DS90UH948-Q1 [TI]

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 解串器;
DS90UH948-Q1
型号: DS90UH948-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 解串器

光电二极管
文件: 总115页 (文件大小:3356K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
DS90UH948-Q1 采用 HDCP 的汽车类 2K FPD-Link III OpenLDI 解串器  
1 特性  
3 说明  
符合汽车应用要求  
DS90UH948-Q1 一款 FPD-Link III 串器,与  
DS90UH949A/949/947-Q1 串行器配合使用时可将单  
通 道 或 双 通 道 FPD-Link III 流 转 换 成 FPD-Link  
(OpenLDI) 接口格式。该解串器能够在具有成本效益  
50Ω 端同轴或 100Ω 分屏蔽双绞线 (STP)  
电缆上运行。它能够从单通道或双通道 FPD-Link III  
串行流中恢复数据,然后将其转换为双像素 FPD-Link  
8 LVDS 数据通道 + 时钟),最高可支持 2K  
(2048x1080) 的视频分辨率(24 位色深)。这可为各  
个支持 HDMI 的源(例如 CPU)间提供桥接,以便连  
接到现有 LVDS 显示器或应用处理器。  
具有符合 AEC-Q100 标准的下列特性:  
器件温度等级 2–40°C +105°C 环境工作温  
度范围  
支持高达 192MHz 的像素时钟频率,可实现 2K  
(2048x1080) 的分辨率和 24 位色深  
具有偏斜校正能力的单通道或双通道 FPD-Link III  
接口  
单通道或双通道 OpenLDI (LVDS) 发送器  
单通道:高达 96MHz 的像素时钟  
双通道:高达 192MHz 的像素时钟  
可配置的 18 RGB 24 RGB  
集成具有片上密钥存储功能的高带宽数字内容保护  
(HDCP) 加密引擎  
支持 HDCP 中继器应用  
提供功能安全  
有助于进行 ISO 26262 系统设计的文档  
四通道高速 GPIO(每个通道最高 2Mbps)  
自适应接收均衡  
FPD-Link III 接口支持通过同一条差分链路进行视频和  
音频数据传输以及全双工控制(包括 I2C SPI 通  
信)。通过两个差分对实现视频数据和控制的整合可减  
小互连线尺寸和重量,并简化系统设计。通过使用低压  
差分信令、数据换序和随机生成更大限度地减少了电磁  
干扰 (EMI)。在向后兼容模式下,该器件在单一差分链  
路上最高可支持 WXGA 720p 分辨率(24 位色  
深)。  
1.48GHz 下的通道插入损耗补偿高达 –  
15.5dB,在 1.68GHz 下的通道插入损耗补偿高  
-9dB  
提供自动温度和电缆老化补偿  
SPI 控制接口速率高达 3.3Mbps  
具有 1Mbps 快速模式增强版的 I2C(控制器/目  
标)  
图像增强功能(白平衡和抖动)  
支持 7.1 多条 I2S4 个数据)通道  
该器件将自动检测 FPD-Link III 通道并提供一种时钟对  
齐和偏移补偿功能,无需任何特殊的训练模式。这可在  
互连线路(例如,PCB 布线)中出现不匹配问题、电  
缆线对长度存在差异以及连接器不平衡时确保相位偏移  
在容差范围内。  
器件信息  
封装 (1)  
封装尺寸(标称值)  
器件型号  
DS90UH948-Q1  
WQFN (64)  
9.00mm x 9.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
汽车信息娱乐系统:  
中央信息显示屏  
后座娱乐系统  
数字仪表组  
FPD-Link III  
2 lanes  
FPD-Link  
Open LDI  
HDMI  
or  
D3  
D2  
D1  
D0  
DP++  
DOUT0+  
DOUT0-  
RIN0+  
RIN0-  
IN_CLK-/+  
IN_D0-/+  
IN_D1-/+  
Display  
or  
Graphics  
Processor  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
Mobile  
Device  
or  
Graphics  
Processor  
CLK1  
D4  
IN_D2-/+  
D5  
DS90UH949-Q1  
Serializer  
DS90UH948-Q1  
Deserializer  
D6  
CEC  
DDC  
HPD  
D7  
CLK2  
I2C  
IDx  
I2C  
IDx  
HS_GPIO  
(SPI)  
HS_GPIO  
(SPI)  
© 2018, Texas Instruments Incorporated  
Copyright  
典型应用  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS473  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................5  
6 Specifications................................................................ 11  
6.1 Absolute Maximum Ratings...................................... 11  
6.2 ESD Ratings..............................................................11  
6.3 Recommended Operating Conditions.......................11  
6.4 Thermal Information..................................................12  
6.5 DC Electrical Characteristics.................................... 12  
6.6 AC Electrical Characteristics.....................................15  
6.7 Timing Requirements for the Serial Control Bus.......16  
6.8 Switching Characteristics..........................................17  
6.9 Timing Diagrams and Test Circuits........................... 18  
6.10 Typical Characteristics............................................21  
7 Detailed Description......................................................22  
7.1 Overview...................................................................22  
7.2 Functional Block Diagram.........................................23  
7.3 Feature Description...................................................23  
7.4 Device Functional Modes..........................................41  
7.5 Image Enhancement Features..................................49  
7.6 Programming............................................................ 53  
7.7 Register Maps...........................................................56  
8 Application and Implementation..................................94  
8.1 Application Information............................................. 94  
8.2 Typical Applications.................................................. 94  
9 Power Supply Recommendations..............................100  
9.1 Power-Up Requirements and PDB Pin...................100  
9.2 Power Sequence.....................................................100  
10 Layout.........................................................................102  
10.1 Layout Guidelines................................................. 102  
10.2 Ground..................................................................102  
10.3 Routing FPD-Link III Signal Traces.......................102  
10.4 Layout Example.................................................... 104  
11 Device and Documentation Support........................106  
11.1 Documentation Support........................................ 106  
11.2 接收文档更新通知................................................. 106  
11.3 支持资源................................................................106  
11.4 Trademarks........................................................... 106  
11.5 静电放电警告.........................................................106  
11.6 术语表................................................................... 106  
12 Mechanical, Packaging, and Orderable  
Information.................................................................. 106  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (December 2020) to Revision D (February 2022)  
Page  
阐明了频率范围内的最大通道插入损耗...............................................................................................................1  
Clarified the description of the clock and data differential output pins................................................................5  
Changed IDx pin voltage from VDD18 to VDD33...............................................................................................5  
Removed normal mode PASS function since PASS is used only in BIST mode................................................5  
Updated the inclusive termonologies for SPI and I2C by changing "master" and "slave" wording.....................5  
Updated the SPI pin names from "MOSI" to "PICO", "MISO" to "POCI", and "SS" to "CS"................................5  
Changed the I2S mode names from Slave Mode to Surround Sound Mode, and from Master Mode to  
Auxiliary Audio Mode..........................................................................................................................................5  
Added some missing units for current and voltage ..........................................................................................12  
Modified the list of compatible devices............................................................................................................. 22  
Removed PASS from the table since PASS functionality is only used for BIST mode..................................... 24  
Corrected the Nyquist Frequency for PCLK 192MHz.......................................................................................31  
Added clarification for I2S transport modes .....................................................................................................33  
Added clarifying notes for BIST function...........................................................................................................39  
Added a clarifying note on using I2C while PATGEN is enabled...................................................................... 40  
Added new section "Dual Swap"...................................................................................................................... 43  
Clarified LVDS mapping names........................................................................................................................44  
LVDS Formats table added...............................................................................................................................44  
Added clarifying notes to LUT contents. ..........................................................................................................49  
Added LUT Programming Example..................................................................................................................50  
Added clarifying notes about I2C access over the BCC ..................................................................................53  
Specified which registers are not being reset when digital reset is applied......................................................56  
Changed default value of register 0x01[2] and added clarifying notes.............................................................56  
Changed default value of register 0x03[7]........................................................................................................56  
Changed reset value of register 0x1D, and changed default value for bits [7:4].............................................. 56  
Changed reset value for registers 0x1E and 0x1F to 0x00...............................................................................56  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Added clarifying note to register 0x22, that surround audio is not supported in repeater mode when 18-bit  
video mode is enabled......................................................................................................................................56  
Added minimum value to register 0x26 ........................................................................................................... 56  
Changed default value for register 0x45[7:5] and changed to R/W. Added clarifying note. .............................56  
Changed default value for register 0x4B[3:2] and changed to R/W. Added clarifying note.............................. 56  
Added clarifying note to CMLOUT function in register 0x57.............................................................................56  
Changed default value for register 0xF4...........................................................................................................56  
Corrected the name of the Pattern Generation Application Note in the Related Documentation section. .....106  
Changes from Revision B (November 2020) to Revision C (December 2020)  
Page  
添加了特性要点提供功能安全”...........................................................................................................................1  
Changes from Revision A (January 2016) to Revision B (November 2018)  
Page  
更改了 PCLK 频率以支持 192MHz 的更高频率.................................................................................................. 1  
通过删除电源节点简化了典型应用......................................................................................................................1  
Removed bolded pin description name for power supplies. .............................................................................. 5  
Added new pin description content to the Pin Functions table .......................................................................... 5  
Changed the description from VDDIO to V(I2C). ...............................................................................................5  
Specified in current instead of resistor for all pulldown resistor .........................................................................5  
Removed 200-µA minimum ramp time for PDB pin description. ....................................................................... 5  
Added the description to clarify the INTB_IN that this pin can be an output driver.............................................5  
Changed pin names from CAP_PLL0 and CAP_PLL1 to RES0 and RES1 respectively. ................................. 5  
Removed tablenote from the Absolute Maximum Ratings table: For soldering specifications, see product  
folder at www.ti.com and SNOA549 .................................................................................................................11  
Added Military/Aerospace tablenote to the Absolute Maximum Ratings table .................................................11  
Changed supply voltage maximum for the VDD33 from: 4 V to: 3.96 V .......................................................... 11  
Changed VDD12 abs max from 1.8V to 1.44V. ................................................................................................11  
Changed supply voltage for the VDDIO from: 4 V to: 3.96 V ...........................................................................11  
Added the Added the open-drain voltage, CML output voltage, and FPD-Link III input voltage parameters to  
the Absolute Maximum Ratings table , open-drain voltage, CML output voltage, and FPD-Link III input voltage  
parameters to the Absolute Maximum Ratings table ....................................................................................... 11  
Added test conditions to the LVCMOS I/O voltage parameter .........................................................................11  
Spelled out all GPIOs pin name........................................................................................................................11  
Combined the ESD ratings into one ESD Ratings table .................................................................................. 11  
Removed VDD18 test condition from the supply voltage parameter ............................................................... 11  
Added the open-drain voltage parameter to the Recommended Operating Conditions table ......................... 11  
Changed open LDI clock frequency (dual link) maximum from: 170 MHz to: 192 MHz ...................................11  
Added the local I2C frequency parameter to the Recommended Operating Conditions table ........................ 11  
Added test conditions to the supply noise parameter ...................................................................................... 11  
Changed the total power consumption, normal operation test conditions ....................................................... 12  
Changed "VDD12 = 1.2 V" to "VDD12 = 1.2 V"................................................................................................12  
Removed the checkerboard vs. PRBS pattern condition and combined typical and worst case together. ......12  
Added current specs for PCLK 192 MHz. ........................................................................................................12  
Deleted typical value for Vih and Vil in 3.3V LVCMOS I/O............................................................................... 12  
Split out the test conditions in the 3.3-V and 1.8-V LVCMOS I/O parameters .................................................12  
Added strap pin input current parameter to the DC Electrical Characteristics table ........................................12  
Deleted typical value for Vih and Vil in 1.8V LVCMOS I/O. ............................................................................. 12  
Deleted typical value for Vih and Vil in serial control bus ................................................................................ 12  
Added test conditions to the input high level and input low level parameters ..................................................12  
Changed "complimentary" to "complementary" ............................................................................................... 12  
Removed tablenote from the AC Electrical Characteristics table: This parameter is specified by  
characterization and is not tested in production. ............................................................................................. 15  
Changed differential output eye height from: >300 mV to: 300 mV .................................................................15  
Added input jitter tolerance specs. ...................................................................................................................15  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Removed tablenote from the Timing Requirements table: Parameter is specified by bench characterization  
and is not tested in production. ........................................................................................................................16  
Changed Cb fast mode plus maximum value from: 550 pF to: 200 pF ............................................................16  
Removed tablenote from the Switching Characteristics table: Parameter is specified by bench  
characterization and is not tested in production. ............................................................................................. 17  
Changed Deserializer Eye Diagram graph in the Typical Characteristics section............................................ 21  
Added paragraph explains HSCC mode...........................................................................................................25  
Changed transmission distance section and insertion loss table..................................................................... 31  
Changed PCLK frequncy from 96 MHz to 192 MHz in the diagram "2-lane FPD-link Input, Link OpenLDI  
Output" in the Data-Path Configurations graphic..............................................................................................42  
Changed the resistor ratio value for both the Configuration Select (MODE_SEL0) and Configuration Select  
(MODE_SEL1) tables....................................................................................................................................... 42  
Deleted repeated first paragraph LUT contents. ..............................................................................................49  
Changed pullup power supply node from "VDDIO" to "V(I2C). ........................................................................53  
Updated register table format to the latest TI standards in the Register Maps section.................................... 56  
Changed input value from 1.2 V to 1.2 V in typical application drawings ........................................................ 94  
Updated STP diagram. .................................................................................................................................... 94  
Updated Coax diagram.....................................................................................................................................94  
Simplified the diagram by removing power supplies node. ..............................................................................94  
Added new design parameters to the Design Requirements section ..............................................................97  
Changed VDD12 in Design Parameters 1.2 to 1.2...........................................................................................97  
Changed CML Interconnect Guidelines section title to FPD-Link III Interconnect Guidelines .........................98  
Added AV Mute Prevention section ................................................................................................................. 98  
Added Prevention of I2C Errors During Abrupt System Faults section ........................................................... 99  
Moved the Power Sequence graphic to the Power Supply Recommendations .............................................100  
Removed power supplies columns and changed the parameters in the Power-Up Sequencing Constraints  
table according to the diagram. ..................................................................................................................... 100  
Moved the PCB Layout and Power System Considerations content to the Layout Guidelines section .........102  
Added Ground and Routing FPD-Link III Signal Traces sections to the Layout section.................................102  
Added Added FPD-Link training videos to the Related Documentation section. ...........................................106  
Changes from Revision * (October 2014) to Revision A (January 2016)  
Page  
Added shared pins description on SPI pins .......................................................................................................5  
Added shared pins description on GPIO pins ....................................................................................................5  
Added shared pins description on D_GPIO pins ............................................................................................... 5  
Added shared pins description on register only GPIO pins. Changed "Local register control only" to "I2C  
register control only". ......................................................................................................................................... 5  
Added shared pins description on slave mode I2S pins ....................................................................................5  
Added shared pins description on Controller mode I2S pins .............................................................................5  
Added legend for I/O TYPE................................................................................................................................ 5  
Moved Storage Temperature Range from ESD to Absolute Maximum Ratings table ......................................11  
Added ESD Ratings table................................................................................................................................. 11  
Changed IDD12Z limit from 8mA to 30mA per PE re-characterization ............................................................12  
Changed VOS from 1.0V to 1.125V ..................................................................................................................12  
Changed VOS from 1.5V to 1.375V ..................................................................................................................12  
Changed Fast Plus Mode tSP maximum from 20ns to 50ns ............................................................................ 16  
Changed text from: AEQ_FLOOR value to: ADAPTIVE_EQ_FLOOR_VALUE ...............................................32  
Added Image Enhancement Features section .................................................................................................49  
Added description to register 0x01[1] "Registers which are loaded by pin strap will be restored to their original  
strap value when this bit is set. These registers show ‘Strap’ as their default value in this table." ..................56  
Corrected 0x02[7]register default value from "0" to "1" ....................................................................................56  
Added to 0x02[7] in Description column "A Digital reset 0x01[0] should be asserted after toggling Output  
Enable bit LOW to HIGH" ................................................................................................................................ 56  
Corrected 0x02[4] register default value from 0 to 1 ........................................................................................56  
Added "Loaded from remote SER" in register 0x07[7:1] function column........................................................ 56  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Changed from Reserved to Rev-ID in register 0x1D Function column ............................................................56  
On register 0x22 added "(Loaded from remote SER)"..................................................................................... 56  
Corrected in register 0x24[3] 0: Bist configured through "bit 0" to "bits 2:0" in description ..............................56  
Added in register 0x24[2:1] additional description............................................................................................56  
Changed in register 0x24[1] description to "internal" .......................................................................................56  
Changed in register 0x24[2] description to "internal" .......................................................................................56  
On register 0x28 added "Loaded from remote SER"........................................................................................56  
Added clarification description on register 0x37 MODE_SEL...........................................................................56  
Merged on 0x45 bits[7:4} and bits[3:0] default value: 0x08.............................................................................. 56  
Added Power Sequence section ....................................................................................................................100  
5 Pin Configuration and Functions  
VDDP12_LVDS  
RES0  
49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
VDD33_B  
D4-  
MODE_SEL1  
VDDP12_CH0  
VDDR12_CH0  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
D4+  
D5-  
RIN0+  
RIN0-  
CMF  
D5+  
D6-  
DS90UH948-Q1  
64 WQFN  
Top Down View  
VDD33_A  
VDDR12_CH1  
RIN1+  
D6+  
CLK2-  
CLK2+  
D7-  
RIN1-  
D7+  
VDDP12_CH1  
MODE_SEL0  
CMLOUTP  
CMLOUTN  
RES1  
VDD12_LVDS  
DAP  
D_GPIO0/PICO  
D_GPIO1/POCI  
D_GPIO2/SPLK  
5-1. NKD Package  
64-Pin WQFN  
Top View  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
OLDI OUTPUT PINS  
CLK1–  
CLK1+  
37  
36  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
O, LVDS  
Clock differential output pins  
This pair requires an external 100-Ω termination for LVDS. Leave unused pins as No Connect or  
terminate each differential pair with 100 ohms  
CLK2–  
CLK2+  
24  
23  
D0–  
D0+  
43  
42  
D1–  
D1+  
41  
40  
D2–  
D2+  
39  
38  
D3–  
D3+  
35  
34  
Differential data output pins  
This pair requires an external 100-Ω termination for LVDS. Leave unused pins as No Connect or  
terminate each differential pair with 100 ohms  
D4–  
D4+  
30  
29  
D5–  
D5+  
28  
27  
D6–  
D6+  
26  
25  
D7–  
D7+  
22  
21  
FPD-LINK III INTERFACE  
RIN0–  
RIN0+  
RIN1–  
RIN1+  
54  
53  
59  
58  
55  
I/O  
I/O  
I/O  
I/O  
I/O  
FPD-Link III RX Port 0 pins. The port receives FPD-Link III high-speed forward channel video and  
control data and transmits back channel control data. It can interface with a compatible FPD-Link III  
serializer TX through a STP or coaxial cable (see 8-4 and 8-5). It must be AC-coupled per 表  
8-1. Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
FPD-Link III RX Port 1 pins. The port receives FPD-Link III high-speed forward channel video and  
control data and transmits back channel control data. It can interface with a compatible FPD-Link III  
serializer TX through a STP or coaxial cable (see 8-4 and 8-5). It must be AC-coupled per 表  
8-1. Leave unused pins as No Connect. Do not connect to an external pullup or pulldown.  
CMF  
Common mode filter – connect 0.1-µF capacitor to GND  
I2C PINS  
I2C Data Input / Output Interface pin. See 7.6.1.  
Open drain output; this pin must have an external pullup resistor to VI2C DO NOT FLOAT.  
Recommend a 2.2 kΩ or 4.7 kΩ pullup to 1.8 V or 3.3 V respectively. See I2C Bus Pullup Resistor  
Calculation (SLVA689).  
I2C_SDA  
I2C_SCL  
46  
I/O, OD  
I2C Data Input / Output Interface pin. See 7.6.1.  
Open drain output; this pin must have an external pullup resistor to VI2C DO NOT FLOAT.  
Recommend a 2.2 kΩ or 4.7 kΩ pullup to 1.8 V or 3.3 V respectively. See I2C Bus Pullup Resistor  
Calculation (SLVA689).  
45  
47  
I/O, OD  
I, S  
I2C Serial Control Bus Device ID Address Select configuration pin Connect to an external pullup to  
VDD33 and a pulldown to GND to create a voltage divider.  
See 7-11.  
IDx  
SPI PINS  
SPI Controller Output, Peripheral Input pin (function programmed through register)  
It is a multifunction pin (shared with D_GPIO0) with a weak internal pulldown (3µA). Pin function is  
programmed through registers. If unused, tie to an external pulldown.  
PICO  
(D_GPIO0)  
19  
18  
17  
I/O, PD  
I/O, PD  
I/O, PD  
SPI Controller Input, Peripheral Output pin (function programmed through register)  
It is a multifunction pin (shared with D_GPIO1) with a weak internal pulldown (3µA). Pin function is  
programmed through registers. If unused, tie to an external pulldown.  
POCI  
(D_GPIO1)  
SPI Clock pin (function programmed through register)  
It is a multifunction pin (shared with D_GPIO2) with a weak internal pulldown (3µA). Pin function is  
programmed through registers. If unused, tie to an external pulldown.  
SPLK  
(D_GPIO2)  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
SPI Peripheral Select pin (function programmed through register)  
It is a multifunction pin (shared with D_GPIO0) with a weak internal pulldown (3µA). Pin function is  
programmed through registers. If unused, tie to an external pulldown.  
CS  
(D_GPIO3)  
16  
I/O, PD  
CONTROL PINS  
Mode Select 0 configuration pin  
MODE_SEL0  
61  
50  
I, S  
I, S  
Connect to external pullup to VDD33 and pulldown to GND to create a voltage divider. See  
Configuration Select (MODE_SEL0) 7-8.  
Mode Select 1 configuration pin  
Connect to external pullup to VDD33 and pulldown to GND to create a voltage divider. See  
Configuration Select (MODE_SEL1) 7-9.  
MODE_SEL1  
Inverted Power-Down input pin  
Typically connected to a processor GPIO with a pulldown. When PDB input is brought HIGH, the  
device is enabled and internal registers and state machines are reset to default values. Asserting  
PDB signal low will power down the device and consume minimum power. The default function of  
this pin is PDB = LOW; POWER DOWN with an weak (>100-kΩ) internal pulldown enabled. PDB  
should remain low until after power supplies are applied and reach minimum required levels.  
PDB = 1, device is enabled (normal operation)  
PDB  
48  
I, PD  
PDB = 0, device is powered down  
When the device is in the POWER DOWN state, the LVCMOS outputs are in tri-state, the PLL is  
shut down, and IDD is minimized.  
BIST Enable pin  
0: BIST mode is disabled  
BISTEN  
5
I, PD  
1: BIST mode is enabled  
It is a configuration pin with a weak internal pulldown (3µA). If unused, tie to an external pulldown.  
See 7.3.15 for more information.  
BIST Clock Select pin (function programmed through register)  
0: PCLK  
1: 33 MHz  
BISTC  
(INTB_IN)  
4
4
I, PD  
I, PD  
It is a multifunction pin (shared with INTB_IN) with a weak internal pulldown (3µA). Pin function is  
programmed through registers. If unused, tie to an external pulldown.  
Interrupt Input pin (default function).  
INTB_IN  
(BISTC)  
It is a multifunction pin (shared with BISTC) with a weak internal pulldown (3µA). Pin function is  
programmed through registers. If unused, tie to an external pulldown. The INTB_IN pin may act as  
an output driver and pull low when PDB is low (see 7.3.8).  
GPIO PINS  
General Purpose Input / Output 0 pin (default function)  
GPIO0  
(SDOUT)  
default state: logic LOW  
7
8
I/O  
I/O  
I/O  
I/O  
I/O  
It is a multifunction pin (shared with SDOUT) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
General Purpose Input / Output 1 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with SWC) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO1  
(SWC)  
General Purpose Input / Output 2 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with I2S_DC) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO2  
(I2S_DC)  
10  
9
General Purpose Input / Output 3 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with I2C_DD) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO3  
(I2S_DD)  
General Purpose Input / Output 9 pin (default function)  
default state: logic LOW  
It is a multifunction pin (shared with MCLK) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO9  
(MCLK)  
15  
HIGH-SPEED GPIO PINS  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
NAME  
I/O, TYPE  
DESCRIPTION  
NO.  
High-Speed General Purpose Input / Output 0 pin (default function)  
default state: tri-state  
D_GPIO0  
(PICO)  
19  
I/O  
Only available in Dual Link Mode. It is a multifunction pin (shared with PICO) with a weak internal  
