DS92LV0421 [TI]

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器;
DS92LV0421
型号: DS92LV0421
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器

文件: 总58页 (文件大小:1257K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
DS92LV042x 10-MHz to-75 MHz Channel Link II Serializer and Deserializer  
With LVDS Parallel Interface  
1 Features  
3 Description  
The DS92LV042x chipset translates a Channel Link  
LVDS video interface (4 LVDS Data + LVDS Clock)  
into a high-speed serialized interface over a single  
CML pair. The DS92LV042x enables applications  
currently using popular Channel Link or OpenLDI  
LVDS style devices to upgrade seamlessly to an  
embedded clock interface. This serial bus scheme  
reduces interconnect cost and eases design  
challenges. The parallel OpenLDI LVDS interface  
also reduces FPGA I/O pins, board trace count, and  
alleviates EMI issues when compared to traditional  
single-ended wide bus interfaces.  
1
5-Channel (4 Data + 1 Clock) Channel Link LVDS  
Parallel Interface Supports 24-Bit Data 3-Bit  
Control at 10 to 75 MHz  
AC-Coupled STP Interconnect Up to 10 m  
Integrated Terminations on Serializer and  
Deserializer  
At-Speed Link BIST Mode and Reporting Pin  
Optional I2C-Compatible Serial Control Bus  
Power-Down Mode Minimizes Power Dissipation  
1.8-V or 3.3-V Compatible LVCMOS I/O Interface  
>8-kV HBM  
Programmable  
transmit  
de-emphasis,  
receive  
equalization, on-chip scrambling, and DC-balancing  
enables longer distance transmission over lossy  
–40° to 85°C Temperature Range  
Serializer (DS92LV0421)  
cables  
and  
backplanes.  
The  
DS92LV0422  
Data Scrambler for Reduced EMI  
automatically locks to incoming data without an  
external reference clock or special sync patterns,  
providing easy plug-and-go operation.  
DC–Balance Encoder for AC Coupling  
Selectable Output VOD and Adjustable De-  
Emphasis  
The DS92LV042x chipset is programmable through  
an I2C interface as well as through pins. A built-in, at-  
speed BIST feature validates link integrity and may  
be used for system diagnostics. The DS92LV0421  
and DS92LV0422 can be used interchangeably with  
the DS92LV2421 or DS92LV2422. This allows  
designers the flexibility to connect to the host device  
and receiving devices with different interface types:  
LVDS or LVCMOS.  
Deserializer (DS92LV0422)  
Fast Random Data Lock; No Reference Clock  
Required  
Adjustable Input Receiver Equalization  
EMI Minimization on Output Parallel Bus  
(SSCG and LVDS VOD Select)  
Device Information(1)  
2 Applications  
Embedded Video and Displays  
PART NUMBER  
DS92LV0421  
PACKAGE  
WQFN (36)  
WQFN (48)  
BODY SIZE (NOM)  
6.00 mm × 6.00 mm  
7.00 mm × 7.00 mm  
Medical Imaging and Factory Automation  
Office Automation (Printers and Scanners)  
Security and Video Surveillance  
DS92LV0422  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
General-Purpose Data Communication  
Typical Application Block Diagram  
Channel Link  
Channel Link II  
Channel Link  
VDDIO  
(1.8V or 3.3V)  
VDDIO  
(1.8V or 3.3V)  
1.8V  
1.8V 3.3V  
RxIN3+/-  
RxIN2+/-  
TxOUT3+/-  
High-Speed Serial Link  
1 Pair/AC Coupled  
TxOUT2+/-  
Camera/AFE  
Or  
HOST  
Graphics  
Processor  
Frame Grabber  
Or  
RGB Display  
QVGA to XGA  
24-bit Color Depth  
DOUT+  
DOUT-  
RIN+  
RIN-  
RxIN1+/-  
RxIN0+/-  
TxOUT1+/-  
TxOUT0+/-  
100 ohm STP Cable  
RxCLKIN+/-  
TxCLKOUT+/-  
CMF  
DS92LV0421  
DS92LV0422  
LOCK  
PASS  
SSC[2:0]  
PDB  
BISTEN  
VODSEL  
De-Emph  
LFMODE  
MAPSEL  
CONFIG[1:0]  
CONFIG[1:0]  
PDB  
BISTEN  
MAPSEL  
OEN  
OSSEL  
VODSEL  
SCL  
SDA  
ID[x]  
SCL  
SDA  
ID[x]  
Optional  
Optional  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Table of Contents  
7.3 Feature Description................................................. 24  
7.4 Device Functional Modes........................................ 36  
7.5 Register Maps......................................................... 37  
Application and Implementation ........................ 40  
8.1 Application Information............................................ 40  
8.2 Typical Application .................................................. 43  
Power Supply Recommendations...................... 46  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 9  
6.1 Absolute Maximum Ratings ...................................... 9  
6.2 ESD Ratings.............................................................. 9  
6.3 Recommended Operating Conditions....................... 9  
6.4 Thermal Information................................................ 10  
6.5 Electrical Characteristics: Serializer DC ................. 10  
6.6 Electrical Characteristics: Deserializer DC ............. 11  
8
9
10 Layout................................................................... 47  
10.1 Layout Guidelines ................................................. 47  
10.2 Layout Example .................................................... 49  
11 Device and Documentation Support ................. 50  
11.1 Device Support...................................................... 50  
11.2 Documentation Support ........................................ 50  
11.3 Related Links ........................................................ 50  
11.4 Receiving Notification of Documentation Updates 50  
11.5 Community Resources.......................................... 50  
11.6 Trademarks........................................................... 50  
11.7 Electrostatic Discharge Caution............................ 51  
11.8 Glossary................................................................ 51  
6.7 Electrical Characteristics: DC and AC Serial Control  
Bus........................................................................... 13  
6.8 Timing Requirements: Serial Control Bus............... 13  
6.9 Switching Characteristics: Serializer....................... 14  
6.10 Switching Characteristics: Deserializer................. 15  
6.11 Typical Characteristics.......................................... 22  
Detailed Description ............................................ 23  
7.1 Overview ................................................................. 23  
7.2 Functional Block Diagrams ..................................... 23  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 51  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (April 2013) to Revision D  
Page  
Added Device Information table, Pin Configuration and Functions section, Specifications section, ESD Ratings table,  
Thermal Information table, Typical Characteristics section, Detailed Description section, Application and  
Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation  
Support section, and Mechanical, Packaging, and Orderable Information section................................................................ 1  
Added OpenLDI LVDS as an acceptable parallel interface to the DS92LV024x chipset....................................................... 1  
Changed RXIN and RXCLKIN to TXOUT and TXCLKOUT to correct pin name typos ........................................................ 6  
Changed output state of deserializer when PDB = 1 to be TRI-STATE, not logic high......................................................... 6  
Deleted Power dissipation rows from the Absolute Maximum Ratings table ......................................................................... 9  
Changed Junction-to-ambient, RθJA, values in Thermal Information table From: 27.4°C/W To: 33.8°C/W (NJK) and  
From: 27.7°C/W to: 28.8°C/W (RHS) ................................................................................................................................... 10  
Changed Junction-to-case, RθJC(top), values in Thermal Information table From: 4.5°C/W To: 15.8°C/W (NJK) and  
From: 3.0°C/W To: 9.3°C/W (RHS) ...................................................................................................................................... 10  
Deleted note in Electrical Characteristics: Serializer DC table stating that conditions are verified by characterization  
or design and not tested in production, as this note only applies to a subset of tested parameters ................................... 10  
Changed minimum and maximum value of serializer IIN for LVDS receiver DC specification ............................................. 10  
Changed de-emphasis test condition for serializer IDD supply current ................................................................................. 11  
Changed IOL condition for serial bus VOL parameter from 3 mA to 0.5 mA ......................................................................... 13  
Changed RPU = 10 kΩ condition for the Serial Control Bus Characteristics of tR and tF ................................................... 13  
Changed tPLD footnote to include tDDLT parameter................................................................................................................ 14  
Changed notation for serial bit stream UI footnote to clarify 1 UI = 1 / (28 x CLK) ............................................................. 14  
Changed footnote for deserializer LVDS output units to clarify that parallel interface UI refers to Channel Link format  
(1 UI = 1 / [7 × CLK]) instead of Channel Link II format (1 UI = 1 / [28 × CLK]) ................................................................. 15  
Changed DS92LV0422 LVDS Transmitter Pulse Positions image to correct diagram labeling........................................... 18  
Changed parallel interface description of deserializer From: wide parallel output bus To: Channel Link LVDS clock  
2
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Revision History (continued)  
and data bus......................................................................................................................................................................... 28  
Deleted support for output data and clock slew rate control ............................................................................................... 28  
Changed CMF cap recommendation from 0.1 µF to 4.7 µF ................................................................................................ 28  
Changed SSCG Configuration (LFMODE = L) table and SSCG Configuration (LFMODE = H) table to clarify correct  
SSC[2:0] behavior................................................................................................................................................................. 29  
Changed PDB, OEN, and OSS_SEL Configuration table to clarify correct behavior with PDB, OEN, and OSS_SEL  
pins ....................................................................................................................................................................................... 31  
Changed BISTEN detail in BIST Waveforms image so that serializer and deserializer are generic ................................... 33  
Changed description of Serializer VODSEL from Reg 0x00[4] to Reg 0x00[5] ................................................................... 37  
Changed Serializer Reg 0x00[3:2] description from Reserved to Reverse-Compatibility Mode bits ................................... 37  
Changed Deserializer Reg 0x00[3:2] description from Reserved to Reverse-Compatibility Mode bits ............................... 38  
Changes from Revision B (April 2013) to Revision C  
Page  
Changed layout of National Semiconductor Data Sheet to TI format .................................................................................... 1  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
5 Pin Configuration and Functions  
NJK Package  
36-Pin WQFN  
Top View  
RXIN3œ  
RXIN3+  
RES6  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
RES4  
MAPSEL  
RES7  
ID[X]  
VDDRX  
PDB  
DAP  
VDDL  
SCL  
VDDIO  
BISTEN  
VODSEL  
DE-EMPH  
SDA  
RES0  
CONFIG[0]  
Not to scale  
Pin Functions: DS92LV0421  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
NO.  
CHANNEL LINK PARALLEL INPUT INTERFACE  
True LVDS Clock Input  
This pair must have a 100-Ω termination for standard LVDS levels.  
RXCLKIN+  
RXCLKIN–  
RXIN[3:0]+  
RXIN[3:0]–  
35  
34  
I
I
I
I
Inverting LVDS Clock Input  
This pair must have a 100-Ω termination for standard LVDS levels.  
2, 33,  
31, 29  
True LVDS Data Input  
This pair must have a 100-Ω termination for standard LVDS levels.  
1, 32,  
30, 28  
Inverting LVDS Data Input  
This pair must have a 100-Ω termination for standard LVDS levels.  
CHANNEL LINK II SERIAL OUTPUT INTERFACE  
True Output, CML  
The output must be AC-coupled with a 0.1-µF capacitor.  
DOUT+  
DOUT–  
16  
15  
O
O
Inverting Output, CML  
The output must be AC-coupled with a 0.1-µF capacitor.  
(1) G = Ground, I = Input, O = Output, and P = Power  
(2) 1= HIGH, 0 = LOW  
4
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
NAME  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Pin Functions: DS92LV0421 (continued)  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NO.  
CONTROL AND CONFIGURATION  
Operating Modes: Pin or Register Control, LVCMOS with pulldown.  
Determines the device operating mode and interfacing device (see Table 10).  
