOUT-)  
VODp-p  
RL = 100 , Figure 1  
1160  
1250  
1
1340  
50  
mVp-p  
mV  
ΔVOD  
Output Voltage Unbalance  
2.5-  
Offset Voltage – Single-  
ended  
0.25*VO  
Dp-p  
VOS  
RL = 100 , Figure 1  
V
(TYP)  
DOUT+, DOUT-  
Offset Voltage Unbalance  
Single-ended  
ΔVOS  
IOS  
1
50  
62  
mV  
mA  
Output Short Circuit  
Current  
DOUT+/- = 0 V, PDB = L or H  
38  
52  
Internal Termination  
Resistor - Single ended  
RT  
40  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, Ta = +25ºC, and at the Recommended Operation Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
8
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
DC Electrical Characteristics (1) (2) (3) (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
IDD1  
VDD33= 3.6 V  
VDDIO = 3.6 V  
VDD33  
VDDIO  
VDD33  
VDDIO  
VDD33  
VDDIO  
148  
90  
170  
180  
mA  
Supply Current  
(includes load current)  
RL = 100 , f = 85 MHz  
Checker Board Pattern,  
Figure 2  
μA  
IDDIO1  
IDDS1  
IDDIOS1  
IDDS2  
VDDIO = 1.89  
V
1
1.6  
mA  
VDD33 = 3.6 V  
1.2  
65  
2.4  
mA  
Supply Current Remote  
Auto Power Down Mode  
0x01[7] = 1, deserializer VDDIO = 3.6 V  
150  
μA  
is powered down  
VDDIO = 1.89  
55  
150  
μA  
V
VDD33 = 3.6 V  
1
2
mA  
PDB = L, All LVCMOS  
inputs are floating or tied  
to GND  
Supply Current Power  
Down  
VDDIO = 3.6 V  
65  
150  
μA  
IDDIOS2  
VDDIO = 1.89  
V
50  
150  
μA  
Copyright © 2014, Texas Instruments Incorporated  
9
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
7.6 AC Electrical Characteristics(1) (2) (3)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
GPIO BIT RATE  
Forward Channel Bit Rate  
Back Channel Bit Rate  
f = 5 – 85  
MHz  
GPIO[3:0]  
0.25* f  
75  
Mbps  
kbps  
BR  
See(4) (5)  
RECOMMENDED TIMING FOR PCLK  
tTCP  
tCIH  
tCIL  
PCLK Period  
11.76  
0.4*T  
0.4*T  
4.0  
T
200  
ns  
ns  
ns  
ns  
ns  
PCLK Input High Time  
PCLK Input Low Time  
PCLK Input Transition Time  
See(4) (5)  
PCLK  
0.5*T  
0.5*T  
0.6*T  
0.6*T  
f = 5 MHz  
(4) (5)  
tCLKT  
tIJIT  
Figure 3  
f = 85 MHz  
0.5  
PCLK Input Jitter Tolerance,  
f = 5 – 78  
MHz  
f / 40 < Jitter Freq < f / 20(4) (6)  
0.4  
0.6  
UI  
Bit Error Rate 10-10  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, Ta = +25ºC, and at the Recommended Operation Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
(4) Specification is ensured by characterization and is not tested in production.  
(5) Specification is ensured by design and is not tested in production.  
(6) Jitter Frequency is specified in conjunction with DS90UH926 PLL bandwidth.  
10  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
7.7 Recommended Timing for the Serial Control Bus  
Over 3.3 V supply and temperature ranges unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0
TYP  
MAX  
100  
UNIT  
kHz  
kHz  
us  
fSCL  
Standard Mode  
Fast Mode  
SCL Clock Frequency  
0
400  
tLOW  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
SCL Low Period  
SCL High Period  
us  
tHIGH  
Standard Mode  
Fast Mode  
us  
us  
tHD;STA  
Hold time for a start or a  
repeated start condition  
Figure 8  
Standard Mode  
us  
Fast Mode  
0.6  
4.7  
0.6  
us  
us  
us  
tSU:STA  
Set Up time for a start or a  
repeated start condition  
Figure 8  
Standard Mode  
Fast Mode  
tHD;DAT  
tSU;DAT  
tSU;STO  
Standard Mode  
Fast Mode  
0
3.45  
0.9  
us  
us  
ns  
ns  
us  
us  
us  
Data Hold Time  
Figure 8  
0
Standard Mode  
Fast Mode  
250  
100  
4.0  
0.6  
4.7  
Data Set Up Time  
Figure 8  
Standard Mode  
Fast Mode  
Set Up Time for STOP Condition,  
Figure 8  
Bus Free Time  
Standard Mode  
tBUF  
Between STOP and START,  
Figure 8  
Fast Mode  
1.3  
us  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
ns  
ns  
ns  
ns  
SCL & SDA Rise Time,  
Figure 8  
tr  
tf  
Standard Mode  
Fast mode  
SCL & SDA Fall Time,  
Figure 8  
Copyright © 2014, Texas Instruments Incorporated  
11  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
7.8 DC and AC Serial Control Bus Characteristics  
Over 3.3 V supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH  
0.7*  
VDD33  
Input High Level  
SDA and SCL  
SDA and SCL  
VDD33  
V
VIL  
0.3*  
VDD33  
Input Low Level Voltage  
Input Hysteresis  
GND  
V
VHY  
VOL  
Iin  
>50  
mV  
V
SDA, IOL = 1.25 mA  
0
0.36  
+10  
SDA or SCL, Vin = VDD33 or GND  
-10  
µA  
ns  
ns  
ns  
ns  
ns  
pF  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
Set Up Time – READ  
Hold Up Time – READ  
Input Filter  
430  
20  
SDA, RPU = 10 k, Cb 400 pF, Figure 8  
tF  
tSU;DAT  
tHD;DAT  
tSP  
Figure 8  
Figure 8  
560  
615  
50  
Cin  
Input Capacitance  
SDA or SCL  
<5  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3 V, Ta = +25ºC, and at the Recommended Operation Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD and ΔVOD, which are differential voltages.  
7.9 AC Timing Diagrams and Test Circuits  
DOUT+  
DOUT-  
100 nF  
100 nF  
30  
Differential probe  
SCOPE  
BW û 4GHz  
Input Impedance û 100 k:  
RGB[7:0],  
HS,VS,DE,  
I2S  
100:  
D
C
ú 0.5 pf  
L
BW û 3.5 GHz  
PCLK  
D
OUT  
-
V
OD-  
Single Ended  
V
OD  
V
OD+  
D
OUT  
+
V
OS  
|
V
OD+  
(D  
+) - (D -)  
OUT OUT  
0V  
Differential  
V
OD-  
Figure 1. Serializer VOD DC Output  
12  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
AC Timing Diagrams and Test Circuits (continued)  
V
DDIO  
PCLK  
GND  
V
DDIO  
RGB[n] (odd),  
VS, HS  
GND  
V
DDIO  
RGB[n] (even),  
DE  
GND  
Figure 2. Checkboard Data Pattern  
V
DDIO  
80%  
80%  
PCLK  
20%  
20%  
t
0V  
t
CLKT  
CLKT  
Figure 3. Serializer Input Clock Transition Time  
C
DOUT+  
DOUT-  
L
80%  
80%  
Differential  
Signal  
V
diff  
= 0V  
100:  
20%  
LHT  
20%  
t
t
HLT  
C
L
Figure 4. Serializer CML Output Load and Transition Time  
t
TCP  
V
/2  
DDIO  
V
/2  
V
/2  
DDIO  
PCLK  
DDIO  
t
t
DIH  
DIS  
V
DDIO  
RGB[7:0],  
HS,VS,DE  
Setup  
Hold  
V
/2  
DDIO  
V
DDIO  
/2  
0V  
Figure 5. Serializer Setup and Hold Times  
Copyright © 2014, Texas Instruments Incorporated  
13  
 
 
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
AC Timing Diagrams and Test Circuits (continued)  
VDD  
VDDIO  
PDB  
1/2 V  
DDIO  
PCLK  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
Figure 6. Serializer Lock Time  
t
t
DJIT  
DJIT  
VOD (+)  
DOUT  
(Diff.)  
EYE OPENING  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 7. Serializer CML Output Jitter  
SDA  
SCL  
t
BUF  
t
t
f
t
HD;STA  
t
r
LOW  
t
t
SP  
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 8. Serial Control Bus Timing Diagram  
14  
Copyright © 2014, Texas Instruments Incorporated  
 
 
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
7.10 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
tLHT  
CML Output Low-to-High  
Transition Time  
80  
130  
ps  
DOUT+,  
DOUT-  
See Figure 4  
tHLT  
tDIS  
CML Output High-to-Low  
Transition Time  
80  
130  
ps  
ns  
Data Input Setup to PCLK  
Data Input Hold from PCLK  
R[7:0],  
G[7:0],  
B[7:0], HS,  
VS, DE,  
PCLK,  
I2S_CLK,  
I2S_WC,  
I2S_DA  
2.0  
2.0  
See Figure 5  
tDIH  
ns  
(1)  
tPLD  
tSD  
Figure 6  
f = 15 -  
45MHz  
Serializer PLL Lock Time  
Delay — Latency  
131*T  
145*T  
ns  
ns  
f = 15 -  
45MHz  
Output Total Jitter,  
RL = 100Ω  
f = 45MHz  
DOUT+,  
DOUT-  
tTJIT  
Bit Error Rate 10-10  
0.25  
0.30  
UI  
(2) (3) (4)  
Figure 7  
(1) tPLD is the time required by the device to obtain lock when exiting power-down state with an active PCLK.  
(2) Specification is ensured by characterization and is not tested in production.  
(3) Specification is ensured by design and is not tested in production.  
(4) UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1/35*PCLK). The UI scales with PCLK frequency.  
7.11 Typical Characteristics  
78 MHz TX  
Pixel Clock  
Input  
(2 V/DIV)  
78 MHz RX  
Pixel Clock  
Output  
(2 V/DIV)  
Time (1.25 ns/DIV)  
Time (10 ns/DIV)  
Note: On the rising edge of each clock period, the CML driver outputs  
a low Stop bit, high Start bit, and 33 DC-scrambled data bits.  
Figure 9. Serializer CML Driver Output at 2.73 Gbps  
Figure 10. Comparison of Deserializer LVCMOS RX PCLK  
Output locked to a 78 MHz TX PCLK  
Copyright © 2014, Texas Instruments Incorporated  
15  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The DS90UH925AQ serializer transmits a 35-bit symbol over a single serial FPD-Link III pair operating up to  
2.975 Gbps line rate. The serial stream contains an embedded clock, video control signals and DC-balanced  
video data and audio data which enhance signal quality to support AC coupling. The DS90UH925AQ serializes  
video and audio data then applies encryption through a High-Bandwidth Digital Content Protection (HDCP)  
Cipher and transmits out through the FPD-Link III interface. Audio encryption is supported. The serializer also  
includes the HDCP cipher. On board non-volatile memory stores the HDCP keys. All key exchange is conducted  
over the FPD-Link III bidirectional control interface. The serializer is intended for use with the DS90UH926Q  
deserializer, but is also backward compatible with DS90UR906Q or DS90UR908Q FPD-Link II deserializer.  
8.1.1 Functional Block Diagram  
REGULATOR  
CMF  
24  
RGB [7:0]  
HS  
VS  
D
D
+
-
OUT  
DE  
D
PCLK  
OUT  
I2S_CLK  
I2S_WC  
I2S_DA  
3
PDB  
MODE_SEL  
PLL  
INTB  
REM_INTB  
SDA  
Timing  
and  
Control  
SCL  
IDx  
Figure 11. Block Diagram  
8.1.2 Feature Description  
8.1.2.1 High Speed Forward Channel Data Transfer  
The High Speed Forward Channel (HS_FC) is composed of 35 bits of data containing RGB data, sync signals,  
HDCP, I2C, and I2S audio transmitted from Serializer to Deserializer. Figure 12 illustrates the serial stream per  
PCLK cycle. This data payload is optimized for signal transmission over an AC coupled link. Data is randomized,  
balanced and scrambled.  
C1  
C0  
Figure 12. FPD-Link III Serial Stream  
The device supports clocks in the range of 5 MHz to 85 MHz. The application payload rate is 2.975 Gbps  
maximum (175 Mbps minimum) with the actual line rate of 2.975 Gbps maximum and 525 Mbps Minimum.  
16  
Copyright © 2014, Texas Instruments Incorporated  
 