pulldown (3 μA). Pin function is programmed through registers. See 7.3.9. If unused, tie to an  
external pulldown.  
High-Speed General Purpose Input / Output 1 pin (default function)  
default state: tri-state  
Only available in Dual Link Mode. It is a multifunction pin (shared with POCI) with a weak internal  
pulldown (3 μA). Pin function is programmed through registers. See 7.3.9. If unused, tie to an  
external pulldown.  
D_GPIO1  
(POCI)  
18  
17  
16  
I/O  
I/O  
I/O  
High-Speed General Purpose Input / Output 2 pin (default function)  
default state: tri-state  
Only available in Dual Link Mode. It is a multifunction pin (shared with SPLK) with a weak internal  
pulldown (3 μA). Pin function is programmed through registers. See 7.3.9. If unused, tie to an  
external pulldown.  
D_GPIO2  
(SPLK)  
High-Speed General Purpose Input / Output 3 pin (default function)  
default state: tri-state  
Only available in Dual Link Mode. It is a multifunction pin (shared with CS) with a weak internal  
pulldown (3 μA). Pin function is programmed through registers. See 7.3.9. If unused, tie to an  
external pulldown.  
D_GPIO3  
(CS)  
REGISTER ONLY GPIO PINS  
High-Speed General Purpose Input / Output 5 pin (default function)  
I2C register control only  
default state: logic LOW  
It is a multifunction pin (shared with I2S_DB) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO5_REG  
11  
I/O  
I/O  
I/O  
I/O  
(I2S_DB)  
High-Speed General Purpose Input / Output 6 pin (default function)  
I2C register control only  
default state: logic LOW  
It is a multifunction pin (shared with I2S_DA) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO6_REG  
12  
(I2S_DA)  
High-Speed General Purpose Input / Output 7 pin (default function)  
I2C register control only  
default state: logic LOW  
It is a multifunction pin (shared with I2S_WC) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO7_REG  
14  
(I2S_WC)  
High-Speed General Purpose Input / Output 8 pin (default function)  
I2C register control only  
default state: logic LOW  
It is a multifunction pin (shared with I2S_CLK) with a weak internal pulldown (3 μA). Pin function is  
programmed through registers. See 7.3.9. If unused, tie to an external pulldown.  
GPIO8_REG  
13  
(I2S_CLK)  
SURROUND SOUND (SS) MODE LOCAL I2S CHANNEL PINS  
SS Mode I2S Word Clock Output pin (function programmed through register)  
It is a multifunction pin (shared with GPIO7_REG). Pin function is programmed through registers.  
See 7.3.13. If unused, tie to an external pulldown.  
I2S_WC  
(GPIO7_REG)  
14  
O
SS Mode I2S Clock Output pin (function programmed through register)  
NOTE: Disable I2S data jitter cleaner, when using these pins, through the register bit I2S  
Control: 0x2B[7]=1  
It is a multifunction pin (shared with GPIO8_REG). Pin function is programmed through registers.  
See 7.3.13. If unused, tie to an external pulldown.  
I2S_CLK  
(GPIO8_REG)  
13  
O
SS Mode I2S Data Output pin (function programmed through register)  
It is a multifunction pin (shared with GPIO6_REG). Pin function is programmed through registers.  
See 7.3.13. If unused, tie to an external pulldown.  
I2S_DA  
(GPIO6_REG)  
12  
11  
O
O
SS Mode I2S Data Output pin (function programmed through register)  
It is a multifunction pin (shared with GPIO5_REG). Pin function is programmed through registers.  
See 7.3.13. If unused, tie to an external pulldown.  
I2S_DB  
(GPIO5_REG)  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
I/O, TYPE  
DESCRIPTION  
NAME  
NO.  
SS Mode I2S Data Output (function programmed through register)  
It is a multifunction pin (shared with GPIO2). Pin function is programmed through registers. See 节  
7.3.13. If unused, tie to an external pulldown.  
I2S_DC  
(GPIO2)  
10  
O
SS Mode I2S Data Output (function programmed through register)  
It is a multifunction pin (shared with GPIO3). Pin function is programmed through registers. See 节  
7.3.13. If unused, tie to an external pulldown.  
I2S_DD  
(GPIO3)  
9
O
AUXILIARY AUDIO (AA) MODE LOCAL I2S CHANNEL PINS  
AA Mode I2S Word Clock Output pin (function is programmed through registers)  
(Pin is shared with GPIO1)  
SWC  
(GPIO1)  
8
O
O
O
It is a multifunction pin (shared with GPIO1). Pin function is programmed through registers. See 节  
7.3.13. If unused, tie to an external pulldown.  
AA Mode I2S Data Output pin (function is programmed through registers)  
(Pin is shared with GPIO0)  
It is a multifunction pin (shared with GPIO0). Pin function is programmed through registers. See 节  
7.3.13. If unused, tie to an external pulldown.  
SDOUT  
(GPIO0)  
7
AA Mode I2S System Clock Output pin (function is programmed through registers)  
(Pin is shared with GPIO9)  
It is a multifunction pin (shared with GPIO9). Pin function is programmed through registers. See 节  
7.3.13. If unused, tie to an external pulldown.  
MCLK  
(GPIO9)  
15  
STATUS PINS  
Lock Status Output pin  
LOCK  
1
7
O
O
LOCK = 1: PLL acquired lock to the reference clock input  
LOCK = 0: PLL is unlocked  
BIST mode status output pin (BISTEN = 1)  
PASS = 1: No error detected  
PASS  
PASS = 0: Error detected  
POWER and GROUND  
VDD33_A,  
VDD33_B  
56  
31  
3.3-V (±10%) supply. Power to on-chip regulator. Requires 10-µF, 1F, 0.1-µF, and 0.01-µF  
capacitors to GND.  
P
P
LVCMOS I/O power supply: 1.8 V (±5%) OR 3.3 V (±10%). Requires 10-µF, 1F, 0.1-µF, and  
0.01-µF capacitors to GND.  
VDDIO  
3
VDD12_LVDS  
VDDP12_LVD  
S
VDDL12_0  
VDDL12_1  
VDDP12_CH0  
VDDR12_CH0  
VDDP12_CH1  
VDDR12_CH1  
20  
32  
6
44  
51  
52  
60  
57  
P
1.2-V (±5%) supply. Requires 10-µF, 1F, 0.1-µF, and 0.01-µF capacitors to GND at each VDD pin.  
CAP_I2S  
VDD25_CAP  
2
33  
Decoupling capacitor connection for on-chip regulator. Recommend to connect with a 0.1-μF  
decoupling capacitor to GND.  
D
G
DAP is the large metal contact at the bottom side, located at the center of the WQFN package.  
Connect to the ground plane (GND) with at least 32 vias.  
VSS  
DAP  
OTHER PINS  
Channel Monitor Loop-through Driver differential output pins Route to a test point or a pad with  
100-Ω termination resistor between pins for channel monitoring (recommended). See 8-1 or 图  
8-2.  
CMLOUTP  
CMLOUTN  
62  
63  
O
-
RES0  
RES1  
49  
64  
Reserved pins. 0.1-µF decoupling capacitor could be placed to GND. May be left floating as No  
Connect pins.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
The following definitions define the functionality of the I/O cells for each pin. I/O TYPE:  
P = Power supply  
G = Ground  
D = Decoupling for an internal linear regulator  
S = Configuration/Strap Input (All strap pins have internal pulldowns determined by IOZ specification. If the default strap value is  
needed to be changed then an external resistor should be used.  
I = Input  
O = Output  
I/O = Input/Output  
PD = Internal pulldown  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(2) (1)  
MIN  
MAX  
UNIT  
VDD33 (VDD33_A, VDD33_B)  
–0.3  
3.96  
V
VDD12 (VDDL_0, VDDL_1, VDDP12_CH0, VDDR12_CH0,  
Supply voltage  
-0.3  
–0.3  
–0.3  
-0.3  
1.44  
3.96  
3.96  
3.96  
V
V
V
V
VDDP12_CH1, , VDDR12_CH1, VDD12_LVDS, VDDP12_LVDS)  
VDDIO  
Configuration input  
IDX, MODE_SEL0, MODE_SEL1  
voltage  
PDB, BIST_EN  
GPIO0, GPIO1, GPIO2, GPIO3, D_GPIO0, D_GPIO1, D_GPIO2,  
LVCMOS I/O voltage  
V(VDDIO)  
0.3  
+
D_GPIO3, GPIO5_REG, GPIO6_REG, GPIO7_REG, GPIO8_REG, LOCK,  
PASS, INTB_IN, MCLK  
–0.3  
V
Open-Drain voltage I2C_SDA, I2C_SCL  
CML output voltage CMLOUTP, CMLOUTN  
–0.3  
-0.3  
3.96  
2.75  
V
V
FPD-Link III input  
RIN0+, RIN0-, RIN1+, RIN1-  
voltage  
–0.3  
2.75  
V
Junction temperature, TJ  
150  
150  
°C  
°C  
Storage temperature range, Tstg  
–65  
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office or Distributors for availability  
and specifications.  
(2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
6.2 ESD Ratings  
VALUE  
±8000  
±1250  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Contact Discharge  
(RIN0+, RIN0-, RIN1+, RIN1–  
±8000  
±15000  
±8000  
)
ESD Ratings (IEC 61000-4-2)  
RD = 330 Ω, CS = 150 pF  
Electrostatic  
discharge  
Air-gap Discharge  
(RIN0+, RIN0-, RIN1+, RIN1–  
V(ESD)  
V
)
Contact Discharge (RIN0+, RIN0-, RIN1+  
RIN1-  
,
ESD Ratings (ISO10605)  
)
RD = 330 Ω, CS = 150 and 330 pF  
RD = 2 kΩ, CS = 150 and 330 pF  
Air-gap Discharge  
(RIN0+, RIN0–, RIN1+, RIN1–  
±15000  
)
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
3
NOM  
3.3  
MAX  
3.6  
UNIT  
V
Supply voltage  
V(VDD33)  
V(VDD12)  
1.14  
3
1.2  
1.26  
3.6  
V
LVCMOS I/O supply  
voltage  
V(VDDIO) = 3.3 V  
OR V(VDDIO) = 1.8 V  
I2C pins = V(I2C)  
3.3  
V
1.71  
1.71  
−40  
25  
1.8  
1.89  
3.6  
V
Open-drain voltage  
V
Operating free air temperature, TA  
25  
105  
96  
°C  
MHz  
Open LDI clock frequency (single link)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
Over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
MHz  
Open LDI clock frequency (dual link)  
Local I2C frequency, fI2C  
50  
192  
1
MHz  
Supply noise(1)  
V(VDD33)  
100  
100  
50  
mVP-P  
mVP-P  
mVP-P  
mVP-P  
V(VDDIO) = 3.3 V  
V(VDDIO) = 1.8 V  
V(VDD12)  
25  
(1) DC to 50 MHz.  
6.4 Thermal Information  
DS90UH948-Q1  
THERMAL METRIC(1)  
NKD (WQFN)  
UNIT  
64 PINS  
24.8  
6.2  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
3.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.1  
ψJB  
3.6  
RθJC(bot)  
0.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
POWER CONSUMPTION  
Total power  
TEST CONDITIONS  
PIN/FREQ.  
MIN TYP  
MAX UNIT  
PCLK = 170 MHz.  
2-lane FPD-Link III input, dual-link OLDI output  
PT  
consumption, normal  
operation  
858  
40  
1146 mW  
70 mW  
VDD  
Total power  
PZ  
consumption, power-  
down mode  
PDB = 0 V  
SUPPLY CURRENT  
IDD12  
VDD12 = 1.2 V  
VDD33 = 3.6 V  
169  
168  
223 mA  
222 mA  
IDD33 Supply current, normal PCLK = 170 MHz.  
operation 2-lane FPD-Link III input, dual-link OLDI output  
IDDIO  
VDDIO = 1.89 V  
or 3.6 V  
14  
19 mA  
IDD12  
VDD12 = 1.2 V  
VDD33 = 3.6 V  
189  
188  
mA  
mA  
IDD33 Supply current, normal PCLK = 192 MHz  
operation 2-lane FPD-Link III input, dual link OLDI Output  
IDDIO  
VDDIO = 1.89 V  
or 3.6 V  
16  
mA  
IDD12Z  
VDD12 = 1.2 V  
VDD33 = 3.6 V  
2
2
30 mA  
IDD33Z Supply current, power-  
down mode  
IDDIOZ  
8
1
mA  
mA  
PDB = 0 V  
VDDIO = 1.89 V  
or 3.6 V  
0.1  
3.3-V LVCMOS I/O (V(VDDIO) = 3.3 V ± 10%)  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6.5 DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN TYP  
MAX UNIT  
VIH  
VIL  
VIH  
VIL  
High level input voltage  
Low level input voltage  
High level input voltage  
Low level input voltage  
2
0
2
0
V(VDDIO)  
V
V
V
V
PDB, BISTEN  
0.8  
V(VDDIO)  
0.8  
BISTC,  
GPIO[3:0],  
D_GPIO[3:0],  
I2S_DA,  
I2S_DB,  
I2S_DC,  
IIN  
Input current  
VIN = 0 V or V(VDDIO)  
–10  
10  
µA  
I2S_DD,  
I2S_CLK,  
I2S_WC, LOCK,  
PASS  
IDX,  
IIN-STRAP Strap pin input current VIN = 0V or V(VDD33)  
High level output  
MODE_SEL0,  
MODE_SEL1  
-1  
1
µA  
BISTC,  
VOH  
VOL  
IOS  
IOH = –4 mA  
IOL = 4 mA  
VOUT = 0 V  
2.4  
0
V(VDDIO)  
0.4  
V
V
voltage  
GPIO[3:0],  
D_GPIO[3:0],  
I2S_DA,  
I2S_DB,  
I2S_DC,  
Low level output  
voltage  
Output short-circuit  
current  
–55  
mA  
I2S_DD,  
PDB = 0 V  
VOUT = 0 V or V(VDDIO)  
I2S_CLK,  
I2S_WC, LOCK,  
PASS  
IOZ  
Tri-state output current  
Input capacitance  
–20  
20  
10  
µA  
pF  
CIN  
1.8-V LVCMOS I/O (V(VDDIO) = 1.8 V ± 5%)  
VIH  
VIL  
High level input voltage  
High level input voltage  
1.5  
0
V(VDDIO)  
V
V
PDB, BISTEN  
0.35 ×  
V(VDDIO)  
0.65 ×  
V(VDDIO)  
VIH  
High level input voltage  
V(VDDIO)  
V
0.35 ×  
V(VDDIO)  
VIL  
IIN  
Low level input voltage  
Input current  
0
V
µA  
V
BISTC,  
GPIO[3:0],  
D_GPIO[3:0],  
I2S_DA,  
VIN = 0V or V(VDDIO)  
IOH = –4 mA  
–10  
10  
High level output  
voltage  
V(VDDIO)  
– 0.45  
VOH  
V(VDDIO)  
I2S_DB,  
I2S_DC,  
I2S_DD,  
I2S_CLK,  
I2S_WC, LOCK,  
PASS  
Low level output  
voltage  
VOL  
IOS  
IOL = 4 mA  
VOUT = 0 V  
0
0.45  
V
Output short-circuit  
current  
–35  
mA  
PDB = 0 V  
VOUT = 0 V or V(VDDIO)  
IOZ  
Tri-state output current  
Input capacitance  
–20  
20  
10  
µA  
pF  
CIN  
SERIAL CONTROL BUS (V(VDDIO) = 1.8 V ± 5% OR 3.3V ±10%)  
VIH  
VIL  
Input high level  
Input low level  
Input high level  
Input low level  
Input hysteresis  
Output low level  
Input current  
2
0
V(VDDIO)  
0.9  
V
V
V(VDDIO) = 3.0 V to 3.6 V  
VIH  
VIL  
1.58  
GND  
V(VDDIO)  
0.9  
V
V(VDDIO) = 1.71 V to 1.89 V  
I2C_SDA,  
I2C_SCL  
V
VHYS  
VOL  
IIN  
50  
mV  
V
IOL = 4 mA  
0
0.4  
10  
VIN = 0 V or V(VDDIO)  
–10  
µA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
www.ti.com.cn  
MAX UNIT  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
6.5 DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN TYP  
FPD-LINK III INPUT  
Differential threshold  
high voltage  
VTH  
VTL  
VID  
VCM  
RT  
50 mV  
Differential threshold  
low voltage  
VCM = 2.1 V  
–50  
mV  
mV  
V
Input differential  
threshold  
RIN0+, RIN0–  
RIN1+, RIN1–  
100  
Differential common-  
mode voltage  
2.1  
Internal termination  
resistor - differential  
80 100  
120  
Ω
LVDS DRIVER  
RL =100 Ω, VOD Setting 1. See 6-9.  
220 380  
370 550  
460 650  
530 750  
540 mVP-P  
730 mVP-P  
840 mVP-P  
970 mVP-P  
See 7.7 Register 0x4B for configuration details.  
RL =100 Ω, VOD Setting 2. See 6-9.  
See 7.7 Register 0x4B for configuration details.  
Output voltage swing  
(differential)  
VOD  
RL = 100 Ω, VOD Setting 3. See 6-9.  
See 7.7 Register 0x4B for configuration details.  
RL = 100 Ω, VOD Setting 4. See 6-9.  
See 7.7 Register 0x4B for configuration details.  
Change in  
D0±, D1±, D2±,  
D3±, D4±, D5±,  
D6±, D7±,  
VOD between  
complementary output  
states  
ΔVOD  
RL = 100 Ω  
1
50 mV  
CLK1±, CLK2±  
VOS  
Offset voltage  
RL = 100 Ω. See 6-9.  
RL = 100 Ω  
1.125  
1.2  
1
1.375  
V
Change in  
VOS between  
complementary Output  
States  
ΔVOS  
50 mV  
Output short-circuit  
current  
IOS  
IOZ  
-20  
mA  
Output tri-state LVDS  
driver current  
PDB = 0 V  
–500  
500  
µA  
LOOP-THROUGH MONITOR OUTPUT  
VOD  
Differential output  
voltage  
RL = 100 Ω  
CMLOUTP,  
CMLOUTN  
360  
mV  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6.6 AC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
GPIO BIT RATE  
0.25 ×  
OLDI  
Clock  
Single OLDI output, OLDI Clock  
= 25 to 96 MHz  
Mbps  
Rb,FC  
Forward channel bit rate  
Back channel bit rate  
GPIO[3:0]  
0.25 ×  
OLDI  
Clock  
Dual OLDI output, OLDI Clock =  
25 to 85 MHz  
Mbps  
kbps  
Rb,BC  
133  
High speed (2-lane mode), 1  
D_GPIO active  
2
Mbps  
See 7-3  
High speed (2-lane mode), 2  
D_GPIOs active  
See 7-3.  
1.33  
Mbps  
Rb,BC  
Back channel bit rate  
D_GPIO[3:0]  
High speed (2-lane mode), 4  
D_GPIOs active  
See 7-3  
800  
133  
kbps  
kbps  
s
Normal mode — see 7-3  
> 2 /  
OLDI  
Clock  
GPIO pulse width, forward  
channel  
tGPIO,FC  
GPIO[3:0]  
GPIO[3:0]  
tGPIO,BC  
RESET  
tLRST  
GPIO pulse width, back channel  
PDB reset low pulse  
20  
μs  
PDB  
2
ms  
LOOP-THROUGH MONITOR OUTPUT  
Differential output eye opening  
width  
RL = 100 Ω, jitter frequency  
>OLDI Clock / 40  
See 6-2  
EW  
0.4  
UI(3)  
mV  
CMLOUTP,  
CMLOUTN  
EH  
I2S TRANSMITTER  
tJ,I2S Clock output jitter  
Differential output eye height  
300  
2
ns  
ns  
>2 /  
OLDI  
Clock or  
>77  
tI2S  
I2S clock period(1)  
See 6-12  
I2S_CLK  
tHC,I2S  
tLC,I2S  
tSR,I2S  
I2S clock high time(1)  
I2S clock low time(1)  
I2S set-up time  
See 6-12  
See 6-12  
See 6-12  
0.48  
0.48  
0.4  
tI2S  
tI2S  
tI2S  
I2S_DA,  
I2S_DB,  
I2S_DC,  
I2S_DD  
tHR,I2S  
I2S hold time  
See 6-12  
0.4  
tI2S  
(1) I2S specifications for tLC,I2S and tHC,I2S pulses must each be greater than 1 OLDI clock period to ensure sampling and supersedes the  
0.35 × tI2S requirement. tLC,I2S and tHC,I2S must be longer than the greater of either 0.35 × tI2S or 2 × OLDI Clock.  
(2) PCLK refers to the equivalent pixel clock frequency, which is equal to the FPD-Link III line rate / 35.  
(3) UI – Unit Interval is equivalent to one serialized data bit width. For Single Lane mode 1UI = 1 / (35 × PCLK). For Dual Lane mode, 1UI  
= 1 / (35 × PCLK / 2). The UI scales with PCLK frequency.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6.7 Timing Requirements for the Serial Control Bus  
Over I2C supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
> 0  
> 0  
> 0  
4.7  
1.3  
0.5  
4
MAX  
UNIT  
kHz  
kHz  
MHz  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Standard mode  
Fast mode  
100  
400  
1
fSCL  
SCL clock frequency  
Fast plus mode  
Standard mode  
Fast mode  
tLOW  
tHIGH  
tHD;STA  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
SCL low period  
SCL high period  
Fast plus mode  
Standard mode  
Fast mode  
0.6  
0.26  
4
Fast plus mode  
Standard mode  
Fast mode  
Hold time for a start or a repeated start  
condition  
6-11  
0.6  
0.26  
4.7  
0.6  
0.26  
0
Fast plus mode  
Standard mode  
Fast mode  
Set-up time for a start or a repeated  
start condition  
6-11  
Fast plus mode  
Standard mode  
Fast mode  
Data hold time  
6-11  
0
Fast plus mode  
Standard mode  
Fast mode  
0
250  
100  
50  
Data set-up time  
6-11  
ns  
Fast plus mode  
Standard mode  
Fast mode  
ns  
4
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Set-up time for STOP condition  
6-11  
0.6  
0.26  
4.7  
1.3  
0.5  
Fast plus mode  
Standard mode  
Fast mode  
Bus free time  
between STOP and START  
6-11  
Fast plus mode  
Standard mode  
Fast mode  
1000  
300  
120  
300  
300  
120  
400  
400  
200  
50  
SCL and SDA rise time,  
6-11  
tr  
ns  
Fast plus mode  
Standard mode  
Fast mode  
ns  
ns  
SCL and SDA fall time,  
6-11  
tf  
ns  
Fast plus mode  
Standard mode  
Fast mode  
ns  
pF  
pF  
pF  
ns  
Cb  
Capacitive load for each bus line  
Input filter  
Fast plus mode  
Fast mode  
tSP  
Fast plus mode  
50  
ns  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6.8 Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
LVDS DRIVER SWITCHING CHARACTERISTICS  
20% to 80% transition, 5-pF  
tLVLHT  
LVDS low-to-high transition time  
load  
See 6-8  
0.15  
0.15  
0.25  
0.25  
ns  
ns  
80% to 20% transition, 5-pF  
load  
See 6-8  
tLVHLT  
LVDS high-to-low transition time  
Transmitter output bit width  
tBIT  
1/7 × T  
1
ns  
Transmitter output pulse positions  
normalized for Bit 0  
tPPOS0  
UI(1)  
Transmitter output pulse positions  
normalized for Bit 1  
tPPOS1  
tPPOS2  
tPPOS3  
tPPOS4  
tPPOS5  
tPPOS6  
2
3
4
5
6
7
UI(1)  
UI(1)  
UI(1)  
UI(1)  
UI(1)  
UI(1)  
Transmitter output pulse positions  
normalized for Bit 2  
T = 1 / OLDI clock  
frequency.  
See 6-10  
Transmitter output pulse positions  
normalized for Bit 3  
D0±, D1±,  
D2±, D3±,  
D4±, D5±,  
D6±, D7±,  
CLK1±,  
Transmitter output pulse positions  
normalized for Bit 4  
Transmitter output pulse positions  
normalized for Bit 5  
CLK2±  
Transmitter output pulse positions  
normalized for Bit 6  
Transmitter output pulse positions  
(Bit 6 - Bit 0) normalized  
tPPOS  
tCCS  
< 0.1  
100  
UI(1)  
ps  
Channel-to-channel skew  
2-lane FPD-Link III input,  
dual openLDI output  
0.16  
UI(1)  
2-lane FPD-Link III input,  
single OpenLDI Output  
0.18  
0.04  
UI(1)  
UI(1)  
tJCC  
Transmitter jitter cycle-to-cycle  
1-lane FPD-Link III input,  
dual openLDI output  
1-lane FPD-Link III input,  
single openLDI output  
0.04  
100  
UI(1)  
ns  
tPDD  
tDD  
Transmitter power-down delay  
Deserializer propagation delay  
See 6-5  
T = 1 / OLDI Clock  
frequency. See 6-4  
147 × T  
ns  
(1) UI - Unit Interval is equal to 1 / (7 × OLDI clock).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6.9 Timing Diagrams and Test Circuits  
+VOD  
-VOD  
CLK1 ,  
CLK2  
+VOD  
-VOD  
D1 , D3 ,  
D5 , D7  
+VOD  
-VOD  
D0 , D2 ,  
D4 , D6  
Cycle N  
Cycle N+1  
6-1. Checkerboard Data Pattern  
EW  
VOD (+)  
RIN  
(Diff.)  
EH  
0V  
EH  
VOD (-)  
t
(1 UI)  
BIT  
6-2. CML Output Driver  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
6-3. LVCMOS Transition Times  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START STOP  
BIT BIT  
SYMBOLN+3  
SYMBOLN  
SYMBOLN+1  
SYMBOLN+2  
RIN[1:0]  
DCA, DCB  
t
DD  
CLK[2:1]  
D[7:0]  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
6-4. Latency Delay  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
PDB  
VILmax  
RIN[1:0]  
X
tPDD  
LOCK  
PASS  
Z
Z
CLK[2:1]  
D[7:0]  
Z
Z
6-5. FPD-Link and LVCMOS Power Down Delay  
PDB  
VIH(min)  
RIN[1:0]  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
6-6. CML PLL Lock Time  
RIN[1:0]+  
VTL  
VCM  
VTH  
RIN[1:0]-  
GND  
6-7. FPD-Link III Receiver DC VTH/VTL Definition  
+VOD  
80%  
D[7:0]  
CLK[1:0]  
(Differential)  
0V  
20%  
-VOD  
t
t
LVHLT  
LVLHT  
6-8. Input Transition Times  
D[7:0]+  
CLK[2:1]+  
VOD-  
VOD+  
D[7:0]-  
CLK[2:1]-  
VOS  
(D[7:0]+) -  
(D[7:0]-) or  
(CLK[2:1]+) -  
(CLK[2:1]-)  
VOD+  
0V  
VODp-p  
VOD-  
6-9. FPD-Link Single-Ended and Differential Waveforms  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
tBIT  
CLK[2:1]  
bit 1  
n-1  
bit 0  
n-1  
bit 6  
n
bit 5  
n
bit 4  
n
bit 3  
n
bit 2  
n
bit 1  
n
bit 0  
n
D[7:0]  
tPPOS0  
tPPOS1  
tPPOS2  
tPPOS3  
tPPOS4  
tPPOS5  
tPPOS6  
tPPOS7  
1UI  
2UI  
3UI  
4UI  
5UI  
6UI  
7UI  
6-10. FPD-Link Transmitter Pulse Positions  
SDA  
t
BUF  
t
f
t
t
HD;STA  
t
r
LOW  
t
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
6-11. Serial Control Bus Timing Diagram  
tI2S  
tLC,I2S  
t
HC,I2S  
V
IH  
I2S_CLK  
V
IL  
t
t
SR,I2S  
HR,I2S  
I2S_WC  
I2S_D[A,B,C,D]  
6-12. I2S Timing  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
6.10 Typical Characteristics  
Time (100 ps/DIV)  
Time (2.5 ns/DIV)  
6-13. Deserializer Eye Diagram With 2.6-Gbps  
6-14. OpenLDI Output With 96-MHz Clock  
FPD-Link III Rate  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The DS90UH948-Q1 receives a 35-bit symbol over single or dual serial FPD-Link III pairs operating at up to  
3.36 Gbps line rate in 1-lane FPD-Link III mode and 2.975 Gbps per lane in 2-lane FPD-Link III mode. The  
DS90UH948-Q1 converts this stream into a single or dual FPD-Link Interface (4 LVDS data channels + 1 LVDS  
clock, or 8 LVDS data channels + 2 LVDS clocks). The FPD-Link III serial stream contains an embedded clock,  
video control signals, and the DC-balanced video data and audio data which enhance signal quality to support  
AC coupling.  
The DS90UH948-Q1 is compatible with the following serializers: DS90UH949-Q1, DS90UH949A-Q1,  
DS90UH947-Q1, DS90UH941AS-Q1, DS90UH925Q-Q1, DS90UH927Q-Q1, DS90UH929-Q1, DS90UB921-Q1  
The DS90UH948-Q1 deserializer attains lock to a data stream without the use of a separate reference clock  
source, which greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the  
serializer regardless of the data pattern, delivering true automatic plug and lock performance. It can lock to the  
incoming serial stream without the need of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating then deserializing the incoming  
data stream. It also applies decryption through a high-bandwidth digital content protection (HDCP) Cipher to this  
video and audio data stream following reception of the data from the FPD-Link III decoder. On-chip non-volatile  
memory stores the HDCP keys. All key exchange is done through the FPD-Link III bidirectional control interface.  
The decrypted OpenLDI LVDS video interface is provided to the display.  
The DS90UH948-Q1 deserializer incorporates an I2C-compatible interface. The I2C-compatible interface allows  
programming of serializer or deserializer devices from a local host controller. The devices also incorporate a  
bidirectional control channel (BCC) that allows communication between serializer/deserializer as well as remote  
I2C Target devices.  
The bidirectional control channel (BCC) is implemented through embedded signaling in the high-speed forward  
channel (serializer to deserializer) combined with lower speed signaling in the reverse channel (deserializer to  
serializer). Through this interface, the BCC provides a mechanism to bridge I2C transactions across the serial  
link from one I2C bus to another. The implementation allows for arbitration with other I2C-compatible Controllers  
at either side of the serial link.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.2 Functional Block Diagram  
1st Link  
Open LDI LVDS  
Outputs  
RIN0+  
RIN0-  
RIN1+  
RIN1-  
CMLOUTP  
CMLOUTN  
2nd Link  
Open LDI LVDS  
Outputs  
Timing  
and  
Control  
PDB  
LOCK  
PASS  
MODE_SEL0  
MODE_SEL1  
CLOCK  
Open LDI LVDS  
Outputs  
Clock  
Gen  
4
D_GPIOx / SPI  
I2S / GPIO  
/
I2C_SDA  
I2C_SCL  
IDx  
8
/
I2C  
Controller  
7.3 Feature Description  
7.3.1 High-Speed Forward Channel Data Transfer  
The high-speed forward channel is composed of 35 bits of data containing RGB data, sync signals, HDCP, I2C,  
GPIOs, and I2S audio transmitted from serializer to deserializer. 7-1 shows the serial stream per clock cycle.  
This data payload is optimized for signal transmission over an AC-coupled link. Data is randomized, balanced,  
and scrambled.  
C0  
C1  
7-1. FPD-Link III Serial Stream  
The DS90UH948-Q1 supports clocks in the range of 25 MHz to 96 MHz over 1 lane, or 50 MHz to 192 MHz over  
2 lanes. The FPD-Link III serial stream rate is 3.36 Gbps maximum (875 Mbps minimum).  
7.3.2 Low-Speed Back Channel Data Transfer  
The Low-Speed Backward Channel provides bidirectional communication between the display and host  
processor. The information is carried from the deserializer to the serializer as serial frames. The back channel  
control data is transferred over both serial links along with the high-speed forward data, DC balance coding  
and embedded clock information. This architecture provides a backward path across the serial link together with  
a high-speed forward channel. The back channel contains the I2C, HDCP, CRC and 4 bits of standard GPIO  
information with 5-Mbps, 10Mbps, or 20-Mbps line rate (configured by MODE_SEL1 and/or register 0x23).  
7.3.3 FPD-Link III Port Register Access  
Because the DS90UH948-Q1 contains two ports, some registers must be duplicated to allow control and  
monitoring of the two ports. To facilitate this, PORT1_SEL and PORT0_SEL bits (0x34[1:0]) register controls  
access to the two sets of registers. Registers that are shared between ports (not duplicated) are available  
independent of the settings in the PORT_SEL register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Setting the PORT1_SEL and PORT0_SEL bit allows a read of the register for the selected port. If both bits are  
set, port1 registers are returned. Writes occur to ports for which the select bit is set, allowing simultaneous writes  
to both ports if both select bits are set.  
7.3.4 Oscillator Output  
The deserializer provides an optional CLK[2:1]± output when the input clock (serial stream) has been lost. This is  
based on an internal oscillator and may be controlled from register 0x02, bit 5 (OSC Clock Output Enable). See  
7.7.  
7.3.5 Clock and Output Status  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK is tri-state or LOW  
(depending on the value of the OUTPUT ENABLE setting). After the deserializer completes its lock sequence  
to the input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the  
serial input is available on the LVCMOS and LVDS outputs. The state of the outputs is based on the OUTPUT  
ENABLE and OUTPUT SLEEP STATE SELECT register settings. See register 0x02 in 7.7.  
7-1. Output State Table  
INPUTS  
OUTPUTS  
OUTPUT SLEEP  
STATE SELECT  
Reg 0x02 [4]  
Data  
GPIO / D_GPIO  
I2S  
Serial  
INPUT  
OUTPUT ENABLE  
Reg 0x02 [7]  
PDB  
LOCK  
D[7:0] / CLK[2:1]  
X
L
X
L
X
L
Z
Z
L
Z
X
H
H
H
H
H
H
L
L
X
L
H
L
L or H  
Z
Z
Static  
Static  
Active  
Active  
H
H
H
H
L
L
L
L/OSC (Register EN)  
H
L
L
L
L
L
L
H
H
Valid  
Valid  
7.3.6 LVCMOS VDDIO Option  
The 1.8-V or 3.3-V inputs and outputs are powered from a separate VDDIO supply to offer compatibility with  
external system interface signals.  
备注  
When configuring the VDDIO power supplies, all the single-ended data and control input pins for  
device must scale together with the same operating VDDIO levels.  
7.3.7 Power Down (PDB)  
The deserializer has a PDB input pin to ENABLE or POWER DOWN the device. This pin can be controlled by  
the host or through the VDDIO, where VDDIO = 3 V to 3.6 V or VDD33. To save power, disable the link when  
the display is not needed (PDB = LOW). When the pin is driven by the host, make sure to release it after VDD33  
and VDDIO have reached final levels; no external components are required. This pin is preferred to drive PDB  
pin through microcontroller where the RC filter is optional. In the case of driven by the VDDIO = 3 V to 3.6 V or  
VDD33 directly, a 10-kΩ resistor to the VDDIO = 3 V to 3.6 V or VDD33 and a > 10-µF capacitor to the GND, are  
required (see 8-1).  
7.3.8 Interrupt Pin — Functional Description and Usage (INTB_IN)  
The INTB_IN pin is an active low interrupt input pin. The INTB_IN pin may act as an output driver and pull  
low when PDB is low. This interrupt signal, when configured, propagates to the paired serializer. Consult the  
appropriate serializer data sheet for details of how to configure this interrupt functionality.  
1. On the serializer, set register 0xC6[5] = 1 and 0xC6[0] = 1  
2. Deserializer INTB_IN (pin 4) is set LOW by some downstream device.  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
3. Serializer pulls INTB pin LOW. The signal is active LOW, so a LOW indicates an interrupt condition.  
4. External controller detects INTB = LOW; to determine interrupt source, read HDCP_ISR register.  
5. A read to HDCP_ ISR clears the interrupt at the Serializer, releasing INTB.  
6. The external controller typically must then access the remote device to determine downstream interrupt  
source and clear the interrupt driving the deserializer INTB_IN. This would be when the downstream device  
releases the INTB_IN (pin 4) on the deserializer. The system is now ready to return to step (2) at next falling  
edge of INTB_IN.  
7.3.9 General-Purpose I/O (GPIO)  
7.3.9.1 GPIO[3:0] and D_GPIO[3:0] Configuration  
In normal operation, GPIO[3:0] may be used as GPIOs in either forward channel (outputs) or back channel  
(inputs) mode. GPIO and D_GPIO modes may be configured from the registers (7-11). The same registers  
configure either GPIO or D_GPIO, depending on the status of PORT1_SEL and PORT0_SEL bits (0x34[1:0]).  
D_GPIO operation requires 2-lane FPD-Link III mode. Consult the appropriate serializer data sheet for details  
on D_GPIO configuration. Note: if paired with a DS90UH925Q-Q1 serializer, the devices must be configured  
into 18-bit mode to allow usage of GPIO pins on the serializer. To enable 18-bit mode, set serializer register  
0x12[2] = 1. 18-bit mode is auto-loaded into the deserializer from the serializer. See 7-2 for GPIO enable and  
configuration.  
7-2. GPIO Enable and Configuration  
DESCRIPTION  
DEVICE  
FORWARD CHANNEL  
BACK CHANNEL  
0x0F[3:0] = 0x5  
GPIO3 / D_GPIO3  
Serializer  
Deserializer  
Serializer  
0x0F[3:0] = 0x3  
0x1F[3:0] = 0x5  
0x0E[7:4] = 0x3  
0x1E[7:4] = 0x5  
0x0E[3:0] = 0x3  
0x1E[3:0] = 0x5  
0x0D[3:0] = 0x3  
0x1D[3:0] = 0x5  
0x1F[3:0] = 0x3  
0x0E[7:4] = 0x5  
0x1E[7:4] = 0x3  
0x0E[3:0] = 0x5  
0x1E[3:0] = 0x3  
0x0D[3:0] = 0x5  
0x1D[3:0] = 0x3  
GPIO2 / D_GPIO2  
GPIO1 / D_GPIO1  
GPIO0 / D_GPIO0  
Deserializer  
Serializer  
Deserializer  
Serializer  
Deserializer  
The input value present on GPIO[3:0] or D_GPIO[3:0] may also be read from register or configured to local  
output mode (7-11).  
7.3.9.2 Back Channel Configuration  