CONFIG[1:0] = 00: Interfacing to DS92LV2422 or DS92LV0422, Control Signal Filter DISABLED  
CONFIG[1:0] = 01: Interfacing to DS92LV2422 or DS92LV0422, Control Signal Filter ENABLED  
CONFIG [1:0] = 10: Interfacing to DS90UR124, DS99R124Q-Q1  
CONFIG[1:0]  
10, 9  
I
CONFIG [1:0] = 11: Interfacing to DS90C124  
De-emphasis Control: Pin or Register Control, Analog with pullup.  
De-emphasis = Open (float) - disabled  
To enable De-emphasis, tie a resistor from this pin to Ground or control through register (see  
Table 2).  
DE-EMPH  
MAPSEL  
19  
26  
I
I
Channel Link Map Select: Pin or Register Control, LVCMOS with pulldown.  
MAPSEL = 1, MSB on RXIN3± (see Figure 23).  
MAPSEL = 0, LSB on RXIN3± (see Figure 24).  
Power-down Mode input, LVCMOS with pulldown.  
PDB = 1, serializer is enabled (normal operation).  
See Power Supply Recommendations for more information.  
PDB = 0, serializer is powered down  
PDB  
23  
I
When the serializer is in the power-down state, the driver outputs (DOUT±) are both logic high,  
the PLL is shut down, and IDD is minimized. Control Registers are RESET.  
25, 3, 36,  
27, 18, 13,  
12, 8  
RES[7:0]  
VODSEL  
I
I
Reserved (tie low), LVCMOS with pulldown.  
Differential Driver Output Voltage Select: Pin or Register Control, LVCMOS with pulldown.  
VODSEL = 1, CML VOD is ±450 mV, 900 mVp-p (typical): long cable or de-emphasis  
applications  
20  
VODSEL = 0, CML VOD is ±300 mV, 600 mVp-p (typical): short cable (no de-emphasis), low  
power mode  
OPTIONAL BIST MODE  
BISTEN 21  
BIST Mode: Optional, LVCMOS with pulldown.  
BISTEN = 1, BIST is enabled  
I
BISTEN = 0, BIST is disabled (normal operation)  
OPTIONAL SERIAL BUS CONTROL  
Serial Control Bus Device ID Address Select: Optional, Analog  
Resistor to Ground and 10-kΩ pullup to 1.8-V rail (see Table 8).  
ID[X]  
SCL  
SDA  
4
6
7
I
I
Serial Control Bus Clock Input: Optional, LVCMOS (open-drain)  
SCL requires an external pullup resistor to VDDIO  
Serial Control Bus Data Input or Output: Optional, LVCMOS (open-drain)  
SDA requires an external pullup resistor VDDIO  
.
I/O  
.
POWER AND GROUND(3)  
DAP is the large metal contact at the bottom side, located at the center of the WQFN package.  
Connect to the ground plane (GND) with at least 9 vias.  
DAP  
GND  
G
VDDHS  
VDDIO  
VDDL  
14  
22  
5
P
P
P
P
P
P
TX high-speed logic power, 1.8 V ±5%  
LVCMOS I/O power and Channel Link I/O power, 1.8 V ±5% or 3.3 V ±10%  
Logic power, 1.8 V ±5%  
VDDP  
11  
24  
17  
PLL power, 1.8 V ±5%  
VDDRX  
VDDTX  
RX power, 1.8 V ±5%  
Output driver power, 1.8 V ±5%  
(3) The VDD (VDDn and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic rise. If slower than 1.5 ms, a capacitor on the PDB  
pin is required to ensure PDB arrives after all the VDD supplies have settled to the recommended operating voltage.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
RHS Package  
48-Pin WQFN  
Top View  
PDB  
SSC[0]  
SSC[1]  
SDA  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
LFMODE  
OSS_SEL  
MAPSEL  
VODSEL  
GND  
2
3
4
SCL  
5
VDDL  
6
VDDL  
DAP  
SSC[2]  
VDDP  
7
OEN  
8
BISTEN  
PASS/EQ  
LOCK  
GND  
9
CONFIG[0]  
CONFIG[1]  
ID[X]  
10  
11  
12  
GND  
VDDIO  
Not to scale  
Pin Functions: DS92LV0422  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
CHANNEL LINK II SERIAL INPUT INTERFACE  
Common-mode filter, Analog  
NO.  
CMF  
42  
I
VCM center-tap is a virtual Ground which may be AC-coupled to Ground to increase receiver  
common mode noise immunity. Recommended value is 4.7 µF or higher.  
True Input, CML  
The output must be AC-coupled with a 0.1-µF capacitor.  
RIN+  
RIN–  
40  
41  
I
I
Inverting Input, CML  
The output must be AC-coupled with a 0.1-µF capacitor.  
CHANNEL LINK PARALLEL OUTPUT INTERFACE  
True LVDS Clock Output  
This pair must have a 100-Ω termination for standard LVDS levels.  
TXCLKOUT+  
TXCLKOUT–  
TXOUT[3:0]+  
TXOUT[3:0]–  
17  
18  
O
O
O
O
Inverting LVDS Clock Output  
This pair must have a 100-Ω termination for standard LVDS levels.  
15, 19,  
21, 23  
True LVDS Data Output  
This pair must have a 100-Ω termination for standard LVDS levels.  
16, 20,  
22, 24  
Inverting LVDS Data Output  
This pair must have a 100-Ω termination for standard LVDS levels.  
(1) G = Ground, I = Input, O = Output, and P = Power  
(2) 1= HIGH, 0 = LOW  
6
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
NAME  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Pin Functions: DS92LV0422 (continued)  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NO.  
LVCMOS OUTPUTS  
LOCK Status Output, LVCMOS  
LOCK = 1, PLL is locked, output stated determined by OEN.  
LOCK = 0, PLL is unlocked, output states determined by OSS_SEL and OEN.  
See Table 7.  
LOCK  
27  
O
CONTROL AND CONFIGURATION  
Operating Modes: Pin or Limited Register Control, LVCMOS with pulldown.  
Determine the device operating mode and interfacing device. (see Table 10).  
CONFIG[1:0] = 00: Interfacing to DS92LV2421 or DS92LV0421, Control Signal Filter DISABLED  
CONFIG[1:0] = 01: Interfacing to DS92LV2421 or DS92LV0421, Control Signal Filter ENABLED  
CONFIG [1:0] = 10: Interfacing to DS90UR241, DS99R421  
CONFIG[1:0]  
11, 10  
I
CONFIG [1:0] = 11: Interfacing to DS90C124  
SSCG Low Frequency Mode: Pin or Register Control, LVCMOS with pulldown.  
LFMODE = 1, low frequency mode (TXCLKOUT = 10–20 MHz)  
LFMODE = 0, high frequency mode (TXCLKOUT = 20–65 MHz)  
SSCG not available above 65 MHz.  
LFMODE  
MAPSEL  
36  
34  
I
I
Channel Link Map Select: Pin or Register Control, LVCMOS with pulldown.  
MAPSEL = 1, MSB on TXOUT3± (see Figure 23).  
MAPSEL = 0, LSB on TXOUT3± (see Figure 24).  
Output Enable, LVCMOS with pulldown.  
See Table 7 for details.  
OEN  
30  
35  
I
I
Output Sleep State Select Input, LVCMOS with pulldown.  
See Table 7 for details.  
OSS_SEL  
Power-down Mode Input, LVCMOS with pulldown.  
PDB = 1, deserializer is enabled (normal operation).  
See Power Supply Recommendations for more information.  
PDB = 0, deserializer is powered down.  
PDB  
1
I
When the deserializer is in the power-down state, the driver outputs (TXOUT±) are in TRI-  
STATE. Control Registers are RESET.  
RES  
37  
I
I
Reserved (tie low), LVCMOS with pulldown.  
Spread Spectrum Clock Generation (SSCG) Range Select, LVCMOS with pulldown.  
See Table 5 and Table 6.  
SSC[2:0]  
7, 3, 2  
Parallel LVDS Driver Output Voltage Select: Pin or Register Control, LVCMOS with pulldown.  
VODSEL = 1, LVDS VOD is ±400 mV, 800 mVp-p (typical)  
VODSEL  
33  
I
VODSEL = 0, LVDS VOD is ±250 mV, 500 mVp-p (typical)  
CONTROL AND CONFIGURATION — STRAP PIN  
EQ Gain Control of Channel Link II Serial Input, STRAP, LVCMOS with pulldown  
EQ  
28 [PASS]  
I
EQ = 1, EQ gain is enabled (~13 dB)  
EQ = 0, EQ gain is disabled (~1.625 dB)  
OPTIONAL BIST MODE  
BIST Mode: Optional, LVCMOS with pulldown.  
BISTEN = 1, BIST is enabled  
BISTEN = 0, BIST is disabled  
BISTEN  
PASS  
29  
28  
I
PASS Output (BIST Mode): Optional, LVCMOS  
PASS =1, no errors detected  
PASS = 0, errors detected  
O
Leave open if unused. Route to a test point (pad) recommended.  
OPTIONAL SERIAL BUS CONTROL  
Serial Control Bus Device ID Address Select: Optional, Analog  
Resistor to Ground and 10-kΩ pullup to 1.8-V rail (see Table 8).  
ID[X]  
SCL  
SDA  
12  
5
I
I
Serial Control Bus Clock Input: Optional, LVCMOS (open drain)  
SCL requires an external pullup resistor to 3.3 V.  
Serial Control Bus Data Input or Output: Optional, LVCMOS (open drain)  
SDA requires an external pullup resistor 3.3 V.  
4
I/O  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Pin Functions: DS92LV0422 (continued)  
PIN  
TYPE(1)  
DESCRIPTION(2)  
NAME  
NO.  
POWER AND GROUND(3)  
DAP is the large metal contact at the bottom side, located at the center of the WQFN package.  
Connect to the ground plane (GND) with at least 9 vias.  
DAP  
GND  
DAP  
G
G
9, 14, 26,  
32, 39, 44,  
45, 48  
Ground  
VDDA  
VDDIO  
VDDL  
38, 43  
25  
P
P
P
P
P
P
Analog power, 1.8 V ±5%  
LVCMOS I/O power and Channel Link I/O power, 1.8 V ± 5% or 3.3 V ±10%  
Logic power, 1.8 V ±5%  
6, 31  
8
VDDP  
VDDSC  
VDDTX  
PLL power, 1.8 V ±5%  
46, 47  
13  
SSCG power, 1.8 V ±5%  
Channel Link LVDS parallel output power, 3.3 V ±10%  
(3) The VDD (VDDn and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic rise. If slower than 1.5 ms, a capacitor on the PDB  
pin is required to ensure PDB arrives after all the VDD supplies have settled to the recommended operating voltage.  
8
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
2.5  
UNIT  
VDDn (1.8 V)  
VDDIO  
4
Supply voltage  
V
Serializer, VDDTX  
2.5  
Deserializer, VDDTX  
4
LVCMOS I/O voltage  
VDDIO + 0.3  
VDDIO + 0.3  
VDDTX + 0.3  
VDDn + 0.3  
VDD + 0.3  
150  
V
V
Serializer LVDS input voltage  
Deserializer LVDS output voltage  
Serializer CML driver output voltage  
Deserializer CML receiver input voltage  
Junction temperature,TJ  
V
V
V
°C  
°C  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) For soldering specifications, see Absolute Maximum Ratings for Soldering (SNOA549).  