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Overview (continued)  
8.1.2.2 Low Speed Back Channel Data Transfer  
The Low-Speed Backward Channel (LS_BC) of the DS90UH925AQ provides bidirectional communication  
between the display and host processor. The information is carried back from the Deserializer to the Serializer  
per serial symbol. The back channel control data is transferred over the single serial link along with the high-  
speed forward data, DC balance coding and embedded clock information. This architecture provides a backward  
path across the serial link together with a high speed forward channel. The back channel contains the I2C,  
HDCP, CRC and 4 bits of standard GPIO information with 10 Mbps line rate.  
8.1.2.3 Common Mode Filter Pin (CMF)  
The serializer provides access to the center tap of the internal termination. A capacitor must be placed on this pin  
for additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 0.1 μF capacitor must be connected to this pin to Ground.  
8.1.2.4 Video Control Signal Filter  
When operating the devices in Normal Mode, the Video Control Signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, the transition pulse must be 3 PCLK or longer.  
Normal Mode with Control Signal Filter Disabled: DE and HS — Only 2 transitions per 130 clock cycles are  
transmitted, no restriction on minimum transition pulse.  
VS — Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Video Control Signals are defined as low frequency signals with limited transitions. Glitches of a control signal  
can cause a visual display error. This feature allows for the chipset to validate and filter out any high frequency  
noise on the control signals. See Figure 13.  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
Filetered OUT  
HS/VS/DE  
OUT  
Figure 13. Video Control Signal Filter Waveform  
8.1.2.5 Backward Compatible Mode  
The DS90UH925AQ is also backward compatible to DS90UR906Q and DS90UR908Q FPD Link II deserializers  
at 5-65 MHz of PCLK. It transmits 28-bits of data over a single serial FPD-Link II pair operating at the line rate of  
140 Mbps to 1.82 Gbps. The backward configuration mode can be set via MODE_SEL pin (Table 4) or the  
configuration register (Table 6). Note: frequency range = 15 - 65 MHz when LFMODE = 0 and frequency range =  
5 - <15 MHz when LFMODE = 1.  
8.1.2.6 EMI Reduction Features  
8.1.2.6.1 Input SSC Tolerance (SSCT)  
The DS90UH925AQ serializer is capable of tracking a triangular input spread spectrum clocking (SSC) profile up  
to +/-2.5% amplitude deviations (center spread), up to 35 kHz modulation at 5–85 MHz, from a host source.  
Copyright © 2014, Texas Instruments Incorporated  
17  
 
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Overview (continued)  
8.1.2.7 LVCMOS VDDIO Option  
1.8 V or 3.3 V Inputs and Outputs are powered from a separate VDDIO supply to offer compatibility with external  
system interface signals. Note: When configuring theVDDIO power supplies, all the single-ended data and control  
input pins for device need to scale together with the same operating VDDIO levels.  
8.1.2.8 Power Down (PDB)  
The Serializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by the  
host or through the VDDIO, where VDDIO = 3.0 V to 3.6 V or VDD33. To save power disable the link when the  
display is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33 and  
VDDIO have reached final levels; no external components are required. In the case of driven by the VDDIO = 3.0 V  
to 3.6 V or VDD33 directly, a 10 kohm resistor to the VDDIO = 3.0 V to 3.6 V or VDD33 , and a >10 uF capacitor to  
the ground are required (See Figure 25 Typical Connection Diagram).  
8.1.2.9 Remote Auto Power Down Mode  
The Serializer features a remote auto power down mode. During the power down mode of the pairing  
deserializer, the Serializer enters the remote auto power down mode. In this mode, the power dissipation of the  
Serializer is reduced significantly. When the Deserializer is powered up, the Serializer enters the normal power  
on mode automatically. This feature is enabled through the register bit 0x01[7] Table 6.  
8.1.2.10 Input PCLK Loss Detect  
The serializer can be programmed to enter a low power SLEEP state when the input clock (PCLK) is lost. A  
clock loss condition is detected when PCLK drops below approximately 1 MHz. When a PCLK is detected again,  
the serializer will then lock to the incoming PCLK. Note – when PCLK is lost, the Serial Control Bus Registers  
values are still RETAINED.  
8.1.2.11 Serial Link Fault Detect  
The serial link fault detection is able to detect any of following seven (7) conditions  
1) cable open  
2) “+” to “-“ short  
3) “+” short to GND  
4) “-“ short to GND  
5) “+” short to battery  
6) “-“ short to battery  
7) Cable is linked correctly  
If any one of the fault conditions occurs, The Link Detect Status is 0 (cable is not detected) on bit 0 of address  
0x0C Table 6.  
8.1.2.12 Pixel Clock Edge Select (RFB)  
The RFB control register bit selects which edge of the Pixel Clock is used. For the serializer, this pin determines  
the edge that the data is latched on. If RFB is HIGH (‘1’), data is latched on the Rising edge of the PCLK. If RFB  
is LOW (‘0’), data is latched on the Falling edge of the PCLK.  
8.1.2.13 Low Frequency Optimization (LFMODE)  
The LFMODE is set via register (0x04[1:0]) or MODE_SEL Pin 24 (Table 4). It controls the operating frequency  
of the serializer. If LFMODE is Low (default), the PCLK frequency is between 15 MHz and 85 MHz. If LFMODE is  
High, the PCLK frequency is between 5 MHz and <15 MHz. Please note when the device LFMODE is changed,  
a PDB reset is required.  
18  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Overview (continued)  
8.1.2.14 Interrupt Pins – Funtional Description and Usage (INTB, REM_INTB)  
The REM_INTB pin mirrors the status of INTB_IN from the remote DS90UH926Q. Any change in INTB_IN status  
of the remote device will be reflected at the REM_INTB output of the serializer. REM_INTB will remain LOW until  
lock is achieved with the downstream deserializer. Alternately, the INTB pin can be set to trigger on remote  
interrupts by following the steps below.  
1. On DS90UH925A, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. DS90UH926Q deserializer INTB_IN (pin 16) is set LOW by some downstream device.  
3. DS90UH925AQ serializer pulls INTB (pin 31) LOW. The signal is active low, so a LOW indicates an interrupt  
condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read HDCP_ISR register .  
5. A read to HDCP_ISR will clear the interrupt at the DS90UH925A, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving INTB_IN. This would be when the downstream device releases the  
INTB_IN (pin 16) on the DS90UH926Q. The system is now ready to return to step (1) at next falling edge of  
INTB_IN.  
If using the REM_INTB pin instead of INTB for remote interrupts, the IS_RX_INT bit (0xC6[5]) of the serializer's  
ICR register must be set low (default) masking remote interrupts to the INTB pin.  
8.1.2.15 GPIO[3:0] and GPO_REG[7:4]  
In 18-bit RGB operation mode, the optional R[1:0] and G[1:0] of the DS90UH925AQ can be used as the general  
purpose IOs GPIO[3:0] in either forward channel (Inputs) or back channel (Outputs) application.  
GPIO[3:0] Enable Sequence  
See Table 1 for the GPIO enable sequencing.  
Step 1: Enable the 18-bit mode either through the configuration register bit Table 6 on DS90UH925AQ only.  
DS90UH926Q is automatically configured as in the 18-bit mode.  
Step 2: To enable GPIO3 forward channel, write 0x03 to address 0x0F on DS90UH925AQ, then write 0x05 to  
address 0x1F on DS90UH926Q.  
Table 1. GPIO Enable Sequencing Table  
#
Description  
Device  
Forward Channel  
0x12 = 0x04  
Back Channel  
0x12 = 0x04  
1
Enable 18-bit  
mode  
DS90UH925AQ  
DS90UH926Q  
DS90UH925AQ  
DS90UH926Q  
DS90UH925AQ  
DS90UH926Q  
DS90UH925AQ  
DS90UH926Q  
DS90UH925AQ  
DS90UH926Q  
Auto Load from DS90UH925AQ  
0x0F = 0x03  
Auto Load from DS90UH925AQ  
0x0F = 0x05  
2
3
4
5
GPIO3  
GPIO2  
GPIO1  
GPIO0  
0x1F = 0x05  
0x1F = 0x03  
0x0E = 0x30  
0x0E = 0x50  
0x1E = 0x50  
0x1E = 0x30  
0x0E = 0x03  
0x0E = 0x05  
0x1E = 0x05  
0x1E = 0x03  
0x0D = 0x93  
0x0D = 0x95  
0x1D = 0x95  
0x1D = 0x93  
GPO_REG[7:4] Enable Sequence  
GPO_REG[7:4] are the outputs only pins. They must be programmed through the local register bits. See Table 2  
for the GPO_REG enable sequencing.  
Step 1: Enable the 18-bit mode either through the configuration register bit Table 6 on DS90UH925AQ only.  
DS90UH926Q is automatically configured as in the 18-bit mode.  
Step 2: To enable GPO_REG7 outputs an “1”, write 0x09 to address 0x11 on DS90UH925AQ.  
Copyright © 2014, Texas Instruments Incorporated  
19  
 