The D_GPIO[3:0] pins can be configured to obtain different sampling rates depending on the mode as well as  
back channel frequency. The mode is controlled by register 0x43 (7-11). The back channel frequency can be  
controlled several ways:  
1. Register 0x23[6] sets the divider that controls the back channel frequency based on the internal oscillator.  
0x23[6] = 0 sets the divider to 4 and 0x23[6] = 1 sets the divider to 2. As long as BC_HS_CTL (0x23[4]) is  
set to 0, the back channel frequency is either 5 Mbps or 10 Mbps, based on this bit.  
2. Register 0x23[4] enables the high-speed back channel. This can also be pin-strapped through MODE_SEL1  
(see 7-3). This bit overrides 0x23[6] and sets the divider for the back channel frequency to 1. Setting this  
bit to 1 sets the back channel frequency to 20 Mbps.  
The back channel frequency has variation of ±20%. Note: The back channel frequency must be set to 5 Mbps  
when paired with a DS90UH925Q-Q1, DS90UH921-Q1, DS90UH929-Q1, or DS90UH927Q-Q1. See 7-3 for  
details about configuring the D_GPIOs in various modes.  
The HSCC modes replace normal back-channel signaling with dedicated GPIOs or SPI data, allowing greater  
bandwidth for those functions. The HSCC Modes are enabled by setting the HSCC_MODE field in the  
HSCC_CONTROL register 0x43[2:0] in the DS90UH948-Q1. The HSCC modes eliminate the normal signaling  
such as Device ID, Capabilities, and RX Lock detect. It is intended to be turned on after obtaining RX Lock in  
normal back channel mode. Hence, the serializer properly determines capabilities prior to HSCC mode initiation.  
HSCC mode prevents loading capabilities, and it should only be enabled after RX Lock is established.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-3. Back Channel D_GPIO Effective Frequency  
D_GPIO EFFECTIVE FREQUENCY(1) (kHz)  
HSCC_MODE  
(0x43[2:0])  
NUMBER OF SAMPLES PER  
D_GPIOs  
ALLOWED  
MODE  
5 Mbps BC(2) 10 Mbps BC(3) 20 Mbps BC(4)  
D_GPIOs  
FRAME  
000  
011  
010  
001  
Normal  
Fast  
4
4
2
1
1
6
33  
66  
400  
666  
1000  
133  
800  
D_GPIO[3:0]  
D_GPIO[3:0]  
D_GPIO[1:0]  
D_GPIO0  
200  
333  
500  
Fast  
10  
15  
1333  
2000  
Fast  
(1) The effective frequency assumes the worst-case back channel frequency (–20%) and a 4×sampling rate.  
(2) 5 Mbps corresponds to BC FREQ SELECT = 0 & BC_HS_CTL = 0.  
(3) 10 Mbps corresponds to BC FREQ SELECT = 1 & BC_HS_CTL = 0.  
(4) 20 Mbps corresponds to BC FREQ SELECT = X & BC_HS_CTL = 1.  
7.3.9.3 GPIO Register Configuration  
GPIO_REG[8:5] are register-only GPIOs and may be programmed as outputs or read as inputs through local  
register bits only. Where applicable, these bits are shared with I2S pins and will override I2S input if enabled into  
GPIO_REG mode. See 7-4 for GPIO enable and configuration.  
备注  
Local GPIO value may be configured and read either through local register access, or remote register  
access through the low-speed bidirectional control channel. Configuration and state of these pins are  
not transported from serializer to deserializer as is the case for GPIO[3:0].  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
www.ti.com.cn  
DESCRIPTION  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
7-4. GPIO_REG and GPIO Local Enable and Configuration  
REGISTER CONFIGURATION  
0x1A[3:0] = 0x1  
0x1A[3:0] = 0x9  
0x1A[3:0] = 0x3  
0x21[7:4] = 0x1  
0x21[7:4] = 0x9  
0x21[7:4] = 0x3  
0x21[3:0] = 0x1  
0x21[3:0] = 0x9  
0x21[3:0] = 0x3  
0x20[7:4] = 0x1  
0x20[7:4] = 0x9  
0x20[7:4] = 0x3  
0x20[3:0] = 0x1  
0x20[3:0] = 0x9  
0x20[3:0] = 0x3  
0x1F[3:0] = 0x1  
0x1F[3:0] = 0x9  
0x1F[3:0] = 0x3  
0x1E[7:4] = 0x1  
0x1E[7:4] = 0x9  
0x1E[7:4] = 0x3  
0x1E[3:0] = 0x1  
0x1E[3:0] = 0x9  
0x1E[3:0] = 0x3  
0x1D[3:0] = 0x1  
0x1D[3:0] = 0x9  
0x1D[3:0] = 0x3  
FUNCTION  
Output, L  
Output, H  
GPIO9  
Input, Read: 0x6F[1]  
Output, L  
GPIO_REG8  
GPIO_REG7  
GPIO_REG6  
GPIO_REG5  
GPIO3  
Output, H  
Input, Read: 0x6F[0]  
Output, L  
Output, H  
Input, Read: 0x6E[7]  
Output, L  
Output, H  
Input, Read: 0x6E[6]  
Output, L  
Output, H  
Input, Read: 0x6E[5]  
Output, L  
Output, H  
Input, Read: 0x6E[3]  
Output, L  
GPIO2  
Output, H  
Input, Read: 0x6E[2]  
Output, L  
GPIO1  
Output, H  
Input, Read: 0x6E[1]  
Output, L  
GPIO0  
Output, H  
Input, Read: 0x6E[0]  
7.3.10 SPI Communication  
The SPI control channel uses the secondary link in a 2-lane FPD-Link III implementation. Two possible modes  
are available: forward channel and reverse channel modes. In forward channel mode, the SPI Controller is  
located at the serializer, such that the direction of sending SPI data is in the same direction as the video data.  
In reverse channel mode, the SPI Controller is located at the deserializer, such that the direction of sending SPI  
data is in the opposite direction as the video data.  
The SPI control channel can operate in a high-speed mode when writing data, but must operate at lower  
frequencies when reading data. During SPI reads, data is clocked from the Peripheral to the Controller on the  
SPI clock falling edge. Thus, the SPI read must operate with a clock period that is greater than the round trip  
data latency. On the other hand, for SPI writes, data can be sent at much higher frequencies where the POCI pin  
can be ignored by the Controller.  
SPI data rates are not symmetrical for the two modes of operation. Data over the forward channel can be sent  
much faster than data over the reverse channel.  
备注  
SPI cannot be used to access serializer or deserializer registers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.3.10.1 SPI Mode Configuration  
SPI is configured over I2C using the high-speed control channel configuration (HSCC_CONTROL) register, 0x43  
(7.7). HSCC_MODE (0x43[2:0]) must be configured for either high-speed, forward channel SPI mode (110) or  
high-speed, reverse channel SPI mode (111).  
7.3.10.2 Forward Channel SPI Operation  
In forward channel SPI operation, the SPI Controller located at the serializer generates the SPI clock (SPLK),  
Controller out / Peripheral in data (PICO), and active low Peripheral select (CS). The serializer oversamples the  
SPI signals directly using the video pixel clock. The three sampled values for SPLK, PICO, and CS are each  
sent on data bits in the forward channel frame. At the deserializer, the SPI signals are regenerated using the  
pixel clock. To preserve setup and hold time, the deserializer holds POCI data while the SPLK signal is high. The  
deserializer also delays SPLK by one pixel clock relative to the PICO data, increasing setup by one pixel clock.  
SERIALIZER  
CS  
SPLK  
PICO  
D0  
D1  
D2  
D3  
DN  
CS  
DESERIALIZER  
SPLK  
PICO  
D0  
D1  
D2  
D3  
DN  
7-2. Forward Channel SPI Write  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
SERIALIZER  
SS  
SPLK  
PICO  
POCI  
D0  
D1  
RD0  
RD1  
CS  
DESERIALIZER  
SPLK  
D0  
PICO  
POCI  
RD0  
RD1  
7-3. Forward Channel SPI Read  
7.3.10.3 Reverse Channel SPI Operation  
In reverse channel SPI operation, the deserializer samples the Peripheral select (CS), SPI clock (SCLK) into  
the internal oscillator clock domain. Upon detection of the active SPI clock edge, the deserializer also samples  
the SPI data (PICO). The SPI data samples are stored in a buffer to be passed to the serializer over the back  
channel. The deserializer sends SPI information in a back channel frame to the serializer. In each back channel  
frame, the deserializer sends an indication of the CS value. The CS must be inactive (high) for at least one  
back-channel frame period to ensure propagation to the serializer.  
Because data is delivered in separate back channel frames and buffered, the data may be regenerated in bursts.  
7-4 shows an example of the SPI data regeneration when the data arrives in three back channel frames. The  
first frame delivered the CS active indication, the second frame delivered the first three data bits, and the third  
frame delivers the additional data bits.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
DESERIALIZER  
CS  
SPLK  
PICO  
D0  
D1  
D2  
D3  
DN  
CS  
SPLK  
PICO  
SERIALIZER  
D0  
D1  
D2  
D3  
DN  
7-4. Reverse Channel SPI Write  
For reverse channel SPI reads, the SPI Controller must wait for a round-trip response before generating the  
sampling edge of the SPI clock. This is similar to operation in forward channel mode. Note that at most one  
data/clock sample is sent per back channel frame.  
DESERIALIZER  
CS  
SPLK  
PICO  
POCI  
D0  
D1  
RD0  
RD1  
CS  
SERIALIZER  
SPLK  
D0  
PICO  
POCI  
RD0  
RD1  
7-5. Reverse Channel SPI Read  
For both reverse-channel SPI writes and reads, the SPI_CS signal must be deasserted for at least one back-  
channel frame period.  
Copyright © 2023 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-5. SPI CS Deassertion Requirement  
BACK CHANNEL FREQUENCY  
DEASSERTION REQUIREMENT  
5 Mbps  
10 Mbps  
20 Mbps  
7.5 µs  
3.75 µs  
1.875 µs  
7.3.11 Backward Compatibility  
The DS90UH948-Q1 is also backward compatible to the DS90UH925Q-Q1 and DS90UH927Q-Q1 for PCLK  
frequencies ranging from 25 MHz to 85 MHz or 25 MHz to 96 MHz when paired with DS90UB921-Q1 and  
DS90UH929-Q1. Backward compatibility does not need to be enabled. When paired with a backward-compatible  
device, the deserializer auto-detects to 1-lane FPD-Link III on the primary channel (RIN0±).  
7.3.12 Adaptive Equalizer  
The FPD-Link III receiver inputs incorporate an adaptive equalizer (AEQ) to compensate for signal degradation  
from the communications channel and interconnect components. Each RX port signal path continuously  
monitors cable characteristics for long-term cable aging and temperature changes. The AEQ is primarily  
intended to adapt and compensate for channel losses over the lifetime of a cable installed in an automobile.  
The AEQ attempts to optimize the equalization setting of the RX receiver. This adaption includes compensating  
insertion loss from temperature effects and aging degradation due to bending and flexion. To determine the  
maximum cable reach, factors that affect signal integrity such as jitter, skew, inter-symbol interference (ISI),  
crosstalk, and so forth, must also be considered. The equalization configuration programmed in registers 0x35  
(AEQ_CTL1) and 0x45 (AEQ_CTL2).  
7.3.12.1 Transmission Distance  
When designing the transmission channel, consider the total insertion loss of all components in the signal path  
between a serializer and a deserializer. An example of the transmission channel connects from a FPD-Link  
serializer (SER) to a deserializer would consist of a serializer PCB, two or more connectors, one or more cables,  
and a deserializer PCB as shown in 7-6  
Serializer PCB  
Deserializer PCB  
SER  
DES  
Dacar 535-2  
Dacar 535-2  
Dacar 302  
7-6. Typical Transmission Channel Components With Coaxial Cables  
7-6 depicts the maximum attenuation using DS90UH948-Q1. The PCLK is the maximum frequency based  
on the channel attenuation. The attenuation increases with cable length and frequency. The trace length of the  
PCB has very small contribution to the differential insertion loss of the transmission channel. 7-6 shows the  
maximum attenuation that the AEQ can compensate for at the given PCLK and resultant Nuyquist frequency.  
7-6. Insertion Loss  
FPD-LINK LINE RATE  
(Gbps)  
CHANNEL ATTENUATION  
(dB)  
TYP CABLE LENGTH  
(m)  
PCLK (MHz)  
NYQUIST FREQUENCY (GHz)  
170  
188  
192  
2.97  
3.29  
3.36  
1.48  
1.64  
1.68  
-15  
-12  
-9  
10  
7
5
7.3.12.2 Adaptive Equalizer Algorithm  
The AEQ process steps through allowed values of the equalizer controls find a value that allows the Clock Data  
Recovery (CDR) circuit to maintain valid lock condition. For each EQ setting, the circuit waits for a programmed  
re-lock time period, then checks results for valid lock. If valid lock is detected, the circuit will stop at the current  
EQ setting and maintain constant value as long as lock state persists. If the deserializer loses LOCK, the  
adaptive equalizer will resume the LOCK algorithm and the EQ setting is incremented to the next valid state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Once lock is lost, the circuit will continue searching EQ settings to find a valid setting to reacquire the serial data  
stream sent by the serializer that remains locked.  
7.3.12.3 AEQ Settings  
7.3.12.3.1 AEQ Start-Up and Initialization  
The AEQ circuit can be restarted at any time by setting the AEQ_RESTART bit in the AEQ_CTL1 register  
0x35. Once the deserializer is powered on, the AEQ is continually searching through EQ settings and could  
be at any setting when signal is supplied from the serializer. If the Rx Port CDR locks to the signal, it may be  
good enough for low bit errors, but could be not optimized or over-equalized. For a consistent initial EQ setting,  
TI recommends that the user applies AEQ_RESTART or DIGITAL_RESET0 when the serializer input signal  
frequency is stable to restart adaption from the minimum EQ gain value.  
7.3.12.3.2 AEQ Range  
The user can program the AEQ circuit with the minimum AEQ level setting used during the EQ adaption. Using  
the full AEQ range will provide the most flexible solution, however, if the channel conditions are known and  
an improved deserializer lock time can be achieved by narrowing the search window for allowable EQ gain  
settings. For example, in a system use case with a longer cable and multiple interconnects creating a higher  
channel attenuation, the AEQ would not adapt to the minimum EQ gain settings. In this case, starting the  
adaptation from a higher AEQ level would improve lock time. The AEQ range is determined by the AEQ_CTL2  
register 0x45 where the ADAPTIVE_EQ_FLOOR_VALUE determines the starting value for EQ gain adaption.  
The maximum AEQ limit is not adjustable. To enable the minimum AEQ limit, OVERRIDE_AEQ_FLOOR and  
SET_AEQ_FLOOR bits in the AEQ_CTL1 register must also be set. The setting for the AEQ after adaption can  
be readback from the AEQ_STATUS register 0x3B.  
7.3.12.3.3 AEQ Timing  
The dwell time for AEQ to wait for either the lock or error-free status is also programmable. When checking each  
EQ setting, the AEQ will wait for a time interval, controlled by the ADAPTIVE_EQ_RELOCK_TIME field in the  
AEQ_CTL2 register (see 7.7) before incrementing to the next allowable EQ gain setting. The default wait time  
is set to 2.62 ms. Once the maximum setting is reached, if there is no lock acquired during the programmed  
relock time, the AEQ will restart adaption at the minimum setting or AEQ_FLOOR value.  
7.3.13 I2S Audio Interface  
This deserializer features six I2S output pins that, when paired with a compatible serializer, support surround-  
sound audio applications. The bit clock (I2S_CLK) supports frequencies between 1 MHz and the smaller of <  
PCLK/2 or < 13 MHz. Four I2S data outputs carry two channels of I2S-formatted digital audio each, with each  
channel delineated by the word select (I2C_WC) input.  
Deserializer  
System Clock  
MCLK  
Bit Clock  
Word Select  
Data  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S Receiver  
4
7-7. I2S Connection Diagram  
I2S_WC  
I2S_CLK  
MSB  
LSB  
MSB  
LSB  
I2S_Dx  
7-8. I2S Frame Timing Diagram  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
When paired with a DS90UH925Q , the deserializer I2S interface supports a single I2S data output through  
I2S_DA (24-bit video mode) or two I2S data outputs through I2S_DA and I2S_DB (18-bit video mode).  
7.3.13.1 I2S Transport Modes  
By default, packetized audio is received during video blanking periods in dedicated data island transport  
frames. The transport mode is set in the serializer and auto-loaded into the deserializer by default. The audio  
configuration may be disabled from control registers if forward channel frame transport of I2S data is desired. In  
frame transport, only I2S_DA is received to the deserializer. Surround sound mode, which transmits all four I2S  
data inputs (I2S_D[D:A]), may only be operated in data island transport mode. This mode is only available when  
connected to a DS90UH927Q, DS90UH949-Q1, DS90UH947-Q1, or DS90UH929-Q1 serializer. If connected to  
a DS90UH925Q serializer, only I2S_DA and I2S_DB may be received.  
There are two I2S transport modes:  
Surround Sound (SS) Mode which is the standard 8-channel audio. In this case Audio source is on the Serializer  
side and uses I2S_DA/DB/DC/ DD pins to drive Audio into the serializer which show up on the Deserializer  
I2S_DA/DB/DC/DD outputs.  
Auxiliary Audio (AA) Mode which is only relevant when the DS90UH948-Q1 is paired with DS90UH949-Q1  
Serializer and Audio is send through AUX input of this Serializer.  
7.3.13.2 I2S Repeater  
I2S audio may be fanned-out and propagated in the repeater application. By default, data is propagated via  
data island transport on the FPD-Link interface during the video blanking periods. If frame transport is desired,  
connect the I2S pins from the deserializer to all serializers. Activating surround sound at the top-level serializer  
automatically configures downstream serializers and deserializers for surround-sound transport utilizing data  
island transport. If 4-channel operation utilizing I2S_DA and I2S_DB only is desired, this mode must be explicitly  
set in each serializer and deserializer control register throughout the repeater tree (7.7).  
A DS90UH948-Q1 deserializer configured in repeater mode may also regenerate I2S audio from its I2S input  
pins in lieu of data island frames. See 7-11 and the I2C Control Registers (7.7) for additional details.  
7.3.13.3 I2S Jitter Cleaning  
This device features a standalone PLL to clean the I2S data jitter, supporting high-end car audio systems. If  
I2S_CLK frequency is less than 1MHz, this feature must be disabled through register 0x2B[7]. See the 7.7  
section.  
7.3.13.4 MCLK  
The deserializer has an I2S MCLK output. It supports x1, x2, or x4 of I2S CLK frequency. When the I2S PLL  
is disabled, the MCLK output is off. 7-7 covers the range of I2S sample rates and MCLK frequencies. By  
default, all the MCLK output frequencies are x2 of the I2S CLK frequencies. The MCLK frequencies can also be  
enabled through the register bits 0x3A[6:4] (I2S DIVSEL), shown in 7.7. To select desired MCLK frequency,  
write 0x3A[7], then write to bit [6:4] accordingly.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-7. Audio Interface Frequencies  
SAMPLE RATE  
(kHz)  
I2S DATA WORD SIZE  
(BITS)  
I2S CLK  
(MHz)  
MCLK OUTPUT  
(MHz)  
REGISTER 0x3A[6:4]'b  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
000  
001  
010  
000  
001  
010  
000  
001  
010  
001  
010  
011  
010  
011  
100  
000  
001  
010  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
101  
32  
44.1  
48  
1.024  
1.4112  
1.536  
3.072  
6.144  
1.536  
2.117  
2.304  
4.608  
9.216  
16  
96  
192  
32  
44.1  
48  
24  
96  
192  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-7. Audio Interface Frequencies (continued)  
SAMPLE RATE  
I2S DATA WORD SIZE  
(BITS)  
I2S CLK  
(MHz)  
MCLK OUTPUT  
(MHz)  
REGISTER 0x3A[6:4]'b  
(kHz)  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
I2S_CLK x1  
I2S_CLK x2  
I2S_CLK x4  
001  
010  
011  
001  
010  
011  
001  
010  
011  
010  
011  
100  
011  
100  
110  
32  
2.048  
2.8224  
3.072  
44.1  
48  
32  
96  
6.144  
192  
12.288  
7.3.14 HDCP Repeater  
The supported repeater application provides a mechanism to extend transmission over multiple links to multiple  
display devices.  
7.3.14.1 HDCP  
The HDCP cipher function is implemented in the deserializer per HDCP v1.4 specification. The DS90UH948-Q1  
provides HDCP decryption of audiovisual content when connected to an HDCP capable FPD-Link III serializer.  
HDCP authentication and shared key generation is performed using the HDCP control channel, which is  
embedded in the forward and backward channels of the serial link. On-chip non-volatile memory (NVM) is used  
to store the HDCP keys. The confidential HDCP keys are loaded by TI during the manufacturing process and are  
not accessible external to the device.  
7.3.14.2 HDCP Repeater  
The supported HDCP repeater application provides a mechanism to extend HDCP transmission over multiple  
links to multiple display devices. It authenticates all HDCP devices in the system and distributes protected  
content to the HDCP receivers using the encryption mechanisms provided in the HDCP specification.  
7.3.14.2.1 Repeater Configuration  
In the HDCP repeater application, this document refers to the DS90UH947-Q1 as the HDCP transmitter (TX),  
and refers to the DS90UH948-Q1 as the HDCP receiver (RX). 7-9 shows the maximum configuration  
supported for HDCP repeater implementations. Two levels of HDCP repeaters are supported with a maximum of  
three HDCP Transmitters per HDCP receiver.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
1:3 Repeater  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
RX  
TX  
Source  
TX  
RX  
TX  
TX  
TX  
TX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
1:3 Repeater  
Display  
Display  
RX  
RX  
TX  
TX  
TX  
RX  
Display  
RX  
7-9. HDCP Maximum Repeater Application  
In a repeater application, the I2C interface at each TX and RX is configured to transparently pass I2C  
communications upstream or downstream to any I2C device within the system. This includes a mechanism  
for assigning alternate IDs (Target Aliases) to downstream devices in the case of duplicate addresses.  
To support HDCP repeater operation, the RX includes the ability to control the downstream authentication  
process, assemble the KSV list for downstream HDCP receivers, and pass the KSV list to the upstream HDCP  
transmitter. An I2C Controller within the RX communicates with the I2C Target within the TX. The TX handles  
authenticating with a downstream HDCP Receiver and makes status available through the I2C interface. The RX  
monitors the transmit port status for each TX and reads downstream KSV and KSV list values from the TX.  
In addition to the I2C interface used to control the authentication process, the HDCP repeater implementation  
includes two other interfaces. The FPD-Link LVDS interface outputs the unencrypted video data. In addition  
to providing the video data, the LVDS interface communicates control information and packetized audio data.  
All audio and video data is decrypted at the output of the HDCP receiver and is re-encrypted by the HDCP  
transmitter. 7-10 provides more detailed block diagram of a 1:2 HDCP repeater configuration.  
If the repeater node includes a local output to a display, white-balancing and Hi-FRC dithering functions must not  
be used as they will block encrypted I2S audio and HDCP authentication.  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
HDCP Transmitter  
TX  
downstream  
Receiver  
or  
I2C  
Target  
I2C  
I2C  
Controller  
Repeater  
upstream  
Transmitter  
FPD-Link  
I2S Audio  
HDCP Transmitter  
TX  
HDCP Receiver  
(RX)  
downstream  
Receiver  
or  
I2C  
Target  
Repeater  
FPD-Link III interfaces  
7-10. HDCP 1:2 Repeater Configuration  
7.3.14.2.2 Repeater Connections  
The HDCP repeater requires the following connections between the HDCP receiver and each HDCP Transmitter  
7-11.  
1. Video Data – Connect all FPD-Link data and clock pairs. Single FPD-Link (D[3:0]) or Dual FPD-Link (D[7:0])  
are both possible, provided the Deserializer and all Serializers are configured in the same mode.  
2. I2C – Connect SCL and SDA signals. Both signals must be pulled up to VDD33 or VDDIO = 3 V to 3.6 V  
with 4.7-kΩ resistors.  
3. Audio (optional) – Connect I2S_CLK, I2S_WC, and I2S_Dx signals. Audio is normally transported on the  
FPD-Link interface.  
4. IDx pin – Each Transmitter and Receiver must have an unique I2C address.  
5. MODE_SEL pins — All transmitters and receivers must be set into repeater mode. FPD-Link settings (single  
vs. dual) must also match.  
6. Interrupt pin – Connect DS90UH948-Q1 INTB_IN pin to the DS90UH947-Q1 INTB pin. The signal must be  
pulled up to VDDIO with a 10-kΩ resistor.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Deserializer  
Serializer  
D[7:0]+  
D[7:0]+  
D[7:0]-  
CLK1+  
CLK1-  
D[7:0]-  
CLK+  
CLK-  
VDD33  
VDD33  
MODE_SEL  
REPEAT  
I2S_CLK  
I2S_WC  
I2S_Dx  
I2S_CLK  
I2S_WC  
I2S_Dx  
Optional  
VDDIO  
VDD33  
VDD33  
IDx  
IDx  
INTB  
INTB_IN  
VDD33  
SDA  
SCL  
SDA  
SCL  
7-11. HDCP Repeater Connection Diagram  
7.3.14.2.2.1 Repeater Fan-Out Electrical Requirements  
Repeater applications requiring fan-out from one DS90UH948-Q1 deserializer to up to three DS90UH947-Q1  
serializers requires special considerations for routing and termination of the FPD-Link differential traces. 7-12  
details the requirements that must be met for each signal pair:  
L3 < 60 mm  
TX  
RX  
R1=100  
R2=100 ꢀ  
TX  
L1 < 75 mm  
L2 < 60 mm  
TX  
L3 < 60 mm  
7-12. FPD-Link Fan-Out Electrical Requirements  
7.3.14.2.2.2 HDCP I2S Audio Encryption  
Depending on the quality and specifications of the audiovisual source, HDCP encryption of digital audio may be  
required. When HDCP is active, packetized data island transport audio is also encrypted along with the video  
Copyright © 2023 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
data per HDCP v1.4. I2S audio transmitted in forward channel frame transport mode is not encrypted. System  
designers should consult the specific HDCP specifications to determine if encryption of digital audio is required  
by the specific application audiovisual source.  
7.3.15 Built-In Self Test (BIST)  
An optional at-speed built-in self test (BIST) feature supports testing of the high-speed serial link and the  
low-speed back channel without external data connections. This is useful in the prototype stage, equipment  
production, in-system test, and system diagnostics.  
7.3.15.1 BIST Configuration and Status  
The BIST mode is enabled at the deserializer by pin (BISTEN) or BIST configuration register. The test may  
select either an external PCLK or the 33-MHz internal oscillator clock (OSC) frequency in the serializer. In the  
absence of PCLK, the user can select the internal OSC frequency at the deserializer through the BISTC pin or  
BIST configuration register.  
When BIST is activated at the deserializer, a BIST enable signal is sent to the serializer through the back  
channel. The serializer outputs a test pattern and drives the link at speed. The deserializer detects the test  
pattern and monitors it for errors. The deserializer PASS output pin toggles to flag each frame received  
containing one or more errors. The serializer also tracks errors indicated by the CRC fields in each back channel  
frame.  
备注  
If there is a loss of lock, then BIST error count will be reset.  
The BIST status can be monitored real time on the deserializer PASS pin, with each detected error resulting in  
a half pixel clock period toggled LOW. After BIST is deactivated, the result of the last test is held on the PASS  
output until reset (new BIST test or power down). A high on PASS indicates NO ERRORS were detected. A Low  
on PASS indicates one or more errors were detected. The duration of the test is controlled by the pulse width  
applied to the deserializer BISTEN pin. LOCK status is valid throughout the entire duration of BIST.  
See 7-13 for the BIST mode flow diagram.  
备注  
When BIST is disabled, AEQ will automatically increment to the next value. After BIST is complete it is  
suggested to perform an AEQ reset.  
7.3.15.1.1 Sample BIST Sequence  
Note: Before BIST can be enabled, D_GPIO0 (pin 19) must be strapped HIGH and D_GPIO[3:1] (pins 16, 17,  
and 18) must be strapped LOW.  
1. BIST Mode is enabled through the BISTEN pin of deserializer. The desired clock source is selected through  
the deserializer BISTC pin.  
2. The serializer is awakened through the back channel if it is not already on. An all-zeros pattern is balanced,  
scrambled, randomized, and sent through the FPD-Link III interface to the deserializer. Once the serializer  
and the deserializer are in BIST mode and the deserializer acquires LOCK, the PASS pin of the deserializer  
goes high and BIST starts checking the data stream. If an error in the payload (1 to 35) is detected, the  
PASS pin switches low for one half of the clock period. During the BIST test, the PASS output can be  
monitored and counted to determine the payload error rate per 35 bits.  
3. To stop BIST mode, set the BISTEN pin LOW. BIST duration is user-controlled and may be of any length.  
The link returns to normal operation after the deserializer BISTEN pin is low. 7-14 shows the waveform  
diagram of a typical BIST test for two cases. Case 1 is error-free, and Case 2 shows one with multiple errors. In  
most cases, it is difficult to generate errors due to the robustness of the link (differential data transmission, and  
so forth). Errors may be introduced by greatly extending the cable length, faulting the interconnect medium, or  
reducing signal condition enhancements (Rx equalization).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Normal  
Step 1: DES in BIST  
BIST  
Wait  
Step 2: Wait, SER in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: DES/SER in Normal  
7-13. BIST Mode Flow Diagram  
7.3.15.2 Forward Channel and Back Channel Error Checking  
The deserializer, on locking to the serial stream, compares the recovered serial stream with all-zeroes and  
records any errors in status registers. Errors are also dynamically reported on the PASS pin of the deserializer.  
Forward channel errors may also be read from register 0x25 (7.7).  
The back-channel data is checked for CRC errors once the serializer locks onto the back-channel serial stream,  
as indicated by link detect status (register bit 0x0C[0] - 7.7). CRC errors are recorded in an 8-bit register in  
the serializer. The register is cleared when the serializer enters the BIST mode. As soon as the serializer enters  
BIST mode, the functional mode CRC register starts recording any back channel CRC errors. The BIST mode  
CRC error register is active in BIST mode only and keeps the record of the last BIST run until either the error is  
cleared or the serializer enters BIST mode again.  
BISTEN  
(DES)  
CLK[2:1]  
D[7:0]  
7 bits/frame  
DATA  
(internal)  
PASS  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
Normal  
SSO  
Normal  
BIST Test  
BIST  
Duration  
7-14. BIST Waveforms  
7.3.16 Internal Pattern Generation  
The deserializer supports the internal pattern generation feature. It allows basic testing and debugging of an  
integrated panel. The test patterns are simple and repetitive and allow for a quick visual verification of panel  
operation. As long as the device is not in power down mode, the test pattern is displayed even if no parallel input  
is applied. If no PCLK is received, the test pattern can be configured to use a programmed oscillator frequency.  
For detailed information, refer to Exploring the Int Test Pattern Generation Feature of FPDLink III IVI Devices  
(SNLA132).  
Copyright © 2023 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
备注  
Enabling PATGEN on the DS90UH948-Q1, using the internal clock, will cause loss of communication  
between the serializer and deserializer, so internal PATGEN from the DS90UH948-Q1 should only be  
enabled via local I2C access.  
7.4 Device Functional Modes  
7.4.1 Configuration Select MODE_SEL[1:0]  
The DS90UH948-Q1 can be configured for several different operating modes via the MODE_SEL[1:0] input pins,  
or via the register bits 0x23 [4:2] (MODE_SEL1) and 0x49 (MODE_SEL0).  
The DS90UH948-Q1 is capable of operating in either in 1-lane or 2-lane mode for FPD-Link III. By default, the  