6.2 ESD Ratings  
VALUE  
±8000  
±1250  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine Model  
Electrostatic  
discharge  
V(ESD)  
V
IEC 61000-4-2, powered-up only contact discharge  
>±8000  
RD = 330 Ω, CS = 150 pF (RIN+, RIN–  
IEC 61000-4-2, powered-up only air-gap discharge  
RD = 330 Ω, CS = 150 pF (RIN+, RIN–  
)
>±30000  
)
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.71  
1.71  
3
NOM  
1.8  
MAX  
1.89  
1.89  
3.6  
UNIT  
VDDn  
Supply voltage  
V
V
VDDTX  
VDDTX  
VDDIO  
VDDIO  
Supply voltage (serializer)  
Supply voltage (deserializer)  
LVCMOS supply voltage (1.8-V nominal)  
LVCMOS supply voltage (3.3-V nominal)  
Clock frequency  
1.8  
3.3  
V
1.71  
3
1.8  
1.89  
3.6  
V
3.3  
V
10  
75  
MHz  
mVp-p  
°C  
Supply noise(1)  
100  
85  
TA  
Operating free-air temperature  
40  
25  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC-coupled to the VDDn (1.8 V) supply with  
amplitude = 100 mVp-p measured at the device VDDn pins. Bit error rate testing of input to the serializer and output of the deserializer  
with 10 meter cable shows no error when the noise frequency on the serializer is less than 750 kHz. The deserializer, on the other hand,  
shows no error when the noise frequency is less than 400 kHz.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
6.4 Thermal Information  
over operating free-air temperature range (unless otherwise noted)  
DS92LV0421  
DS92LV0422  
THERMAL METRIC(1)  
NJK (WQFN)  
36 PINS  
33.8  
RHS (WQFN)  
UNIT  
48 PINS  
28.8  
9.3  
RθJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(2)  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
15.8  
7.2  
5.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.2  
0.1  
ψJB  
7.1  
5.7  
RθJC(bot)  
2.6  
1.6  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Based on nine thermal vias.  
6.5 Electrical Characteristics: Serializer DC  
over recommended operating supply and temperature ranges (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVCMOS INPUT DC SPECIFICATIONS  
VDDIO = 3 V to 3.6 V (PDB, VODSEL, MAPSEL,  
CONFIG[1:0], BISTEN pins)  
2
VDDIO  
VDDIO  
0.8  
VIH  
High-level input voltage  
V
VDDIO = 1.71 V to 1.89 V (PDB, VODSEL, MAPSEL,  
CONFIG[1:0], BISTEN pins)  
0.65 ×  
VDDIO  
VDDIO = 3 V to 3.6 V (PDB, VODSEL, MAPSEL,  
CONFIG[1:0], BISTEN pins)  
GND  
VIL  
Low-level input voltage  
Input current  
V
VDDIO = 1.71 V to 1.89 V (PDB, VODSEL, MAPSEL,  
CONFIG[1:0], BISTEN pins)  
0.35 ×  
VDDIO  
GND  
15  
VDDIO = 3 V to 3.6 V  
±1  
±1  
15  
VIN = 0 V or VDDIO (PDB,  
VODSEL, MAPSEL,  
CONFIG[1:0], BISTEN pins)  
IIN  
µA  
VDDIO = 1.7 V to  
1.89 V  
15  
15  
CHANNEL LINK PARALLEL LVDS RECEIVER DC SPECIFICATIONS  
Differential threshold, high  
voltage  
VCM = 1.2 V (see Figure 1),  
RXIN[3:0]± and RXCLKIN± pins  
VTH  
VTL  
|VID  
100  
600  
mV  
mV  
mV  
Differential threshold, low  
voltage  
VCM = 1.2 V (see Figure 1),  
RXIN[3:0]± and RXCLKIN± pins  
100  
Differential input voltage  
swing  
VCM = 1.2 V (see Figure 1),  
RXIN[3:0]± and RXCLKIN± pins  
|
200  
VDDIO = 3.3 V (RXIN[3:0]± and RXCLKIN± pins)  
VDDIO = 1.8 V (RXIN[3:0]± and RXCLKIN± pins)  
RXIN[3:0]± and RXCLKIN± pins  
0
0
1.2  
1.2  
±1  
2.4  
1.7  
15  
VCM  
IIN  
Common-mode voltage  
Input current  
V
15  
µA  
CHANNEL LINK II SERIAL CML DRIVER DC SPECIFICATIONS  
RL = 100 Ω,  
de-emphasis = disabled  
(see Figure 3), DOUT+ and  
DOUT– pins  
VODSEL = L  
VODSEL = H  
VODSEL = L  
VODSEL = H  
±225  
±350  
±300  
±450  
600  
±375  
±550  
VOD  
Differential output voltage  
mV  
RL = 100 Ω,  
Differential output voltage  
(DOUT+) – (DOUT–)  
de-emphasis = disabled  
(see Figure 3), DOUT+ and  
DOUT– pins  
VODp-p  
mVp-p  
mV  
900  
RL = 100 Ω, de-emphasis = disabled, VODSEL = L  
(DOUT+ and DOUT– pins)  
ΔVOD  
Output voltage unbalance  
1
50  
(1) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = +25°C, and at the Recommended Operation Conditions at  
the time of product characterization and are not verified.  
(2) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH, and VTL, which are differential voltages.  
10  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Electrical Characteristics: Serializer DC (continued)  
over recommended operating supply and temperature ranges (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
At TP A and B (see Figure 2), VODSEL = L  
1.65  
Offset voltage  
(single-ended)  
RL = 100 Ω, de-emphasis =  
disabled (DOUT+ and DOUT–  
pins)  
VOS  
V
VODSEL = H  
1.575  
Offset voltage unbalance  
(single-ended)  
At TP A and B (see Figure 2), RL = 100 Ω,  
de-emphasis = disabled (DOUT+ and DOUT– pins)  
ΔVOS  
IOS  
1
mV  
mA  
Ω
DOUT± = 0 V, de-emphasis = disabled,  
VODSEL = 0 (DOUT+ and DOUT– pins)  
Output short-circuit current  
36  
Internal output termination  
resistor  
RTO  
DOUT+ and DOUT– pins  
80  
120  
100  
SERIALIZER SUPPLY CURRENT  
RL = 100 Ω, f = 75 MHz, checker board pattern (see  
Figure 15), de-emphasis = 3 kΩ, VODSEL = H,  
VDD = 1.89 V (All VDD pins)  
Serializer supply current  
IDDT1  
84  
mA  
mA  
mA  
mA  
(includes load current)  
RL = 100 Ω, f = 75 MHz  
de-emphasis = 3 kΩ,  
VODSEL = H,  
checker board pattern (see  
Figure 15)  
VDDIO= 1.89 V  
(VDDIO pin)  
3
5
Serializer supply current  
IDDIOT1  
(includes load current)  
VDDIO = 3.6 V  
(VDDIO pin)  
10  
13  
RL = 100 Ω, f = 75 MHz, checker board pattern (see  
Figure 15), de-emphasis = 6 kΩ, VODSEL = L,  
VDD = 1.89 V (All VDD pins)  
Serializer supply current  
IDDT2  
77  
90  
(includes load current)  
RL = 100 Ω, f = 75 MHz  
de-emphasis = 6 kΩ,  
VODSEL = L,  
checker board pattern (see  
Figure 15)  
VDDIO= 1.89 V  
(VDDIO pin)  
3
5
Serializer supply current  
IDDIOT2  
(includes load current)  
VDDIO = 3.6 V  
(VDDIO pin)  
10  
13  
Serializer supply current  
power-down  
PDB = 0 V, all other LVCMOS inputs = 0 V,  
VDD = 1.89 V (All VDD pins)  
IDDZ  
100  
0.5  
1
1000  
10  
µA  
µA  
VDDIO= 1.89 V  
(VDDIO pin)  
Serializer supply current  
power-down  
PDB = 0 V, all other LVCMOS  
inputs = 0 V  
IDDIOZ  
VDDIO = 3.6 V  
(VDDIO pin)  
30  
6.6 Electrical Characteristics: Deserializer DC  
over recommended operating supply and temperature ranges (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
3.3-V LVCMOS I/O DC SPECIFICATIONS (VDDIO = 3 V to 3.6 V)  
PDB, VODSEL, OEN, MAPSEL, LFMODE, SSC[2:0],  
and BISTEN pins  
VIH  
VIL  
IIN  
High level input voltage  
Low level input voltage  
Input current  
2
GND  
15  
VDDIO  
0.8  
V
V
PDB, VODSEL, OEN, MAPSEL, LFMODE, SSC[2:0],  
and BISTEN pins  
VIN = 0 V or VDDIO (PDB, VODSEL, OEN, MAPSEL,  
LFMODE, SSC[2:0], and BISTEN pins)  
±1  
15  
µA  
V
VDDIO  
VOH  
High level output voltage  
IOH = –0.5 mA (LOCK and PASS pins)  
VDDIO  
0.2  
VOL  
IOS  
Low level output voltage  
IOL = 0.5 mA (LOCK and PASS pins)  
VOUT = 0 V (LOCK and PASS pins)  
GND  
–10  
0.2  
10  
V
Output short-circuit current  
mA  
PDB = 0 V, OSS_SEL = 0 V, VOUT = 0 V or VDDIO  
(LOCK and PASS pins)  
IOZ  
TRI-STATE output current  
–10  
µA  
(1) Typical values represent most likely parametric norms at VDD = 3.3 V, TA = +25°C, and at the Recommended Operation Conditions at  
the time of product characterization and are not verified.  