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 2. GPO_REG Enable Sequencing Table  
#
1
2
Description  
Enable 18-bit mode  
GPO_REG7  
Device  
Local Access  
0x12 = 0x04  
0x11 = 0x09  
0x11 = 0x01  
0x10 = 0x90  
0x10 = 0x10  
0x10 = 0x09  
0x10 = 0x01  
0x0F = 0x90  
0x0F = 0x10  
Local Output  
DS90UH925AQ  
DS90UH925AQ  
“1”  
“0”  
“1”  
“0”  
“1”  
“0”  
“1”  
“0”  
3
4
5
GPO_REG6  
GPO_REG5  
GPO_REG4  
DS90UH925AQ  
DS90UH925AQ  
DS90UH925AQ  
8.1.2.16 I2S Transmitting  
In normal 24-bit RGB operation mode, the DS90UH925AQ supports 3 bits of I2S. They are I2S_CLK, I2S_WC  
and I2S_DA. The optionally encrypted and packetized audio information can be transmitted during the video  
blanking (data island transport) or during active video (forward channel frame transport). Note: The bit rates of  
any I2S bits must maintain one fourth of the PCLK rate. The audio encryption capability is supported per HDCP  
v1.3.  
8.1.2.16.1 Secondary I2S Channel  
In I2S Channel B operation mode, the secondary I2S data (I2S_DB) can be used as the additional I2S audio in  
addition to the 3–bit of I2S. The I2S_DB input must be synchronized to I2S_CLK and aligned with I2S_DA and  
I2S_WC at the input to the serializer. This operation mode is enabled through either the MODE_SEL pin  
(Table 4) or through the register bit 0x12[0] (Table 6). Table 3 below covers the range of I2S sample rates.  
Table 3. Audio Interface Frequencies  
Sample Rate (kHz)  
I2S Data Word Size (bits)  
I2S CLK (MHz)  
1.024  
32  
44.1  
48  
16  
16  
16  
16  
16  
24  
24  
24  
24  
24  
32  
32  
32  
32  
32  
1.411  
1.536  
96  
3.072  
192  
32  
6.144  
1.536  
44.1  
48  
2.117  
2.304  
96  
4.608  
192  
32  
9.216  
2.048  
44.1  
48  
2.822  
3.072  
96  
6.144  
192  
12.288  
8.1.2.16.2 HDCP  
The Cipher function is implemented in the serializer per HDCP v1.3 specification. The DS90UH925AQ provides  
HDCP encryption of audiovisual content when connected to an HDCP capable FPD-Link III deserializer such as  
the DS90UH926Q. HDCP authentication and shared key generation is performed using the HDCP Control  
Channel which is embedded in the forward and backward channels of the serial link. An on-chip Non-Volatile  
Memory (NVM) is used to store the HDCP keys. The confidential HDCP keys are loaded by TI during the  
manufacturing process and are not accessible external to the device.  
20  
Copyright © 2014, Texas Instruments Incorporated  
 
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
The DS90UH925AQ uses the Cipher engine to encrypt the data as per HDCP v1.3. The encrypted data is  
transmitted through the FPD-Link III interface.  
8.1.3 Built In Self Test (BIST)  
An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high speed serial link and the  
low- speed back channel. This is useful in the prototype stage, equipment production, in-system test and also for  
system diagnostics. Note: BIST not available in backwards compatible mode.  
8.1.3.1 BIST Configuration and Status  
The BIST mode is enabled at the deseralizer by the Pin select (Pin 44 BISTEN and Pin 16 BISTC) or  
configuration register (Table 6) through the deserializer. When LFMODE = 0, the pin based configuration defaults  
to external PCLK or 33 MHz internal Oscillator clock (OSC) frequency. In the absence of PCLK, the user can  
select the desired OSC frequency (default 33 MHz or 25 MHz) through the register bit. When LFMODE = 1, the  
pin based configuration defaults to external PCLK or 12.5 MHz internal Oscillator clock (OSC) frequency.  
When BISTEN of the deserializer is high, the BIST mode enable information is sent to the serializer through the  
Back Channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The PASS output pin toggles to flag any payloads that are received with 1 to  
35 bit errors.  
The BIST status is monitored real time on PASS pin. The result of the test is held on the PASS output until reset  
(new BIST test or Power Down). A high on PASS indicates NO ERRORS were detected. A Low on PASS  
indicates one or more errors were detected. The duration of the test is controlled by the pulse width applied to  
the deserializer BISTEN pin. This BIST feature also contains a Link Error Count and a Lock Status. If the  
connection of the serial link is broken, then the link error count is shown in the register. When the PLL of the  
deserializer is locked or unlocked, the lock status can be read in the register. See Table 6.  
Sample BIST Sequence  
See Figure 14 for the BIST mode flow diagram.  
Step 1:For the DS90UH925AQ and DS90UH926Q FPD-Link III chipset, BIST Mode is enabled via the BISTEN  
pin of DS90UH926Q FPD-Link III deserializer. The desired clock source is selected through BISTC pin.  
Step 2:The DS90UH925AQ serializer is woken up through the back channel if it is not already on. The all zero  
pattern on the data pins is sent through the FPD-Link III to the deserializer. Once the serializer and the  
deserializer are in BIST mode and the deserializer acquires Lock, the PASS pin of the deserializer goes high and  
BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the PASS pin will switch low  
for one half of the clock period. During the BIST test, the PASS output can be monitored and counted to  
determine the payload error rate.  
Step 3:To Stop the BIST mode, the deserializer BISTEN pin is set Low. The deserializer stops checking the  
data. The final test result is held on the PASS pin. If the test ran error free, the PASS output will be High. If there  
was one or more errors detected, the PASS output will be Low. The PASS output state is held until a new BIST  
is run, the device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the  
BISTEN signal.  
Step 4:The Link returns to normal operation after the deserializer BISTEN pin is low. Figure 15 shows the  
waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2 shows one with multiple  
errors. In most cases it is difficult to generate errors due to the robustness of the link (differential data  
transmission etc.), thus they may be introduced by greatly extending the cable length, faulting the interconnect,  
reducing signal condition enhancements (Rx Equalization).  
Copyright © 2014, Texas Instruments Incorporated  
21  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
Figure 14. BIST Mode Flow Diagram  
8.1.3.2 Forward Channel and Back Channel Error Checking  
While in BIST mode, the serializer stops sampling RGB input pins and switches over to an internal all-zero  
pattern. The internal all-zeroes pattern goes through scrambler, dc-balancing etc. and goes over the serial link to  
the deserializer. The deserializer on locking to the serial stream compares the recovered serial stream with all-  
zeroes and records any errors in status registers and dynamically indicates the status on PASS pin. The  
deserializer then outputs a SSO pattern on the RGB output pins.  
The back-channel data is checked for CRC errors once the serializer locks onto back-channel serial stream as  
indicated by link detect status (register bit 0x0C[0]). The CRC errors are recorded in an 8-bit register. The  
register is cleared when the serializer enters the BIST mode. As soon as the serializer exits BIST mode, the  
functional mode CRC register starts recording the CRC errors. The BIST mode CRC error register is active in  
BIST mode only and keeps the record of last BIST run until cleared or enters BIST mode again.  
BISTEN  
(DES)  
PCLK  
(RFB = L)  
RGB[7:0]  
HS, VS, DE  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
SSO  
Normal  
BIST Test  
BIST Duration  
Figure 15. BIST Waveforms  
22  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
8.1.4 Internal Pattern Generation  
The DS90UH925AQ serializer supports the internal pattern generation feature. It allows basic testing and  
debugging of an integrated panel through the FPD-Link III output stream. The test patterns are simple and  
repetitive and allow for a quick visual verification of panel operation. As long as the device is not in power down  
mode, the test pattern will be displayed even if no parallel input is applied. If no PCLK is received, the test  
pattern can be configured to use a programmed oscillator frequency. For detailed information, refer to SNLA132.  
8.1.5 Change Summary from DS90UH925Q  
The DS90UH925AQ is electrically similar to the DS90UH925Q. The changes between the devices are listed  
below.  
Pin 16, which is NC on the DS90UH925Q, becomes REM_INTB on the DS90UH925AQ. This pin mirrors the  
status of INTB_IN from the remote deserializer. Any change in INTB_IN status of the remote device will be  
reflected at the REM_INTB output of the serializer. No separate serializer register read will be required to  
reset and change the status of this pin. Thus software complexity is reduced. Note: REM_INTB will remain  
LOW until lock is achieved with the downstream deserializer.  
Pin 13, which is I2S_CLK / GPO_REG8 on the DS90UH925Q, becomes solely I2S_CLK on the  
DS90UH925AQ. Software must be updated to remove GPO_REG8, if used.  
The number of allowable I2C addresses is reduced from 16 on the DS90UH925Q to 8 on the  
DS90UH925AQ. The resistors in the divider network on the IDx pin may need to be updated, as well as the  
I2C address in software.  
The number of modes available through pin control is reduced from 10 on the DS90UH925Q to 8 on the  
DS90UH925AQ. All modes are still available through register control. The modes removed from pin control in  
the DS90UH925AQ are: (LFMODE = L, Repeater = L, Backward Compatible = L, I2S Channel B (18-bit  
mode) = H) and (LFMODE = L, Repeater = L, Backward Compatible = H, I2S Channel B (18-bit mode) = L).  
Backward compatibility and 18-bit mode can be configured through registers 0x04 and 0x12, respectively.  
8.2 Device Functional Modes  
8.2.1 Configuration Select (MODE_SEL)  
Configuration of the device may be done via the MODE_SEL input pin, or via the configuration register bit. A pull-  
up resistor and a pull-down resistor of suggested values may be used to set the voltage ratio of the MODE_SEL  
input (VR4) and VDD33 to select one of the other 10 possible selected modes. See Figure 16 and Table 4.  
VDD33  
R
R
3
4
MODE_SEL  
VR4  
SER  
Figure 16. MODE_SEL Connection Diagram  
Copyright © 2014, Texas Instruments Incorporated  
23  
 