FPD-Link III receiver automatically configures the input based on 1- or 2-lane mode operation. Programming  
register 0x34 [4:3] settings will override the automatic detection. For each FPD-Link III pair, the serial datastream  
is composed of a 35-bit symbol.  
The DS90UH948-Q1 recovers the FPD-Link III serial datastream(s) and produces video data driven to the  
OpenLDI (LVDS) interface. OpenLDI single link and dual link are supported with color depths of 18 bits per pixel  
or 24 bits per pixel. There are 8 differential data pairs (D0 through D7) and two clock pairs (CLK1 and CLK2)  
on the OpenLDI interface. The number of data lines may vary, depending on the pixel formats supported. For  
single-link output the pixel clock is limited to 96 MHz. In the case of dual link, the pixel clock is limited to 192  
MHz (or 96 MHz per LVDS port). When in a dual-link configuration, LVDS channels D0 to D3 carry ODD pixel  
data, and LVDS channels D4 to D7 carry EVEN pixel data.  
The device can be configured in following modes:  
1-lane FPD-Link III input, single-link OpenLDI output  
1-lane FPD-Link III Input, Dual Link OpenLDI output  
2-lane FPD-Link III Input, dual-link OpenLDI output  
2-lane FPD-Link III Input, single-link OpenLDI output  
2-lane FPD-Link III Input, single-link OpenLDI output (replicate)  
7.4.1.1 1-Lane FPD-Link III Input, Single Link OpenLDI Output  
In this configuration the PCLK rate embedded within the 1-lane FPD-Link III frame can range from 25 MHz to 96  
MHz, resulting in a link rate of 875 Mbps (35 bit × 25 MHz) to 3.36 Gbps (35 bit × 96 MHz). Each LVDS data lane  
operates at a speed of 7 bits per LVDS clock cycle; resulting in a serial line rate of 175 Mbps to 672 Mbps. CLK1  
operates at the same rate as PCLK with a duty cycle ratio of 57:43.  
7.4.1.2 1-Lane FPD-Link III Input, Dual Link OpenLDI Output  
The input RGB data is split into odd and even pixels starting with the ODD (first) pixel outputs D0 to D3 and  
then the EVEN (second) pixel outputs D4 to D7. The splitting of the data signals starts with DE (data enable)  
transitioning from logic LOW to HIGH indicating active data.  
In this configuration the PCLK rate embedded within the 1-lane FPD-Link III frame can range from 50 MHz to 96  
MHz, resulting in a link rate of 1.75 Gbps (35 bit × 50 MHz) to 3.36 Gbps (35 bit × 96 MHz). Each LVDS data  
lane operates at a speed of 7 bits per 2 LVDS clock cycles, resulting in a serial line rate of 175 Mbps to 336  
Mbps. CLK1 and CLK2 operate at half the rate as PCLK with a duty cycle ratio of 57:43.  
7.4.1.3 2-Lane FPD-Link III Input, Dual Link OpenLDI Output  
The input RGB data is split into odd and even pixels starting with the ODD (first) pixel outputs D0 to D3 and  
then the EVEN (second) pixel outputs D4 to D7. The splitting of the data signals starts with DE (data enable)  
transitioning from logic LOW to HIGH indicating active data.  
In this configuration the PCLK rate embedded within 2-lane FPD-Link III frame can range from 50 MHz to 192  
MHz, resulting in a link rate of 875 Mbps (35 bit × 25 MHz) to 3.36 Gbps (35 bit × 96 MHz). Each LVDS data lane  
will operate at a speed of 7 bits per 2 LVDS clock cycles, resulting in a serial line rate of 175 Mbps to 672 Mbps.  
CLK1 and CLK2 operate at half the rate as PCLK with a duty cycle ratio of 57:43.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.4.1.4 2-Lane FPD-Link III Input, Single Link OpenLDI Output  
In this configuration the PCLK rate embedded within 2-lane FPD-Link III frame can range from 50 MHz to 192  
MHz, resulting in a link rate of 875 Mbps (35 bit × 25 MHz) to 3.36 Gbps (35 bit × 96 MHz). Each LVDS data lane  
will operate at a speed of 7 bits per LVDS clock cycle; resulting in a serial line rate of 350 Mbps to 1344 Mbps.  
CLK1 operates at the twice the rate as PCLK with a duty cycle ratio of 57:43.  
7.4.1.5 1-Lane FPD-Link III Input, Single Link OpenLDI Output (Replicate)  
Same as 1-lane FPD-Link III input, single-link OpenLDI output mode, and duplicates the LVDS signal on D4 to  
D7 outputs.  
7.4.2 MODE_SEL[1:0]  
Possible configurations are shown in 7-15. These are described above (7.4.1).  
1-lane FPD-Link III Input, Single Link OpenLDI Output  
2-lane FPD-Link III Input, Dual Link OpenLDI Output  
948  
948  
D0  
D1  
D0  
D1  
875 Mbps t 3.36 Gbps  
875 Mbps t 3.36 Gbps  
D2  
D2  
CLK1 25 t 96 MHz  
CLK1 25 t 96 MHz  
RIN0  
RIN0  
D3  
D3  
Disabled  
875 Mbps t 3.36 Gbps  
D4  
D5  
D6  
D4  
D5  
D6  
RIN1  
RIN1  
IDLE  
25 t 96 MHz  
CLK2  
D7  
CLK2  
D7  
1-lane FPD-Link III Input, Dual Link OpenLDI Output  
2-lane FPD-Link III Input, Single Link OpenLDI Output  
D0  
D1  
D2  
D0  
D1  
D2  
948  
948  
875 Mbps t 3.36 Gbps  
1.75 Gbps t 3.36 Gbps  
CLK1 25 t 48 MHz  
CLK1 50 t 192 MHz  
RIN0  
RIN0  
D3  
D3  
875 Mbps t 3.36 Gbps  
D4  
D5  
D6  
D4  
D5  
D6  
Disabled  
RIN1  
RIN1  
IDLE  
CLK2  
D7  
CLK2  
D7  
25 t 48 MHz  
1-lane FPD-Link III Input, Single Link OpenLDI Output (Replicate)  
D0  
D1  
D2  
948  
875 Mbps t 3.36 Gbps  
CLK1 25 t 96 MHz  
RIN0  
D3  
D4  
D5  
D6  
Disabled  
RIN1  
CLK2  
D7  
25 t 96 MHz  
7-15. Data-Path Configurations  
Copyright © 2023 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
V
DD33  
R1  
VMODE  
MODE_SEL[1:0]  
Deserializer  
R2  
7-16. MODE_SEL[1:0] Connection Diagram  
7-8. Configuration Select (MODE_SEL0)  
VMODE  
SUGGESTED STRAP  
VMODE  
VOLTAGE  
TARGET  
VOLTAGE  
RESISTORS  
(1% tolerance)  
OUTPUT_MOD  
E [1:0]  
NO.  
MAP_SEL  
OUTPUT MODE  
V (TYP)  
VDD33 = 3.3 V  
0
R1 (kΩ)  
R2 (kΩ)  
10  
0
1
2
3
4
5
6
7
0
Open  
73.2  
66.5  
59  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
Dual OLDI output  
Dual SWAP output  
Single OLDI output  
Replicate  
0.169 x V(VDD33)  
0.230 x V(VDD33)  
0.295 x V(VDD33)  
0.376 x V(VDD33)  
0.466 x V(VDD33)  
0.556 x V(VDD33)  
0.801 x V(VDD33)  
0.559  
0.757  
0.974  
1.241  
1.538  
1.835  
2.642  
15  
20  
24.9  
30.1  
40.2  
49.9  
75  
49.9  
46.4  
40.2  
18.7  
Dual OLDI output  
Dual SWAP output  
Single OLDI output  
Replicate  
7-9. Configuration Select (MODE_SEL1)  
VMODE  
TARGET  
VOLTAGE  
SUGGESTED STRAP  
VMODE  
VOLTAGE  
HIGH-SPEED  
BACK  
CHANNEL  
RESISTORS  
REPEATE  
R
INPUT  
MODE  
NO.  
MODE  
(1% tolerance)  
V (TYP)  
VDD33 = 3.3 V  
0
R1 (kΩ)  
R2 (kΩ)  
10  
0
1
2
3
4
5
6
7
0
Open  
73.2  
66.5  
59  
0
0
0
0
1
1
1
1
00  
01  
10  
11  
00  
01  
10  
11  
5 Mbps  
5 Mbps  
20 Mbps  
20 Mbps  
5 Mbps  
5 Mbps  
20 Mbps  
20 Mbps  
STP  
Coax  
STP  
0.169 x V(VDD33)  
0.230 x V(VDD33)  
0.295 x V(VDD33)  
0.376 x V(VDD33)  
0.466 x V(VDD33)  
0.556 x V(VDD33)  
0.801 x V(VDD33)  
0.559  
0.757  
0.974  
1.241  
1.538  
1.835  
2.642  
15  
20  
24.9  
30.1  
40.2  
49.9  
75  
Coax  
STP  
49.9  
46.4  
40.2  
18.7  
Coax  
STP  
Coax  
7.4.2.1 Dual Swap  
When operated in Dual OLDI output mode, the odd and even output channels (D0-3 and D4-7 respectively) can  
be swapped. This is configurable through MODE_SEL0 pin strapping (see table 7-8) and can be overridden via  
I2C using the FPD_TX_MODE register.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Dual OLDI Output Default  
Dual OLDI Output SWAP  
948  
948  
D0  
D1  
D2  
D0  
D1  
D2  
ODD  
EVEN  
ODD  
CLK1  
D3  
CLK1  
D3  
RIN0  
RIN1  
RIN0  
RIN1  
D4  
D5  
D6  
D4  
D5  
D6  
EVEN  
CLK2  
D7  
CLK2  
D7  
7-17. Dual oLDI Output SWAP  
7.4.3 OpenLDI Output Frame and Color Bit Mapping Select  
DS90UH948-Q1 can be configured to output 24-bit color (RGB888) or 18-bit color (RGB666) with 2 different  
mapping schemes, shown in 7-18 and 7-19. Each frame corresponds to a single pixel clock (PCLK) cycle.  
The LVDS clock output from CLK1± and CLK2± follows a 4:3 duty cycle scheme, with each 28-bit pixel frame  
starting with two LVDS bit clock periods high, three low, and ending with two high. The mapping scheme is  
controlled by MODE_SEL0 pin or by Register (7.7).  
7-10 lists common industry standard naming conventions for these LVDS bit mapping schemes.  
7-10. LVDS Formats  
24 Bit Mode  
OLDI/SPWG/VESA  
JEIDA  
18 Bit Mode  
MAPSEL = H  
MAPSEL = L  
4 Lane 18 Bit Mode  
Standard 18 bit  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
G10  
B11  
R15  
B10  
R14  
G15  
R13  
G14  
R12  
G13  
R11  
G12  
R10  
G11  
D0 +/-  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
B15  
G17  
B14  
G16  
B13  
R17  
B12  
R16  
B17  
B16  
D3 +/-  
D4 +/-  
G20  
B21  
R25  
B20  
R24  
G25  
R23  
G24  
R22  
G23  
R21  
G22  
R20  
G21  
D5 +/-  
D6 +/-  
DE  
--  
VS  
HS  
B25  
G27  
B24  
G26  
B23  
R27  
B22  
R26  
B27  
B26  
D7 +/-  
CLK2 +/-  
(Differential)  
7-18. 24-Bit Color Dual FPD-Link Mapping: MSBs on D3/D7,"OLDI/SPWG/VESA" (MAPSEL = H)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
G12  
B13  
R17  
B12  
R16  
G17  
R15  
R14  
G15  
R13  
G14  
R12  
D0 +/-  
G16  
G13  
B14  
R10  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
B17  
G11  
B16  
G10  
B15  
R11  
B11  
B10  
D3 +/-  
D4 +/-  
G22  
B23  
R27  
B22  
R26  
G27  
R25  
G26  
R24  
G25  
R23  
G24  
R22  
G23  
D5 +/-  
D6 +/-  
DE  
--  
VS  
HS  
B27  
G21  
B26  
G20  
B25  
R21  
B24  
R20  
B21  
B20  
D7 +/-  
CLK2 +/-  
(Differential)  
7-19. 24-Bit Color Dual FPD-Link Mapping: LSBs on D3/D7, "JEIDA" (MAPSEL = L)  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
G10  
B11  
R15  
B10  
R14  
G15  
R13  
R12  
G13  
R11  
G12  
R10  
G11  
D0 +/-  
G14  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
B15  
G17  
B14  
G16  
B13  
R17  
B12  
R16  
B17  
B16  
D3 +/-  
D4~D7 +/-  
7-20. 24-Bit Color Single FPD-Link Mapping: MSBs on D3, "OLDI/SPWG/VESA" (MAPSEL = H)  
Copyright © 2023 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
G12  
B13  
R17  
B12  
R16  
G17  
R15  
G16  
R14  
G15  
R13  
G14  
R12  
G13  
D0 +/-  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
B17  
G11  
B16  
G10  
B15  
R11  
B14  
R10  
B11  
B10  
D3 +/-  
D4~D7 +/-  
7-21. 24-Bit Color Single FPD-Link Mapping: LSBs on D3, "JEIDA" (MAPSEL = L)  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
--  
R13  
--  
R12  
G13  
R11  
R10  
G11  
--  
--  
--  
D0 +/-  
--  
G12  
G10  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
B13  
G15  
B12  
G14  
B11  
R15  
B10  
R14  
B15  
B14  
D3 +/-  
D4 +/-  
--  
--  
R23  
--  
R22  
G23  
R21  
G22  
R20  
G21  
--  
--  
--  
G20  
D5 +/-  
D6 +/-  
DE  
--  
VS  
HS  
B23  
G25  
B22  
G24  
B21  
R25  
B20  
R24  
B25  
B24  
D7 +/-  
CLK2 +/-  
(Differential)  
7-22. 18-Bit Color Dual FPD-Link Mapping, "4 Lane 18 Bit Mode" (MAPSEL = H)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
G10  
B11  
R15  
B10  
R14  
G15  
R13  
R12  
G13  
R11  
G12  
R10  
D0 +/-  
G14  
B15  
G11  
B12  
D1 +/-  
D2 +/-  
DE  
VS  
HS  
B14  
B13  
D3 +/-  
D4 +/-  
G20  
B21  
R25  
B20  
R24  
G25  
R23  
G24  
R22  
G23  
R21  
G22  
R20  
G21  
D5 +/-  
D6 +/-  
DE  
VS  
HS  
B25  
B24  
B23  
B22  
D7 +/-  
CLK2 +/-  
(Differential)  
7-23. 18-Bit Color Dual FPD-Link Mapping, Standard 18 Bit (MAPSEL = L)  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
--  
R13  
--  
R12  
G13  
R11  
R10  
G11  
--  
--  
--  
D0 +/-  
--  
G12  
G10  
D1 +/-  
D2 +/-  
DE  
--  
VS  
HS  
B13  
G15  
B12  
G14  
B11  
R15  
B10  
R14  
B15  
B14  
D3 +/-  
D4~D7 +/-  
7-24. 18-Bit Color Single FPD-Link Mapping, "4 Lane 18 Bit Mode" (MAPSEL = H)  
Copyright © 2023 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
CLK1 +/-  
(Differential)  
Previous cycle  
Current cycle  
G10  
B11  
R15  
B10  
R14  
G15  
R13  
G14  
R12  
G13  
R11  
G12  
R10  
G11  
D0 +/-  
D1 +/-  
D2 +/-  
DE  
VS  
HS  
B15  
B14  
B13  
B12  
D3~D7 +/-  
7-25. 18-Bit Color Single FPD-Link Mapping, Standard 18 Bit (MAPSEL = L)  
7.5 Image Enhancement Features  
Several image enhancement features are provided. The white-balance LUTs allow the user to define and map  
the color profile of the display. Adaptive Hi-FRC dithering enables the presentation of 'true color' images on an  
18-bit display.  
7.5.1 White Balance  
The white-balance feature enables similar display appearance when using LCD’s from different vendors. It  
compensates for native color temperature of the display, and adjusts relative intensities of R, G, and B to  
maintain specified color temperature. Programmable control registers are used to define the contents of three  
LUTs (8-bit color value for Red, Green and Blue) for the white-balance feature. The LUTs map input RGB values  
to new output RGB values. There are three LUTs, one LUT for each color. Each LUT contains 256 entries, 8-bits  
per entry with a total size of 6144 bits (3 × 256 x 8). All entries are readable and writable. Calibrated values are  
loaded into registers through the I2C interface (deserializer is a Target device). This feature may also be applied  
to lower color depth applications such as 18-bit (666) and 16-bit (565). White balance is enabled and configured  
via serial control bus register.  
7.5.2 LUT Contents  
The user must define and load the contents of the LUT for each color (R,G,B). Regardless of the color depth  
being driven (888, 666, 656), the user must always provide contents for 3 complete LUTs: 256 colors × 8 bits ×  
3 tables. Unused bits – LSBs – shall be set to 0 by the user. When 24-bit (888) input data is being driven to a  
24-bit display, each LUT (R, G and B) must contain 256 unique 8-bit entries. The 8-bit white balanced data is  
then available at the output of the deserializer, and driven to the display.  
Alternatively, with 6-bit input data the user may choose to load complete 8-bit values into each LUT. This mode  
of operation provides the user with finer resolution at the LUT output to more closely achieve the desired white  
point of the calibrated display. Although 8-bit data is loaded, only 64 unique 8-bit white balance output values are  
available for each color (R, G and B). The result is 8-bit white balanced data. Before driving to the output of the  
deserializer, the 8-bit data must be reduced to 6-bit with an FRC dithering function. To operate in this mode, the  
user must configure the deserializer to enable the FRC2 function.  
Examples of the three types of LUT configurations described are shown in 7-26.  
备注  
When the LUT programming is active, register access to the main page is restricted.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
备注  
If the LUT programming page is accidentally entered, it can be exited by writing anything to register  
0xFF  
7.5.3 Enabling White Balance  
The user must load all 3 LUTs prior to enabling the white balance feature. The following sequence must be  
followed by the user to initialize white balance after power-on:  
1. Load contents of all 3 LUTs . This requires a sequential loading of LUTs - first RED, second GREEN, third  
BLUE. 256, 8-bit entries must be loaded to each LUT. Page registers must be set to select each LUT.  
2. Enable white balance. By default, the LUT data may not be reloaded after initialization at power-on.  
An option does exist to allow LUT reloading after power-on and initial LUT loading (as previously described).  
This option may only be used after enabling the white-balance reload feature via the associated serial control  
bus register. In this mode the LUTs may be reloaded by the host controller via I2C. This provides the user with  
the flexibility to refresh LUTs periodically, or upon system requirements, to change to a new set of LUT values.  
The host controller loads the updated LUT values via the serial bus interface. There is no need to disable the  
white balance feature while reloading the LUT data. Refreshing the white balance to the new set of LUT data is  
seamless — no interruption of displayed data. Please refer to the programming example in the next section.  
Note that initial loading of LUT values requires that all 3 LUTs be loaded sequentially. When reloading, partial  
LUT updates may be made; the LUT cannot be read.  
8-bit in / 8 bit out  
6-bit in / 6 bit out  
6-bit in / 8 bit out  
Gray level Data Out  
Entry  
Gray level Data Out  
(8-bits)  
Gray level Data Out  
Entry  
(8-bits)  
Entry  
(8-bits)  
0
1
2
3
4
5
6
7
8
9
00000000b  
00000001b  
00000011b  
00000011b  
00000110b  
00000110b  
00000111b  
00000111b  
00001000b  
00001010b  
0
00000000b  
0
00000001b  
1 N/A  
2 N/A  
3 N/A  
1 N/A  
2 N/A  
3 N/A  
4
00000100b  
4
00000110b  
5 N/A  
6 N/A  
7 N/A  
5 N/A  
6 N/A  
7 N/A  
8
00001000b  
8
00001011b  
9 N/A  
10 N/A  
11 N/A  
9 N/A  
10 N/A  
11 N/A  
10 00001001b  
11 00001011b  
248 11111010b  
249 11111010b  
250 11111011b  
251 11111011b  
252 11111110b  
253 11111101b  
254 11111101b  
255 11111111b  
248 11111000b  
249 N/A  
248 11111010b  
249 N/A  
250 N/A  
250 N/A  
251 N/A  
251 N/A  
252 11111100b  
253 N/A  
252 11111111b  
253 N/A  
254 N/A  
254 N/A  
255 N/A  
255 N/A  
7-26. White-Balance LUT Configuration  
7.5.3.1 LUT Programming Example  
# Example DS90UH948-Q1 White Balance RGB LUT loading:  
board.devAddr = 0x58  
board.WriteReg(0x2A, 0x70) # Red LUT  
board.WriteReg(0x00, 0x00)  
board.WriteReg(0x01, 0x01)  
board.WriteReg(0x02, 0x02)  
...  
board.WriteReg(0x98, 0x98)  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
board.WriteReg(0x99, 0x99)  
board.WriteReg(0x9A, 0x9A)  
...  
board.WriteReg(0xFD, 0xFD)  
board.WriteReg(0xFE, 0xFE)  
board.WriteReg(0xFF, 0xFF)  
board.WriteReg(0x2A, 0xB0) # Green LUT  
board.WriteReg(0x00, 0x00)  
board.WriteReg(0x01, 0x01)  
board.WriteReg(0x02, 0x02)  
...  
board.WriteReg(0x98, 0x98)  
board.WriteReg(0x99, 0x99)  
board.WriteReg(0x9A, 0x9A)  
...  
board.WriteReg(0xFD, 0xFD)  
board.WriteReg(0xFE, 0xFE)  
board.WriteReg(0xFF, 0xFF)  
board.WriteReg(0x2A, 0xF0) # Blue LUT  
board.WriteReg(0x00, 0x00)  
board.WriteReg(0x01, 0x01)  
board.WriteReg(0x02, 0x02)  
...  
board.WriteReg(0x98, 0x98)  
board.WriteReg(0x99, 0x99)  
board.WriteReg(0x9A, 0x9A)  
...  
board.WriteReg(0xFD, 0xFD)  
board.WriteReg(0xFE, 0xFE)  
board.WriteReg(0xFF, 0xFF)  
board.WriteReg(0x2A, 0x20) # Enable WB  
7.5.4 Adaptive Hi-FRC Dithering  
The adaptive frame rate control FRC dithering feature delivers product-differentiating image quality. It reduces  
24-bit RGB (8 bits per sub-pixel) to 18-bit RGB (6 bits per sub-pixel), smoothing color gradients, and allowing the  
flexibility to use lower cost 18-bit displays. FRC dithering is a method to emulate missing colors on a lower color  
depth LCD display by changing the pixel color slightly with every frame. FRC is achieved by controlling on and  
off pixels over multiple frames (temporal). Static dithering regulates the number of on and off pixels in a small  
defined pixel group (spatial). The FRC module includes both temporal and spatial methods and also Hi-FRC.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Conventional FRC can display only 16,194,277 colors with 6-bit RGB source. Hi-FRC enables full (16,777,216)  
color on an 18-bit LCD panel. The adaptive FRC module also includes input pixel detection to apply specific  
Spatial dithering methods for smoother gray level transitions. When enabled, the lower LSBs of each RGB  
output are not active; only 18-bit data (6 bits per R,G and B) are driven to the display. This feature is enabled via  
serial control bus register. Two FRC functional blocks are available, and may be independently enabled. FRC1  
precedes the white-balance LUT, and is intended to be used when 24-bit data is being driven to an 18-bit display  
with a white-balance LUT that is calibrated for an 18-bit data source. The second FRC block, RC2, follows the  
white balance block and is intended to be used when fine adjustment of color temperature is required on an  
18-bit color display, or when a 24-bit source drives an 18-bit display with a white-balance LUT calibrated for  
24-bit source data.  
For proper operation of the FRC dithering feature, the user must provide a description of the display timing  
control signals. The timing mode, sync mode (HS, VS) or DE only must be specified, along with the active  
polarity of the timing control signals. All this information is entered to device control registers via the serial bus  
interface.  
Adaptive Hi-FRC dithering consists of several components. Initially, the incoming 8-bit data is expanded to  
9-bit data. This allows the effective dithered result to support a total of 16.7 million colors. The incoming 9-bit  
data is evaluated, and one of four possible algorithms is selected. The majority of incoming data sequences  
are supported by the default dithering algorithm. Certain incoming data patterns (black/white pixel, full on/off  
sub-pixel) require special algorithms designed to eliminate visual artifacts associated with these specific gray  
level transitions. Three algorithms are defined to support these critical transitions.  
An example of the default dithering algorithm is shown in 7-27. The 1 or 0 value shown in 7-27  
7-27 describes whether the 6-bit value is increased by 1 (“1”) or left unchanged (“0”). In this case, the 3  
truncated LSBs are 001.  
F0L0  
PD1  
Frame = 0, Line = 0  
Pixel Data one  
Cell Value 010  
R[7:2]+0, G[7:2]+1, B[7:2]+0  
LSB=001  
three lsb of 9 bit data (8 to 9 for Hi-Frc)  
Pixel Index  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
LSB = 001  
F0L0  
F0L1  
F0L2  
F0L3  
010  
101  
000  
000  
000  
000  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F1L0  
F1L1  
F1L2  
F1L3  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
R = 4/32  
G = 4/32  
B = 4/32  
F2L0  
F2L1  
F2L2  
F2L3  
000  
000  
010  
101  
000  
000  
000  
000  
010  
101  
000  
000  
000  
000  
000  
000  
010  
000  
000  
101  
000  
000  
000  
000  
000  
101  
010  
000  
000  
000  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
F3L0  
F3L1  
F3L2  
F3L3  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
000  
000  
000  
000  
111  
000  
000  
000  
000  
000  
111  
000  
000  
R = 4/32  
G = 4/32  
B = 4/32  
7-27. Default FRC Algorithm  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.6 Programming  
7.6.1 Serial Control Bus  
The device may also be configured by the use of a I2C-compatible serial control bus. Multiple devices may share  
the serial control bus (up to eight device addresses supported). The device address is set through a resistor  
divider (RHIGH and RLOW — see 7-28 below) connected to the IDx pin.  
VDDIO  
R
HIGH  
VI2C  
IDX  
VIDX  
RPU  
RPU  
R
LOW  
HOST  
Deserializer  
SCL  
SDA  
SCL  
SDA  
To other  
Devices  
7-28. Serial Control Bus Connection  
The serial control bus consists of two signals, SCL and SDA. SCL is a serial bus clock input. SDA is the serial  
bus data input / output signal. Both SCL and SDA signals require an external pullup resistor to 1.8-V or 3.3-V  
VI2C. For most applications, TI recommends that the user adds a 4.7-kΩ pullup resistor to the VDD33 or 2.2 kΩ  
resistor to the VDD18. However, the pullup resistor value may be adjusted for capacitive loading and data rate  
requirements. The signals are either pulled high or driven low. For more details information on how to calculate  
the pullup resistor, see I2C Bus Pullup Resistor Calculation (SLVA689).  
The IDx pin configures the control interface to one of eight possible device addresses. A pullup resistor and a  
pulldown resistor may be used to set the appropriate voltage ratio between the IDx input pin (VLOW) and VDD33,  
each ratio corresponding to a specific device address. See 7-11 for more information.  
7-11. Serial Control Bus Addresses for IDx  
VIDX  
VIDX  
SUGGESTED STRAP RESISTORS  
PRIMARY ASSIGNED I2C ADDRESS  
VOLTAGE  
TARGET VOLTAGE (1% tolerance)  
NO.  
V (TYP)  
VDD = 3.3 V  
0
R1 (kΩ)  
R2 (kΩ)  
7-BIT 8-BIT  
0
1
2
3
4
5
6
7
0
Open  
73.2  
66.5  
59  
10  
15  
0x2C  
0x2E  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3C  
0x58  
0x5C  
0x60  
0x64  
0x68  
0x6C  
0x70  
0x78  
0.169 x V(VDD33)  
0.230 x V(VDD33)  
0.295 x V(VDD33)  
0.376 x V(VDD33)  
0.466 x V(VDD33)  
0.556 x V(VDD33)  
0.801 x V(VDD33)  
0.559  
0.757  
0.974  
1.241  
1.538  
1.835  
2.642  
20  
24.9  
30.1  
40.2  
49.9  
75  
49.9  
46.4  
40.2  
18.7  
The serial bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SDA transitions low while SCL is high. A STOP occurs when SCL transitions high while SDA is also HIGH. See  
7-29.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
SDA  
SCL  
S
P
START condition, or  
START repeat condition  
STOP condition  
7-29. START and STOP Conditions  
To communicate with a remote device, the host controller sends the Target address and listens for a response  
from the Target. This response is referred to as an acknowledge bit (ACK). If a Target on the bus is addressed  
correctly, it acknowledges (ACKs) the Controller by driving the SDA bus low. If the address does not match the  
Target address of a device, the Target not-acknowledges (NACKs) the Controller by letting the SDA be pulled  
High. ACKs also occur on the bus when data is transmitted. When the Controller writes data, the Target sends  
an ACK after every data byte is successfully received. When the Controller reads data, the Controller sends an  
ACK after every data byte is received to let the Target know that the Controller is ready to receive another data  
byte. When the Controller wants to stop reading, the Controller sends a NACK after the last data byte to create  
a stop condition on the bus. All communication on the bus begins with either a start condition or a repeated Start  
condition. All communication on the bus ends with a stop condition. A READ is shown in 7-30 and a WRITE is  
shown in 7-31.  
Register Address  
Target Address  
Target Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
Sr  
1
P
7-30. Serial Control Bus — READ  
Register Address  
Target Address  
Data  
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
7-31. Serial Control Bus — WRITE  
The I2C Controller located in the deserializer must support I2C clock stretching. For more information on I2C  
interface requirements and throughput considerations, refer to the I2C Communication Over FPD-Link III with  
Bidirectional Control Channel (SNLA131).  
备注  
I2C access over the BCC requires each transaction be terminated with a STOP rather than a repeated  
START.  
备注  
Serial Control Bus does not spport short format read over the BCC  
7.6.2 Multi-Controller Arbitration Support  
The bidirectional control channel in the FPD-Link III devices implements I2C-compatible bus arbitration in the  
proxy I2C Controller implementation. When sending a data bit, each I2C Controller senses the value on the SDA  
line. If the Controller sends a logic 1 but senses a logic 0, the Controller loses arbitration. The Controller will  
stop driving SDA and retry the transaction when the bus becomes idle. Thus, multiple I2C Controllers may be  
implemented in the system.  
For example, there might also be a local I2C Controller at each camera. The local I2C Controller could access  
the image sensor and EEPROM. The only restriction would be that the remote I2C Controller at the camera  
Copyright © 2023 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
should not attempt to access a remote Target through the BCC that is located at the host controller side of  
the link. In other words, the control channel should only operate in camera mode for accessing remote Target  
devices to avoid issues with arbitration across the link. The remote I2C Controller should also not attempt to  
access the deserializer registers to avoid a conflict in register access with the Host controller.  
If the system does require Controller-Target operation in both directions across the BCC, some method of  
communication must be used to ensure only one direction of operation occurs at any time. The communication  
method could include using available R/W registers in the deserializer to allow Controllers to communicate with  
each other to pass control between the two Controllers. An example would be to use register 0x18 or 0x19 in the  
deserializer as a mailbox register to pass control of the channel from one Controller to another.  
7.6.3 I2C Restrictions on Multi-Controller Operation  
The I2C specification does not provide for arbitration between Controllers under certain conditions. The system  
should make sure the following conditions cannot occur to prevent undefined conditions on the I2C bus:  
One Controller generates a repeated start while another Controller is sending a data bit.  
One Controller generates a stop while another Controller is sending a data bit.  
One Controller generates a repeated start while another Controller sends a stop.  
Note that these restrictions mainly apply to accessing the same register offsets within a specific I2C Target.  
7.6.4 Multi-Controller Access to Device Registers for Newer FPD-Link III Devices  
When using the latest generation of FPD-Link III devices (DS90UH94x-Q1), serializers or deserializer registers  
may be accessed simultaneously from both local and remote I2C Controllers. These devices have internal logic  
to properly arbitrate between sources to allow proper read and write access without risk of corruption.  
Access to remote I2C Targets is still be allowed in only one direction at a time (camera or display mode).  
7.6.5 Multi-Controller Access to Device Registers for Older FPD-Link III Devices  
When using older FPD-Link III devices (in backward compatible mode), simultaneous access to serializer  
or deserializer registers from both local and remote I2C Controllers may cause incorrect operation. Thus,  
restrictions must be imposed on accessing of serializer and deserializer registers. The likelihood of an error  
occurrence is relatively small, but it is possible for collision on reads and writes to occur, resulting in a read or  
write error.  
TI recommends two basic options:  
Allow device register access only from one controller.  
In a display mode system, this would allow only the host controller to access the serializer registers (local)  
and the deserializer registers (remote). A controller at the deserializer (local to the display) would not be  
allowed to access the deserializer or serializer registers.  
Allow local register access only with no access to remote serializer or deserializer registers.  
The host controller would be allowed to access the serializer registers while a controller at the deserializer  
could access those register only. Access to remote I2C Targets would still be allowed in one direction  
(camera or display mode).  
In a very limited case, remote and local access could be allowed to the deserializer registers at the same  
time. Register access is ensured to work correctly if both local and remote Controllers are accessing the same  
deserializer register. This allows a simple method of passing control of the bidirectional control channel from one  
Controller to another.  
7.6.6 Restrictions on Control Channel Direction for Multi-Controller Operation  
Only display or camera mode operation should be active at any time across the bidirectional control channel.  
If both directions are required, some method of transferring control between I2C Controllers should be  
implemented.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.7 Register Maps  
In the register definitions under the TYPE and DEFAULT heading, the following definitions apply:  
R = Read only access  
R/W = Read / Write access  
R/RC = Read only access, Read to Clear  
(R/W)/SC = Read / Write access, Self-Clearing bit  
(R/W)/S = Read / Write access, Set based on strap pin configuration at start-up  
LL = Latched Low and held until read  
LH = Latched High and held until read  
S = Set based on strap pin configuration at start-up  
7.7.1 DS90UH948-Q1 Registers  