(2) Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH, and VTL, which are differential voltages.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Electrical Characteristics: Deserializer DC (continued)  
over recommended operating supply and temperature ranges (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
1.8-V LVCMOS I/O DC SPECIFICATIONS (VDDIO = 1.71 V to 1.89 V)  
PDB, VODSEL, OEN, MAPSEL, LFMODE, SSC[2:0],  
and BISTEN pins  
0.65 ×  
VDDIO  
VIH  
VIL  
IIN  
High level input voltage  
Low level input voltage  
Input current  
VDDIO  
V
V
PDB, VODSEL, OEN, MAPSEL, LFMODE, SSC[2:0],  
and BISTEN pins  
0.35 ×  
VDDIO  
GND  
VIN = 0 V or VDDIO (PDB, VODSEL, OEN, MAPSEL,  
LFMODE, SSC[2:0], and BISTEN pins)  
15  
±1  
15  
µA  
V
VDDIO  
VOH  
High level output voltage  
IOH = –0.5 mA (LOCK and PASS pins)  
VDDIO  
0.2  
VOL  
IOS  
Low level output voltage  
IOL = 0.5 mA (LOCK and PASS pins)  
VOUT = 0 V (LOCK and PASS pins)  
GND  
–3  
0.2  
15  
V
Output short-circuit current  
mA  
PDB = 0 V, OSS_SEL = 0 V, VOUT = 0 V or VDDIO  
(LOCK and PASS pins)  
IOZ  
TRI-STATE output current  
–15  
µA  
CHANNEL LINK PARALLEL LVDS DRIVER DC SPECIFICATIONS  
RL = 100 Ω  
(see Figure 3; TXOUT[3:0]± and  
TXCLKOUT± pins)  
VODSEL = L  
VODSEL = H  
VODSEL = L  
VODSEL = H  
100  
200  
250  
400  
500  
800  
400  
600  
|VOD  
|
Differential output voltage  
mV  
RL = 100 Ω  
(see Figure 3; TXOUT[3:0]± and  
TXCLKOUT± pins)  
Differential output voltage  
A to B  
VODp-p  
ΔVOD  
VOS  
mVp-p  
mV  
RL = 100 Ω  
Output voltage unbalance  
1
50  
(see Figure 3; TXOUT[3:0]± and TXCLKOUT± pins)  
RL = 100 Ω  
(see Figure 3; TXOUT[3:0]± and  
TXCLKOUT± pins)  
VODSEL = L  
VODSEL = H  
1
1.2  
1.2  
1.5  
Offset voltage  
(single-ended)  
V
Offset voltage unbalance  
(single-ended)  
RL = 100 Ω (see Figure 3; TXOUT[3:0]± and  
TXCLKOUT± pins)  
ΔVOS  
IOS  
1
50  
mV  
mA  
µA  
RL = 100 Ω, VOUT = GND  
(TXOUT[3:0]± and TXCLKOUT± pins)  
Output short-circuit current  
Output TRI-STATE current  
–5  
RL = 100 Ω, VOUT = VDDTX or GND  
(TXOUT[3:0]± and TXCLKOUT± pins)  
IOZ  
–10  
10  
50  
CHANNEL LINK II SERIAL CML RECEIVER DC SPECIFICATIONS  
Differential input threshold  
high voltage  
VCM = 1.2 V (Internal VBIAS  
(RIN+ and RIN- pins)  
)
)
VTH  
VTL  
mV  
mV  
Differential input threshold  
low voltage  
VCM = 1.2 V (Internal VBIAS  
(RIN+ and RIN- pins)  
–50  
85  
Common mode voltage,  
internal VBIAS  
VCM  
RT  
RIN+ and RIN- pins  
RIN+ and RIN- pins  
1.2  
V
Input termination  
100  
115  
Ω
DESERIALIZER SUPPLY CURRENT  
75 MHz clock, checker board pattern (see  
Figure 15), VODSEL = H, SSCG[2:0] = 000'b,  
VDDn = 1.89 V (All VDD(1.8) pins)  
Deserializer supply current  
IDD1  
88  
40  
100  
50  
mA  
mA  
(Includes load current)  
75 MHz clock, checker board pattern (see  
Figure 15), VODSEL = H, SSCG[2:0] = 000'b,  
VDDTX = 3.6 V (VDDTX pin)  
Deserializer supply current  
IDDTX1  
(Includes load current)  
VDDIO = 1.89 V  
(VDDIO pin)  
75 MHz clock,  
0.3  
0.8  
0.8  
1.5  
2
Deserializer supply current  
IDDIO1  
checker board pattern (see  
Figure 15), VODSEL = H,  
SSCG[2:0] = 000'b  
mA  
(Includes load current)  
VDDIO = 3.6 V  
(VDDIO pin)  
Deserializer supply current  
power-down  
PDB = 0 V, All other LVCMOS inputs = 0 V,  
VDDn = 1.89 V (All VDD(1.8) pins)  
IDDZ  
0.15  
0.01  
mA  
mA  
Deserializer supply current  
power-down  
PDB = 0 V, All other LVCMOS inputs = 0 V,  
VDDTX = 3.6 V (VDDTX pin)  
IDDTXZ  
0.1  
12  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Electrical Characteristics: Deserializer DC (continued)  
over recommended operating supply and temperature ranges (unless otherwise noted)(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VDDIO = 1.89 V  
(VDDIO pin)  
0.01  
0.08  
mA  
Deserializer supply current  
power-down  
PDB = 0 V,  
all other LVCMOS inputs = 0 V  
IDDIOZ  
VDDIO = 3.6 V  
(VDDIO pin)  
0.01  
0.08  
6.7 Electrical Characteristics: DC and AC Serial Control Bus  
over 3.3-V supply and temperature ranges (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
0.7 ×  
VDDIO  
VIH  
VIL  
Input high-level voltage  
SDA and SCL  
VDDIO  
V
0.3 ×  
VDDIO  
Input low-level voltage  
SDA and SCL  
GND  
V
VHY  
VOL  
IIN  
Input hysteresis  
>50  
mV  
V
Output low-level voltage  
Input current  
SDA, IOL = 0.5 mA  
0
0.36  
10  
SDA or SCL, Vin = VDDIO or GND  
–10  
µA  
SDA, RPU = 10 kΩ, Cb 400pF  
(see Figure 18)  
tR  
tF  
SDA rise time, READ  
SDA fall time, READ  
800  
50  
ns  
ns  
SDA, RPU = 10 kΩ, Cb 400pF  
(see Figure 18)  
tSU;DAT  
tHD;DAT  
tSP  
Set-up time, READ  
Hold time, READ  
Input filter  
See Figure 18  
See Figure 18  
540  
600  
50  
ns  
ns  
ns  
pF  
CIN  
Input capacitance  
SDA or SCL  
<5  
6.8 Timing Requirements: Serial Control Bus  
over 3.3-V supply and temperature ranges (unless otherwise noted)  
MIN  
TYP  
MAX  
100  
UNIT  
Standard mode  
Fast mode  
fSCL  
SCL clock frequency  
SCL low period  
kHz  
400  
Standard mode  
Fast mode  
4.7  
1.3  
4
tLOW  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
Standard mode  
Fast mode  
tHIGH  
SCL high period  
0.6  
4
Standard mode  
Fast mode  
Hold time for a START or a repeated START condition  
(see Figure 18)  
tHD:STA  
0.6  
4.7  
0.6  
0
Standard mode  
Fast mode  
Set-up time for a START or a repeated START condition  
(see Figure 18)  
tSU:STA  
Standard mode  
Fast mode  
3.45  
0.9  
tHD:DAT Data hold time (see Figure 18)  
tSU:DAT Data set-up time (see Figure 18)  
tSU:STO Set-up time for STOP (see Figure 18)  
0
Standard mode  
Fast mode  
250  
100  
4
Standard mode  
Fast mode  
0.6  
4.7  
1.3  
Standard mode  
Fast mode  
Bus free time between STOP and START  
(see Figure 18)  
tBUF  
Standard mode  
Fast mode  
1000  
300  
tr  
SCL and SDA rise time (see Figure 18)  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Timing Requirements: Serial Control Bus (continued)  
over 3.3-V supply and temperature ranges (unless otherwise noted)  
MIN  
TYP  
MAX  
300  
UNIT  
Standard mode  
Fast mode  
tf  
SCL and SDA fall time (see Figure 18)  
ns  
300  
6.9 Switching Characteristics: Serializer  
over recommended operating supply and temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CHANNEL LINK PARALLEL LVDS INPUT  
RXCLKIN = 75 MHz, RXIN[3:0] pins  
(see Figure 5)  
tRSP0  
tRSP1  
tRSP2  
tRSP3  
tRSP4  
tRSP5  
tRSP6  
LVDS Receiver Strobe Position (bit 0)  
LVDS Receiver Strobe Position (bit 1)  
LVDS Receiver Strobe Position (bit 2)  
LVDS Receiver Strobe Position (bit 3)  
LVDS Receiver Strobe Position (bit 4)  
LVDS Receiver Strobe Position (bit 5)  
LVDS Receiver Strobe Position (bit 6)  
0.57  
2.47  
0.95  
2.85  
1.33  
3.23  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RXCLKIN = 75 MHz, RXIN[3:0] pins  
(see Figure 5)  
RXCLKIN = 75 MHz, RXIN[3:0] pins  
(see Figure 5)  
4.37  
4.75  
5.13  
RXCLKIN = 75 MHz, RXIN[3:0] pins  
(see Figure 5)  
6.27  
6.65  
7.03  
RXCLKIN = 75 MHz, RXIN[3:0] pins  
(see Figure 5)  
8.17  
8.55  
8.93  
RXCLKIN = 75 MHz, RXIN[3:0] pins  
(see Figure 5)  
10.07  
11.97  
10.45  
12.35  
10.83  
12.73  
RXCLKIN = 75 MHz, RXIN[3:0] pins  
(see Figure 5)  
CHANNEL LINK II CML OUTPUT  
RL = 100 Ω, De-emphasis = disabled,  
VODSEL = 0  
100  
100  
130  
100  
200  
200  
260  
200  
5
300  
300  
390  
300  
15  
Serializer output low-to-high transition time  
(see Figure 4)  
tLLHT  
ps  
ps  
RL = 100 Ω, De-emphasis = disabled,  
VODSEL = 1  
RL = 100 Ω, De-emphasis = disabled,  
VODSEL = 0  
Serializer output high-to-low transition time  
(see Figure 4)  
tLHLT  
RL = 100 Ω, De-emphasis = disabled,  
VODSEL = 1  
Serializer output active to OFF delay  
(see Figure 9)(1)  
tXZD  
tPLD  
tSD  
ns  
ms  
Serializer PLL lock time  
(see Figure 7)(1)(2)(3)  
RL = 100 Ω  
RL = 100 Ω  
1.5  
10  
Serializer delay, latency  
(see Figure 10)(1)  
147 × T 148 × T  
0.3  
ns  
Serializer output total jitter  
(see Figure 12)  
RL = 100 Ω, De-emphasis = disabled,  
RANDOM pattern  
tDJIT  
UI(4)  
RXCLKIN = 43 MHz  
RXCLKIN = 75 MHz  
RXCLKIN = 43 MHz  
RXCLKIN = 75 MHz  
2.2  
3
Serializer jitter transfer  
λSTXBW  
MHz  
dB  
(function –3-dB bandwidth)(1)(5)  
1
Serializer jitter transfer  
(function peaking)(1)(5)  
δSTX  
1
(1) Specification is verified by characterization and is not tested in production.  
(2) tPLD and tDDLT is the time required by the serializer and deserializer to obtain lock when exiting power-down state with an active  
RXCLKIN.  
(3) When the serializer output is at TRI-STATE, the deserializer loses PLL lock. Resynchronization and Re-lock must occur before data  
transfer require tPLD  
.
(4) UI: Unit Interval is equivalent to one serialized data bit width (1 UI = 1 / [28 × CLK]). The UI scales with clock frequency.  
(5) Specification is verified by design and is not tested in production.  
14  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
6.10 Switching Characteristics: Deserializer  
over recommended operating supply and temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CHANNEL LINK PARALLEL LVDS OUTPUT  
RL = 100 Ω  
TXCLKOUT±, TXOUT[3:0]± pins  
tDLHT  
tDHLT  
Deserializer low-to-high transition time  
Deserializer high-to-low transition time  
0.3  
0.3  
0.6  
0.6  
ns  
ns  
RL = 100 Ω  
TXCLKOUT±, TXOUT[3:0]± pins  
TXCLKOUT± = 10 MHz  
TXCLKOUT± = 75 MHz  
900  
75  
2100  
125  
tDCCJ  
Cycle-to-cycle output jitter(1)(2)(3)  
ps  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
tTTP1  
tTTP0  
tTTP6  
tTTP5  
tTTP4  
tTTP3  
tTTP2  
tDD  
LVDS Transmitter Pulse Position for bit 1  
LVDS Transmitter Pulse Position for bit 0  
LVDS Transmitter Pulse Position for bit 6  
LVDS Transmitter Pulse Position for bit 5  
LVDS Transmitter Pulse Position for bit 4  
LVDS Transmitter Pulse Position for bit 3  
LVDS Transmitter Pulse Position for bit 2  
0
1
2
3
4
5
6
UI(4)  
UI(4)  
UI(4)  
UI(4)  
UI(4)  
UI(4)  
UI(4)  
ns  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
Deserializer delay, latency(3)  
(see Figure 11)  
TXCLKOUT± = 10 to 75 MHz  
(see Figure 6)  
142 × T 143 × T  
Deserializer power-down delay,  
active to OFF (see Figure 13)  
tTPDD  
tTXZR  
TXCLKOUT± = 75 MHz  
TXCLKOUT± = 75 MHz  
6
10  
55  
ns  
Deserializer enable delay,  
OFF to active (see Figure 14)  
40  
ns  
CHANNEL LINK II CML INPUT  
TXCLKOUT± = 10 MHz, SSCG = OFF  
TXCLKOUT± = 10 MHz, SSCG = ON  
TXCLKOUT± = 75 MHz, SSCG = OFF  
TXCLKOUT± = 65 MHz, SSCG = ON  
7
14  
6
Deserializer lock time(5)  
(see Figure 8)  
tDDLT  
ms  
8
EQ = OFF  
SSCG = OFF  
Jitter frequency > 10 MHz  
Deserializer input jitter tolerance  
(see Figure 16)  
tDJIT  
>0.45  
UI(6)  
LVCMOS OUTPUTS  
Deserializer low-to-high transition time  
tCLH  
CL = 8 pF (LOCK and PASS pins)  
CL = 8 pF (LOCK and PASS pins)  
10  
10  
15  
15  
ns  
ns  
(see Figure 4)  
Deserializer high-to-low transition time  
(see Figure 4)  
tCHL  
10 MHz  
(PASS pin)  
220  
40  
230  
65  
BIST PASS valid time,  
BISTEN = 1 (see Figure 17)  
tPASS  
ns  
75 MHz  
(PASS pin)  
(1) tDCCJ is the maximum amount of jitter between adjacent clock cycles.  