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Device Functional Modes (continued)  
Table 4. Configuration Select (MODE_SEL)  
#
Ideal Ratio  
VR4/VDD33  
Ideal VR4  
(V)  
Suggested  
Resistor R3 kResistor R4 kΩ  
Suggested  
LFMODE  
Repeater  
Backward  
Compatible  
I2S Channel  
B
(1% tol)  
(1% tol)  
(18–bit  
Mode)  
1
2
3
4
5
6
7
8
0
0
Open  
255  
243  
237  
196  
169  
137  
90.9  
40.2 or Any  
49.9  
L
L
L
H
H
L
L
L
L
L
0.164  
0.221  
0.285  
0.359  
0.453  
0.539  
0.728  
0.541  
0.729  
0.941  
1.185  
1.495  
1.779  
2.402  
69.8  
L
L
H
L
95.3  
H
H
H
H
H
L
110  
L
L
H
L
140  
H
H
L
L
158  
L
H*  
H
L
243  
LFMODE:  
L = frequency range is 15 – 85 MHz (Default)  
H = frequency range is 5 – <15 MHz  
Repeater:  
L = Repeater OFF (Default)  
H = Repeater ON  
Backward Compatible:  
L = Backward Compatible is OFF (Default)  
H = Backward Compatible is ON; DES = DS90UR906Q or DS90UR916Q or DS90UR908Q  
– frequency range = 15 - 65 MHz when LFMODE = 0  
– frequency range = 5 - <15 MHz when LFMODE = 1  
I2S Channel B:  
L = I2S Channel B is OFF, Normal 24-bit RGB Mode (Default)  
H = I2S Channel B is ON, 18-bit RGB Mode with I2S_DB Enabled. Note: use of GPIO(s) on unused inputs must be enabled by register.  
8.2.2 HDCP Repeater  
When DS90UH925AQ and DS90UH926Q are configured as the HDCP Repeater application, it provides a  
mechanism to extend HDCP transmission over multiple links to multiple display devices. This repeater  
application provides a mechanism to authenticate all HDCP Receivers in the system and distribute protected  
content to the HDCP Receivers using the encryption mechanisms provided in the HDCP specification.  
8.2.2.1 Repeater Configuration  
In HDCP repeater application, In this document, the DS90UH925AQ is referred to as the HDCP Transmitter or  
transmit port (TX), and the DS90UH926Q is referred to as the HDCP Receiver (RX). Figure 17 shows the  
maximum configuration supported for HDCP Repeater implementations using the DS90UH925AQ (TX) and  
DS90UH926Q (RX). Two levels of HDCP Repeaters are supported with a maximum of three HDCP Transmitters  
per HDCP Receiver.  
24  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
1:3 Repeater  
1:3 Repeater  
Display  
RX  
RX  
TX  
RX  
TX  
Source  
TX  
RX  
Display  
Display  
TX  
TX  
TX  
TX  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
Figure 17. HDCP Maximum Repeater Application  
To support HDCP Repeater operation, the DS90UH926Q Deserializer includes the ability to control the  
downstream authentication process, assemble the KSV list for downstream HDCP Receivers, and pass the KSV  
list to the upstream HDCP Transmitter. An I2C master within the DS90UH926Q communicates with the I2C slave  
within the DS90UH925AQ Serializer. The DS90UH925AQ Serializer handles authenticating with a downstream  
HDCP Receiver and makes status available through the I2C interface. The DS90UH926Q monitors the transmit  
port status for each DS90UH925AQ and reads downstream KSV and KSV list values from the DS90UH925AQ.  
In addition to the I2C interface used to control the authentication process, the HDCP Repeater implementation  
includes two other interfaces. A parallel LVCMOS interface provides the unencrypted video data in 24-bit RGB  
format and includes the DE/VS/HS control signals. In addition to providing the RGB video data, the parallel  
LVCMOS interface communicates control information and packetized audio data during video blanking intervals.  
A separate I2S audio interface may optionally be used to send I2S audio data between the HDCP Receiver and  
HDCP Transmitter in place of using the packetized audio over the parallel LVCMOS interface. All audio and  
video data is decrypted at the output of the HDCP Receiver and is re-encrypted by the HDCP Transmitter.  
Figure 18 provides more detailed block diagram of a 1:2 HDCP repeater configuration.  
Copyright © 2014, Texas Instruments Incorporated  
25  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
HDCP Transmitter  
DS90UH925A  
downstream  
Receiver  
or  
I2C  
Slave  
I2C  
I2C  
Master  
Repeater  
upstream  
Transmitter  
Parallel  
LVCMOS  
HDCP Transmitter  
DS90UH925A  
HDCP Receiver  
DS90UH926  
I2S Audio  
downstream  
Receiver  
or  
I2C  
Slave  
Repeater  
FPD-Link III interfaces  
Figure 18. HDCP 1:2 Repeater Configuration  
8.2.2.2 Repeater Connections  
The HDCP Repeater requires the following connections between the HDCP Receiver and each HDCP  
Transmitter Figure 19.  
1) Video Data – Connect PCLK, RGB and control signals (DE, VS, HS).  
2) I2C – Connect SCL and SDA signals. Both signals should be pulled up to VDD33 with 4.7 kresistors.  
3) Audio – Connect I2S_CLK, I2S_WC, and I2S_DA signals.  
4) IDx pin – Each HDCP Transmitter and Receiver must have an unique I2C address.  
5) MODE_SEL pin – All HDCP Transmitter and Receiver must be set into the Repeater Mode.  
6) Interrupt pin – Connect DS90UH926Q INTB_IN pin to DS90UH925AQ INTB pin. The signal must be pulled up  
to VDDIO  
.
DS90UH926Q  
DS90UH925AQ  
R[7:0]  
R[7:0]  
G[7:0]  
B[7:0]  
G[7:0]  
B[7:0]  
DE  
VS  
HS  
DE  
VS  
HS  
I2S_CLK  
I2S_WC  
I2S_DA  
I2S_CLK  
I2S_WC  
I2S_DA  
VDD33  
VDD33  
Optional  
VDDIO  
MODE_SEL  
MODE_SEL  
INTB_IN  
INTB  
VDD33  
VDD33  
VDD33  
ID[x]  
ID[x]  
SDA  
SCL  
SDA  
SCL  
Figure 19. HDCP Repeater Connection Diagram  
26  
Copyright © 2014, Texas Instruments Incorporated  
 
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
8.3 Programming  
8.3.1 Serial Control Bus  
The DS90UH925AQ is configured by the use of a serial control bus that is I2C protocol compatible. This bus is  
also used by the Host source to control and monitor status of the HDCP function. Multiple serializer devices may  
share the serial control bus since 16 device addresses are supported. Device address is set via R1 and R2  
values on IDx pin. See Figure 20 below.  
The serial control bus consists of two signals and a configuration pin. The SCL is a Serial Bus Clock Input /  
Output. The SDA is the Serial Bus Data Input / Output signal. Both SCL and SDA signals require an external  
pull-up resistor to VDD33. For most applications a 4.7 k pull-up resistor to VDD33 may be used. The resistor value  
may be adjusted for capacitive loading and data rate requirements. The signals are either pulled High, or driven  
Low.  
V
DD33  
R
R
1
2
V
DD33  
IDx  
VR2  
4.7k  
4.7k  
HOST  
or  
SER  
or  
Salve  
DES  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
Figure 20. Serial Control Bus Connection  
The configuration pin is the IDx pin. This pin sets one of 16 possible device addresses. A pull-up resistor and a  
pull-down resistor of suggested values may be used to set the voltage ratio of the IDx input (VR2) and VDD33 to  
select one of the other 16 possible addresses. Table 5 defines the required VR2 and VR2/VDD33 ratios, and  
suggests standard resistor values to achieve these ratios. In systems where excessive noise may be present, we  
recommend reducing the resistor values (by a factor of 10x or 100x) while maintaining the required ratio. This  
provides tighter coupling to supply rails, and more stability of VR2 in the presence of coupled noise. Note that  
reducing the resistor values will increase the current consumed by the resistor divider. See Table 5.  
Table 5. Serial Control Bus Addresses for IDx  
Ideal Ratio  
VR2 / VDD33  
Ideal VR2  
(V)  
Suggested Resistor Suggested Resistor  
Address 8'b  
Appended  
#
Address 7'b  
R1 k(1% tol)  
R2 k(1% tol)  
1
2
3
4
5
6
7
8
0
0
Open  
249  
261  
243  
196  
174  
147  
115  
40.2 or Any  
49.9  
75  
0x0C  
0x0E  
0x10  
0x12  
0x14  
0x16  
0x18  
0x1A  
0x18  
0x1C  
0x20  
0x24  
0x28  
0x2C  
0x30  
0x34  
0.152  
0.212  
0.273  
0.356  
0.447  
0.538  
0.756  
0.545  
0.738  
0.955  
1.218  
1.508  
1.810  
2.500  
100  
115  
147  
178  
357  
Copyright © 2014, Texas Instruments Incorporated  
27  
 
 
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SCL transitions Low while SDA is High. A STOP occurs when SDA transition High while SCL is also HIGH. See  
Figure 21.  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 21. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 22 and a WRITE is shown in Figure 23.  
If the Serial Bus is not required, the three pins may be left open (NC).  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
Figure 22. Serial Control Bus — READ  
Register Address  
Slave Address  
Data  
a
c
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
k
Figure 23. Serial Control Bus — WRITE  
28  
Copyright © 2014, Texas Instruments Incorporated  
 
 
 