7-12 lists the memory-mapped registers for the DS90UH948-Q1 registers. All register offset addresses not  
listed in 7-12 should be considered as reserved locations and the register contents should not be modified.  
7-12. DS90UH948-Q1 Registers  
Address  
0x0  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
I2C_DEVICE_ID  
RESET  
0x1  
0x2  
GENERAL_CONFIGURATION_0  
GENERAL_CONFIGURATION_1  
BCC_WATCHDOG_CONTROL  
I2C_CONTROL_1  
I2C_CONTROL_2  
REMOTE_ID  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
TargetID_0  
0x9  
TargetID_1  
0xA  
TargetID_2  
0xB  
TargetID_3  
0xC  
TargetID_4  
0xD  
TargetID_5  
0xE  
TargetID_6  
0xF  
TargetID_7  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
TargetALIAS_0  
TargetALIAS_1  
TargetALIAS_2  
TargetALIAS_3  
TargetALIAS_4  
TargetALIAS_5  
TargetALIAS_6  
TargetALIAS_7  
MAILBOX_18  
MAILBOX_19  
GPIO_9_and_GLOBAL_GPIO_CONFIG  
FREQUENCY_COUNTER  
GENERAL_STATUS  
GPIO0_CONFIG  
GPIO1_2_CONFIG  
GPIO3_CONFIG  
Copyright © 2023 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-12. DS90UH948-Q1 Registers (continued)  
Address  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2E  
0x34  
0x35  
0x37  
0x3A  
0x3B  
0x41  
0x43  
0x44  
0x45  
0x49  
0x4B  
0x52  
0x56  
0x57  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6E  
0x6F  
0x80  
0x81  
0x82  
0x83  
0x84  
0x90  
0x91  
0x92  
0x93  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
GPIO5_6_CONFIG  
GPIO7_8_CONFIG  
DATAPATH_CONTROL  
RX_MODE_STATUS  
BIST_CONTROL  
BIST_ERROR_COUNT  
SCL_HIGH_TIME  
SCL_LOW_TIME  
DATAPATH_CONTROL_2  
FRC_CONTROL  
WHITE_BALANCE_CONTROL  
I2S_CONTROL  
PCLK_TEST_MODE  
DUAL_RX_CTL  
AEQ_TEST  
MODE_SEL  
I2S_DIVSEL  
EQ_STATUS  
LINK_ERROR_COUNT  
HSCC_CONTROL  
ADAPTIVE_EQ_BYPASS  
ADAPTIVE_EQ_MIN_MAX  
FPD_TX_MODE  
LVDS_CONTROL  
CML_OUTPUT_CTL1  
CML_OUTPUT_ENABLE  
CML_OUTPUT_CTL2  
CML_OUTPUT_CTL3  
PGCTL  
PGCFG  
PGIA  
PGID  
PGDBG  
PGTSTDAT  
GPI_PIN_STATUS_1  
GPI_PIN_STATUS_2  
RX_BKSV0  
RX_BKSV1  
RX_BKSV2  
RX_BKSV3  
RX_BKSV4  
TX_KSV0  
TX_KSV1  
TX_KSV2  
TX_KSV3  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-12. DS90UH948-Q1 Registers (continued)  
Address  
0x94  
0xC0  
0xC1  
0xC4  
0xC9  
0xCA  
0xCB  
0xE0  
0xE1  
0xE2  
0xE3  
0xE8  
0xE9  
0xEA  
0xEB  
0xF0  
0xF1  
0xF2  
0xF3  
0xF4  
0xF5  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
TX_KSV4  
HDCP_DBG  
HDCP_DBG2  
HDCP_STS  
KSV_FIFO__DATA  
KSV_FIFO_A_DDR0  
KSV_FIFO_ADDR1  
RPTR_TX0  
RPTR_TX1  
RPTR_TX2  
RPTR_TX3  
XRPTR_STS  
XRPTR_CTL  
XRPTR_BSTS0  
XRPTR_BSTS1  
HDCP_RX_ID0  
HDCP_RX_ID1  
HDCP_RX_ID2  
HDCP_RX_ID3  
HDCP_RX_ID4  
HDCP_RX_ID5  
7.7.1.1 I2C_DEVICE_ID Register (Address = 0x0) [reset = STRAP]  
I2C_DEVICE_ID is described in 7-13.  
Return to Summary Table.  
7-13. I2C_DEVICE_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
DEVICE_ID  
R/W  
STRAP  
7-bit address of Deserializer  
Defaults to address configured by the IDX strap pin  
0
DES_ID  
R/W  
0x0  
0: Device ID is from IDX strap  
1: Register I2C Device ID overrides IDX strap  
7.7.1.2 RESET Register (Address = 0x1) [reset = 0x0]  
RESET is described in 7-14.  
Return to Summary Table.  
7-14. RESET Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
6
R
0x0  
5
R
0x0  
4
R
0x0  
3
R
0x0  
Copyright © 2023 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-14. RESET Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
BC_ENABLE  
R/W  
0x1  
Back Channel enable.  
Note: This bit can not be set to 0 through the control channel, it is  
only writable via local I2C at the DES.  
Note: Setting this bit to 0 will disable the back channel only if both  
I2C pass through bits, 0x03[3] and 0x05[7], are also set to low.  
1
DIGITAL_RESET0  
R/W  
0x0  
Digital Reset  
Resets the entire digital block including registers. This bit is self-  
clearing.  
1: Reset  
0: Normal operation  
Registers which are loaded by pin strap will be restored to their  
original strap value when this bit is set. These registers show 'Strap '  
as their default value in this table.  
0
DIGITAL_RESET1  
R/W  
0x0  
Digital Reset  
Resets the entire digital block except registers. This bit is self-  
clearing.  
1: Reset  
0: Normal operation  
备注  
After a digital reset, the following registers are not reset:  
0x00, 0x01[4:3, 1:0], 0x23[4:3], 0x2A[7:6], 0x32[0], 0x34[4:0], 0x49[1:0], 0x71[5]  
7.7.1.3 GENERAL_CONFIGURATION_0 Register (Address = 0x2) [reset = 0x0]  
GENERAL_CONFIGURATION_0 is described in 7-15.  
Return to Summary Table.  
7-15. GENERAL_CONFIGURATION_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OUTPUT_ENABLE  
R/W  
0x0  
Output Enable Override Value (in conjunction with Output Sleep  
State Select)  
If the Override control is not set, the Output Enable will be set to 1.  
A Digital reset 0x01[0] should be asserted after toggling Output  
Enable bit LOW to HIGH  
6
5
OUTPUT_ENABLE_OVE R/W  
RRIDE  
0x0  
0x0  
Overrides Output Enable and Output Sleep State default  
0: Disable override  
1: Enable override  
OSC_CLOCK_OUTPUT_ R/W  
ENABLE__AUTO_CLOCK  
_EN  
OSC clock output enable  
If loss of lock OSC clock is output onto PCLK. The frequency is  
selected in register 0x24.  
1: Enable  
0: Disable  
4
OUTPUT_SLEEP_STATE R/W  
_SELECT  
0x0  
OSS Select Override value to control output state when LOCK is low  
(used in conjunction with Output Enable)  
If the Override control is not set, the Output Sleep State Select will  
be set to 1.  
3
2
1
0
RESERVED  
RESERVED  
RESERVED  
RESERVED  
R
R
R
R
0x0  
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
Reserved  
7.7.1.4 GENERAL_CONFIGURATION_1 Register (Address = 0x3) [reset = 0xF0]  
GENERAL_CONFIGURATION_1 is described in 7-16.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Return to Summary Table.  
7-16. GENERAL_CONFIGURATION_1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R/W  
0x1  
Reserved  
6
BC_CRC_GENERATOR_ R/W  
ENABLE  
0x1  
Back Channel CRC Generator Enable  
0: Disable  
1: Enable  
5
4
FAILSAFE_LOW  
FILTER_ENABLE  
R/W  
R/W  
0x1  
0x1  
Controls the pull direction for undriven LVCMOS inputs  
1: Pull down  
0: Pull up  
HS,VS,DE two clock filter  
When enabled, pulses less than two full PCLK cycles on the DE, HS,  
and VS inputs will be rejected. For HS, It is a 2-clock filter for single  
FPD3 mode and a 4-clock filter for dual FPD3 mode.  
1: Filtering enable  
0: Filtering disable  
3
2
I2C_PASS_THROUGH  
AUTO_ACK  
R/W  
R/W  
0x0  
0x0  
I2C Pass-Through to Serializer if decode matches  
0: Pass-Through Disabled  
1: Pass-Through Enabled  
Automatically Acknowledge I2C writes independent of the forward  
channel lock state  
1: Enable  
0: Disable  
1
DE_GATE_RGB  
R/W  
0x0  
Gate RGB data with DE signal. RGB data is gated with DE in order  
to allow packetized audio and block unencrypted data when paired  
with a serializer that supports HDCP. When paired with a serializer  
that does not support HDCP, RGB data is not gated with DE by  
default. However, to enable packetized autio this bit must be set.  
1: Gate RGB data with DE (has no effect when paired with a  
serializer that supports HDCP)  
0: Pass RGB data independent of DE (has no effect when paired  
with a serializer that does not support HDCP)  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.5 BCC_WATCHDOG_CONTROL Register (Address = 0x4) [reset = 0xFE]  
BCC_WATCHDOG_CONTROL is described in 7-17.  
Return to Summary Table.  
7-17. BCC_WATCHDOG_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
BCC_WATCHDOG_TIME R/W  
R
0x7F  
The watchdog timer allows termination of a control channel  
transaction if it fails to complete within a programmed amount of  
time. This field sets the Bidirectional Control Channel Watchdog  
Timeout value in units of 2 milliseconds. This field should not be  
set to 0.  
0
BCC_WATCHDOG_TIME R/W  
R_DISABLE  
0x0  
Disable Bidirectional Control Channel Watchdog Timer  
1: Disables BCC Watchdog Timer operation  
0: Enables BCC Watchdog Timer operation  
7.7.1.6 I2C_CONTROL_1 Register (Address = 0x5) [reset = 0x1E]  
I2C_CONTROL_1 is described in 7-18.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-18. I2C_CONTROL_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
I2C_PASS_THROUGH_A R/W  
LL  
0x0  
I2C Pass-Through All Transactions  
0: Disabled  
1: Enabled  
6-4  
3-0  
I2C_SDA_HOLD  
R/W  
R/W  
0x1  
0xE  
Internal SDA Hold Time  
This field configures the amount of internal hold time provided for the  
SDA input relative to the SCL input. Units are 50 nanoseconds.  
I2C_FILTER_DEPTH  
I2C Glitch Filter Depth  
This field configures the maximum width of glitch pulses on the SCL  
and SDA inputs that will be rejected. Units are 5 nanoseconds.  
7.7.1.7 I2C_CONTROL_2 Register (Address = 0x6) [reset = 0x0]  
I2C_CONTROL_2 is described in 7-19.  
Return to Summary Table.  
7-19. I2C_CONTROL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
FORWARD_CHANNEL_S  
EQUENCE_ERROR  
R
0x0  
Control Channel Sequence Error Detected  
This bit indicates a sequence error has been detected in forward  
control channel. If this bit is set, an error may have occurred in the  
control channel operation.  
6
CLEAR_SEQUENCE_ER R/W  
ROR  
0x0  
Clears the Sequence Error Detect bit  
5
RESERVED  
R
0x0  
0x0  
Reserved  
4-3  
SDA_Output_Delay  
R/W  
SDA Output Delay  
This field configures output delay on the SDA output. Setting this  
value will increase output delay in units of 50ns. Nominal output  
delay values for SCL to SDA are:  
00: 250ns  
01: 300ns  
10: 350ns  
11: 400ns  
2
LOCAL_WRITE_DISABLE R/W  
0x0  
Disable Remote Writes to Local Registers  
Setting this bit to a 1 will prevent remote writes to local device  
registers from across the control channel. This prevents writes to  
the Deserializer registers from an I2C Controller attached to the  
Serializer. Setting this bit does not affect remote access to I2C  
Targets at the Deserializer.  
1
0
I2C_BUS_TIMER_SPEED R/W  
UP  
0x0  
0x0  
Speed up I2C Bus Watchdog Timer  
1: Watchdog Timer expires after approximately 50 microseconds  
0: Watchdog Timer expires after approximately 1 second.  
I2C_BUS_TIMER_DISAB R/W  
LE  
Disable I2C Bus Watchdog Timer  
When the I2C Watchdog Timer may be used to detect when the  
I2C bus is free or hung up following an invalid termination of a  
transaction. If SDA is high and no signaling occurs for approximately  
1 second, the I2C bus will assumed to be free. If SDA is low and no  
signaling occurs, the device will attempt to clear the bus by driving 9  
clocks on SCL  
7.7.1.8 REMOTE_ID Register (Address = 0x7) [reset = 0x0]  
REMOTE_ID is described in 7-20.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-20. REMOTE_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
REMOTE_ID  
R/W  
0x0  
7-bit Serializer Device ID  
Configures the I2C Target ID of the remote Serializer. A value of 0  
in this field disables I2C access to the remote Serializer. This field  
is automatically loaded from the Serializer once RX Lock has been  
detected. Software may overwrite this value, but should also assert  
the FREEZE DEVICE ID bit to prevent loading by the Bidirectional  
Control Channel.  
0
FREEZE_DEVICE_ID  
R/W  
0x0  
Freeze Serializer Device ID  
Prevent auto-loading of the Serializer Device ID from the Forward  
Channel. The ID will be frozen at the value written.  
7.7.1.9 TargetID_0 Register (Address = 0x8) [reset = 0x0]  
TargetID_0 is described in 7-21.  
Return to Summary Table.  
7-21. TargetID_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID0  
R/W  
0x0  
7-bit Remote Target Device ID 0  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Target Alias ID0, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.10 TargetID_1 Register (Address = 0x9) [reset = 0x0]  
TargetID_1 is described in 7-22.  
Return to Summary Table.  
7-22. TargetID_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID1  
R/W  
0x0  
7-bit Remote Target Device ID 1  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Target Alias ID1, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.11 TargetID_2 Register (Address = 0xA) [reset = 0x0]  
TargetID_2 is described in 7-23.  
Return to Summary Table.  
7-23. TargetID_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID2  
R/W  
0x0  
7-bit Remote Target Device ID 2  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Target Alias ID2, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
Copyright © 2023 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-23. TargetID_2 Register Field Descriptions (continued)  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
0
R
0x0  
Reserved  
7.7.1.12 TargetID_3 Register (Address = 0xB) [reset = 0x0]  
TargetID_3 is described in 7-24.  
Return to Summary Table.  
7-24. TargetID_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID3  
R/W  
0x0  
7-bit Remote Target Device ID 3  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Target Alias ID3, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.13 TargetID_4 Register (Address = 0xC) [reset = 0x0]  
TargetID_4 is described in 7-25.  
Return to Summary Table.  
7-25. TargetID_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID4  
R/W  
0x0  
7-bit Remote Target Device ID 4v Configures the physical I2C  
address of the remote I2C Target device attached to the remote  
Serializer. If an I2C transaction is addressed to the Target Alias ID4,  
the transaction will be remapped to this address before passing the  
transaction across the Bidirectional Control Channel to the Serializer.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.14 TargetID_5 Register (Address = 0xD) [reset = 0x0]  
TargetID_5 is described in 7-26.  
Return to Summary Table.  
7-26. TargetID_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID5  
R/W  
0x0  
7-bit Remote Target Device ID 5  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Target Alias ID5, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.15 TargetID_6 Register (Address = 0xE) [reset = 0x0]  
TargetID_6 is described in 7-27.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-27. TargetID_6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID6  
R/W  
0x0  
7-bit Remote Target Device ID 6  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Target Alias ID6, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.16 TargetID_7 Register (Address = 0xF) [reset = 0x0]  
TargetID_7 is described in 7-28.  
Return to Summary Table.  
7-28. TargetID_7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ID7  
R/W  
0x0  
7-bit Remote Target Device ID 7  
Configures the physical I2C address of the remote I2C Target device  
attached to the remote Serializer. If an I2C transaction is addressed  
to the Target Alias ID7, the transaction will be remapped to this  
address before passing the transaction across the Bidirectional  
Control Channel to the Serializer.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.17 TargetALIAS_0 Register (Address = 0x10) [reset = 0x0]  
TargetALIAS_0 is described in 7-29.  
Return to Summary Table.  
7-29. TargetALIAS_0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID0  
R/W  
0x0  
7-bit Remote Target Device Alias ID 0  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID0 register.  
A value of 0 in this field disables access to the remote I2C Target.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.18 TargetALIAS_1 Register (Address = 0x11) [reset = 0x0]  
TargetALIAS_1 is described in 7-30.  
Return to Summary Table.  
7-30. TargetALIAS_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID1  
R/W  
0x0  
7-bit Remote Target Device Alias ID 1  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID1 register.  
A value of 0 in this field disables access to the remote I2C Target.  
0
RESERVED  
R
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.7.1.19 TargetALIAS_2 Register (Address = 0x12) [reset = 0x0]  
TargetALIAS_2 is described in 7-31.  
Return to Summary Table.  
7-31. TargetALIAS_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID2  
R/W  
0x0  
7-bit Remote Target Device Alias ID 2  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID2 register.  
A value of 0 in this field disables access to the remote I2C Target.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.20 TargetALIAS_3 Register (Address = 0x13) [reset = 0x0]  
TargetALIAS_3 is described in 7-32.  
Return to Summary Table.  
7-32. TargetALIAS_3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID3  
R/W  
0x0  
7-bit Remote Target Device Alias ID 3  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID3 register.  
A value of 0 in this field disables access to the remote I2C Target.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.21 TargetALIAS_4 Register (Address = 0x14) [reset = 0x0]  
TargetALIAS_4 is described in 7-33.  
Return to Summary Table.  
7-33. TargetALIAS_4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID4  
R/W  
0x0  
7-bit Remote Target Device Alias ID 4  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID4 register.  
A value of 0 in this field disables access to the remote I2C Target.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.22 TargetALIAS_5 Register (Address = 0x15) [reset = 0x0]  
TargetALIAS_5 is described in 7-34.  
Return to Summary Table.  
7-34. TargetALIAS_5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID5  
R/W  
0x0  
7-bit Remote Target Device Alias ID 5  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID5 register.  
A value of 0 in this field disables access to the remote I2C Target.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-34. TargetALIAS_5 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.23 TargetALIAS_6 Register (Address = 0x16) [reset = 0x0]  
TargetALIAS_6 is described in 7-35.  
Return to Summary Table.  
7-35. TargetALIAS_6 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID6  
R/W  
0x0  
7-bit Remote Target Device Alias ID 6  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID6 register.  
A value of 0 in this field disables access to the remote I2C Target.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.24 TargetALIAS_7 Register (Address = 0x17) [reset = 0x0]  
TargetALIAS_7 is described in 7-36.  
Return to Summary Table.  
7-36. TargetALIAS_7 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Target_ALIAS_ID7  
R/W  
0x0  
7-bit Remote Target Device Alias ID 7  
Configures the decoder for detecting transactions designated for an  
I2C Target device attached to the remote Serializer. The transaction  
will be remapped to the address specified in the Target ID7 register.  
A value of 0 in this field disables access to the remote I2C Target.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.25 MAILBOX_18 Register (Address = 0x18) [reset = 0x0]  
MAILBOX_18 is described in 7-37.  
Return to Summary Table.  
7-37. MAILBOX_18 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
MAILBOX_18  
R/W  
0x0  
Mailbox Register  
This register is an unused read/write register that can be used for  
any purpose such as passing messages between I2C Controllers on  
opposite ends of the link.  
7.7.1.26 MAILBOX_19 Register (Address = 0x19) [reset = 0x1]  
MAILBOX_19 is described in 7-38.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-38. MAILBOX_19 Register Field Descriptions  
Bit  
Field  
MAILBOX_19  
Type  
Reset  
Description  
7-0  
R/W  
0x1  
Mailbox Register  
This register is an unused read/write register that can be used for  
any purpose such as passing messages between I2C Controllers on  
opposite ends of the link.  
7.7.1.27 GPIO_9_and_GLOBAL_GPIO_CONFIG Register (Address = 0x1A) [reset = 0x0]  
GPIO_9_and_GLOBAL_GPIO_CONFIG is described in 7-39.  
Return to Summary Table.  
7-39. GPIO_9_and_GLOBAL_GPIO_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL_GPIO_OUTPUT R/W  
_VALUE  
0x0  
Global GPIO Output Value  
This value is output on each GPIO pin when the individual pin is  
not otherwise enabled as a GPIO and the global GPIO direction is  
Output  
6
5
RESERVED  
R
0x0  
0x0  
Reserved  
GLOBAL_GPIO_FORCE_ R/W  
DIR  
The GLOBAL GPIO DIR and GLOBAL GPIO EN bits configure the  
pad in input direction or output direction for functional mode or GPIO  
mode. The GLOBAL bits are overridden by the individual GPIO DIR  
and GPIO EN bits.  
{GLOBAL GPIO DIR, GLOBAL GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: Force mode; output  
11: Force mode; input  
4
3
GLOBAL_GPIO_FORCE_ R/W  
EN  
0x0  
0x0  
This bit grouped together with bit 5 to form the configuration of GPIO  
DIR and GPIO EN.  
GPIO9_OUTPUT_VALUE R/W  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
2
1
RESERVED  
GPIO9_DIR  
R
0x0  
0x0  
Reserved  
R/W  
The GPIO DIR and GPIO EN bits configure the pad in input direction  
or output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO9_EN  
R/W  
0x0  
This bit grouped together with bit 1 to form the configuration of GPIO  
DIR and GPIO EN.  
7.7.1.28 FREQUENCY_COUNTER Register (Address = 0x1B) [reset = 0x0]  
FREQUENCY_COUNTER is described in 7-40.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-40. FREQUENCY_COUNTER Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
Frequency_Count  
R/W  
0x0  
Frequency Counter control  
A write to this register will enable a frequency counter to count  
the number of pixel clock during a specified time interval. The time  
interval is equal to the value written multiplied by the oscillator clock  
period (nominally 50ns). A read of the register returns the number  
of pixel clock edges seen during the enabled interval. The frequency  
counter will freeze at 0xff if it reaches the maximum value. The  
frequency counter will provide a rough estimate of the pixel clock  
period. If the pixel clock frequency is known, the frequency counter  
may be used to determine the actual oscillator clock frequency.  
7.7.1.29 GENERAL_STATUS Register (Address = 0x1C) [reset = 0x0]  
GENERAL_STATUS is described in 7-41.  
Return to Summary Table.  
7-41. GENERAL_STATUS Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
DUAL_TX_STS  
R
0x0  
Reserved  
R
0x0  
Transmitter Dual Link Status:  
This bit indicates the current operating mode of the FPD-Link  
Transmit port  
1: Dual-link mode active  
0: Single-link mode active  
4
3
DUAL_RX_STS  
I2S_LOCKED  
R
R
0x0  
0x0  
Receiver Dual Link Status:  
This bit indicates the current operating mode of the FPD-Link III  
Receive port  
1: Dual-link mode active  
0: Single-link mode active  
I2S LOCK STATUS  
0: I2S PLL controller not locked  
1: I2S PLL controller locked to input i2s clock  
2
1
RESERVED  
R
R
0x0  
0x0  
Reserved  
SIGNAL_DETECT  
1: Serial input detected  
0: Serial input not detected  
0
LOCK  
R
0x0  
De-Serializer CDR, PLL's clock to recovered clock frequency  
1: De-Serializer locked to recovered clock  
0: De-Serializer not locked  
In Dual-link mode, this indicates both channels are locked.  
7.7.1.30 GPIO0_CONFIG Register (Address = 0x1D) [reset = 0x10]  
GPIO0_CONFIG is described in 7-42.  
Return to Summary Table.  
GPIO0 and D_GPIO0 Configuration: If PORT1_SEL is set, this register controls the D_GPIO0 pin  
7-42. GPIO0_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Rev_ID  
R
0x1  
Revision ID  
0001: B1  
3
GPIO0_OUTPUT_VALUE R/W  
_D_GPIO0_OUTPUT_VA  
LUE  
0x0  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
Copyright © 2023 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-42. GPIO0_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2
GPIO0_REMOTE_ENABL R/W  
0x0  
Remote GPIO Control  
E
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
_D_GPIO0_REMOTE_EN  
ABLE  
1
0
GPIO0_DIR  
_D_GPIO0_DIR  
R/W  
R/W  
0x0  
0x0  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
GPIO0_EN  
_D_GPIO0_EN  
This bit grouped together with bit 1 to form the configuration of GPIO  
DIR and GPIO EN.  
7.7.1.31 GPIO1_2_CONFIG Register (Address = 0x1E) [reset = 0x00]  
GPIO1_2_CONFIG is described in 7-43.  
Return to Summary Table.  
GPIO1/GPIO2 and D_GPIO1/D_GPIO2 Configuration: If PORT1_SEL is set, this register controls the D_GPIO1  
and D_GPIO2 pins  
7-43. GPIO1_2_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO2_OUTPUT_VALUE R/W  
_D_GPIO2_OUTPUT_VA  
LUE  
0x0  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
6
5
GPIO2_REMOTE_ENABL R/W  
E
_D_GPIO2_REMOTE_EN  
ABLE  
0x0  
0x0  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO2_DIR  
_D_GPIO2_DIR  
R/W  
R/W  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
4
3
GPIO2_EN  
0x0  
0x0  
This bit grouped together with bit 5 to form the configuration of GPIO  
DIR and GPIO EN.  
_D_GPIO2_EN  
GPIO1_OUTPUT_VALUE R/W  
_D_GPIO1_OUTPUT_VA  
LUE  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
2
1
GPIO1_REMOTE_ENABL R/W  
E
_D_GPIO1_REMOTE_EN  
ABLE  
0x0  
0x0  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO1_DIR  
R/W  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
_D_GPIO1_DIR  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-43. GPIO1_2_CONFIG Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
GPIO1_EN  
_D_GPIO1_EN  
R/W  
0x0  
This bit grouped together with bit 1 to form the configuration of GPIO  
DIR and GPIO EN.  
7.7.1.32 GPIO3_CONFIG Register (Address = 0x1F) [reset = 0x00]  
GPIO3_CONFIG is described in 7-44.  
Return to Summary Table.  
GPIO3 and D_GPIO3 Configuration: If PORT1_SEL is set, this register controls the D_GPIO3 pin  
7-44. GPIO3_CONFIG Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
0x0  
Description  
RESERVED  
R
Reserved  
GPIO3_OUTPUT_VALUE R/W  
_D_GPIO3_OUTPUT_VA  
LUE  
0x0  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
2
1
GPIO3_REMOTE_ENABL R/W  
E
_D_GPIO3_REMOTE_EN  
ABLE  
0x0  
0x0  
Remote GPIO Control  
1: Enable GPIO control from remote Serializer. The GPIO pin will be  
an output, and the value is received from the remote Serializer.  
0: Disable GPIO control from remote Serializer.  
GPIO3_DIR  
_D_GPIO3_DIR  
R/W  
R/W  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO3_EN  
0x0  
This bit grouped together with bit 1 to form the configuration of GPIO  
DIR and GPIO EN.  
_D_GPIO3_EN  
7.7.1.33 GPIO5_6_CONFIG Register (Address = 0x20) [reset = 0x0]  
GPIO5_6_CONFIG is described in 7-45.  
Return to Summary Table.  
7-45. GPIO5_6_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO6_OUTPUT_VALUE R/W  
0x0  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
6
5
Reserved  
R/W  
R/W  
0x0  
0x0  
Reserved  
GPIO6_DIR  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
4
3
GPIO6_EN  
R/W  
0x0  
0x0  
This bit grouped together with bit 5 to form the configuration of GPIO  
DIR and GPIO EN.  
GPIO5_OUTPUT_VALUE R/W  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
Copyright © 2023 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-45. GPIO5_6_CONFIG Register Field Descriptions (continued)  
Bit  
2
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
0x0  
Reserved  
1
GPIO5_DIR  
0x0  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO5_EN  
R/W  
0x0  
This bit grouped together with bit 1 to form the configuration of GPIO  
DIR and GPIO EN.  
7.7.1.34 GPIO7_8_CONFIG Register (Address = 0x21) [reset = 0x0]  
GPIO7_8_CONFIG is described in 7-46.  
Return to Summary Table.  
7-46. GPIO7_8_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GPIO8_OUTPUT_VALUE R/W  
0x0  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
6
5
Reserved  
R/W  
R/W  
0x0  
0x0  
Reserved  
GPIO8_DIR  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
4
3
GPIO8_EN  
R/W  
0x0  
0x0  
This bit grouped together with bit 5 to form the configuration of GPIO  
DIR and GPIO EN.  
GPIO7_OUTPUT_VALUE R/W  
Local GPIO Output Value  
This value is output on the GPIO pin when the GPIO function  
is enabled, the local GPIO direction is Output, and remote GPIO  
control is disabled.  
2
1
Reserved  
R/W  
R/W  
0x0  
0x0  
Reserved  
GPIO7_DIR  
The GPIO DIR and GPIO EN configures the pad in input direction or  
output direction for functional mode or GPIO mode.  
{GPIO DIR, GPIO EN}  
00: Functional mode; output  
10: Tri-state  
01: GPIO mode; output  
11: GPIO mode; input  
0
GPIO7_EN  
R/W  
0x0  
This bit grouped together with bit 1 to form the configuration of GPIO  
DIR and GPIO EN.  
7.7.1.35 DATAPATH_CONTROL Register (Address = 0x22) [reset = 0x0]  
DATAPATH_CONTROL is described in 7-47.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-47. DATAPATH_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OVERRIDE_FC_CONFIG R/W  
0x0  
1: Disable loading of this register from the forward channel, keeping  
locally written values intact 0: Allow forward channel loading of this  
register  
6
PASS_RGB  
R/W  
0x0  
Setting this bit causes RGB data to be sent independent of DE. This  
allows operation in systems which may not use DE to frame video  
data or send other data when DE is deasserted. Note that setting this  
bit prevents HDCP operation and blocks packetized audio. This bit  
does not need to be set in DS90UB928 or in Backward Compatibility  
mode.  
1: Pass RGB independent of DE  
0: Normal operation  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
5
4
DE_POLARITY  
R/W  
R/W  
0x0  
0x0  
This bit indicates the polarity of the DE (Data Enable) signal.  
1: DE is inverted (active low, idle high)  
0: DE is positive (active high, idle low)  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S_RPTR_REGEN  
This bit controls whether the HDCP Receiver outputs packetized  
Auxiliary/Audio data on the RGB video output pins.  
1: Don't output packetized audio data on RGB video output pins  
0: Output packetized audio on RGB video output pins.  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
3
2
I2S_4_CHANNEL_ENABL R/W  
E_OVERRIDE  
0x0  
0x0  
1: Set I2S 4-Channel Enable from bit of of this register  
0: Set I2S 4-Channel disabled  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
18_BIT_VIDEO_SELECT R/W  
1: Select 18-bit video mode  
0: Select 24-bit video mode  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.Note: Surround audio is not  
supported in repeater mode when 18-bit video mode is enabled.  
1
0
I2S_TRANSPORT_SELE R/W  
CT  
0x0  
0x0  
1: Enable I2S In-Band Transport  
0: Enable I2S Data Island Transport  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
I2S_4_CHANNEL_ENABL R/W  
E
I2S 4-Channel Enable  
1: Enable I2S 4-Channel  
0: Disable I2S 4-Channel  
Note: this bit is automatically loaded from the remote serializer  
unless bit 7 of this register is set.  
7.7.1.36 RX_MODE_STATUS Register (Address = 0x23) [reset = X]  
RX_MODE_STATUS is described in 7-48.  
Return to Summary Table.  
7-48. RX_MODE_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0x0  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
72  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-48. RX_MODE_STATUS Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
BC_FREQ_SELECT  
R/W  
0x0  
Back Channel Frequency Select  
Used in conjunction with BC_HIGH_SPEED to set the back channel  
frequency. If BC_HIGH_SPEED = 0 then:  
0: 5Mbps Back Channel  
1: 10Mbps Back Channel  
If BC_HIGH_SPEED = 1 then BC_FREQ_SELECT is ignored and  
the back channel frequency is set to 20Mbps (not available when  
paired with 92x serializers)  
Note that changing this setting will result in some errors on the back  
channel for a short period of time. If set over the control channel,  
the Serializer should first be programmed to Auto-Ack operation  
(Serializer register 0x03, bit 5) to avoid a control channel timeout  
due to lack of response from the Deserializer.  
5
4
AUTO_I2S  
R/W  
R/W  
0x1  
X
Auto I2S  
Determine I2S mode from the AUX data codes.  
BC_HIGH_SPEED  
Back-Channel High-Speed control  
Enables high-speed back-channel at 20Mbps This bit will override  
the BC_FREQ_SELECT setting Note that changing this setting will  