(2) Specification is verified by characterization and is not tested in production.  
(3) Specification is verified by design and is not tested in production.  
(4) UI: Unit Interval is equivalent to one serialized data bit width in the OpenLDI parallel interface format (1 UI = 1 / [7 × CLK]). The UI  
scales with clock frequency.  
(5) tPLD and tDDLT is the time required by the serializer and deserializer to obtain lock when exiting power-down state with an active  
RXCLKIN.  
(6) UI – Unit Interval is equivalent to one serialized data bit width (1 UI = 1 / [28 × CLK]). The UI scales with clock frequency.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Switching Characteristics: Deserializer (continued)  
over recommended operating supply and temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SSCG MODE  
Spread spectrum clocking  
deviation frequency(3)  
TXCLKOUT± = 10 to 65 MHz,  
SSCG = ON  
fDEV  
±0.5%  
8
±2%  
Spread spectrum clocking  
modulation frequency(3)  
TXCLKOUT± = 10 to 65 MHz,  
SSCG = ON  
fMOD  
100  
kHz  
RxIN[3:0]+  
RxCLKIN+  
VTL  
VCM=1.2V  
VTH  
RxIN[3:0]-  
RxClkIN-  
GND  
Figure 1. Channel Link DC VTH/VTL Definition  
A
B
A'  
C
Scope  
A
B
50W  
50W  
C
B'  
50W  
50W  
Figure 2. Output Test Circuit  
DOUT+  
VOD-  
VOD+  
DOUT-  
GND  
VOS  
VOD+  
0 V  
(DOUT+) - (DOUT+  
)
VODp-p  
VOD-  
Figure 3. CML Output Waveforms  
16  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
+VOD  
80%  
(DOUT+) - (DOUT-)  
0V  
20%  
-VOD  
tLLHT  
Figure 4. CML Output Transition Times  
tLHLT  
Figure 5. DS92LV0421 Channel Link Receiver Strobe Positions  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Cycle N  
TxCLKOUT±  
TxOUT[3:0]±  
bit 1 bit 0 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0  
t
t
TTP1  
TTP0  
0UI  
1UI  
2UI  
t
t
t
t
t
TTP6  
TTP5  
TTP4  
TTP3  
TTP2  
3UI  
4UI  
5UI  
6UI  
Figure 6. DS92LV0422 LVDS Transmitter Pulse Positions  
PDB  
VIH  
MIN  
RxCLKIN  
"X"  
active  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
Figure 7. DS92LV0421 Lock Time  
PDB  
VIH(min)  
R ±  
IN  
tDDLT  
LOCK  
VOH(min)  
TRI-STATE  
Figure 8. DS92LV0422 Lock Time  
18  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
VIL  
PDB  
X
MA  
RxCLKIN  
active  
"X"  
t
XZD  
DOUT  
(Diff.)  
active  
Driver OFF, V  
OD  
= 0V  
Figure 9. DS92LV0421 Disable Time  
RxIN[3:0]  
RxCLKIN  
N-1  
N
N+1  
N+2  
t
SD  
STOP START  
BIT BIT  
STOP START  
BIT BIT  
STOP START  
STOP START  
BIT BIT  
STOP  
BIT  
BIT BIT  
SYMBOL N-4  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
D
0-23  
OUT  
DCA, DCB  
Figure 10. DS92LV0421 Latency Delay  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START  
BIT  
STOP  
BIT  
START STOP  
BIT BIT  
SYMBOLN+3  
SYMBOLN  
SYMBOLN+1  
SYMBOLN+2  
R
IN  
+/-  
t
RD  
TxCLKOUT  
TxOUT[3:0]  
SYMBOL N-3  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
Figure 11. DS92LV0422 Latency Delay  
t
t
DJIT  
DJIT  
VOD (+)  
DOUT  
(Diff.)  
TxOUT_E_O  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 12. DS92LV0421 Output Jitter  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
PDB  
RIN  
VILmax  
X
t
TPDD  
LOCK  
PASS  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Z
Z
Figure 13. DS92LV0422 Power-Down Delay  
PDB  
LOCK  
t
TXZR  
OEN  
VIHmin  
Z
Z
TxCLKOUT  
TxOUT[3:0]  
Figure 14. DS92LV0422 Enable Delay  
+V  
OD  
RxCLKIN  
-V  
OD  
+V  
OD  
RxIN[odd]  
-V  
OD  
+V  
OD  
RxIN[even]  
-V  
OD  
Cycle N  
Cycle N+1  
Figure 15. Checkerboard Data Pattern  
20  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Ideal Data  
Bit End  
Sampling  
Window  
Ideal Data Bit  
Beginning  
V
TH  
0V  
RIN_TOL  
Left  
RIN_TOL  
Right  
V
TL  
Ideal Center Position (t /2)  
BIT  
t
(1 UI)  
BIT  
tIJIT = RIN_TOL (Left + Right)  
Sampling Window = 1 UI - t  
IJIT  
Figure 16. DS92LV0422 Receiver Input Jitter Tolerance  
VIL  
BISTEN  
MAX  
t
PASS  
PASS  
(w/ errors)  
VOL  
MAX  
Result Held  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Figure 17. BIST PASS Waveform  
SDA  
t
BUF  
t
t
f
HD;STA  
t
t
r
LOW  
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 18. Serial Control Bus Timing Diagram  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
6.11 Typical Characteristics  
85  
80  
75  
70  
VODSEL = H  
65  
60  
VODSEL = L  
55  
50  
45  
40  
0
10  
20  
30  
40  
50  
60  
70  
RxCLK (MHz)  
Figure 19. Typical IDDT (1.8-V Supply)  
vs RXCLKIN  
Figure 20. Serializer DOUT Voltage  
vs Ambient Temperature  
22  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
7 Detailed Description  
7.1 Overview  
The DS92LV042x chipset transmits and receives 24 bits of data and 3 control signals, formatted as Channel Link  
LVDS data, over a single serial CML pair operating at 280 Mbps to 2.1 Gbps. The serial stream contains an  
embedded clock, video control signals, and the DC-balance information which enhances signal quality and  
supports AC coupling.  
The deserializer can attain lock to a data stream without the use of a separate reference clock source, which  
greatly simplifies system complexity and overall cost. The deserializer also synchronizes to the serializer  
regardless of the data pattern, delivering true automatic plug and lock performance. It can lock to the incoming  
serial stream without the requirement of special training patterns or sync characters. The deserializer recovers  
the clock and data by extracting the embedded clock information, validating, and then deserializing the incoming  
data stream, providing a parallel Channel Link LVDS bus to the display, ASIC, or FPGA.  
The DS92LV042x chipset can operate with up to 24 bits of raw data with three slower speed control bits encoded  
within the serial data stream. For applications that require less than the maximum 24 raw data bits per clock  
cycle, the user must ensure that all unused bit spaces or parallel LVDS channels are set to valid logic states, as  
all parallel lanes and 27 bit spaces are always sampled.  
7.2 Functional Block Diagrams  
VODSEL  
De-Emph  
SSC[2:0]  
OEN  
VODSEL  
SSCG  
RxIN3+/-  
RxIN2+/-  
CMF  
TxOUT[3]  
TxOUT[2]  
DOUT+  
DOUT-  
RxIN1+/-  
RIN+  
RIN-  
TxOUT[1]  
TxOUT[0]  
TxCLKOUT  
RxIN0+/-  
RxCLKIN+/-  
EQ  
Pattern  
Generator  
PLL  
Error  
PASS  
LOCK  
Detector  
PDB  
CONFIG[1:0]  
MAPSEL  
PDB  
SCL  
SCA  
ID[x]  
Timing and  
Control  
Timing and  
Control  
PLL  
SCL  
SCA  
ID[x]  
BISTEN  
OSS_SEL  
LFMODE  
BISTEN  
DS92LV0422  
DS92LV0421  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. Serializer Block Diagram  
Figure 22. Deserializer Block Diagram  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
7.3 Feature Description  
7.3.1 Parallel LVDS Data Transfer (Color Bit Mapping Select)  
The DS92LV042x can be configured to accept or transmit 24-bit data with two different LVDS parallel interface  
mapping schemes:  
The normal Channel Link LVDS format (MSBs on LVDS Channel 3) can be selected by configuring the  
MAPSEL pin to high. See Figure 23 for the normal Channel Link LVDS mapping.  
An alternate mapping scheme is available (LSBs on LVDS Channel 3) by configuring the MAPSEL pin to low.  
See Figure 24 for the alternate LVDS mapping.  
The mapping schemes can also be selected by register control. The alternate mapping scheme is useful in some  
applications where the receiving system, typically a display, requires the LSBs for the 24-bit color data to be sent  
on LVDS Channel 3.  
NOTE  
While the LVDS parallel interface has 28 bits defined, only 27 bits are recovered by the  
serializer and sent to the deserializer. This chipset supports 24-bit RGB plus the three  
video control signals. The 28th bit is not sampled, sent, or recovered.  
RxCLKIN +/-  
Previous cycle  
Current cycle  
R[7]  
(bit 22)  
R[6]  
(bit 21)  
B[6]  
(bit 25)  
G[7]  
(bit 24)  
G[6]  
(bit 23)  
B[7]  
(bit 26)  
RxIN3 +/-  
RxIN2 +/-  
DE  
(bit 20)  
VS  
(bit 19)  
HS  
(bit 18)  
B[5]  
(bit 17)  
B[4]  
(bit 16)  
B[3]  
(bit 15)  
B[2]  
(bit 14)  
G[3]  
(bit 9)  
G[2]  
(bit 8)  
G[1]  
(bit 7)  
B[1]  
(bit 13)  
B[0]  
(bit 12)  
G[5]  
(bit 11)  
G[4]  
(bit 10)  
RxIN1 +/-  
RxIN0 +/-  
G[0]  
(bit 6)  
R[5]  
(bit 5)  
R[4]  
(bit 4)  
R[3]  
(bit 3)  
R[2]  
(bit 2)  
R[1]  
(bit 1)  
R[0]  
(bit 0)  
Figure 23. 8–Bit Channel Link Mapping: MSB's on RXIN3  
RxCLKIN +/-  
RxIN3 +/-  
Previous cycle  
Current cycle  
R[1]  
(bit 22)  
R[0]  
(bit 21)  
B[1]  
(bit 26)  
B[0]  
(bit 25)  
G[1]  
(bit 24)  
G[0]  
(bit 23)  
DE  
VS  
HS  
B[7]  
B[6]  
B[5]  
B[4]  
RxIN2 +/-  
RxIN1 +/-  
(bit 20)  
(bit 19)  
(bit 18)  
(bit 17)  
(bit 16)  
(bit 15)  
(bit 14)  
B[3]  
(bit 13)  
B[2]  
(bit 12)  
G[7]  
(bit 11)  
G[6]  
(bit 10)  
G[5]  
(bit 9)  
G[4]  
(bit 8)  
G[3]  
(bit 7)  
G[2]  
(bit 6)  
R[7]  
(bit 5)  
R[6]  
(bit 4)  
R[5]  
(bit 3)  
R[4]  
(bit 2)  
R[3]  
(bit 1)  
R[2]  
(bit 0)  
RxIN0 +/-  
Figure 24. 8–Bit Channel Link Mapping: LSB's on RXIN3  
24  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Feature Description (continued)  
7.3.2 Serial Data Transfer  
The DS92LV042x chipset transmits and receives a pixel of data in the following format: C1 and C0 represent the  
embedded clock in the serial stream. C1 is always high and C0 is always low. The b[23:0] contains the  
scrambled RGB data. DCB is the DC-Balanced control bit. DCB is used to minimize the short and long-term DC  
bias on the signal lines. This bit determines if the data is unmodified or inverted. DCA is used to validate data  
integrity in the embedded data stream and can also contain encoded control (VS, HS, DE). Both DCA and DCB  
coding schemes are generated by the serializer and decoded by the deserializer automatically. Figure 25  
illustrates the serial stream per clock cycle.  