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Table 6. Serial Control Bus Registers  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
0
0x00 I2C Device ID  
7:1  
0
RW  
RW  
Device ID  
ID Setting  
7–bit address of Serializer  
I2C ID Setting  
1: Register I2C Device ID (Overrides IDx pin)  
0: Device ID is from IDx pin  
1
0x01 Reset  
7
RW  
0x00  
Remote  
Remote Auto Power Down  
Auto Power 1: Power down when no Bidirectional Control  
Down  
Channel link is detected  
0: Do not power down when no Bidirectional Control  
Channel link is detected  
6:2  
1
Reserved.  
RW  
RW  
RW  
Digital  
RESET1  
Reset the entire digital block including registers  
This bit is self-clearing.  
1: Reset  
0: Normal operation  
0
7
Digital  
RESET0  
Reset the entire digital block except registers  
This bit is self-clearing  
1: Reset  
0: Normal operation  
3
0x03 Configuration  
[0]  
0xD2  
Back  
channel  
CRC  
Back Channel Check Enable  
1: Enable  
0: Disable  
Checker  
Enable  
6
5
Reserved.  
RW  
I2C Remote Automatically Acknowledge I2C Remote Write  
Write Auto When enabled, I2C writes to the Deserializer (or  
Acknowledg any remote I2C Slave, if I2C PASS ALL is enabled)  
e
are immediately acknowledged without waiting for  
the Deserializer to acknowledge the write. This  
allows higher throughput on the I2C bus  
1: Enable  
0: Disable  
4
3
RW  
RW  
Filter  
Enable  
HS, VS, DE two clock filter When enabled, pulses  
less than two full PCLK cycles on the DE, HS, and  
VS inputs will be rejected  
1: Filtering enable  
0: Filtering disable  
I2C Pass-  
through  
I2C Pass-Through Mode  
1: Pass-Through Enabled  
0: Pass-Through Disabled  
2
1
Reserved  
RW  
RW  
PCLK Auto Switch over to internal OSC in the absence of PCLK  
1: Enable auto-switch  
0: Disable auto-switch  
0
TRFB  
Pixel Clock Edge Select  
1: Parallel Interface Data is strobed on the Rising  
Clock Edge.  
0: Parallel Interface Data is strobed on the Falling  
Clock Edge.  
Copyright © 2014, Texas Instruments Incorporated  
29  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
4
0x04 Configuration  
[1]  
7
RW  
0x80  
Failsafe  
State  
Input Failsafe State  
1: Failsafe to Low  
0: Failsafe to High  
6
5
Reserved  
RW  
CRC Error Clear back channel CRC Error Counters  
Reset  
This bit is NOT self-clearing  
1: Clear Counters  
0: Normal Operation  
4
3
Reserved  
RW  
Backward  
Backward Compatible (BC) mode set by  
Compatible MODE_SEL pin or register  
select by  
pin or  
1: BC is set by register bit. Use register bit  
reg_0x04[2] to set BC Mode  
register  
control  
0: BC is set by MODE_SEL pin.  
2
1
0
RW  
RW  
RW  
Backward  
Backward compatible (BC) mode to DS90UR906Q  
Compatible or DS90UR908Q, if reg_0x04[3] = 1  
Mode  
Select  
1: Backward compatible with DS90UR906Q or  
DS90UR908Q  
0: Backward Compatible is OFF (default)  
LFMODE  
select by  
pin or  
register  
control  
Frequency range is set by MODE_SEL pin or  
register  
1: Frequency range is set by register. Use register  
bit reg_0x04[0] to set LFMODE  
0: Frequency range is set by MODE_SEL pin.  
LFMODE  
Frequency range select  
1: PCLK range = 5 MHz - <15 MHz), if reg_0x04[1]  
= 1  
0: PCLK range = 15 MHz - 85 MHz (default)  
5
0x05 I2C Control  
7:5  
4:3  
0x00  
Reserved  
RW  
RW  
SDA Output SDA output delay  
Delay Configures output delay on the SDA output. Setting  
this value will increase output delay in units of 40ns.  
Nominal output delay values for SCL to SDA are  
00: 240ns  
01: 280ns  
10: 320ns  
11: 360ns  
2
Local Write Disable remote writes to local registers  
Disable  
Setting the bit to a 1 prevents remote writes to local  
device registers from across the control channel. It  
prevents writes to the Serializer registers from an  
I2C master attached to the Deserializer.  
Setting this bit does not affect remote access to I2C  
slaves at the Serializer  
1
0
RW  
RW  
I2C Bus  
Timer  
Speedup  
Speed up I2C bus watchdog timer  
1: Watchdog timer expires after ~50 ms.  
0: Watchdog Timer expires after ~1 s  
I2C Bus  
timer  
Disable  
Disable I2C bus watchdog timer  
When the I2C watchdog timer may be used to  
detect when the I2C bus is free or hung up following  
an invalid termination of a transaction.  
If SDA is high and no signalling occurs for ~1 s, the  
I2C bus assumes to be free. If SDA is low and no  
signaling occurs, the device attempts to clear the  
bus by driving 9 clocks on SCL  
30  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
6
0x06 DES ID  
7:1  
RW  
0x00  
DES Device 7-bit Deserializer Device ID  
ID  
Configures the I2C Slave ID of the remote  
Deserializer. A value of 0 in this field disables I2C  
access to the remote Deserializer. This field is  
automatically configured by the Bidirectional Control  
Channel once RX Lock has been detected.  
Software may overwrite this value, but should also  
assert the FREEZE DEVICE ID bit to prevent  
overwriting by the Bidirectional Control Channel.  
0
RW  
RW  
Device ID  
Frozen  
Freeze Deserializer Device ID  
Prevents autoloading of the Deserializer Device ID  
by the Bidirectional Control Channel. The ID will be  
frozen at the value written.  
7
0x07 Slave ID  
7:1  
0X00  
Slave  
7-bit Remote Slave Device ID  
Device ID  
Configures the physical I2C address of the remote  
I2C Slave device attached to the remote  
Deserializer. If an I2C transaction is addressed to  
the Slave Device Alias ID, the transaction will be  
remapped to this address before passing the  
transaction across the Bidirectional Control Channel  
to the Deserializer  
0
Reserved  
8
0x08 Slave Alias  
7:1  
RW  
0x00  
Slave  
7-bit Remote Slave Device Alias ID  
Device  
Alias ID  
Assigns an Alias ID to an I2C Slave device attached  
to the remote Deserializer. The transaction will be  
remapped to the address specified in the Slave ID  
register. A value of 0 in this field disables access to  
the remote I2C Slave.  
0
Reserved  
10  
11  
12  
0x0A CRC Errors  
0x0B  
7:0  
R
R
0x00  
0x00  
0x00  
CRC Error Number of back channel CRC errors – 8 least  
LSB significant bits  
7:0  
CRC Error Number of back channel CRC errors – 8 most  
MSB  
significant bits  
0x0C General Status  
7:4  
3
Reserved  
R
BIST CRC Back channel CRC error during BIST  
Error  
communication with Deserializer.  
The bit is cleared upon loss of link, restart of BIST,  
or assertion of CRC ERROR RESET in register  
0x04.  
2
1
R
R
PCLK  
Detect  
PCLK Status  
1: Valid PCLK detected  
0: Valid PCLK not detected  
DES Error  
Back channel CRC error during communication with  
Deserializer.  
The bit is cleared upon loss of link or assertion of  
CRC ERROR RESET in register 0x04.  
0
R
LINK Detect LINK Status  
1: Cable link detected  
0: Cable link not detected (Fault Condition)  
Copyright © 2014, Texas Instruments Incorporated  
31  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
13  
0x0D Revision ID and  
GPIO0  
7:4  
R
0xA0  
Rev-ID  
Revision ID: 1010  
Production Device  
Configuration  
3
2
RW  
GPIO0  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the  
GPIO function is enabled, the local GPIO direction  
is Output, and remote GPIO control is disabled.  
RW  
GPIO0  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer.  
The GPIO pin will be an output, and the value is  
received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
7
RW  
RW  
RW  
GPIO0  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO0  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
14  
0x0E GPIO2 and  
GPIO1  
0x0  
GPIO2  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the  
GPIO function is enabled, the local GPIO direction  
is Output, and remote GPIO control is disabled.  
Configurations  
6
RW  
GPIO2  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer.  
The GPIO pin will be an output, and the value is  
received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
5
4
3
RW  
RW  
RW  
GPIO2  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO2  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
GPIO1  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the  
GPIO function is enabled, the local GPIO direction  
is Output, and remote GPIO control is disabled.  
2
RW  
GPIO1  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer.  
The GPIO pin will be an output, and the value is  
received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
RW  
RW  
GPIO1  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO1  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
32  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
15  
0x0F GPO_REG4  
and GPIO3  
7
RW  
0x00  
GPO_REG Local GPO_REG4 output value  
4 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled.  
Configurations  
(The local GPO direction is Output, and remote  
GPO control is disabled)  
6:5  
4
Reserved  
RW  
RW  
GPO_REG GPO_REG4 function enable  
4 Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
2
GPIO3  
Output  
Value  
Local GPIO output value  
This value is output on the GPIO pin when the  
GPIO function is enabled, the local GPIO direction  
is Output, and remote GPIO control is disabled.  
RW  
GPIO3  
Remote  
Enable  
Remote GPIO control  
1: Enable GPIO control from remote Deserializer.  
The GPIO pin will be an output, and the value is  
received from the remote Deserializer.  
0: Disable GPIO control from remote Deserializer.  
1
0
7
RW  
RW  
RW  
GPIO3  
Direction  
Local GPIO Direction  
1: Input  
0: Output  
GPIO3  
Enable  
GPIO function enable  
1: Enable GPIO operation  
0: Enable normal operation  
16  
0x10 GPO_REG6  
and  
0x00  
GPO_REG Local GPO_REG6 output value  
6 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled.  
(The local GPO direction is Output, and remote  
GPO control is disabled)  
GPO_REG5  
Configurations  
6:5  
4
Reserved  
RW  
RW  
GPO_REG GPO_REG6 function enable  
6 Enable  
1: Enable GPO operation  
0: Enable normal operation  
3
GPO_REG Local GPO_REG5 output value  
5 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled, the local GPO direction is  
Output, and remote GPO control is disabled.  
2:1  
0
Reserved  
RW  
RW  
GPO_REG GPO_REG5 function enable  
5 Enable  
1: Enable GPO operation  
0: Enable normal operation  
17  
0x11 GPO_REG7  
Configuration  
7:4  
3
0x00  