result in some errors on the back channel for a short period of  
time. If set over the control channel, the Serializer should first be  
programmed to Auto-Ack operation (Serializer register 0x03, bit 5)  
to avoid a control channel timeout due to lack of response from the  
Deserializer.  
BC_HIGH_SPEED is loaded from the MODE_SEL1 pin strap  
options.  
3
2
COAX_MODE  
R/W  
X
X
Coax Mode  
Configures the FPD3 Receiver for operation over Coax or STP  
cabling:  
0 : Shielded Twisted pair (STP)  
1 : Coax  
Coax Mode is loaded from the MODE_SEL1 pin strap options.  
REPEATER_MODE  
R
Repeater Mode  
Indicates device is strapped to repeater mode. Repeater Mode is  
loaded from the MODE_SEL1 pin strap options.  
1
0
RESERVED  
RESERVED  
R
R
0x0  
0x0  
Reserved  
Reserved  
7.7.1.37 BIST_CONTROL Register (Address = 0x24) [reset = 0x8]  
BIST_CONTROL is described in 7-49.  
Return to Summary Table.  
7-49. BIST_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BIST_OUT_MODE  
R/W  
0x0  
BIST Output Mode  
00 : No toggling  
01 : Alternating 1/0 toggling  
1x : Toggle based on BIST data  
5-4  
AUTO_OSC_FREQ  
BIST_PIN_CONFIG  
R/W  
R/W  
0x0  
0x1  
When register 0x02 bit 5 (AUTO)CLOCK_EN) is set, this field  
controls the nominal frequency of the oscillator-based receive clock.  
00: 50 MHz  
01: 25 MHz  
10: 10 MHz  
11: Reserved (selects analog 25 MHz, but not for customer use)  
3
Bist Configured through Pin.  
1: Bist configured through pin.  
0: Bist configured through bits 2:0 in this register  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
73  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-49. BIST_CONTROL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-1  
BIST_CLOCK_SOURCE R/W  
0x0  
BIST Clock Source  
This register field selects the BIST Clock Source at the Serializer.  
These register bits are automatically written to the CLOCK SOURCE  
bits (register offset 0x14) in the Serializer after BIST is enabled. See  
the appropriate Serializer register descriptions for details.  
0
BIST_EN  
R/W  
0x0  
BIST Control  
1: Enabled  
0: Disabled  
7.7.1.38 BIST_ERROR_COUNT Register (Address = 0x25) [reset = 0x0]  
BIST_ERROR_COUNT is described in 7-50.  
Return to Summary Table.  
7-50. BIST_ERROR_COUNT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BIST_ERROR_COUNT  
R
0x0  
Bist Error Count  
Returns BIST error count for selected port. Port selected is based on  
the PORT1_SEL control in the DUAL_RX_CTL register.  
7.7.1.39 SCL_HIGH_TIME Register (Address = 0x26) [reset = 0x83]  
SCL_HIGH_TIME is described in 7-51.  
Return to Summary Table.  
7-51. SCL_HIGH_TIME Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SCL_HIGH_TIME  
R/W  
0x83  
I2C Controller SCL High Time  
This field configures the high pulse width of the SCL output when  
the De-Serializer is the Controller on the local I2C bus. Units are  
50 ns for the nominal oscillator clock frequency. The default value  
is set to provide a minimum 5us SCL high time with the internal  
oscillator clock running at 26MHz rather than the nominal 20MHz.  
Note: Minimum allowed value for this register is 0x07.  
7.7.1.40 SCL_LOW_TIME Register (Address = 0x27) [reset = 0x84]  
SCL_LOW_TIME is described in 7-52.  
Return to Summary Table.  
7-52. SCL_LOW_TIME Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
SCL_LOW_TIME  
R/W  
0x84  
I2C SCL Low Time  
This field configures the low pulse width of the SCL output when the  
De-Serializer is the Controller on the local I2C bus. This value is also  
used as the SDA setup time by the I2C Target for providing data  
prior to releasing SCL during accesses over the Bidirectional Control  
Channel. Units are 50 ns for the nominal oscillator clock frequency.  
The default value is set to provide a minimum 5us SCL low time with  
the internal oscillator clock running at 26MHz rather than the nominal  
20MHz.  
Copyright © 2023 Texas Instruments Incorporated  
74  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.7.1.41 DATAPATH_CONTROL_2 Register (Address = 0x28) [reset = 0x20]  
DATAPATH_CONTROL_2 is described in 7-53.  
Return to Summary Table.  
7-53. DATAPATH_CONTROL_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
OVERRIDE_FC_CONFIG R/W  
0x0  
1: Disable loading of this register from the forward channel, keeping  
locally witten values intact  
0: Allow forward channel loading of this register  
6
5
RESERVED  
R
0x0  
0x1  
Reserved  
VIDEO_DISABLED  
R/W  
Forward channel video disabled  
0 : Normal operation  
1 : Video is disabled, control channel is enabled  
This is a status bit indicating the forward channel is not sending  
active video. In this mode, the control channel and GPIO functions  
are enabled.  
4
DUAL_LINK  
R/W  
0x0  
1: Dual-Link mode enabled  
0: Single-Link mode enabled  
This bit indicates whether the FPD3 serializer is in single link  
or dual link mode. This control is used for recovering forward  
channel data when the FPD3 Reciever is in auto-detect mode. To  
force DUAL_LINK receive mode, use the RX_PORT_SEL register  
(address 0x34).  
3
ALTERNATE_I2S_ENABL R/W  
E
0x0  
1: Enable alternate I2S output on GPIO1 (word clock) and GPIO0  
(data)  
0: Normal Operation  
2
1
I2S_DISABLED  
28_BIT_VIDEO  
R/W  
R/W  
0x0  
0x0  
1: I2S DISABLED  
0: Normal Operation  
1: 28 bit Video enable. i.e. HS, VS, DE are present in forward  
channel.  
0: Normal Operation  
0
I2S_SURROUND  
R/W  
0x0  
1: I2S Surround enabled  
0: I2S Surround disabled  
7.7.1.42 FRC_CONTROL Register (Address = 0x29) [reset = 0x0]  
FRC_CONTROL is described in 7-54.  
Return to Summary Table.  
7-54. FRC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
Timing_Mode_Select  
R/W  
0x0  
Select display timing mode  
0: DE only Mode  
1: Sync Mode (VS,HS)  
6
5
4
3
2
1
HS_Polarity  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0: Active High  
1: Active Low  
VS_Polarity  
0: Active High  
1: Active Low  
DE_Polarity  
0: Active High  
1: Active Low  
FRC2_Enable  
FRC1_Enable  
Hi-FRC2_Disable  
0: FRC2 disable  
1: FRC2 enable  
0: FRC1 disable  
1: FRC1 enable  
0: Hi-FRC2 enable  
1: Hi-FRC2 disable  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
75  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-54. FRC_CONTROL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
Hi-FRC1_Disable  
R/W  
0x0  
0: Hi-FRC1 enable  
1: Hi-FRC1 disable  
7.7.1.43 WHITE_BALANCE_CONTROL Register (Address = 0x2A) [reset = 0x0]  
WHITE_BALANCE_CONTROL is described in 7-55.  
Return to Summary Table.  
7-55. WHITE_BALANCE_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
Page_Setting  
R/W  
0x0  
Page setting  
00: Configuration Registers  
01: Red LUT  
10: Green LUT  
11: Blue LUT  
5
4
White_Balance_Enable  
LUT_Reload_Enable  
R/W  
R/W  
0x0  
0x0  
0: White Balance Disable  
1: White Balance Enable  
0: Reload Disable  
1: Reload Enable  
3
2
RESERVED  
RESERVED  
RESERVED  
R
R
R
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
1-0  
7.7.1.44 I2S_CONTROL Register (Address = 0x2B) [reset = 0x0]  
I2S_CONTROL is described in 7-56.  
Return to Summary Table.  
7-56. I2S_CONTROL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
R
0x0  
Reserved  
6
R
R
0x0  
0x0  
0x0  
Reserved  
5-4  
3
Reserved  
I2S_FIFO_OVERRUN_ST R  
ATUS  
I2S FIFO Overrun Status  
2
1
0
I2S_FIFO_UNDERRUN_S R  
TATUS  
0x0  
0x0  
0x0  
I2S FIFO Underrun Status  
I2S_FIFO_ERROR_RESE R/W  
T
I2S Fifo Error Reset  
1: Clears FIFO Error  
I2S_DATA_FALLING_ED R/W  
GE  
I2S Clock Edge Select  
1: I2S Data is strobed on the Rising Clock Edge.  
0: I2S Data is strobed on the Falling Clock Edge.  
7.7.1.45 PCLK_TEST_MODE Register (Address = 0x2E) [reset = 0x0]  
PCLK_TEST_MODE is described in 7-57.  
Return to Summary Table.  
7-57. PCLK_TEST_MODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
EXTERNAL_PCLK  
R/W  
0x0  
Select pixel clock from BISTC input  
Copyright © 2023 Texas Instruments Incorporated  
76  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-57. PCLK_TEST_MODE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-0  
RESERVED  
R
0x0  
Reserved  
7.7.1.46 DUAL_RX_CTL Register (Address = 0x34) [reset = 0x1]  
DUAL_RX_CTL is described in 7-58.  
Return to Summary Table.  
7-58. DUAL_RX_CTL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
RX Lock Mode:  
RESERVED  
RX_LOCK_MODE  
R
0x0  
6
R/W  
0x0  
Determines operating conditions for indication of RX_LOCK and  
generation of video data.  
0 : RX_LOCK asserted only when receiving active video (Forward  
channel VIDEO_DISABLED bit is 0)  
1 : RX_LOCK asserted when device is linked to a Serializer even if  
active video is not being sent.  
This allows indication of valid link where Bidirectional Control  
Channel is enabled, but Deserializer is not receiving Audio/Video  
data.  
5
RAW_2ND_BC  
R/W  
R/W  
0x0  
0x0  
Enable Raw Secondary Back channel  
if this bit is set to a 1, the secondary back channel will operate in a  
raw mode, passing D_GPIO0 from the Deserializer to the Serializer,  
without any oversampling or filtering.  
4-3  
FPD3_INPUT_MODE  
FPD-Link III Input Mode  
Determines operating mode of dual FPD-Link III Receive interface  
00: Auto-detect based on received data  
01: Forced Mode: Dual link  
10: Forced Mode: Single link, primary input  
11: Forced Mode: Single link, secondary input  
2
1
RESERVED  
PORT1_SEL  
R
0x0  
0x0  
Reserved  
R/W  
Selects Port 1 for Register Access from primary I2C Address  
For writes, port1 registers and shared registers will both be written.  
For reads, port1 registers and shared registers will be read. This bit  
must be cleared to read port0 registers.  
0
PORT0_SEL  
R/W  
0x1  
Selects Port 0 for Register Access from primary I2C Address  
For writes, port0 registers and shared registers will both be written.  
For reads, port0 registers and shared registers will be read. Note that  
if PORT1_SEL is also set, then port1 registers will be read.  
7.7.1.47 AEQ_TEST Register (Address = 0x35) [reset = 0x0]  
AEQ_TEST is described in 7-59.  
Return to Summary Table.  
AEQ Test register: If PORT1_SEL is set, this register sets port1 AEQ controls.  
7-59. AEQ_TEST Register Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
AEQ_RESTART  
Reserved  
6
R/W  
0x0  
Set high to restart AEQ adaptation from initial value. Method is write  
HIGH then write LOW - not self clearing. Adaption will be restarted  
on both ports.  
5
OVERRIDE_AEQ_FLOOR R/W  
0x0  
Enable operation of SET_AEQ_FLOOR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
77  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-59. AEQ_TEST Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
SET_AEQ_FLOOR  
R/W  
0x0  
AEQ adaptation starts from a pre-set floor value rather than from  
zero - good in long cable situations  
3-1  
0
RESERVED  
RESERVED  
R
R
0x0  
0x0  
Reserved  
Reserved  
7.7.1.48 MODE_SEL Register (Address = 0x37) [reset = 0x0]  
MODE_SEL is described in 7-60.  
Return to Summary Table.  
7-60. MODE_SEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MODE_SEL1_DONE  
R
0x0  
MODE_SEL1 Done:  
0: indicates the MODE_SEL1 decode has not been latched into the  
MODE_SEL1 status bits.  
1: indicates the MODE_SEL1 decode has completed and latched  
into the MODE_SEL1 status bits.  
If set, indicates the MODE_SEL1 decode has completed and latched  
into the MODE_SEL1 status bits.  
6-4  
MODE_SEL1  
R
0x0  
MODE_SEL1 Decode  
3-bit decode from MODE_SEL1 pin, see MODE_SEL1 Table 9 first  
column "#" for mode selection:  
000: 5 Mbps/STP (#1 on MODE_SEL1)  
001: 5 Mbps/Coax (#2 on MODE_SEL1)  
010: 20 Mbps/STP (#3 on MODE_SEL1)  
011: 20 Mbps/Coax (#4 on MODE_SEL1)  
100: 5 Mbps/STP (#5 on MODE_SEL1)  
101: 5 Mbps/Coax (#6 on MODE_SEL1)  
110: 20 Mbps/STP (#7 on MODE_SEL1)  
111: 20 Mbps/Coax (#8 on MODE_SEL1)  
Note: 0x37[6] is the MSB; 0x37[4] is the LSB  
3
MODE_SEL0_DONE  
R
R
0x0  
0x0  
MODE_SEL0 Done:  
0: indicates the MODE_SEL0 decode has not been latched into the  
MODE_SEL0 status bits.  
1: indicates the MODE_SEL0 decode has completed and latched  
into the MODE_SEL0 status bits.  
If set, indicates the MODE_SEL0 decode has completed and latched  
into the MODE_SEL0 status bits.  
2-0  
MODE_SEL0  
MODE_SEL0 Decode  
3-bit decode from MODE_SEL0 pin, see MODE_SEL0 in Table 8 first  
column "#" for mode selection:  
000: Dual OLDI output (#1 on MODE_SEL0)  
001: Dual SWAP output (#2 on MODE_SEL0)  
010: Single OLDI output (#3 on MODE_SEL0)  
011: Replicate (#4 on MODE_SEL0)  
100: Dual OLDI output (#5 on MODE_SEL0)  
101: Dual SWAP output (#6 on MODE_SEL0)  
110: Single OLDI output (#7 on MODE_SEL0)  
111: Replicate (#8 on MODE_SEL0)  
Note: 0x37[2] is the MSB; 0x37[0] is the LSB  
7.7.1.49 I2S_DIVSEL Register (Address = 0x3A) [reset = 0x0]  
I2S_DIVSEL is described in 7-61.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
78  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-61. I2S_DIVSEL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
reg_ov_mdiv  
R/W  
0x0  
0: No override for MCLK divider  
1: Override divider select for MCLK  
6-4  
reg_mdiv  
R/W  
0x0  
Divide ratio select for VCO output (32*REF/M)  
000: Divide by 32 (=REF/M)  
001: Divide by 16 (=2*REF/M)  
010: Divide by 8 (=4*REF/M)  
011: Divide by 4 (=8*REF/M)  
100,  
101: Divide by 2 (=16*REF/M)  
110,  
111: Divide by 1 (32*REF/M)  
3
2
RESERVED  
R
0x0  
0x0  
Reserved  
reg_ov_mselect  
R/W  
0: Divide ratio of reference clock VCO selected by PLL-SM  
1: Override divide ratio of clock to VCO  
1-0  
reg_mselect  
R/W  
0x0  
Divide ratio select for VCO input (M)  
00: Divide by 1  
01: Divide by 2  
10: Divide by 4  
11: Divide by 8  
7.7.1.50 EQ_STATUS Register (Address = 0x3B) [reset = 0x0]  
EQ_STATUS is described in 7-62.  
Return to Summary Table.  
Equalizer Status register: If PORT1_SEL is set, this register returns port1 status.  
7-62. EQ_STATUS Register Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0x0  
Description  
RESERVED  
EQ_status  
Reserved  
R
0x0  
EQ Status - setting direct to analog  
If Adaptive EQ is bypassed, these values are the {EQ2, EQ1}  
settings from the ADAPTIVE EQ BYPASS register (0x44). If Adaptive  
EQ is enabled, the EQ status is determined by the adaptive  
Equalizer.  
7.7.1.51 LINK_ERROR_COUNT Register (Address = 0x41) [reset = 0x3]  
LINK_ERROR_COUNT is described in 7-63.  
Return to Summary Table.  
7-63. LINK_ERROR_COUNT Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
R
0x0  
6-5  
4
R
0x0  
LINK_ERROR_COUNT_E R/W  
NABLE  
0x0  
Enable serial link data integrity error count  
1: Enable error count  
0: DISABLE  
3-0  
LINK_ERROR_COUNT  
R/W  
0x3  
Link error count threshold. Counter is pixel clock based. clk0,  
clk1 and DCA are monitored for link errors, if error count is  
enabled, deserializer loose lock once error count reaches threshold.  
If disabled deserilizer loose lock with one error.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
79  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.7.1.52 HSCC_CONTROL Register (Address = 0x43) [reset = 0x0]  
HSCC_CONTROL is described in 7-64.  
Return to Summary Table.  
7-64. HSCC_CONTROL Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
RESERVED  
SPI_POCI_MODE  
R
0x0  
Reserved  
R/W  
0x0  
SPI POCI pin mode during Reverse SPI mode During Reverse  
SPI mode, SPI_POCI is typically an output signal. For bused SPI  
applications, it may be necessary to tri-state the SPI_POCI output if  
the device is not selected (SPI_CS = 0).  
0 : Always enable SPI_POCI output driver  
1 : Tri-state SPI_POCI output if SPI_CS is not asserted (low)  
3
SPI_CPOL  
R/W  
R/W  
0x0  
0x0  
SPI Clock Polarity Control  
0 : SPI Data driven on Falling clock edge, sampled on Rising clock  
edge  
1 : SPI Data driven on Rising clock edge, sampled on Falling clock  
edge  
2-0  
HSCC_MODE  
High-Speed Control Channel Mode Enables high-speed modes for  
the secondary link back-channel, allowing higher speed signaling of  
GPIOs or SPI interface:  
These bits indicates the High Speed Control Channel mode of  
operation:  
000: Normal frame, GPIO mode  
001: High Speed GPIO mode, 1 GPIO  
010: High Speed GPIO mode, 2 GPIOs  
011: High Speed GPIO mode: 4 GPIOs  
100: Reserved  
101: Reserved  
110: High Speed, Forward Channel SPI mode  
111: High Speed, Reverse Channel SPI mode  
7.7.1.53 ADAPTIVE_EQ_BYPASS Register (Address = 0x44) [reset = 0x60]  
ADAPTIVE_EQ_BYPASS is described in 7-65.  
Return to Summary Table.  
Adaptive Equalizer Bypass register: If PORT1_SEL is set, this register sets port1 AEQ controls.  
7-65. ADAPTIVE_EQ_BYPASS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
EQ_STAGE_1_SELECT_ R/W  
VALUE  
0x3  
EQ select value[2:0] - Used if adaptive EQ is bypassed. When  
ADAPTIVE_EQ_BYPASS is set to 1, these bits will be reflected in  
EQ Status[2:0] (register 0x3B)  
4
RESERVED  
R
0x0  
0x0  
Reserved  
3-1  
EQ_STAGE_2_SELECT_ R/W  
VALUE  
EQ select value[5:3] - Used if adaptive EQ is bypassed. When  
ADAPTIVE_EQ_BYPASS is set to 1, these bits will be reflected in  
EQ Status[5:3] (register 0x3B)  
0
ADAPTIVE_EQ_BYPASS R/W  
0x0  
1: Disable adaptive EQ  
0: Enable adaptive EQ  
7.7.1.54 ADAPTIVE_EQ_MIN_MAX Register (Address = 0x45) [reset = 0x8]  
ADAPTIVE_EQ_MIN_MAX is described in 7-66.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
80  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
备注  
If PORT1_SEL is set, this register sets port1 AEQ_FLOOR value. AEQ_FLOOR readback is only  
available on port0, that means writes to the port1 setting will still work but the written value can not be  
read back.  
7-66. ADAPTIVE_EQ_MIN_MAX Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
100  
0x0  
3-0  
ADAPTIVE_EQ_FLOOR_ R/W  
VALUE  
0x8  
When AEQ floor is enabled byregister {reg_35[5:4]} the starting  
setting is given by this register.  
7.7.1.55 FPD_TX_MODE Register (Address = 0x49) [reset = X]  
FPD_TX_MODE is described in 7-67.  
Return to Summary Table.  
7-67. FPD_TX_MODE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
MAPSEL_MODE  
R
X
Mapsel Pin Status  
Strap option on the MODE_SEL0 pin  
6
MAPSEL_OVER_WRITE R/W  
0x0  
0x0  
0x0  
X
Mapsel Over Write enable from register configuration  
Register setting of MAPSEL mode if MAPSEL OVER WRITE is set  
Reserved  
5
MAPSEL_REG_BIT  
RESERVED  
R/W  
R
4-2  
1-0  
FPD_OUT_MODE  
R/W  
FPD/OLDI output mode  
Controls single/dual operation of the FPD Transmit ports  
00 : Dual FPD/OLDI output  
01 : Dual SWAP FPD/OLDI output  
10 : Single FPD/OLDI output  
11 : Replicate FPD/OLDI output  
The FPD_OUT_MODE register bits are loaded at reset from the  
MODE_SEL0 pin strap options.  
7.7.1.56 LVDS_CONTROL Register (Address = 0x4B) [reset = 0x8]  
LVDS_CONTROL is described in 7-68.  
Return to Summary Table.  
7-68. LVDS_CONTROL Register Field Descriptions  
Bit  
7-6  
5-4  
3-2  
1-0  
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
LVDS_VOD_Control  
R/W  
0x0  
Reserved  
R/W  
R/W  
R/W  
0x0  
Reserved  
Reserved  
0x10  
0x0  
FPD/OLDI Output VOD Setting  
00: Setting 1 - 190mV typical voltage swing (single-ended)  
01: Setting 2 - 275mV typical voltage swing (single-ended)  
10: Setting 3 - 325mV typical voltage swing (single-ended)  
11: Setting 4 - 375mV typical voltage swing (single-ended). Note:  
Changing this value for Port1 requires selecting Port1 in reg 0x34.  
7.7.1.57 CML_OUTPUT_CTL1 Register (Address = 0x52) [reset = 0x0]  
CML_OUTPUT_CTL1 is described in 7-69.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
81  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Return to Summary Table.  
7-69. CML_OUTPUT_CTL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CML_Channel_Select_1  
R/W  
0x0  
Selects between PORT0 and PORT1 to output onto CMLOUT±.  
0: Recovered forward channel data from RIN0± is output on  
CMLOUT±  
1: Recovered forward channel data from RIN1± is output on  
CMLOUT±  
CMLOUT driver must be enabled by setting 0x56[3] = 1. Note: This  
bit must match 0x57[2:1] setting for PORT0 or PORT1.  
6
RESERVED  
RESERVED  
RESERVED  
R
R
R
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
5-2  
1-0  
7.7.1.58 CML_OUTPUT_ENABLE Register (Address = 0x56) [reset = 0x0]  
CML_OUTPUT_ENABLE is described in 7-70.  
Return to Summary Table.  
7-70. CML_OUTPUT_ENABLE Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
RESERVED  
RESERVED  
CML_Output_Enable  
R
0x0  
R
0x0  
3
R/W  
0x0  
Enable CMLOUT± Loop-through Driver  
0: Disabled (Default)  
1: Enabled  
2-1  
0
RESERVED  
RESERVED  
R
R
0x0  
0x0  
Reserved  
Reserved  
7.7.1.59 CML_OUTPUT_CTL2 Register (Address = 0x57) [reset = 0x0]  
CML_OUTPUT_CTL2 is described in 7-71.  
Return to Summary Table.  
7-71. CML_OUTPUT_CTL2 Register Field Descriptions  
Bit  
7-3  
2-1  
Field  
Type  
Reset  
Description  
RESERVED  
R
0x0  
Reserved  
CML_CHANNEL_SELECT R/W  
_2  
0x0  
Selects between PORT0 and PORT1 to output onto CMLOUT±.  
01: Recovered forward channel data from RIN0± is output on  
CMLOUT±  
10: Recovered forward channel data from RIN1± is output on  
CMLOUT±  
CMLOUT driver must be enabled by setting 0x56[3] = 1. Note:  
This must match 0x52[7] setting for PORT0 or PORT1.Note: Due  
to internal routing differences between CMLOUT0 and CMLOUT1  
inside the device, CMLOUT1 monitor may show significantly  
degraded performance when compared to CMLOUT0, especially at  
high PCLK frequency. This does not necessarily indicate an issue  
with the true channel performance.  
0
RESERVED  
R
0x0  
Reserved  
7.7.1.60 CML_OUTPUT_CTL3 Register (Address = 0x63) [reset = 0x0]  
CML_OUTPUT_CTL3 is described in 7-72.  
Copyright © 2023 Texas Instruments Incorporated  
82  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Return to Summary Table.  
7-72. CML_OUTPUT_CTL3 Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CML_TX_PWDN  
R
R
4
R
3
R
2
R
1
R
0
R/W  
Powerdown CML TX  
0: CML TX powered up  
1: CML TX powered down  
NOTE: CML TX must be powered down prior to enabling Pattern  
Generator.  
7.7.1.61 PGCTL Register (Address = 0x64) [reset = 0x10]  
PGCTL is described in 7-73.  
Return to Summary Table.  
7-73. PGCTL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
PATGEN_SEL  
R/W  
0x1  
Fixed Pattern Select:  
This field selects the pattern to output when in Fixed Pattern  
Mode. Scaled patterns are evenly distributed across the horizontal  
or vertical active regions. This field is ignored when Auto-Scrolling  
Mode is enabled. The following table shows the color selections in  
non-inverted followed by inverted color mode:  
0000: Reserved  
0001: White/Black  
0010: Black/White  
0011: Red/Cyan  
0100: Green/Magenta  
0101: Blue/Yellow  
0110: Horizontally Scaled Black to White/White to Black  
0111: Horizontally Scaled Black to Red/White to Cyan  
1000: Horizontally Scaled Black to Green/White to Magenta  
1001: Horizontally Scaled Black to Blue/White to Yellow  
1010: Vertically Scaled Black to White/White to Black  
1011: Vertically Scaled Black to Red/White to Cyan  
1100: Vertically Scaled Black to Green/White to Magenta  
1101: Vertically Scaled Black to Blue/White to Yellow  
1110: Custom color (or its inversion) configured in PGRS, PGGS,  
PGBS registers  
1111: Reserved  
3
2
1
PATGEN_UNH  
R/W  
0x0  
0x0  
0x0  
Enables the UNH-IOL compliance test pattern:  
0: Pattern type selected by PATGEN_SEL  
1: Compliance test pattern is selected. Value of PATGEN_SEL is  
ignored.  
PATGEN_COLOR_BARS R/W  
Enable Color Bars:  
0: Color Bars disabled  
1: Color Bars enabled (White, Yellow, Cyan, Green, Magenta, Red,  
Blue, Black)  
PATGEN_VCOM_REV  
R/W  
Reverse order of color bands in VCOM pattern:  
0: Color sequence from top left is (Yellow, Cyan, Blue, Red)  
1: Color sequence from top left is (Blue, Cyan, Yellow, Red)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
83  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-73. PGCTL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
PATGEN_EN  
R/W  
0x0  
Pattern Generator Enable:  
1: Enable Pattern Generator  
0: Disable Pattern Generator  
NOTE: CML TX must be powered down prior to enabling Pattern  
Generator by setting register bit 0x63[0]=1.  
7.7.1.62 PGCFG Register (Address = 0x65) [reset = 0x0]  
PGCFG is described in 7-74.  
Return to Summary Table.  
7-74. PGCFG Register Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
RESERVED  
PATGEN_18B  
R
0x0  
Reserved  
R/W  
0x0  
18-bit Mode Select:  
1: Enable 18-bit color pattern generation. Scaled patterns will have  
64 levels of brightness and the R, G, and B outputs use the six most  
significant color bits.  
0: Enable 24-bit pattern generation. Scaled patterns use 256 levels  
of brightness.  
3
2
PATGEN_EXTCLK  
PATGEN_TSEL  
R/W  
R/W  
0x0  
0x0  
Select External Clock Source:  
1: Selects the external pixel clock when using internal timing.  
0: Selects the internal divided clock when using internal timing  
This bit has no effect in external timing mode (PATGEN_TSEL = 0).  
Timing Select Control:  
1: The Pattern Generator creates its own video timing as configured  
in the Pattern Generator Total Frame Size, Active Frame Size,  
Horizontal Sync Width, Vertical Sync Width, Horizontal Back Porch,  
Vertical Back Porch, and Sync Configuration registers.  
0: the Pattern Generator uses external video timing from the pixel  
clock, Data Enable, Horizontal Sync, and Vertical Sync signals.  
1
0
PATGEN_INV  
R/W  
R/W  
0x0  
0x0  
Enable Inverted Color Patterns:  
1: Invert the color output.  
0: Do not invert the color output.  
PATGEN_ASCRL  
Auto-Scroll Enable:  
1: The Pattern Generator will automatically move to the next enabled  
pattern after the number of frames specified in the Pattern Generator  
Frame Time (PGFT) register.  
0: The Pattern Generator retains the current pattern.  
7.7.1.63 PGIA Register (Address = 0x66) [reset = 0x0]  
PGIA is described in 7-75.  
Return to Summary Table.  
7-75. PGIA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PATGEN_IA  
R/W  
0x0  
Indirect Address:  
This 8-bit field sets the indirect address for accesses to indirectly-  
mapped registers. It should be written prior to reading or writing the  
Pattern Generator Indirect Data register.  
7.7.1.64 PGID Register (Address = 0x67) [reset = 0x0]  
PGID is described in 7-76.  
Copyright © 2023 Texas Instruments Incorporated  
84  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
Return to Summary Table.  
7-76. PGID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PATGEN_ID  
R/W  
0x0  
Indirect Data:  
When writing to indirect registers, this register contains the data  
to be written. When reading from indirect registers, this register  
contains the readback value.  
7.7.1.65 PGDBG Register (Address = 0x68) [reset = 0x0]  
PGDBG is described in 7-77.  
Return to Summary Table.  
7-77. PGDBG Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
RESERVED  
PATGEN_BIST_EN  
R
0x0  
Reserved  
R/W  
0x0  
Pattern Generator BIST Enable:  
Enables Pattern Generator in BIST mode. Pattern Generator will  
compare received video data with local generated pattern. Upstream  
device must be programmed to the same pattern.  
2
1
0
RESERVED  
RESERVED  
RESERVED  
R
R
R
0x0  
0x0  
0x0  
Reserved  
Reserved  
Reserved  
7.7.1.66 PGTSTDAT Register (Address = 0x69) [reset = 0x0]  
PGTSTDAT is described in 7-78.  
Return to Summary Table.  
7-78. PGTSTDAT Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
PATGEN_BIST_ERR  
R
0x0  
Pattern Generator BIST Error Flag  
During Pattern Generator BIST mode, this bit indicates if the BIST  
engine has detected errors. If the BIST Error Count (available in the  
Pattern Generator indirect registers) is non-zero, this flag will be set.  
6
RESERVED  
RESERVED  
R
R
0x0  
0x0  
Reserved  
Reserved  
5-0  
7.7.1.67 GPI_PIN_STATUS_1 Register (Address = 0x6E) [reset = 0x0]  
GPI_PIN_STATUS_1 is described in 7-79.  
Return to Summary Table.  
7-79. GPI_PIN_STATUS_1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Description  
GPI7_Pin_Status  
GPI6_Pin_Status  
GPI5_Pin_Status  
RESERVED  
R
GPI7/I2S_WC pin status  
GPI6/I2S_DA pin status  
GPI5/I2S_DB pin status  
Reserved  
6
R
5
R
4
R
3
GPI3_Pin_Status  
GPI2_Pin_Status  
GPI1_Pin_Status  
R
GPI3 / I2S_DD pin status  
GPI2 / I2S_DC pin status  
GPI1 pin status  
2
R
1
R
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
85  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-79. GPI_PIN_STATUS_1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
GPI0_Pin_Status  
R
0x0  
GPI0 pin status  
7.7.1.68 GPI_PIN_STATUS_2 Register (Address = 0x6F) [reset = 0x0]  
GPI_PIN_STATUS_2 is described in 7-80.  
Return to Summary Table.  
7-80. GPI_PIN_STATUS_2 Register Field Descriptions  
Bit  
7-1  
0
Field  
Type  
Reset  
Description  
RESERVED  
GPI8_Pin_Status  
R
0x0  
Reserved  
R
0x0  
GPI8/I2S_CLK pin status  
7.7.1.69 RX_BKSV0 Register (Address = 0x80) [reset = 0x0]  
RX_BKSV0 is described in 7-81.  
Return to Summary Table.  
7-81. RX_BKSV0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV0  
R
0x0  
BKSV0: Value of byte0 of the Receiver KSV.  
7.7.1.70 RX_BKSV1 Register (Address = 0x81) [reset = 0x0]  
RX_BKSV1 is described in 7-82.  
Return to Summary Table.  
7-82. RX_BKSV1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV1  
R
0x0  
BKSV1: Value of byte1 of the Receiver KSV.  
7.7.1.71 RX_BKSV2 Register (Address = 0x82) [reset = 0x0]  
RX_BKSV2 is described in 7-83.  
Return to Summary Table.  
7-83. RX_BKSV2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV2  
R
0x0  
BKSV2: Value of byte2 of the Receiver KSV.  
7.7.1.72 RX_BKSV3 Register (Address = 0x83) [reset = 0x0]  
RX_BKSV3 is described in 7-84.  
Return to Summary Table.  
7-84. RX_BKSV3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV3  
R
0x0  
BKSV3: Value of byte3 of the Receiver KSV.  
Copyright © 2023 Texas Instruments Incorporated  
86  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.7.1.73 RX_BKSV4 Register (Address = 0x84) [reset = 0x0]  
RX_BKSV4 is described in 7-85.  
Return to Summary Table.  
7-85. RX_BKSV4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BKSV4  
R
0x0  
BKSV4: Value of byte4 of the Receiver KSV.  
7.7.1.74 TX_KSV0 Register (Address = 0x90) [reset = 0x0]  
TX_KSV0 is described in 7-86.  
Return to Summary Table.  
7-86. TX_KSV0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV0  
R
0x0  
TX_KSV0: Value of byte0 of the Transmitter KSV.  
7.7.1.75 TX_KSV1 Register (Address = 0x91) [reset = 0x0]  
TX_KSV1 is described in 7-87.  
Return to Summary Table.  
7-87. TX_KSV1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV1  
R
0x0  
TX_KSV1: Value of byte1 of the Transmitter KSV.  
7.7.1.76 TX_KSV2 Register (Address = 0x92) [reset = 0x0]  
TX_KSV2 is described in 7-88.  
Return to Summary Table.  
7-88. TX_KSV2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV2  
R
0x0  
TX_KSV2: Value of byte2 of the Transmitter KSV.  
7.7.1.77 TX_KSV3 Register (Address = 0x93) [reset = 0x0]  
TX_KSV3 is described in 7-89.  
Return to Summary Table.  
7-89. TX_KSV3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV3  
R
0x0  
TX_KSV3: Value of byte3 of the Transmitter KSV.  
7.7.1.78 TX_KSV4 Register (Address = 0x94) [reset = 0x0]  
TX_KSV4 is described in 7-90.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
87  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-90. TX_KSV4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TX_KSV4  
R
0x0  
TX_KSV4: Value of byte4 of the Transmitter KSV.  
7.7.1.79 HDCP_DBG Register (Address = 0xC0) [reset = X]  
HDCP_DBG is described in 7-91.  
Return to Summary Table.  
7-91. HDCP_DBG Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
0x0  
X
Description  
RESERVED  
HDCP_I2C_TO_DIS  
R
Reserved  
6
R
HDCP I2C Timeout Disable:  
Setting this bit to a 1 will disable the bus timeout function in the  