NOTE  
Figure 25 only illustrates the bits but does not actually represent the bit location, as the  
bits are scrambled and balanced continuously.  
b
1
0
b
1
1
D
C
A
b
0
b
1
b
2
b
3
b
5
b
9
C
1
b
4
b
6
b
7
b
8
D
C
B
b
1
2
b
1
3
b
1
4
b
1
5
b
1
6
b
1
7
b
1
8
b
1
9
b
2
0
b
2
1
b
2
2
b
2
3
C
0
Figure 25. Channel Link II Serial Stream (DS92LV042x)  
7.3.3 Video Control Signal Filter  
The three control bits can be used to communicate any low speed signal. The most common use for these bits is  
in the display or machine vision applications. In a display application, these bits are typically assigned as: Bit 26  
to DE, Bit 24 to HS, and Bit 25 to VS. In the machine vision standard, Camera Link, these bits are typically  
assigned: Bit 26 to DVAL, Bit 24 to LVAL, and Bit 25 to FVAL.  
When operating the devices in Normal Mode, the video control signals (DE, HS, VS) have the following  
restrictions:  
Normal Mode with Control Signal Filter Enabled:  
DE and HS: Only 2 transitions per 130 clock cycles are transmitted, the transition pulse must be 3 clock  
cycles or longer.  
Normal Mode with Control Signal Filter Disabled:  
DE and HS: Only 2 transitions per 130 clock cycles are transmitted, no restriction on minimum transition  
pulse.  
VS: Only 1 transition per 130 clock cycles are transmitted, minimum pulse width is 130 clock cycles.  
Glitches of a control signal can cause a visual display error, and video control signals are defined as low  
frequency signals with limited transitions. Therefore, the video control signal filter feature allows for the chipset to  
validate and filter out any high frequency noise on the control signals (see Figure 26).  
PCLK  
IN  
HS/VS/DE  
IN  
Latency  
PCLK  
OUT  
Pulses 1 or 2  
PCLKs wide  
Filtered OUT  
HS/VS/DE  
OUT  
Figure 26. Video Control Signal Filter Waveform  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DS92LV0421 DS92LV0422  
 
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Feature Description (continued)  
7.3.4 Serializer Functional Description  
The serializer converts a Channel Link LVDS clock and data bus to a single serial output data stream and also  
acts as a signal generator for the chipset Built-In Self Test (BIST) mode. The device can be configured through  
external pins or through the optional serial control bus. The serializer features enhanced signal quality on the link  
by supporting: a selectable VOD level, a selectable de-emphasis for signal conditioning, and Channel Link II data  
coding that provides randomization, scrambling, and DC-balancing of the data. The serializer includes multiple  
features to reduce EMI associated with display data transmission. This includes the randomization and  
scrambling of the serial data and system spread spectrum clock support. The serializer includes power-saving  
features with a sleep mode, auto stop clock feature, and optional LVCMOS (1.8 V or 3.3 V) I/O compatibility (see  
also Optional Serial Bus Control and Built-In Self Test (BIST)).  
7.3.4.1 Signal Quality Enhancers  
7.3.4.1.1 Serializer VOD Select (VODSEL)  
The serializer differential output voltage may be increased by setting the VODSEL pin high. When VODSEL is  
low, the DC VOD is at the standard (default) level. When VODSEL is high, the VOD is increased in level. The  
increased VOD is useful in extremely high noise environments and extra long cable length applications. When  
using de-emphasis, TI recommends setting VODSEL = H to avoid excessive signal attenuation, especially with  
the larger de-emphasis settings. This feature may be controlled by external pin or by register.  
Table 1. Serializer Differential Output Voltage  
INPUT  
EFFECT  
VODSEL  
VOD (mV)  
±300  
VOD (mVp-p)  
L
600  
900  
H
±450  
7.3.4.1.2 Serializer De-Emphasis (DE-EMPH)  
The de-emphasis pin controls the amount of de-emphasis beginning one full bit time after a logic transition that  
the serializer drives. This is useful to counteract loading effects of long or lossy cables. This pin must be left  
open if used for standard switching currents (no de-emphasis) or if used under register control. De-emphasis is  
selected by connecting a resistor on this pin to ground, with the R value between 0.5 kΩ and 1 MΩ, or by register  
setting. When using de-emphasis, TI recommends setting VODSEL = H.  
Table 2. De-Emphasis Resistor Value  
RESISTOR VALUE (kΩ)  
DE-EMPHASIS SETTING  
Open  
Disabled  
–12 dB  
–9 dB  
0.6  
1
2
–6 dB  
5
–3 dB  
26  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
0.00  
VDD = 1.8V,  
= 25oC  
T
A
-2.00  
-4.00  
-6.00  
-8.00  
-10.00  
-12.00  
-14.00  
1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06  
R VALUE - LOG SCALE (W)  
Figure 27. De-Emphasis vs R Value  
7.3.4.2 EMI Reduction Features  
7.3.4.2.1 Data Randomization and Scrambling  
Channel Link II serializers and deserializers feature a three-step encoding process that enables the use of AC-  
coupled interconnects and also helps to manage EMI. The serializer first passes the parallel data through a  
scrambler which randomizes the data. The randomized data is then DC-balanced. The DC-balanced and  
randomized data then goes through a bit-shuffling circuit and is transmitted out on the serial line. This encoding  
process helps to prevent static data patterns on the serial stream. The resulting frequency content of the serial  
stream ranges from the parallel clock frequency to the Nyquist rate. For example, if the serializer and deserializer  
chipset is operating at a parallel clock frequency of 50 MHz, the resulting frequency content of the serial stream  
ranges from 50 MHz to 700 MHz (50 MHz × 28 bits = 1.4 GHz / 2 = 700 MHz).  
7.3.4.2.2 Serializer Spread Spectrum Compatibility  
The serializer RXCLKIN is capable of tracking spread spectrum clocking (SSC) from a host source. The  
RXCLKIN accepts spread spectrum tracking up to 35-kHz modulation and ±0.5, ±1, or ±2% deviations (center  
spread). The maximum conditions for the RXCLKIN input are: a modulation frequency of 35 kHz and amplitude  
deviations of ±2% (4% total).  
7.3.4.3 Power-Saving Features  
7.3.4.3.1 Serializer Power-Down Feature (PDB)  
The serializer has a PDB input pin to enable or power down the device. This pin is controlled by the host and is  
used to save power, disabling the link when the display is not required. In power-down mode, the high-speed  
driver outputs are both pulled to VDD and present a 0-V VOD state.  
NOTE  
In power-down, the optional serial bus control registers are RESET.  
7.3.4.3.2 Serializer Stop Clock Feature  
The serializer enters a low power SLEEP state when the RXCLKIN is stopped. A STOP condition is detected  
when the input clock frequency is less than 3 MHz. The clock must be held at a static low or high state. When  
the RXCLKIN starts again, the serializer locks to the valid input clock and then transmits the serial data to the  
deserializer.  
NOTE  
In STOP CLOCK SLEEP, the optional serial bus control registers values are RETAINED.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
7.3.4.3.3 Serializer 1.8-V or 3.3-V VDDIO Operation  
The serializer parallel control bus can operate with 1.8-V or 3.3-V levels (VDDIO) for host compatibility. The 1.8-V  
levels offers lower noise (EMI) and also system power savings.  
7.3.5 Deserializer Functional Description  
The deserializer converts a single input serial data stream to a Channel Link LVDS clock and data bus and also  
provides a signal check for the chipset Built-In Self Test (BIST) mode. The device can be configured through  
external and strap pins or through the optional serial control bus. The deserializer features enhanced signal  
quality on the link by supporting an integrated equalizer on the serial input and Channel Link II data encoding  
which provides randomization, scrambling, and DC-balancing of the data. The deserializer includes multiple  
features to reduce EMI associated with display data transmission. This includes the randomization and  
scrambling of the data, Channel Link LVDS output interface, and output spread spectrum clock generation  
(SSCG) support. The deserializer includes power saving features with a power-down mode and optional  
LVCMOS (1.8-V) interface compatibility.  
7.3.5.1 Signal Quality Enhancers  
7.3.5.1.1 Deserializer Input Equalizer Gain (EQ)  
The deserializer can enable receiver input equalization of the serial stream to increase the eye opening to the  
deserializer input.  
NOTE  
This function cannot be seen at the RXIN± input. The equalization feature may be  
controlled by the external pin or by register.  
Table 3. Receiver Equalization Configuration  
EQ (STRAP OPTION)  
EFFECT  
~1.625 dB (OFF)  
~13 dB  
L
H
7.3.5.2 EMI Reduction Features  
7.3.5.2.1 Deserializer VOD Select (VODSEL)  
The differential output voltage of the Channel Link parallel interface is controlled by the VODSEL input.  
Table 4. Deserializer Differential Output Voltage  
INPUT  
EFFECT  
VODSEL  
VOD (mV)  
±250  
VOD (mVp-p)  
L
500  
800  
H
±400  
7.3.5.2.2 Deserializer Common-Mode Filter Pin (CMF) (Optional)  
The deserializer provides access to the center tap of the internal termination. A capacitor may be placed on this  
pin for additional common-mode filtering of the differential pair. This can be useful in high-noise environments for  
additional noise rejection capability. A 4.7-µF capacitor may be connected from this pin to Ground.  
7.3.5.2.3 Deserializer SSCG Generation (Optional)  
The deserializer provides an internally generated spread spectrum clock (SSCG) to modulate its outputs. Both  
clock and data outputs are modulated. This aids to lower system EMI. Output SSCG deviations of ±2% (4% total)  
at up to 100-kHz modulations are available (see Table 5). This feature may be controlled by external pins or by  
register.  
28  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
NOTE  
The deserializer supports the SSCG function with TXCLKOUT = 10 MHz to 65 MHz.  
When the TXCLKOUT = 65 MHz to 75 MHz, it is required to disable the SSCG function  
(SSC[2:0] = 000).  