Reserved  
GPO_REG Local GPO_REG7 output value  
7 Output  
Value  
This value is output on the GPO pin when the GPO  
function is enabled, the local GPO direction is  
Output, and remote GPO control is disabled.  
2:1  
0
Reserved  
RW  
GPO_REG GPO_REG7 function enable  
7 Enable  
1: Enable GPO operation  
0: Enable normal operation  
Copyright © 2014, Texas Instruments Incorporated  
33  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
18  
0x12 Data Path  
Control  
7
6
0x00  
Reserved  
RW  
Pass RGB Setting this bit causes RGB data to be sent  
independent of DE.  
It allows operation in systems which may not use  
DE to frame video data or send other data when DE  
is de-asserted.  
Note that setting this bit prevents HDCP operation  
and blocks packetized audio.  
This bit does not need to be set in Backwards  
Compatible mode  
1: Pass RGB independent of DE  
0: Normal operation  
(DE gates RGB data transmission - RGB data is  
transmitted only when DE is active)  
5
4
3
2
RW  
RW  
RW  
RW  
DE Polarity The bit indicates the polarity of the Data Enable  
(DE) signal.  
1: DE is inverted (active low, idle high)  
0: DE is positive (active high, idle low)  
I2S  
I2S Repeater Regeneration  
Repeater  
1: Repeater regenerate I2S from I2S pins  
Regenerati 0: Repeater pass through I2S from video pins  
on  
I2S  
I2S Channel B Enable  
Channel B 1: Set I2S Channel B Enable from reg_0x12[0]  
Enable  
0: Set I2S Channel B Enable from MODE_SEL pin  
Override  
18-bit Video 18–bit video select  
Select  
1: Select 18-bit video mode  
Note: use of GPIO(s) on unused inputs must be  
enabled by register.  
0: Select 24-bit video mode  
1
0
RW  
RW  
I2S  
Transport  
Select  
I2S Transport Mode Select  
1: Enable I2S Data Forward Channel Frame  
Transport  
0: Enable I2S Data Island Transport  
I2S  
I2S Channel B Enable  
Channel B 1: Enable I2S Channel B on B1 input  
Enable  
0: I2S Channel B disabled  
19  
0x13 Mode Status  
7:5  
4
0x10  
Reserved  
R
R
R
R
R
MODE_SE MODE_SEL Status  
L
1: MODE_SEL decode circuit is completed  
0: MODE_SEL decode circuit is not completed  
3
2
1
0
Low  
Low Frequency Mode Status  
Frequency 1: Low frequency (5 - <15 MHz)  
Mode  
0: Normal frequency (15 - 85 MHz)  
Repeater  
Mode  
Repeater Mode Status  
1: Repeater mode ON  
0: Repeater Mode OFF  
Backward  
Backward Compatible Mode Status  
Compatible 1: Backward compatible ON  
Mode  
0: Backward compatible OFF  
I2S  
I2S Channel B Mode Status  
Channel B 1: I2S Channel B ON, 18-bit RGB mode with  
Mode  
I2S_DB enabled  
0: I2S Channel B OFF; normal 24-bit RGB mode  
34  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
20  
0x14 Oscillator Clock  
Source and  
7:3  
2:1  
0x00  
Reserved  
RW  
OSC Clock OSC Clock Source  
BIST Status  
Source  
(When LFMODE = 1, Oscillator = 12.5 MHz ONLY)  
00: External Pixel Clock  
01: 33 MHz Oscillator  
10: Reserved  
11: 25 MHz Oscillator  
0
R
BIST  
Enable  
Status  
BIST status  
1: Enabled  
0: Disabled  
22  
0x16 BCC Watchdog  
Control  
7:1  
RW  
0xFE  
Timer Value The watchdog timer allows termination of a control  
channel transaction if it fails to complete within a  
programmed amount of time.  
This field sets the Bidirectional Control Channel  
Watchdog Timeout value in units of 2 ms.  
This field should not be set to 0  
0
7
RW  
RW  
Timer  
Control  
Disable Bidirectional Control Channel Watchdog  
Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
23  
0x17 I2C Control  
0x5E  
I2C Pass  
All  
I2C Control  
1: Enable Forward Control Channel pass-through of  
all I2C accesses to I2C Slave IDs that do not match  
the Serializer I2C Slave ID.  
0: Enable Forward Control Channel pass-through  
only of I2C accesses to I2C Slave IDs matching  
either the remote Deserializer Slave ID or the  
remote Slave ID.  
6
Reserved  
5:4  
RW  
SDA Hold  
Time  
Internal SDA Hold Time  
Configures the amount of internal hold time  
provided for the SDA input relative to the SCL input.  
Units are 40 ns  
3:0  
7:0  
RW  
RW  
I2C Filter  
Depth  
Configures the maximum width of glitch pulses on  
the SCL and SDA inputs that will be rejected. Units  
are 5 ns  
24  
25  
0x18 SCL High Time  
0xA1  
0xA5  
SCL HIGH I2C Master SCL High Time  
Time  
This field configures the high pulse width of the SCL  
output when the Serializer is the Master on the local  
I2C bus. Units are 40 ns for the nominal oscillator  
clock frequency. The default value is set to provide  
a minimum 5us SCL high time with the internal  
oscillator clock running at 32.5 MHz rather than the  
nominal 25MHz.  
0x19 SCL Low Time  
7:0  
RW  
SCL LOW  
Time  
I2C SCL Low Time  
This field configures the low pulse width of the SCL  
output when the Serializer is the Master on the local  
I2C bus. This value is also used as the SDA setup  
time by the I2C Slave for providing data prior to  
releasing SCL during accesses over the  
Bidirectional Control Channel. Units are 40 ns for  
the nominal oscillator clock frequency. The default  
value is set to provide a minimum 5us SCL low time  
with the internal oscillator clock running at 32.5 MHz  
rather than the nominal 25MHz.  
27  
0x1B BIST BC Error  
7:0  
R
0x00  
BIST Back BIST Mode Back Channel CRC Error Counter  
Channel This error counter is active only in the BIST mode. It  
CRC Error clears itself at the start of the BIST run.  
Counter  
Copyright © 2014, Texas Instruments Incorporated  
35  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
100  
0x64 Pattern  
Generator  
Control  
7:4  
RW  
0x10  
Pattern  
Generator  
Select  
Fixed Pattern Select  
This field selects the pattern to output when in Fixed  
Pattern Mode. Scaled patterns are evenly  
distributed across the horizontal or vertical active  
regions. This field is ignored when Auto-Scrolling  
Mode is enabled. The following table shows the  
color selections in non-inverted followed by inverted  
color mode  
0000: Reserved  
0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to  
Black  
0111: Horizontally Scaled Black to Red/Cyan to  
White  
1000: Horizontally Scaled Black to Green/Magenta  
to White  
1001: Horizontally Scaled Black to Blue/Yellow to  
White  
1010: Vertically Scaled Black to White/White to  
Black  
1011: Vertically Scaled Black to Red/Cyan to White  
1100: Vertically Scaled Black to Green/Magenta to  
White  
1101: Vertically Scaled Black to Blue/Yellow to  
White  
1110: Custom color (or its inversion) configured in  
PGRS, PGGS, PGBS registers  
1111: Reserved  
3:1  
0
Reserved  
RW  
Pattern  
Generator  
Enable  
Pattern Generator Enable  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
36  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
101  
0x65 Pattern  
Generator  
Configuration  
7:5  
4
0x00  
Reserved  
RW  
RW  
RW  
Pattern  
Generator  
18 Bits  
18-bit Mode Select  
1: Enable 18-bit color pattern generation. Scaled  
patterns will have 64 levels of brightness and the R,  
G, and B outputs use the six most significant color  
bits.  
0: Enable 24-bit pattern generation. Scaled patterns  
use 256 levels of brightness.  
3
2
Pattern  
Generator  
External  
Clock  
Select External Clock Source  
1: Selects the external pixel clock when using  
internal timing.  
0: Selects the internal divided clock when using  
internal timing  
This bit has no effect in external timing mode  
(PATGEN_TSEL = 0).  
Pattern  
Generator  
Timing  
Timing Select Control  
1: The Pattern Generator creates its own video  
timing as configured in the Pattern Generator Total  
Frame Size, Active Frame Size. Horizontal Sync  
Width, Vertical Sync Width, Horizontal Back Porch,  
Vertical Back Porch, and Sync Configuration  
registers.  
Select  
0: the Pattern Generator uses external video timing  
from the pixel clock, Data Enable, Horizontal Sync,  
and Vertical Sync signals.  
1
0
RW  
RW  
Pattern  
Generator  
Enable Inverted Color Patterns  
1: Invert the color output.  
Color Invert 0: Do not invert the color output.  
Pattern  
Auto-Scroll Enable:  
Generator  
1: The Pattern Generator will automatically move to  
Auto-Scroll the next enabled pattern after the number of frames  
Enable  
specified in the Pattern Generator Frame Time  
(PGFT) register.  
0: The Pattern Generator retains the current pattern.  
102  
103  
0x66 Pattern  
7:0  
7:0  
RW  
RW  
0x00  
0x00  
Indirect  
Address  
This 8-bit field sets the indirect address for  
accesses to indirectly-mapped registers. It should  
be written prior to reading or writing the Pattern  
Generator Indirect Data register.  
Generator  
Indirect Address  
See AN-2198 (SNLA132)  
0x67 Pattern  
Indirect  
Data  
When writing to indirect registers, this register  
contains the data to be written. When reading from  
indirect registers, this register contains the read  
back value.  
Generator  
Indirect Data  
See AN-2198 ( SNLA132)  
128  
129  
130  
131  
132  
144  
145  
146  
147  
148  
0x80 RX_BKSV0  
0x81 RX_BKSV1  
0x82 RX_BKSV2  
0x83 RX_BKSV3  
0x84 RX_BKSV4  
0x90 TX_KSV0  
0x91 TX_KSV1  
0x92 TX_KSV2  
0x93 TX_KSV3  
0x94 TX_KSV4  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
R
R
R
R
R
R
R
R
R
R
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
RX BKSV0 BKSV0: Value of byte 0 of the Deserializer KSV  
RX BKSV1 BKSV1: Value of byte 1 of the Deserializer KSV  
RX BKSV2 BKSV2: Value of byte 2 of the Deserializer KSV  
RX BKSV3 BKSV3: Value of byte 3of the Deserializer KSV  
RX BKSV4 BKSV4: Value of byte 4of the Deserializer KSV  
TX KSV0  
TX KSV1  
TX KSV2  
TX KSV3  
TX KSV4  
KSV0: Value of byte 0 of the Serializer KSV  
KSV1: Value of byte 1 of the Serializer KSV  
KSV2: Value of byte 2 of the Serializer KSV  
KSV3: Value of byte 3 of the Serializer KSV  
KSV4: Value of byte 4 of the Serializer KSV  
Copyright © 2014, Texas Instruments Incorporated  
37  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
160  
0xA0 RX BCAPS  
7
6
0x13  
Reserved  
R
Repeater  
Indicates if the attached Receiver supports  
downstream connections. This bit is valid once the  
Bksv is ready as indicated by the BKSV_RDY bit in  
the HDCP  
5
4
R
R
KSV FIFO  
Fast I2C  
KSV FIFO Ready  
Indicates the receiver has built the list of attached  
KSVs and computed the verification value  
Fast I2C: The HDCP Receiver supports fast I2C.  