HDCP I2C Controller. When enabled, the bus timeout function allows  
the I2C Controller to assume the bus is free if no signaling occurs for  
more than 1 second. Set via the HDCP_DBG register in the HDCP  
Transmitter.  
5-4  
3
RESERVED  
R
R
0x0  
0x0  
Reserved  
RGB_CHKSUM_EN  
Enable RGB video line checksum:  
Enables sending of ones-complement checksum for each 8-bit RGB  
data channel following end of each video data line. Set via the  
HDCP_DBG register in the HDCP Transmitter.  
2
FAST_LV  
R
0x0  
Fast Link Verification:  
HDCP periodically verifies that the HDCP Receiver is correctly  
synchronized. Setting this bit will increase the rate at which  
synchronization is verified. When set to a 1, Pj is computed every  
2 frames and Ri is computed every 16 frames. When set to a 0, Pj  
is computed every 16 frames and Ri is computed every 128 frames.  
Set via the HDCP_DBG register in the HDCP Transmitter.  
1
0
TMR_SPEEDUP  
HDCP_I2C_FAST  
R
R
0x0  
0x0  
Timer Speedup:  
Speed up HDCP authentication timers. Set via the HDCP_DBG  
register in the HDCP Transmitter.  
HDCP I2C Fast mode Enable:  
Setting this bit to a 1 will enable the HDCP I2C Controller in the  
HDCP Receiver to operation with Fast mode timing. If set to a 0, the  
I2C Controller will operation with Standard mode timing. Set via the  
HDCP_DBG register in the HDCP Transmitter.  
7.7.1.80 HDCP_DBG2 Register (Address = 0xC1) [reset = 0x0]  
HDCP_DBG2 is described in 7-92.  
Return to Summary Table.  
7-92. HDCP_DBG2 Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
NO_DECRYPT  
R
0x0  
Reserved  
R
0x0  
0x0  
0x0  
Reserved  
Reserved  
2
R
1
R/W  
No Decrypt:  
When set to a 1, the HDCP Receiver will output the encrypted data  
on the RGB pins. All other functions will work normally. This provides  
a simple way of showing that the link is encrypted.  
Copyright © 2023 Texas Instruments Incorporated  
88  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-92. HDCP_DBG2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
HDCP_EN_MODE  
R/W  
0x0  
HDCP Enable Mode:  
This bit controls whether the HDCP Repeater function will enable  
HDCP in attached HDCP Transmitters if it detects HDCP is already  
enabled  
1 : Don't re-enable HDCP if already enabled  
0 : Re-enable HDCP at start of authentication, even if HDCP  
Transmitter already has HDCP enabled  
7.7.1.81 HDCP_STS Register (Address = 0xC4) [reset = 0x0]  
HDCP_STS is described in 7-93.  
Return to Summary Table.  
7-93. HDCP_STS Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
RGB_CHKSUM_ERR  
R
0x0  
Reserved  
R
0x0  
RGB Checksum Error Detected:  
If RGB Checksum in enabled through the HDCP Transmitter  
HDCP_DBG register, this bit will indicate if a checksum error is  
detected. This register may be cleared by writing any value to this  
register  
0
AUTHED  
R
0x0  
HDCP Authenticated:  
Indicates the HDCP authentication has completed suc-cessfully. The  
controller may now send video data re-quiring content protection.  
This bit will be cleared if authentication is lost or if the controller  
restarts authen-tication.  
7.7.1.82 KSV_FIFO__DATA Register (Address = 0xC9) [reset = 0x0]  
KSV_FIFO__DATA is described in 7-94.  
Return to Summary Table.  
7-94. KSV_FIFO__DATA Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
KSV_FIFO__DATA  
R/W  
0x0  
NVM Data: Texas Instruments Use Only Writing a value to this  
register will write the data into the NVM SRAM at the address  
currently selected by the NVM_ADDR0 and NVM_ADDR1 registers.  
In NVM Parallel load operation, the lowest bit of this register acts as  
a Memory Enable for the clock and data. Setting NVM_DATA[0] to a  
one will enable NVM SRAM writes. Setting to a zero will disable NVM  
SRAM writes.  
KSV_FIFO_DATA:  
During External Repeater Control mode, the External HDCP  
controller writes KSV data to the KSV FIFO through this register.  
A byte written to this register location will write one byte of KSV data  
to the KSV FIFO at the location indicated by the KSV_FIFO_ADDR  
registers.  
7.7.1.83 KSV_FIFO_A_DDR0 Register (Address = 0xCA) [reset = 0x0]  
KSV_FIFO_A_DDR0 is described in 7-95.  
Return to Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
89  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-95. KSV_FIFO_A_DDR0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
KSV_FIFO__ADDR0  
R/W  
0x0  
NVM Address Register 0: Texas Instruments Use Only  
This register contains the lower 8 bits of the NVM SRAM address.  
KSV FIFO Address Register 0:  
This register contains the lower 8 bits of the KSF FIFO Address. This  
value should be set to 0 before writing the first byte of KSV data to  
the KSV FIFO. The KSV FIFO Address will automatically increment  
for each write to the KSV_FIFO_DATA register.  
7.7.1.84 KSV_FIFO_ADDR1 Register (Address = 0xCB) [reset = 0x0]  
KSV_FIFO_ADDR1 is described in 7-96.  
Return to Summary Table.  
7-96. KSV_FIFO_ADDR1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7.7.1.85 RPTR_TX0 Register (Address = 0xE0) [reset = 0x0]  
RPTR_TX0 is described in 7-97.  
Return to Summary Table.  
7-97. RPTR_TX0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT0_ADDR  
R
0x0  
Transmit Port 0 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
0
PORT0_VALID  
R
0x0  
Transmit Port 0 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
7.7.1.86 RPTR_TX1 Register (Address = 0xE1) [reset = 0x0]  
RPTR_TX1 is described in 7-98.  
Return to Summary Table.  
7-98. RPTR_TX1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT1_ADDR  
R
0x0  
Transmit Port 1 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
0
PORT1_VALID  
R
0x0  
Transmit Port 1 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
7.7.1.87 RPTR_TX2 Register (Address = 0xE2) [reset = 0x0]  
RPTR_TX2 is described in 7-99.  
Return to Summary Table.  
7-99. RPTR_TX2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT2_ADDR  
R
0x0  
Transmit Port 2 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
Copyright © 2023 Texas Instruments Incorporated  
90  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-99. RPTR_TX2 Register Field Descriptions (continued)  
Bit  
Field  
PORT2_VALID  
Type  
Reset  
Description  
0
R
0x0  
Transmit Port 2 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
7.7.1.88 RPTR_TX3 Register (Address = 0xE3) [reset = 0x0]  
RPTR_TX3 is described in 7-100.  
Return to Summary Table.  
7-100. RPTR_TX3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
PORT3_ADDR  
R
0x0  
Transmit Port 3 I2C Address  
Indicates the I2C address for the Repeater Transmit Port.  
0
PORT3_VALID  
R
0x0  
Transmit Port 3 Valid  
Indicates that the HDCP Repeater has a transmit port at the I2C  
Address identified by upper 7 bits of this register  
7.7.1.89 XRPTR_STS Register (Address = 0xE8) [reset = 0x0]  
XRPTR_STS is described in 7-101.  
Return to Summary Table.  
7-101. XRPTR_STS Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
RX_ENCRYPTED  
R
0x0  
Reserved  
R
0x0  
0x0  
RX Encrypted:  
Indicates Repeater is receiving encrypted data  
0
KSV_WRITTEN  
R
KSV Written:  
This flag will be set after the upstream device has written the Aksv  
value to the HDCP Repeater. This bit will be cleared once Ready has  
been asserted following setting of the XRPTR_LIST_RDY flag in the  
XRPTR_CTL register.  
7.7.1.90 XRPTR_CTL Register (Address = 0xE9) [reset = 0x0]  
XRPTR_CTL is described in 7-102.  
Return to Summary Table.  
7-102. XRPTR_CTL Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
RESERVED  
XRPTR_NO_INBAND  
R
0x0  
Reserved  
R/W  
0x0  
0x0  
External Control Inband Signaling disable:  
This bit controls whether the Repeater will send inband encryption  
and AVMUTE controls to the attached HDCP Transmitters  
0 : Send Encryption/AVMUTE controls inband with video data  
1 : Don't send Encryption/AVMUTE controls inband with video data  
2
XRPTR_HPD  
R/W  
External Control Hot-Plug Detect  
This bit should be set following detection of a new downstream  
HDCP Receiver. This signal should remain high for a short period  
of time and then cleared.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
91  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7-102. XRPTR_CTL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
XRPTR_LIST_RDY  
R/W  
0x0  
Repeater KSV List Ready:  
This register bit indicates to the device that the BStatus and KSV List  
data have been loaded for the HDCP Repeater. Following setting of  
this bit, the device will compute the SHA-1 checksum and indicate  
Ready to the upstream device. This flag will read-back a 1 after  
computing the SHA-1 value. The value will be cleared if a new KSV  
is written by the upstream device.  
0
XRPTR_ENABLE  
R/W  
0x0  
Repeater External Control Enable:  
Setting this bit will disable the internal HDCP Repeater controller and  
allow use of an external controller for HDCP Repeater operations.  
This mode is useful in devices that may include multiple upstream  
HDCP capable video sources.  
7.7.1.91 XRPTR_BSTS0 Register (Address = 0xEA) [reset = 0x0]  
XRPTR_BSTS0 is described in 7-103.  
Return to Summary Table.  
7-103. XRPTR_BSTS0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
XRPTR_MAX_DEVS  
R/W  
0x0  
External Control Max Devices Exceeded  
Indicates a topology error was detected. Indicates the number of  
downstream devices has exceeded the depth of the Repeater 's KSV  
FIFO.  
6-0  
XRPTR_DEV_CNT  
R/W  
0x0  
External Control Device Count  
Total number of attached downstream device. For a Repeater, this  
will indicate the number of downstream devices, not including the  
Repeater. For an HDCP Receiver that is not also a Repeater, this  
field will be 0.  
7.7.1.92 XRPTR_BSTS1 Register (Address = 0xEB) [reset = 0x0]  
XRPTR_BSTS1 is described in 7-104.  
Return to Summary Table.  
7-104. XRPTR_BSTS1 Register Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
RESERVED  
R
0x0  
Reserved  
XRPTR_MAX_CASCADE R/W  
0x0  
0x0  
External Control Max Cascade Exceeded  
Indicates a topology error was detected. Indicates that more than  
seven levels of repeaters have been cascaded together.  
2-0  
XRPTR_DEPTH  
R/W  
External Control Cascade Depth  
Indicates the number of attached levels of devices for the Repeater.  
7.7.1.93 HDCP_RX_ID0 Register (Address = 0xF0) [reset = 0x5F]  
HDCP_RX_ID0 is described in 7-105.  
Return to Summary Table.  
7-105. HDCP_RX_ID0 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HDCP_RX_ID0  
R
0x5F  
HDCP_RX_ID0: First byte ID code, '_ '  
Copyright © 2023 Texas Instruments Incorporated  
92  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
7.7.1.94 HDCP_RX_ID1 Register (Address = 0xF1) [reset = 0x55]  
HDCP_RX_ID1 is described in 7-106.  
Return to Summary Table.  
7-106. HDCP_RX_ID1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HDCP_RX_ID1  
R
0x55  
HDCP_RX_ID1: 2nd byte of ID code, 'U '  
7.7.1.95 HDCP_RX_ID2 Register (Address = 0xF2) [reset = 0x48]  
HDCP_RX_ID2 is described in 7-107.  
Return to Summary Table.  
7-107. HDCP_RX_ID2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HDCP_RX_ID2  
R
0x48  
HDCP_RX_ID2: 3rd byte of ID code. Value will be either 'B ' or 'H '.  
'H ' indicates an HDCP capable device.  
7.7.1.96 HDCP_RX_ID3 Register (Address = 0xF3) [reset = 0x39]  
HDCP_RX_ID3 is described in 7-108.  
Return to Summary Table.  
7-108. HDCP_RX_ID3 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HDCP_RX_ID3  
R
0x39  
HDCP_RX_ID3: 4th byte of ID code: '9 '  
7.7.1.97 HDCP_RX_ID4 Register (Address = 0xF4) [reset = 0x34]  
HDCP_RX_ID4 is described in 7-109.  
Return to Summary Table.  
7-109. HDCP_RX_ID4 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HDCP_RX_ID4  
R
0x34  
HDCP_RX_ID4: 5th byte of ID code.  
7.7.1.98 HDCP_RX_ID5 Register (Address = 0xF5) [reset = 0x38]  
HDCP_RX_ID5 is described in 7-110.  
Return to Summary Table.  
7-110. HDCP_RX_ID5 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HDCP_RX_ID5  
R
0x38  
HDCP_RX_ID5: 6th byte of ID code.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
93  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
8.1 Application Information  
The DS90UH948-Q1 is a FPD-Link III deserializer which, in conjunction with the DS90UH949/947-Q1 serializers,  
converts 1-lane or 2-lane FPD-Link III streams into a FPD-Link (OpenLDI) interface. The deserializer is capable  
of operating over cost-effective 50-Ω single-ended coaxial or 100-Ω differential shielded twisted-pair (STP)  
cables. It recovers the data from two FPD-Link III serial streams and translates it into dual pixel FPD-Link (data  
lanes + clock) supporting video resolutions up to WUXGA and 2K with 24-bit color depth. This provides a bridge  
between HDMI enabled sources such as GPUs to connect to existing LVDS displays or application processors.  
8.2 Typical Applications  
Bypass capacitors must be placed near the power supply pins. At a minimum, use four (4) 10-µF capacitors for  
local device bypassing. Ferrite beads are placed on the two sets of supply pins (VDD33 and VDDIO) for effective  
noise suppression. The interface to the graphics source is LVDS. The VDDIO pins may be connected to 3.3 V  
or 1.8 V. A capacitor and resistor are placed on the PDB pin to delay the enabling of the device until power is  
stable. See 8-1 for a typical STP connection diagram and 8-2 for a typical coax connection diagram.  
Copyright © 2023 Texas Instruments Incorporated  
94  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
VDD33  
3.3V  
VDDP12_CH0  
VDDR12_CH0  
VDDP12_CH1  
VDDR12_CH1  
VDD12_LVDS  
VDDP12_LVDS  
VDDL12_0  
VDD33_A  
VDD33_B  
VDDIO  
1.2V  
0.01µF  
0.01µF  
FB5  
FB1  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
t 0.1µF  
t 0.1µF  
0.01µF  
0.01µF  
t 0.1µF  
t 0.1µF  
VDDIO  
0.01µF  
0.01µF  
FB6  
FB2  
FB3  
FB4  
0.1µF 1µF 10µF  
10µF 1µF  
10µF 1µF  
10µF 1µF  
0.1µF  
0.1µF  
0.1µF  
t 0.1µF  
t 0.1µF  
CMF  
0.01µF  
0.01µF  
t 0.1µF  
t 0.1µF  
CAP_I2S  
VDD25_CAP  
0.01µF  
0.01µF  
t 0.1µF  
t 0.1µF  
0.01µF  
0.01µF  
t 0.1µF  
t 0.1µF  
0.01µF  
t 0.1µF  
VDD33  
VDDL12_1  
(Filtered 3.3V)  
0.01µF  
t 0.1µF  
R1  
R2  
BISTEN  
BISTC  
0.1µF  
R3  
Control  
IDx  
MODE_SEL0  
MODE_SEL1  
R4  
0.1µF  
R5  
R6  
C1  
C2  
RIN0+  
RIN0-  
0.1µF  
RTERM  
RTERM  
FPD-Link III  
Aux Audio  
C3  
C4  
RIN1+  
RIN1-  
100Q  
100Q  
100Q  
100Q  
100Q  
D0-  
D0+  
D0-  
D0+  
D1-  
D1-  
D1+  
D1+  
D2-  
SWC  
D2-  
SDOUT  
D2+  
D2+  
CLK1-  
CLK1+  
D3-  
CLK1-  
CLK1+  
D3-  
D3+  
PICO  
POCI  
SPLK  
CS  
SPI  
D3+  
LVDS Output  
100Q  
100Q  
100Q  
100Q  
100Q  
D4-  
D4+  
D4-  
C5  
C6  
CMLOUTP  
CMLOUTN  
D4+  
D5-  
V(I2C)  
Monitoring  
(Optional)  
RT  
D5-  
D5+  
D5+  
D6-  
RPU  
RPU  
D6-  
D6+  
I2C_SDA  
I2C_SCL  
D6+  
CLK2-  
CLK2+  
D7-  
I2C  
CLK2-  
CLK2+  
D7-  
D7+  
HW Control Option  
VDDIO  
D7+  
10k  
>10µF  
SW Control  
PDB  
LVDS  
Termination  
LOCK  
PASS  
(Recommended)  
Status  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
MCLK  
RES0  
RES1  
0.01µF t 0.1µF  
or No Connect  
I2S Audio  
NOTES:  
FB1 FB4: '&5”25 mQ; Z = 120 Q  
@ 100 MHz  
0.01µF t 0.1µF  
or No Connect  
FB5, FB6: DCR ”0.3 Q; Z = 1 KQ @ 100 MHz  
C1 C6 = 33 nF 100 nF ꢀ50 ꢁ ꢂ ꢃXR ꢂ 0402ꢄ  
R1, R2 ꢀsee IDx Resistor ꢁalues Tableꢄ  
R3 R6 ꢀsee MODE_SEL Resistor ꢁalues Tableꢄ  
RTERM = 49.9 Ÿ  
DAP  
RT = 100 Ÿ  
RPU = 2.2 NŸIRU9ꢀI2Cꢄ = 1.8 ꢁ  
= 4.X NŸIRU9ꢀI2Cꢄ = 3.3 ꢁ  
DS90Ux948-Q1  
Copyright © 2018, Texas Instruments Incorporated  
8-1. Typical Connection Diagram (Coax)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
95  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
VDD33  
3.3V  
VDDP12_CH0  
VDDR12_CH0  
VDDP12_CH1  
VDDR12_CH1  
VDD12_LVDS  
VDDP12_LVDS  
VDDL12_0  
VDD33_A  
VDD33_B  
VDDIO  
1.2V  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
FB5  
FB1  
0.1µF 1µF 10µF  
10µF 1µF 0.1µF  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
VDDIO  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
FB6  
FB2  
FB3  
FB4  
0.1µF 1µF 10µF  
10µF 1µF  
10µF 1µF  
10µF 1µF  
0.1µF  
0.1µF  
0.1µF  
CMF  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
CAP_I2S  
VDD25_CAP  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
0.01µF  
– 0.1µF  
VDD33  
VDDL12_1  
(Filtered 3.3V)  
0.01µF  
– 0.1µF  
R1  
R2  
BISTEN  
BISTC  
0.1µF  
R3  
Control  
IDx  
MODE_SEL0  
MODE_SEL1  
R4  
0.1µF  
R5  
R6  
C1  
C2  
RIN0+  
RIN0-  
0.1µF  
FPD-Link III  
C3  
C4  
RIN1+  
RIN1-  
D0-  
D0+  
D0-  
D0+  
D1-  
D1-  
D1+  
D1+  
D2-  
SWC  
D2-  
Aux Audio  
SDOUT  
D2+  
D2+  
CLK1-  
CLK1+  
D3-  
CLK1-  
CLK1+  
D3-  
D3+  
PICO  
POCI  
SPLK  
CS  
SPI  
D3+  
LVDS Output  
D4-  
D4+  
D4-  
C5  
C6  
CMLOUTP  
CMLOUTN  
D4+  
D5-  
V(I2C)  
Monitoring  
(Op onal)  
RT  
D5-  
D5+  
D5+  
D6-  
RPU  
RPU  
D6-  
D6+  
I2C_SDA  
I2C_SCL  
D6+  
CLK2-  
CLK2+  
D7-  
I2C  
CLK2-  
CLK2+  
D7-  
D7+  
HW Control Op on  
VDDIO  
D7+  
10k  
>10µF  
SW Control  
(Recommended)  
PDB  
LVDS  
Termina on  
LOCK  
PASS  
Status  
I2S_WC  
I2S_CLK  
I2S_DA  
I2S_DB  
I2S_DC  
I2S_DD  
MCLK  
RES0  
RES1  
0.01µF – 0.1µF  
or No Connect  
I2S Audio  
NOTES:  
FB1 FB4: DCR 25 m ; Z = 120 @ 100 MHz  
FB5, FB6: DCR 0.3 ; Z = 1 K @ 100 MHz  
C1 C6 = 33 nF –  
R1, R2 (see IDx Resistor Values Table)  
R3 R6 (see MODE_SEL Resistor Values Table)  
0.01µF – 0.1µF  
or No Connect  
nF (50 V / X7R / 0402)  
R
R
R
TERM = 49.9  
T = 100  
PU = 2.2 k for V(I2C) = 1.8 V  
= 4.7 k for V (I2C) = 3.3 V  
DAP  
DS90Ux948-Q1  
Copyright © 2018, Texas Instruments Incorporated  
8-2. Typical Connection Diagram (STP)  
Copyright © 2023 Texas Instruments Incorporated  
96  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
FPD-Link III  
2 lanes  
FPD-Link  
Open LDI  
HDMI  
or  
D3  
DP++  
RIN0+  
DOUT0+  
DOUT0-  
D2  
D1  
D0  
IN_CLK-/+  
IN_D0-/+  
IN_D1-/+  
RIN0-  
Display  
or  
Graphics  
Processor  
DOUT1+  
DOUT1-  
RIN1+  
RIN1-  
Mobile  
Device  
or  
Graphics  
Processor  
CLK1  
D4  
IN_D2-/+  
D5  
DS90UH949-Q1  
Serializer  
DS90UH948-Q1  
Deserializer  
D6  
CEC  
DDC  
HPD  
D7  
CLK2  
I2C  
IDx  
I2C  
IDx  
HS_GPIO  
(SPI)  
HS_GPIO  
(SPI)  
Copyright © 2018, Texas Instruments Incorporated  
8-3. Typical Display System Diagram  
8.2.1 Design Requirements  
For the typical design application, use the following as input parameters.  
8-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
VDD33  
3.3 V  
1.8 or 3.3 V  
1.2 V  
VDDIO  
VDD12  
AC-coupling capacitor for STP with 925/927: RIN[1:0]±  
AC-coupling capacitor for STP with 929/947/949: RIN[1:0]±  
AC-coupling capacitor for Coax with 921: RIN[1:0]+  
AC-coupling capacitor for Coax with 921: RIN[1:0]-  
AC-coupling capacitor for Coax with 929/947/949: RIN[1:0]+  
AC-coupling capacitor for Coax with 929/947/949: RIN[1:0]+  
100 nF  
33 nF - 100 nF  
100 nF  
47 nF  
33 nF - 100 nF  
15 nF - 47 nF  
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.  
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in 8-4. For  
applications using single-ended 50-Ω coaxial cable, the unused data pins (RIN0– and RIN1–) must use a 15-nF  
to 47-nF capacitor and must be terminated with a 50-Ω resistor.  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
8-4. AC-Coupled Connection (STP)  
D
+
OUT  
R
IN  
+
SER  
DES  
R
IN  
-
D
-
OUT  
50Q  
50Q  
8-5. AC-Coupled Connection (Coaxial)  
For high-speed FPD–Link III transmissions, use the smallest available package for the AC-coupling capacitor.  
This minimizes degradation of signal quality due to package parasitics.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
97  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 FPD-Link III Interconnect Guidelines  
See AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and AN-905 Transmission  
Line RAPIDESIGNER Operation and Application Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
– S = space between the pair  
– 2S = space between pairs  
– 3S = space to LVCMOS signal  
Minimize the number of Vias  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual (SNLA187) available in PDF format from  
the Texas Instruments web site.  
8.2.2.2 AV Mute Prevention  
The DS90UH948Q-Q1 supports AV MUTE functionality when receiving the specifically defined data pattern  
(0x666666) during the blanking period (DE = LOW). Once the device enters the AV MUTE state, the device  
mutes both audio and video outputs resulting in a black display screen.  
Be advised if the video source continues sending random data during blanking interval, the deserializer may  
inadvertently enter the AV MUTE state upon receiving random data matching the AV MUTE command pattern.  
When paired with a UB version FPD-Link compatible serializer, setting the gate DE Register 0x04[4] will prevent  
video signals from being sent during the blanking interval. This will ensure AV MUTE mode is not entered during  
normal operation. By default the Data Enable (DE) signal is assumed to be active high. If DE is active low, then  
setting DE_POLARITY register bit 0x12 bit[5] = 1 is also required. With the DE permanently LOW, deserializers  
do not check for the AV Mute conditions, so the AV Mute is not an issue when operating with HSYNC/VSYNC  
only mode displays.  
If unexpected AV MUTE state is seen, it is recommended to verify checking the data path control setting of the  
paired Serializer. This setting is not accessible from DS90UH948Q-Q1.  
When the DS90UH948Q-Q1 is paired with a compatible “UH” Serializer, inadvertently entering the AVMUTE  
state is not possible as the “UH” Serializers do not send video data during the blanking interval. Setting the  
register 0x12 bit 6, PASS_RGB is not recommended as it will make the “UH” Serializers function as “UB”  
Serializers and induce the possibility of inadvertently entering the AVMUTE state.  
Copyright © 2023 Texas Instruments Incorporated  
98  
Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
8.2.2.3 Prevention of I2C Errors During Abrupt System Faults  
In rare instances, FPD-Link III bi-directional control channel data errors caused by system fault conditions (e.g.  
abrupt power downs of the remote serializer or cable disconnects) may result in the DS90UH948Q-Q1 sending  
inadvertent I2C transactions on the local I2C bus prior to determining loss of valid signal.  
For minimizing impact of these types of events, TI suggests the following precautions:  
Set DS90UH948Q-Q1 register 0x04 = 0x02 to minimize the duration of inadvertent I2C events  
Ensure all I2C Controllers on the bus support multi-Controller arbitration  
Assign I2C addresses with more than a single bit set to 1 for all devices on the I2C bus  
– 0x6A, 0x7B, and 0x37 are examples of good choices for an I2C address  
– 0x40 and 0x20 are examples of bad choices for an I2C address  
8.2.3 Application Curves  
The plots below correspond to 1080p60 video application with a 2-lane FPD-Link III input and dual OpenLDI  
output.  
Time (100 ps/DIV)  
8-6. Loop-Through CML Output at 2.6-Gbps  
Serial Line Rate  
8-7. OpenLDI Clock and Data Output at 74.25-  
MHz Pixel Clock  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
99  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
This device provides separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. 5-1 provides guidance on which circuit blocks are connected to which power pin pairs. In some  
cases, an external filter many be used to provide clean power to sensitive circuits such as PLLs.  
9.1 Power-Up Requirements and PDB Pin  
When power is applied, power from the highest voltage rail to the lowest voltage rail on any of the supply pins.  
For 3.3-V IO operation, VDDIO and VDD33 can be powered by the same supply and ramped simultaneously.  
Use a large capacitor on the PDB pin to ensure PDB arrives after all the supply pins have settled to the  
recommended operating voltage. When PDB pin is pulled up to VDD33, a 10-kΩ pullup and a > 10–μF capacitor  
to GND are required to delay the PDB input signal rise. All inputs must not be driven until both VDD33 and  
VDDIO has reached steady state. Pins VDD33_A and VDD33_B must both be externally connected, bypassed,  
and driven to the same potential (they are not internally connected).  
9.2 Power Sequence  
tr0  
VDD33  
GND  
tr0  
t0  
VDDIO  
GND  
tr1  
t1  
VDD12  
GND  
VDDIO  
t2  
VPDB_HIGH  
VPDB_LOW  
PDB(*)  
GND  
t4  
t3  
t3  
t5  
RIN  
t6  
GPIO  
(*) It is recommended to assert PDB (active High) with a microcontroller rather than an RC filter network to help ensure  
proper sequencing of PDB pin after settling of power supplies.  
9-1. Power Sequence  
Copyright © 2023 Texas Instruments Incorporated  
100 Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
9-1. Power-Up Sequencing Constraints  
PARAMETER  
MIN  
0.2  
0.05  
0
TYP  
MAX  
UNIT  
NOTES  
@10/90%  
@10/90%  
tr0  
tr1  
t0  
VDD33 / VDDIO rise time  
VDD12 rise time  
ms  
ms  
VDD33 to VDDIO delay  
VDD33 / VDDIO to VDD12 delay  
ms  
t1  
0
ms  
Release PDB after all supplies are up  
and stable.  
t2  
VDDx to PDB delay  
0
ms  
t3  
t4  
PDB to I2C ready delay  
PDB pulse width  
2
2
ms  
ms  
Hard reset  
Provide valid data from a compatible  
Serializer before power-up . (1)  
t5  
t6  
Valid data on RIN± to VDDx delay  
PDB to GPIO delay  
0
2
ms  
ms  
Keep GPIOs low or high until PDB is  
high.  
(1) Note that the DS90UH948Q-Q1 should be powered up after a compatible Serializer has started sending valid video data. If this  
condition is not satisfied, then a digital (software) reset or hard reset (toggling PDB pin) is required after receiving the input data. This  
requirement prevents the DS90UH948Q-Q1 from locking to any random or noise signal, ensures DS90UH948Q-Q1 has a deterministic  
startup behavior, specified lock time, and optimal adaptive equalizer setting.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 101  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the FPD-Link III devices must be designed to provide low-noise power  
feed to the device. Good layout practice also separates high frequency or high-level inputs and outputs to  
minimize unwanted stray noise pick-up, feedback, and interference. Power system performance may be greatly  
improved by using thin dielectrics (2 to 4 mils) for power/ground sandwiches. This arrangement provides plane  
capacitance for the PCB power system with low-inductance parasitics, which has proven especially effective  
at high frequencies, and makes the value and placement of external bypass capacitors less critical. External  
bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use  
values in the range of 0.01 μF to 0.1 μF. Ceramic capacitors may be in the 2.2-μF to 10-μF range. The voltage  
rating of the ceramic capacitors must be at least 5× the power supply voltage being used.  
TI recommends surface-mount capacitors due to their smaller parasitics. When using multiple capacitors per  
supply pin, place the smaller value closer to the pin. A large bulk capacitor is recommend at the point of  
power entry. This is typically in the 50-μF to 100-μF range, which smooths low frequency switching noise. TI  
recommends connecting power and ground pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground pins to an external  
bypass capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603 or 0402, is recommended for external bypass. The small  
body size reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance  
frequency of these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective  
bypassing, multiple capacitors are often used to achieve low impedance between the supply rails over the  
frequency of interest. At high frequency, it is also common practice to use two vias from power and ground pins  
to the planes to reduce the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Locate LVCMOS signals away from the differential lines to prevent coupling from the LVCMOS lines to the  
differential lines. Differential impedance of 100 Ω are typically recommended for STP interconnect and single-  
ended impedance of 50 Ω for coaxial interconnect. The closely coupled lines help to ensure that coupled noise  
appears as common-mode and thus is rejected by the receivers. The tightly coupled lines also radiate less.  
Information on the WQFN package is provided AN-1187 Leadless Leadframe Package (LLP) (SNOA401).  
10.2 Ground  
TI recommends that a consistent ground plane reference for the high-speed signals in the PCB design to provide  
the best image plane for signal traces running parallel to the plane. Connect the thermal pad of the device to this  
plane with vias.  
At least 32 thermal vias are necessary from the device center DAP to the ground plane. They connect the  
device ground to the PCB ground plane, as well as conduct heat from the exposed pad of the package to the  
PCB ground plane. More information on the WQFN style package, including PCB design and manufacturing  
requirements, is provided in AN-1187 Leadless Leadframe Package (LLP) (SNLU165).  
10.3 Routing FPD-Link III Signal Traces  
Routing the FPD-Link III signal traces between the RIN pins and the connector is the most critical pieces of a  
successful PCB layout. 10-2 shows an example PCB layout. For additional PCB layout details of the example,  
refer to the DS90UH948-Q1EVM User's Guide (SNLU162).  
The following list provides essential recommendations for routing the FPD-Link III signal traces between the  
receiver input pins (RIN) and the connector.  
Copyright © 2023 Texas Instruments Incorporated  
102 Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
The routing of the FPD-Link III traces may be all on the top layer or partially embedded in middle layers if EMI  
is a concern.  
The AC-coupling capacitors should be on the top layer and very close to the receiver input pins.  
Route the RIN traces between the AC-coupling capacitor and the connector as a 100-Ω differential micro-  
strip with tight impedance control (±10%). Calculate the proper width of the traces for a 100-Ω differential  
impedance based on the PCB stack-up.  
When choosing to implement a common mode choke for common mode noise reduction, minimize the effects  
of any impedance mismatch.  
Consult with connector manufacturer for optimized connector footprint. If the connector is mounted on the  
same side as the IC, minimize the impact of the thru-hole connector stubs by routing the high-speed signal  
traces on the opposite side of the connector mounting side.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 103  
Product Folder Links: DS90UH948-Q1  
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
10.4 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the WQFN package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in 10-1:  
10-1. No Pullback WQFN Stencil Aperture Summary  
NUMBER OF  
DAP  
APERTURE  
OPENINGS  
GAP BETWEEN  
DAP  
APERTURE  
(Dim A mm)  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL DAP  
APERTURE  
(mm)  
PCB I/O Pad  
SIZE (mm)  
PCB PITCH  
(mm)  
PCB DAP  
SIZE(mm)  
DEVICE  
PIN COUNT  
MKT DWG  
DS90UH948-Q1  
64  
NKD  
0.25 × 0.6  
0.5  
7.2 x 7.2  
0.25 x 0.6  
1.16 × 1.16  
25  
0.2  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64  
64X (0.25)  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
10-1. 64-Pin WQFN Stencil Example of Via and Opening Placement (Dimensions in mm)  
Copyright © 2023 Texas Instruments Incorporated  
104 Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
10-2 (PCB layout example) is derived from a layout design of the DS90UH948-Q1. This graphic and  
additional layout description are used to demonstrate both proper routing and proper solder techniques when  
designing in the Deserializer.  
10-2. DS90UH948-Q1 Deserializer Example Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback 105  
Product Folder Links: DS90UH948-Q1  
 