Frequency  
fdev(max)  
F
F
PCLK+  
F
PCLK  
fdev(min)  
Time  
PCLK-  
1/fmod  
Figure 28. SSCG Waveform  
Table 5. SSCG Configuration (LFMODE = L): Deserializer Output  
SSC[2:0] INPUTS  
RESULT  
LFMODE = L (20 TO 65 MHz)  
SSC2  
SSC1  
SSC0  
fdev (%)  
Off  
fmod (kHz)  
L
L
L
L
L
H
L
Off  
±0.9  
±1.2  
±1.9  
±2.3  
±0.7  
±1.3  
±1.7  
L
H
H
L
CLK/2168  
CLK/1300  
L
H
L
H
H
H
H
L
H
L
H
H
H
Table 6. SSCG Configuration (LFMODE = H): Deserializer Output  
SSC[2:0] INPUTS  
RESULT  
LFMODE = H (10 TO 20 MHz)  
SSC2  
SSC1  
SSC0  
fdev (%)  
Off  
fmod (kHz)  
L
L
L
L
L
H
L
Off  
±0.7  
±1.3  
±1.8  
±2.2  
±0.7  
±1.2  
±1.7  
L
H
H
L
CLK/625  
CLK/385  
L
H
L
H
H
H
H
L
H
L
H
H
H
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
7.3.5.2.4 Power-Saving Features  
7.3.5.2.4.1 Deserializer Power-Down Feature (PDB)  
The deserializer has a PDB input pin to enable or power down the device. This pin can be controlled by the  
system to save power, disabling the deserializer when the display is not required. An auto-detect mode is also  
available. In this mode, the PDB pin is tied high and the deserializer enters power-down when the serial stream  
stops. When the serial stream starts up again, the deserializer locks to the input stream, asserts the LOCK pin,  
and outputs valid data. In power-down mode, the LVDS data and clock output states are determined by the  
OSS_SEL status.  
NOTE  
In power-down, the optional serial bus control registers are RESET.  
7.3.5.2.4.2 Deserializer Stop Stream SLEEP Feature  
The deserializer enters a low power SLEEP state when the input serial stream is stopped. A STOP condition is  
detected when the embedded clock bits are not present. When the serial stream starts again, the deserializer  
then locks to the incoming signal and recovers the data.  
NOTE  
In STOP STREAM SLEEP, the optional serial bus control registers values are RETAINED.  
7.3.5.2.4.3 Deserializer 1.8-V or 3.3-V VDDIO Operation  
The deserializer parallel control bus can operate with 1.8-V or 3.3-V levels (VDDIO) for target (display)  
compatibility. The 1.8-V levels offers lower noise (EMI) and also system power savings.  
7.3.5.3 Deserializer Clock-Data Recovery Status Flag (LOCK), Output Enable (OEN), and Output State  
Select (OSS_SEL)  
When PDB is driven high, the CDR PLL begins locking to the serial input, and LOCK goes from TRI-STATE to  
low (depending on the value of the OSS_SEL setting). After the DS92LV0422 completes its lock sequence to the  
input serial data, the LOCK output is driven high, indicating valid data and clock recovered from the serial input is  
available on the Channel Link outputs. The TXCLKOUT output is held at its current state at the change from  
OSC_CLK (if this is enabled through OSC_SEL) to the recovered clock (or vice versa).  
NOTE  
The Channel Link outputs may be held in an inactive state (TRI-STATE) through the use  
of the Output Enable pin (OEN).  
If there is a loss of clock from the input serial stream, LOCK is driven low and the state of the outputs are based  
on the OSS_SEL setting (configuration pin or register).  
30  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Table 7. PDB, OEN, and OSS_SEL Configuration (Deserializer Outputs)  
INPUTS  
OUTPUTS  
SERIAL  
INPUT  
PDB  
OEN  
OSS_SEL LOCK  
OTHER OUTPUTS  
TXCLKOUT is TRI-STATE  
X
L
X
X
L
X
L
X
L
TXOUT[3:0] are TRI-STATE  
PASS is TRI-STATE  
TXCLKOUT is TRI-STATE  
TXOUT[3:0] are TRI-STATE  
PASS is HIGH  
Static  
Static  
Static  
Active  
H
H
H
H
TXCLKOUT is TRI-STATE  
TXOUT[3:0] are TRI-STATE  
PASS is TRI-STATE  
H
H
X
L
TXCLKOUT is TRI-STATE or Oscillator Output through Register bit  
TXOUT[3:0] are TRI-STATE  
PASS is TRI-STATE  
H
L
L
TXCLKOUT is TRI-STATE  
TXOUT[3:0] are TRI-STATE  
PASS is Active  
H
TXCLKOUT is Active  
TXOUT[3:0] are Active  
PASS is Active  
Active  
H
H
X
H
(Normal operating mode)  
7.3.5.4 Deserializer Oscillator Output (Optional)  
The deserializer provides an optional clock output when the input clock (serial stream) has been lost. This is  
based on an internal oscillator. The frequency of the oscillator may be selected. This feature may be controlled  
by external pin or by register.  
PDB  
RIN  
active serial stream  
X
(Diff.)  
H
H
LOCK  
TxOUT[3:0]  
TxCLKOUT  
L
L
L
Z
Z
Z
Z
Z
Z
f
f
Z
Z
PASS  
OFF  
Active  
OSC Output  
Active  
OFF  
OSC Output  
CONDITIONS: OEN = H, OSS_SEL = H, and OSC_SEL not equal to 000.  
Figure 29. TXCLKOUT Output Oscillator Option Enabled  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
7.3.6 Built-In Self Test (BIST)  
An optional at-speed Built-In Self Test (BIST) feature supports the testing of the high-speed serial link. This is  
useful in the prototype stage, equipment production, in-system test, and for system diagnostics. In BIST mode,  
only an input clock is required along with control to the serializer and deserializer BISTEN input pins. The  
serializer outputs a test pattern (PRBS-7) and drives the link at speed. The deserializer detects the PRBS-7  
pattern and monitors it for errors. A PASS output pin toggles to flag any payloads that are received with 1 to 24  
errors. Upon completion of the test, the result of the test is held on the PASS output until reset (new BIST test or  
power-down). A high on PASS indicates NO ERRORS were detected. A low on PASS indicates one or more  
errors were detected. The duration of the test is controlled by the pulse width applied to the deserializer BISTEN  
pin.  
Inter-operability is supported between this Channel Link II device and all Channel Link II generations (Gen 1/2/3);  
see respective data sheets for details on entering BIST mode and control.  
7.3.6.1 Sample BIST Sequence  
See Figure 30 for the BIST mode flow diagram.  
Step 1: Place the serializer in BIST Mode by setting serializer BISTEN = H. BIST Mode is enabled through the  
BISTEN pin. An RXCLKIN is required for BIST. When the deserializer detects the BIST mode pattern and  
command (DCA and DCB code), the data and control signal outputs are shut off.  
Step 2: Place the deserializer in BIST mode by setting the BISTEN = H. The deserializer is now in BIST mode  
and checks the incoming serial payloads for errors. If an error in the payload (1 to 24) is detected, the PASS pin  
switches low for one half of the clock period. During the BIST test, the PASS output can be monitored and  
counted to determine the payload error rate.  
Step 3: To stop BIST mode, the deserializer BISTEN pin is set low. The deserializer stops checking the data, and  
the final test result is held on the PASS pin. If the test ran error free, the PASS output is high. If there is one or  
more errors detected, the PASS output is low. The PASS output state is held until a new BIST is run, the device  
is RESET, or powered down. The BIST duration is user controlled by the duration of the BISTEN signal.  
Step 4: To return the link to normal operation, the serializer BISTEN input is set low. The link returns to normal  
operation.  
Figure 31 shows the waveform diagram of a typical BIST test for two cases. Case 1 is error-free, and Case 2  
shows one with multiple errors. In most cases, it is difficult to generate errors due to the robustness of the link  
(differential data transmission and so forth), thus they may be introduced by greatly extending the cable length,  
faulting the interconnect, or reducing signal condition enhancements (de-emphasis, VODSEL, or Rx  
equalization).  
Normal  
Step 1: SER in BIST  
BIST  
Wait  
Step 2: Wait, DES in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: SER in Normal  
Figure 30. BIST Mode Flow Diagram  
32  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
BISTEN  
(Serializer)  
BISTEN  
(Deserializer)  
TxCLKOUT  
(Diff.)  
TxOUT[3:0]  
(Diff.)  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Normal  
PRBS  
Normal  
BIST Test  
BIST Duration  
Held  
Figure 31. BIST Waveforms  
7.3.6.2 BER Calculations  
It is possible to calculate the approximate Bit Error Rate (BER). The following is required:  
Clock Frequency (MHz)  
BIST Duration (seconds)  
BIST Test Result (PASS)  
The BER is less than or equal to one over the product of 24 times the RXCLKIN rate times the test duration. If  
we assume a 65-MHz clock, a 10-minute (600 seconds) test, and a PASS, the BER is 1.07 × 10E-12.  
BIST mode runs a check on the data payload bits. The LOCK pin also provides a link status. If the recovery of  
the C0 and C1 bits does not reconstruct the expected clock signal, the LOCK pin switches low. The combination  
of the LOCK and at-speed BIST PASS pin provides a powerful tool for system evaluation and performance  
monitoring.  
7.3.7 Optional Serial Bus Control  
The serializer and deserializer may also be configured by the use of a serial control bus that is I2C protocol-  
compatible. By default, the I2C Reg 0x00 = 0x00, and all configuration is set by control or strap pins. Writing Reg  
0x00 = 0x01 enables or allows configuration by registers; this overrides the control or strap pins. Multiple devices  
may share the serial control bus, because multiple addresses are supported (see Figure 32).  
The serial bus is comprised of three pins. The SCL is a serial bus clock input. The SDA is the serial bus data  
input or output signal. Both SCL and SDA signals require an external pullup resistor to VDDIO. For most  
applications, a 4.7-kΩ pullup resistor to VDDIO may be used. The resistor value may be adjusted for capacitive  
loading and data rate requirements. The signals are either pulled high or driven low.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
1.8V  
10k  
3.3V  
ID[X]  
4.7k  
4.7k  
R
ID  
DS92LV0421/  
DS92LV0422  
SCL  
HOST  
SCL  
SDA  
SDA  
To other  
Devices  
Copyright © 2016, Texas Instruments Incorporated  
Figure 32. Serial Control Bus Connection  
The third pin is the ID[X] pin. This pin sets one of four possible device addresses. Two different connections are  
possible:  
The pin may be pulled to VDD (1.8 V, not VDDIO) with a 10-kΩ resistor.  
The pin may be pulled to VDD (1.8 V, not VDDIO) with a 10-kΩ resistor and pulled down to ground with a  
recommended value RID resistor. This creates a voltage divider that sets the other three possible addresses.  
See Table 8 for the serializer and Table 9 for the deserializer. Do not tie ID[X] directly to VSS.  
Table 8. ID[X] Resistor Value: DS92LV0421 (Serializer)  
RESISTOR  
RID kΩ(1)  
(5% TOL)  
ADDRESS  
8'b  
0 APPENDED (WRITE)  
ADDRESS  
7'b  
0.47  
2.7  
7b' 110 1001 (h'69)  
7b' 110 1010 (h'6A)  
7b' 110 1011 (h'6B)  
7b' 110 1110 (h'6E)  
8b' 1101 0010 (h'D2)  
8b' 1101 0100 (h'D4)  
8b' 1101 0110 (h'D6)  
8b' 1101 1100 (h'DC)  
8.2  
Open  
(1) RID 0 Ω. Do not connect directly to VSS (GND). This is not a valid address.  