Since the I2C is embedded in the serial data, this bit  
is not relevant  
3:2  
1
Reserved  
R
Features  
HDCP v1.1_Features  
The HDCP Receiver supports the Enhanced  
Encryption Status Signaling (EESS), Advance  
Cipher, and Enhanced Link Verification options.  
0
7
R
R
Fast Re-  
auth  
The HDCP Receiver is capable of receiving  
(unencrypted) video signal during the session re-  
authentication.  
161  
0xA1 RX BSTATUS0  
0x00  
Max  
Devices  
Maximum Devices Exceeded: Indicates a topology  
error was detected. Indicates the number of  
downstream devices has exceeded the depth of the  
Repeater's KSV FIFO  
6:0  
R
Device  
Count  
Total number of attached downstream device. For a  
Repeater, this will indicate the number of  
downstream devices, not including the Repeater.  
For an HDCP Receiver that is not also a Repeater,  
this field will be 0  
162  
0xA2 RX BSTATUS1  
7:4  
3
0x00  
Reserved  
R
Max  
Cascade  
Maximum Cascade Exceeded: Indicates a topology  
error was detected. Indicates that more than seven  
levels of repeaters have been cascad-ed together  
2:0  
7:0  
R
R
Cascade  
Depth  
Indicates the number of attached levels of devices  
for the Repeater  
163  
192  
0xA3 KSV FIFO  
0xC0 HDCP DBG  
0x00  
0x00  
KSV FIFO  
KSV FIFO  
Each read of the KSV FIFO returns one byte of the  
KSV FIFO list composed by the downstream  
Receiver.  
7:4  
3
Reserved  
RW  
RW  
RGB  
CHKSUM  
Enable RGB video line checksum  
Enables sending of ones-complement checksum for  
each 8-bit RBG data channel following end of each  
video data line  
2
Fast LV  
Fast Link Verification  
HDCP periodically verifies that the HDCP Receiver  
is correctly synchronized. Setting this bit will  
increase the rate at which synchronization is  
verified. When set to a 1, Pj is computed every 2  
frames and Ri is computed every 16 frames. When  
set to a 0, Pj is computed every 16 frames and Ri is  
computed every 128 frames.  
1
0
RW  
RW  
TMR Speed Timer Speedup  
Up  
Speed up HDCP authentication timers.  
HDCP I2C HDCP I2C Fast Mode Enable  
Fast  
Setting this bit to a 1 will enable the HDCP I2C  
Master in the HDCP Receiver to operate with Fast  
mode timing. If set to a 0, the I2C Master will  
operate with Standard mode timing. This bit is  
mirrored in the IND_STS register  
38  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
194  
0xC2 HDCP CFG  
7
RW  
RW  
RW  
0x80  
ENH LV  
Enable Enhanced Link Verification  
Allows checking of the encryption Pj value on every  
16th frame  
1: Enhanced Link Verification enabled  
0: Enhanced Link Verification disabled  
6
5
HDCP  
EESS  
Enables Enhanced Encryption Status Signaling  
(EESS) instead of the Original Encryption Status  
Signaling (OESS)  
1: EESS mode enabled  
0: OESS mode enabled  
TX RPTR  
Transmit Repeater Enable  
Enables the transmitter to act as a repeater. In this  
mode, the HDCP Transmitter incorporates the  
additional authentication steps required of an HDCP  
Repeater.  
1: Transmit Repeater mode enabled  
0: Transmit Repeater mode disabled  
4:3  
RW  
ENC Mode Encryption Control Mode  
Determines mode for controlling whether encryption  
is required for video frames  
00: Enc_Authenticated  
01: Enc_Reg_Control  
10: Enc_Always  
11: Enc_InBand_Control (per frame)  
If the Repeater strap option is set at power-up,  
Enc_InBand_Control (ENC_MODE == 11) will be  
se-lected. Otherwise, the default will be  
Enc_Authenticated mode (ENC_MODE == 00).  
2
RW  
Wait  
Enable 100ms Wait  
The HDCP 1.3 specification allows for a 100ms wait  
to allow the HDCP Receiver to compute the initial  
encryption values. The FPD-Link III implementation  
ensures that the Receiver will complete the  
computations before the HDCP Transmitter. Thus  
the timer is unnecessary. To enable the 100ms  
timer, set this bit to a 1.  
1
0
RW  
RW  
RX DET  
SEL  
RX Detect Select  
Controls assertion of the Receiver Detect Interrupt.  
If set to 0, the Receiver Detect Interrupt will be  
asserted on detection of an FPD-Link III Receiver. If  
set to 1, the Receiver Detect Interrupt will also  
require a receive lock indication from the receiver.  
HDCP AV  
MUTE  
Enable AVMUTE  
Setting this bit to a 1 will initiate AVMUTE operation.  
The transmitter will ignore encryption status controls  
while in this state. If this bit is set to a 0, normal  
operation resumes. This bit may only be set if the  
HDCP_EESS bit is also set.  
Copyright © 2014, Texas Instruments Incorporated  
39  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
195  
0xC3 HDCP CTL  
7
RW  
0x00  
HDCP RST HDCP Reset  
Setting this bit will reset the HDCP transmitter and  
disable HDCP authentication. This bit is self-  
clearing.  
6
5
Reserved  
RW  
RW  
KSV List  
Valid  
The controller sets this bit after validating the  
Repeater’s KSV List against the Key revocation list.  
This allows completion of the Authentication  
process. This bit is self-clearing  
4
KSV Valid  
The controller sets this bit after validating the  
Receiver’s KSV against the Key revocation list. This  
allows continuation of the Authentication process.  
This bit will be cleared upon assertion of the  
KSV_RDY flag in the HDCP_STS register. Setting  
this bit to a 0 will have no effect  
3
2
RW  
RW  
HDCP ENC HDCP Encrypt Disable  
DIS Disables HDCP encryption. Setting this bit to a 1 will  
cause video data to be sent without encryption.  
Authentication status will be maintained. This bit is  
self-clearing  
HDCP ENC HDCP Encrypt Enable  
EN Enables HDCP encryption. When set, if the device  
is authenticated, encrypted data will be sent. If  
device is not authenticated, a blue screen will be  
sent. Encryption should always be enabled when  
video data requiring content protection is being  
supplied to the transmitter. When this bit is not set,  
video data will be sent without encryption. Note that  
when CFG_ENC_MODE is set to Enc_Always, this  
bit will be read only with a value of 1  
1
0
RW  
RW  
HDCP DIS HDCP Disable  
Disables HDCP authentication. Setting this bit to a 1  
will disable the HDCP authentication.  
This bit is self-clearing  
HDCP EN  
HDCP Enable/Restart  
Enables HDCP authentication. If HDCP is already  
enabled, setting this bit to a 1 will restart  
authentication. Setting this bit to a 0 will have no  
effect. A register read will return the current HDCP  
enabled status  
40  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
196  
0xC4 HDCP STS  
7
R
0x00  
I2C ERR  
DET  
HDCP I2C Error Detected  
This bit indicates an error was detected on the  
embedded communications channel with the HDCP  
Receiver. Setting of this bit might indicate that a  
problem exists on the link between the HDCP  
Transmitter and HDCP Receiver. This bit will be  
cleared on read  
6
R
RX INT  
RX Interrupt  
Status of the RX Interrupt signal.  
The signal is received from the attached HDCP  
Receiver and is the status on the INTB_IN pin of the  
HDCP Receiver. The signal is active low, a 0  
indicates an interrupt condition  
5
4
R
R
RX Lock  
DET  
Receiver Lock Detect  
This bit indicates that the downstream Receiver has  
indicated Receive Lock to incoming serial data  
DOWN  
HPD  
Hot Plug Detect  
This bit indicates the local device or a downstream  
repeater has reported a Hot Plug event, indicating  
addition of a new receiver. This bit will be cleared  
on read  
3
2
R
R
RX DET  
Receiver Detect  
This bit indicates that a downstream Receiver has  
been detected  
KSV LIST  
RDY  
HDCP Repeater KSV List Ready  
This bit indicates that the Receiver KSV list has  
been read and is available in the KSV_FIFO  
registers. The device will wait for the controller to  
set the KSV_LIST_VALID bit in the HDCP_CTL  
register before continuing. This bit will be cleared  
once the controller sets the KSV_LIST_VALID bit.  
1
R
KSV RDY  
HDCP Receiver KSV Ready  
This bit indicates that the Receiver KSV has been  
read and is available in the HDCP_ BKSV registers.  
If the device is not a Repeater, it will wait for the  
controller to set the KSV_VALID bit in the  
HDCP_CTL register before continuing.  
This bit will be cleared once the controller sets the  
KSV_VALID bit.. The bit will also be cleared if  
authentication fails.  
0
R
AUTHED  
HDCP Authenticated  
Indicates the HDCP authentication has completed  
successfully. The controller may now send video  
data requiring content protection. This bit will be  
cleared if authentication is lost or if the controller  
restarts authentication  
Copyright © 2014, Texas Instruments Incorporated  
41  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Table 6. Serial Control Bus Registers (continued)  
ADD  
(dec)  
ADD  
(hex)  
Register  
Type  
Default  
(hex)  
Register Name  
Bit(s)  
Function  
Description  
198  
0xC6 HDCP ICR  
7
RW  
0x00  
IE IND ACC Interrupt on Indirect Access Complete  
Enables interrupt on completion of Indirect Register  
Access  
6
5
RW  
IE RXDET  
INT  
Interrupt on Receiver Detect  
Enables interrupt on detection of a downstream  
Receiver. If HDCP_CFG:RX_DET_SEL is set to a 1,  
the interrupt will wait for Receiver Lock Detect.  
RW  
IS_RX_INT Interrupt on Receiver interrupt  
Enables interrupt on indication from the HDCP  
Receiver. Allows propagation of interrupts from  
downstream devices  
4
3
2
RW  
RW  
RW  
IE LIST  
RDY  
Interrupt on KSV List Ready  
Enables interrupt on KSV List Ready  
IE KSV  
RDY  
Interrupt on KSV Ready  
Enables interrupt on KSV Ready  
IE AUTH  
FAIL  
Interrupt on Authentication Failure  
Enables interrupt on authentication failure or loss of  
authentication  
1
0
RW  
RW  
IE AUTH  
PASS  
Interrupt on Authentication Pass  
Enables interrupt on successful completion of  
authentication  
INT Enable Global Interrupt Enable  
Enables interrupt on the interrupt signal to the  
controller.  
199  
0xC7 HDCP ISR  
7
6
5
R
R
R
0x00  
IS IND ACC Interrupt on Indirect Access Complete  
Indirect Register Access has completed  
INT Detect Interrupt on Receiver Detect interrupt  
A downstream receiver has been detected  
IS RX INT  
Interrupt on Receiver interrupt  
Receiver has indicated an interrupt request from  
down-stream device  
4
3
R
R
IS LIST  
RDY  
Interrupt on KSV List Ready  
The KSV list is ready for reading by the controller  
IS KSV  
RDY  