DS90UH948-Q1  
ZHCSEN6D – OCTOBER 2014 – REVISED FEBRUARY 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Soldering Specifications Application Report (SNOA549)  
Semiconductor and IC Package Thermal Metrics Application Report (SPRA953)  
AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008)  
AN-905 Transmission Line RAPIDESIGNER Operation and Application Guide (SNLA035)  
AN-1187 Leadless Leadframe Package (LLP) (SNOA401)  
LVDS Owner's Manual (SNLA187)  
AN-2173 I2C Communication Over FPD-Link III with Bidirectional Control Channel (SNLA131)  
Using the I2S Audio Interface of DS90Ux92x FPD-Link III Devices (SNLA221)  
AN-Exploring the Int Test Pattern Generation Feature of FPDLink III IVI Devices (SNLA132)  
I2C Bus Pullup Resistor Calculation (SLVA689)  
FPD-Link™ Learning Center  
An EMC/EMI System-Design and Testing Methodology for FPD-Link III SerDes (SLYT719)  
Ten Tips for Successfully Designing With Automotive EMC/EMI Requirements (SLYT636)  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
11.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
11.5 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
11.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
106 Submit Document Feedback  
Product Folder Links: DS90UH948-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS90UH948TNKDRQ1  
DS90UH948TNKDTQ1  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
90UH948Q1  
90UH948Q1  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS90UH948TNKDRQ1  
DS90UH948TNKDTQ1  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000  
250  
330.0  
178.0  
16.4  
16.4  
9.3  
9.3  
9.3  
9.3  
1.3  
1.3  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS90UH948TNKDRQ1  
DS90UH948TNKDTQ1  
WQFN  
WQFN  
NKD  
NKD  
64  
64  
2000  
250  
356.0  
208.0  
356.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
NKD 64  
9 x 9, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4229637/A  
www.ti.com  
PACKAGE OUTLINE  
NKD0064A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
6
0
0
WQFN  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
9.1  
8.9  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
(0.1)  
TYP  
7.2 0.1  
SEE TERMINAL  
DETAIL  
17  
32  
60X 0.5  
33  
16  
4X  
7.5  
1
48  
0.3  
64X  
PIN 1 ID  
64  
49  
0.2  
(OPTIONAL)  
0.1  
C A  
C
B
0.5  
0.3  
64X  
0.05  
4214996/A 08/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
(
7.2)  
SYMM  
64X (0.6)  
64X (0.25)  
SEE DETAILS  
49  
64  
1
48  
60X (0.5)  
SYMM  
(8.8)  
(1.36)  
TYP  
8X (1.31)  
33  
(
0.2) VIA  
TYP  
16  
17  
32  
(1.36) TYP  
8X (1.31)  
(8.8)  
LAND PATTERN EXAMPLE  
SCALE:8X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214996/A 08/2013  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, refer to QFN/SON PCB application note  
in literature No. SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKD0064A  
WQFN - 0.8 mm max height  
WQFN  
SYMM  
(1.36) TYP  
49  
64X (0.6)  
64X (0.25)  
64  
1
48  
(1.36)  
TYP  
60X (0.5)  
SYMM  
(8.8)  
METAL  
TYP  
16  
33  
17  
32  
25X (1.16)  
(8.8)  
SOLDERPASTE EXAMPLE  
BASED ON 0.125mm THICK STENCIL  
EXPOSED PAD  
65% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
4214996/A 08/2013  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

DS90UH948TNKDRQ1

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 解串器 | NKD | 64 | -40 to 105
TI

DS90UH948TNKDTQ1

支持 HDCP 的 1080p oLDI 双路 FPD-Link III 解串器 | NKD | 64 | -40 to 105
TI

DS90UH949-Q1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器
TI

DS90UH949A-Q1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器
TI

DS90UH949ATRGCRQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH949ATRGCTQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH949TRGCRQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UH949TRGCTQ1

支持 HDCP 的 2K DSI 转 FPD-Link III 串行器 | RGC | 64 | -40 to 105
TI

DS90UR124

5-43 MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer
NSC

DS90UR124

5MHz 至 43MHz 直流平衡 24 位 FPD-Link II 解串器
TI

DS90UR124-Q1

5MHz 至 43MHz 直流平衡 24 位 FPD-Link II 解串器 - 汽车级
TI

DS90UR124IVS

5-43 MHz DC-Balanced 24-Bit LVDS Serializer and Deserializer
NSC