Interrupt on KSV Ready  
The Receiver KSV is ready for reading by the  
controller  
2
R
IS AUTH  
FAIL  
Interrupt on Authentication Failure  
Authentication failure or loss of authentication has  
occurred  
1
0
R
R
IS AUTH  
PASS  
Interrupt on Authentication Pass  
Authentication has completed successfully  
INT  
Global Interrupt  
Set if any enabled interrupt is indicated  
240  
241  
242  
0xF0 HDCP TX ID  
7:0  
7:0  
7:0  
R
R
R
0x5F  
0x55  
0x48  
ID0  
ID1  
ID2  
First byte ID code, ‘_’  
0xF1  
0xF2  
Second byte of ID code, ‘U’  
Third byte of ID code. Value will be either ‘B’ or ‘H’.  
‘H’ indicates an HDCP capable device  
243  
244  
245  
0xF3  
0xF4  
0xF5  
7:0  
7:0  
7:0  
R
R
R
0x39  
0x32  
0x35  
ID3  
ID4  
ID5  
Forth byte of ID code: ‘9’  
Fifth byte of ID code: '2'  
Sixth byte of ID code: '5'  
42  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
9 Application and Implementation  
9.1 Application Information  
The DS90UH925AQ, in conjunction with the DS90UH926Q, is intended for interface between a HDCP compliant  
host (graphics processor) and a Display. It supports a 24-bit color depth (RGB888) and high definition (720p)  
digital video format. It can receive a three 8-bit RGB stream with a pixel rate up to 85 MHz together with three  
control bits (VS, HS and DE) and three I2S-bus audio stream with an audio sampling rate up to 192 kHz. The  
included HDCP 1.3 compliant cipher block allows the authentication of the DS90UH926Q, which decrypts both  
video and audio contents. The keys are pre-loaded by TI into Non-Volatile Memory (NVM) for maximum security.  
9.2 Typical Application  
V
DD33  
V
DDIO  
V
DDIO  
V
DD33  
(1.8Vor3.3V) (3.3V)  
(3.3V) (1.8Vor3.3V)  
R[7:0]  
G[7:0]  
R[7:0]  
G[7:0]  
FPD-Link III  
1 Pair /AC Coupled  
B[7:0]  
B[7:0]  
HS  
VS  
DE  
PCLK  
0.1 PF  
0.1 PF  
HOST  
Graphics  
Processor  
RGB Display  
720p  
24-bit color depth  
HS  
DOUT+  
DOUT-  
RIN+  
RIN-  
VS  
DE  
PCLK  
100 ohm STP Cable  
DS90UH925AQ  
Serializer  
DS90UH926Q  
Deserializer  
LOCK  
PASS  
PDB  
OSS_SEL  
OEN  
PDB  
3
/
I2S AUDIO  
(STEREO)  
3
/
I2S AUDIO  
(STEREO)  
MCLK  
MODE_SEL  
MODE_SEL  
INTB  
REM_INTB  
INTB_IN  
SCL  
SDA  
IDx  
SCL  
SDA  
IDx  
DAP  
DAP  
Figure 24. Typical Display System Diagram  
9.2.1 Design Requirements  
For the typical design application, use the following as input parameters.  
Table 7. Design Parameters  
Design Parameter  
VDDIO  
Example Value  
1.8 V or 3.3 V  
3.3 V  
VDD33  
AC Coupling Capacitor for DOUT±  
PCLK Frequency  
100 nF  
85 MHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Typical Application Connection  
Figure 25 shows a typical application of the DS90UH925AQ serializer for an 85 MHz 24-bit Color Display  
Application. The CML outputs must have an external 0.1 μF AC coupling capacitor on the high speed serial lines.  
The serializer has an internal termination. Bypass capacitors are placed near the power supply pins. At a  
minimum, six (6) 4.7μF capacitors (and two (2) additional 1μF capacitors should be used for local device  
bypassing. Ferrite beads are placed on the two (2) VDDs (VDD33 and VDDIO) for effective noise suppression. The  
interface to the graphics source is with 3.3 V LVCMOS levels, thus the VDDIO pin is connected to the 3.3 V rail. A  
RC delay is placed on the PDB signal to delay the enabling of the device until power is stable.  
Copyright © 2014, Texas Instruments Incorporated  
43  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
VDDIO  
DS90UH925AQ  
3.3V/1.8V  
VDD33  
3.3V  
VDDIO  
VDD33  
CAPP12  
CAPL12  
FB1  
C5  
FB2  
C4  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
C6  
C7  
C9  
C8  
CAPHS12  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
G0  
C1  
Serial  
DOUT+  
DOUT-  
CMF  
LVCMOS  
Parallel  
Video  
FPD-Link III  
Interface  
C2  
Interface  
C3  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
VDD33  
R
3
MODE_SEL  
PCLK  
R
4
HS  
VS  
DE  
VDD33  
VDDIO VDD33*  
NOTE:  
FB1-FB2: Impedance = 1 k: @ 100MHz,  
Low DC resistance (<1:)  
C1-C3 = 0.1 PF (50 WV; C1, C2: 0402; C3: 0603)  
C4-C9 = 4.7 PF  
R
1
R
R
6
5
REM_INTB  
INTB  
ID[X]  
SCL  
SDA  
LVCMOS  
Control  
Interface  
R
2
PDB  
C10 =>10 PF  
C10  
R
1
R
3
R
5
R
6
and R (see IDx Resistor Values Table 5)  
2
NC  
and R (see MODE_SEL Resistor Values Table 1)  
4
I2S_CLK  
I2S_WC  
I2S_DA  
RES  
DAP (GND)  
= 10 k:  
= 4.7 k:  
* or VDDIO = 3.3V+0.3V  
Figure 25. Typical Connection Diagram  
9.2.2.2 Power Up Requirements and PDB Pin  
When power is applied, the VDDIO supply needs to reach the expected operating voltage (1.8V or 3.3V) before  
the other supply (VDD33) begins to ramp. It is acceptable if both supplies ramp at the same time. The VDDs  
(VDD33 and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. A large capacitor on the PDB  
pin is needed to ensure PDB arrives after all the VDDs have settled to the recommended operating voltage.  
When PDB pin is pulled to VDDIO = 3.0 V to 3.6 V or VDD33, it is recommended to use a 10 kpull-up and a >10  
uF cap to GND to delay the PDB input signal.  
All inputs must not be driven until VDD33 and VDDIO has reached its steady state value.  
44  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
9.2.2.3 CML Interconnect Guidelines  
See AN-1108 ( SNLA008) and AN-1187(SNLA035) for full details.  
Use 100 Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500 Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the TI  
web site at: www.ti.com/lvds  
9.2.2.4 Application Curves  
Time (100 ps/DIV)  
Time (2.5 ns/DIV)  
Figure 26. Serializer Eye Diagram at 2.73 Gbps Serial Data  
Rate  
Figure 27. Serializer CML Output with 78MHz TX Pixel  
Clock  
Copyright © 2014, Texas Instruments Incorporated  
45  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
10 Power Supply Recommendations  
This device is designed to operate from an input core voltage supply of 3.3V. Some devices provide separate  
power and ground Terminals for different portions of the circuit. This is done to isolate switching noise effects  
between different sections of the circuit. Separate planes on the PCB are typically not required. Terminal  
Description tables typically provide guidance on which circuit blocks are connected to which power Terminal  
pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as PLLs.  
46  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
11 Layout  
11.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices should be designed to provide low-noise power  
feed to the device. Good layout practice will also separate high frequency or high-level inputs and outputs to  
minimize unwanted stray noise pickup, feedback and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective at  
high frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01µF to 0.1µF. Tantalum capacitors may be in the 2.2µF to 10µF range. Voltage rating of the tantalum  
capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, locate the smaller value closer to the pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50µF to 100µF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. Its small body  
size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML  
lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100Ω are  
typically recommended for CML interconnect. The closely coupled lines help to ensure that coupled noise will  
appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also radiate less.  
Information on the WQFN-style package is provided in TI SNOA401.  
11.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown below:  
Copyright © 2014, Texas Instruments Incorporated  
47  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
Layout Example (continued)  
Figure 28. No Pullback WQFN, Single Row Reference Diagram  
Table 8. No Pullback WQFN Stencil Aperture Summary for DS90UH925AQ-Q1  
Gap  
Between  
DAP  
Aperture  
(Dim A  
mm)  
Stencil  
DAP  
Aperture  
(mm)  
Number of  
DAP  
Aperture  
Openings  
PCB I/O  
Pad Size  
(mm)  
Stencil I/O  
Aperture  
(mm)  
Pin  
Count  
PCB Pitch  
(mm)  
PCB DAP  
size(mm)  
Device  
MKT Dwg  
DS90UH925A  
Q-Q1  
48  
SNA48A  
0.25 x 0.6  
0.5  
5.1 x 5.1  
0.25 x 0.7  
1.1 x 1.1  
16  
0.2  
Figure 29. 48-Pin WQFN Stencil Example of Via and Opening Placement  
The following PCB layout example is derived from the EVM layout of the DS90UH925AQ. This graphics and  
additional layout description are used to demonstrate both proper routing and proper solder techniques when  
designing in the Seralizer.  
48  
Copyright © 2014, Texas Instruments Incorporated  
DS90UH925AQ-Q1  
www.ti.com.cn  
ZHCSCL3 JUNE 2014  
Figure 30. DS90UH925AQ-Q1 Serializer Example Layout  
Copyright © 2014, Texas Instruments Incorporated  
49  
DS90UH925AQ-Q1  
ZHCSCL3 JUNE 2014  
www.ti.com.cn  
12 器件和文档支持  
12.1 Trademarks  
All trademarks are the property of their respective owners.  
12.2 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
13 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
50  
Copyright © 2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH925ATRHSJQ1  
DS90UH925ATRHSRQ1  
DS90UH925ATRHSTQ1  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
48  
48  
48  
2500 RoHS & Green  
1000 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
-40 to 105  
UH925AQ  
SN  
SN  
UH925AQ  
UH925AQ  
250  
RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90UH925ATRHSJQ1

具有 HDCP 的 5 到 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UH925ATRHSRQ1

具有 HDCP 的 5 到 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UH925ATRHSTQ1

具有 HDCP 的 5 到 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UH925Q

720p 24-bit Color FPD-Link III Serializer with HDCP
TI

DS90UH925Q-Q1

具有 HDCP 的 5 - 85MHz 24 位彩色 FPD-Link III 串行器
TI

DS90UH925QSQ

720p 24-bit Color FPD-Link III Serializer with HDCP
TI

DS90UH925QSQ/NOPB

具有 HDCP 的 5 - 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UH925QSQE

720p 24-bit Color FPD-Link III Serializer with HDCP
TI

DS90UH925QSQE/NOPB

具有 HDCP 的 5 - 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UH925QSQX

720p 24-bit Color FPD-Link III Serializer with HDCP
TI

DS90UH925QSQX/NOPB

具有 HDCP 的 5 - 85MHz 24 位彩色 FPD-Link III 串行器 | RHS | 48 | -40 to 105
TI

DS90UH926Q

720p 24-bit Color FPD-Link III Deserializer with HDCP
TI