Table 9. ID[X] Resistor Value – DS92LV0422 (Deserializer)  
RESISTOR  
RID kΩ(1)  
(5% TOL)  
ADDRESS  
8'b  
0 APPENDED (WRITE)  
ADDRESS  
7'b  
0.47  
2.7  
7b' 111 0001 (h'71)  
7b' 111 0010 (h'72)  
7b' 111 0011 (h'73)  
7b' 111 0110 (h'76)  
8b' 1110 0010 (h'E2)  
8b' 1110 0100 (h'E4)  
8b' 1110 0110 (h'E6)  
8b' 1110 1100 (h'EC)  
8.2  
Open  
(1) RID 0 Ω. Do not connect directly to VSS (GND). This is not a valid address.  
34  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
The serial bus protocol is controlled by START, START-repeated, and STOP phases. A START occurs when  
SCL transitions low while SDA is high. A STOP occurs when SDA transitions high while SCL is also high (see  
Figure 33).  
SDA  
SCL  
S
P
START condition, or  
STOP condition  
START repeat condition  
Figure 33. START and STOP Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match the slave address of a device, it Not-acknowledges (NACKs) the master by letting SDA be pulled high.  
ACKs also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs  
after every data byte is successfully received. When the master is reading data, the master ACKs after every  
data byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a start condition or a repeated start condition. All communication on the bus ends with a stop  
condition. A READ is shown in Figure 34 and a WRITE is shown in Figure 35.  
NOTE  
During initial power-up, a delay of 10 ms is required before the I2C responds.  
If the serial bus is not required, the three pins may be left open (NC).  
Register Address  
Slave Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
0
S
S
1
P
Figure 34. Serial Control Bus: READ  
Register Address  
Slave Address  
Data  
a
c
k
a
c
k
a
c
k
A A A  
2 1 0  
0
S
P
Figure 35. Serial Control Bus: WRITE  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: DS92LV0421 DS92LV0422  
 
 
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
7.4 Device Functional Modes  
7.4.1 Serializer and Deserializer Operating Modes and Reverse Compatibility (CONFIG[1:0])  
The DS92LV042x chipset is compatible with other single serial lane Channel Link II or FPD-Link II devices.  
Configuration modes are provided for reverse compatibility with the DS90C241 or DS90C124 chipset (FPD-Link  
II Generation 1) and also the DS90UR241 / DS90UR124 chipset (FPD-Link II Generation 2) by setting the  
respective mode with the CONFIG[1:0] pins on the serializer or deserializer as shown in Table 10 and Table 11.  
This selection also determines whether the control signal filter feature is enabled or disabled in the normal mode.  
This feature may be controlled by external pin or by register.  
Table 10. DS92LV0421 Serializer Modes  
CONFIG1  
CONFIG0  
MODE  
COMPATIBLE DESERIALIZER DEVICE  
DS92LV0422, DS92LV0412,  
DS92LV2422, DS92LV2412  
L
L
Normal Mode, Control Signal Filter disabled  
DS92LV0422, DS92LV0412,  
DS92LV2422, DS92LV2412  
L
H
Normal Mode, Control Signal Filter enabled  
H
H
L
Reverse Compatibility Mode (FPD-Link II, GEN2)  
Reverse Compatibility Mode (FPD-Link II, GEN1)  
DS90UR124, DS99R124Q-Q1  
DS90C124  
H
Table 11. DS92LV0422 Deserializer Modes  
CONFIG1  
CONFIG0  
MODE  
COMPATIBLE SERIALIZER DEVICE  
DS92LV0421, DS92LV0411,  
DS92LV2421, DS92LV2411  
L
L
Normal Mode, Control Signal Filter disabled  
DS92LV0421, DS92LV0411,  
DS92LV2421, DS92LV2411  
L
H
Normal Mode, Control Signal Filter enabled  
H
H
L
Reverse Compatibility Mode (FPD-Link II, GEN2)  
Reverse Compatibility Mode (FPD-Link II, GEN1)  
DS90UR241, DS99R421  
DS90C241  
H
36  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
7.5 Register Maps  
Table 12. SERIALIZER: Serial Bus Control Registers  
ADD  
(DEC)  
ADD  
(HEX)  
REGISTER  
NAME  
DEFAULT  
(BIN)  
BIT(S)  
R/W  
R/W  
R/W  
FUNCTION  
Reserved  
MAPSEL  
DESCRIPTION  
7
6
0
Reserved  
0: LSB on RXIN3  
1: MSB on RXIN3  
0
0: Low  
1: High  
5
4
R/W  
R/W  
0
0
VODSEL  
Reserved  
Reserved  
00: Normal Mode, Control Signal Filter Disabled  
01: Normal Mode, Control Signal Filter Enabled  
10: DS90UR124, DS99R124Q-Q1 Reverse-  
Compatibility Mode (FPD-Link II, GEN2)  
11: DS90C124 Reverse-Compatibility Mode (FPD-  
Link II, GEN1)  
Serializer  
Config 1  
0
0
3:2  
R/W  
00  
CONFIG  
Note – not the same function as PowerDown (PDB)  
0: Normal Mode  
1
R/W  
0
SLEEP  
1: Sleep Mode – Register settings retained.  
0: Configurations set from control pins  
0
7
R/W  
R/W  
0
0
REG  
1: Configuration set from registers (except I2C_ID)  
0: Address from ID[X] Pin  
1: Address from Register  
REG ID  
Serial Bus Device ID, four IDs are:  
7b '1101 001 (h'69)  
7b '1101 010 (h'6A)  
7b '1101 011 (h'6B)  
7b '1101 110 (h'6E)  
1
1
Device ID  
6:0  
7:5  
R/W  
R/W  
1101000  
ID[X]  
All other addresses are reserved.  
000: set by external resistor  
001: –1 dB  
010: –2 dB  
De-Emphasis 011: –3.3 dB  
000  
Setting  
100: –5 dB  
101: –6.7 dB  
110: –9 dB  
111: –12 dB  
De-Emphasis  
Control  
2
2
De-Emphasis 0: De-emphasis Enabled  
4
R/W  
R/W  
0
EN  
1: De-emphasis Disabled  
3:0  
0000  
Reserved  
Reserved  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Table 13. DESERIALIZER: Serial Bus Control Registers  
ADD  
(DEC)  
ADD  
(HEX)  
REGISTER  
NAME  
DEFAULT  
(BIN)  
BIT(S)  
R/W  
FUNCTION  
DESCRIPTION  
0: 20 to 65 MHz SSCG Operation  
1: 10 to 20 MHz SSCG Operation  
7
R/W  
0
LFMODE  
Channel Link Map Select  
0: LSB on TXOUT3±  
1: MSB on TXOUT3±  
6
R/W  
0
MAPSEL  
5
4
R/W  
R/W  
0
0
Reserved  
Reserved  
Reserved  
Reserved  
00: Normal Mode, Control Signal Filter Disabled  
01: Normal Mode, Control Signal Filter Enabled  
10: DS90UR241, DS99R421 Reverse-Compatibility  
Mode (FPD-Link II, GEN2)  
Deserializer  
Config 1  
0
0
3:2  
R/W  
00  
CONFIG  
11: DS90C241 Reverse-Compatibility Mode (FPD-  
Link II, GEN1)  
Note – not the same function as PowerDown (PDB)  
0: Normal Mode  
1
R/W  
0
SLEEP  
1: Sleep Mode – Register settings retained.  
0: Configurations set from control or strap pins  
1: Configuration set from registers (except I2C_ID)  
0
7
R/W  
R/W  
0
0
REG Control  
REG ID  
0: Address from ID[X] Pin  
1: Address from Register  
Serial Bus Device ID, four IDs are:  
7b' 111 0001 (h'71)  
7b' 111 0010 (h'72)  
7b' 111 0011 (h'73)  
7b' 111 0110 (h'76)  
1
1
Device ID  
6:0  
7
R/W  
1110000  
0
ID[X]  
OEN  
All other addresses are reserved.  
Output Enable Input  
See Table 7  
R/W  
Output Sleep State Select  
See Table 7  
6
R/W  
R/W  
0
OSS_SEL  
5:4  
00  
Reserved  
Reserved  
Differential LVDS Driver Output Voltage Select  
0: LVDS VOD is ±250 mV, 500 mVp-p (typ)  
1: LVDS VOD is ±400 mV, 800 mVp-p (typ)  
3
R/W  
0
VODSEL  
Deserializer  
Features 1  
2
2
000: OFF  
001: Reserved  
010: 25 MHz ± 40%  
011: 16.7 MHz ± 40%  
100: 12.5 MHz ± 40%  
101: 10 MHz ± 40%  
110: 8.3 MHz ± 40%  
111: 6.3 MHz ± 40%  
2:0  
R/W  
000  
OSC_SEL  
38  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Table 13. DESERIALIZER: Serial Bus Control Registers (continued)  
ADD  
(DEC)  
ADD  
(HEX)  
REGISTER  
NAME  
DEFAULT  
(BIN)  
BIT(S)  
R/W  
FUNCTION  
DESCRIPTION  
000: ~1.625 dB  
001: ~3.25 dB  
010: ~4.87 dB  
011: ~6.5 dB  
100: ~8.125 dB  
101: ~9.75 dB  
110: ~11.375 dB  
111: ~13 dB  
7:5  
R/W  
000  
EQ Gain  
0: EQ = disabled  
1: EQ = enabled  
4
3
R/W  
R/W  
0
0
EQ Enable  
Reserved  
Reserved  
If LFMODE = 0 then:  
000: SSCG OFF  
Deserializer  
Features 2  
3
3
001: fdev = ±0.9%, fmod = CLK/2168  
010: fdev = ±1.2%, fmod = CLK/2168  
011: fdev = ±1.9%, fmod = CLK/2168  
100: fdev = ±2.3%, fmod = CLK/2168  
101: fdev = ±0.7%, fmod = CLK/1300  
110: fdev = ±1.3%, fmod = CLK/1300  
111: fdev = ±1.7%, fmod = CLK/1300  
If LFMODE = 1, then:  
2:0  
R/W  
000  
SSC  
001: fdev = ±0.7%, fmod = CLK/625  
010: fdev = ±1.3%, fmod = CLK/625  
011: fdev = ±1.8%, fmod = CLK/625  
100: fdev = ±2.2%, fmod = CLK/625  
101: fdev = ±0.7%, fmod = CLK/385  
110: fdev = ±1.2%, fmod = CLK/385  
111: fdev = ±1.7%, fmod = CLK/385  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Display Application  
The DS92LV042x chipset is intended for interface between a host (graphics processor) and a display. It supports  
a 24-bit color depth (RGB888) and up to 1024 × 768 display formats. In a RGB888 application, 24 color bits  
(R[7:0], G[7:0], and B[7:0]), Pixel Clock (PCLK), and three control bits (VS, HS, and DE) are supported across  
the serial link with RXCLKIN rates from 10 to 75 MHz. The chipset may also be used in 18-bit color applications.  
In this application, three to six general-purpose signals may also be sent from host to display.  
8.1.2 Live Link Insertion  
The serializer and deserializer devices support live link or cable hot plug applications. The automatic receiver  
lock to random data plug and go hot insertion capability allows the DS92LV0422 to attain lock to the active data  
stream during a live insertion event.  
8.1.3 Alternate Color or Data Mapping  
Color-mapped data pin names are provided to specify a recommended mapping for 24-bit and 18-bit  
applications. Seven (7) is assumed to be the MSB, and Zero (0) is assumed to be the LSB. While this is  
recommended, it is not required. When connecting to earlier generations of FPD-Link II serializer and deserializer  
devices, a color mapping review is recommended to ensure the correct connectivity is obtained. Table 14  
provides examples for interfacing between DS92LV0421 and different deserializers. Table 15 provides examples  
for interfacing between DS92LV0422 and different serializers.  
Table 14. Serializer Alternate Color or Data Mapping  
CHANNEL  
LINK  
RGB (LSB  
EXAMPLE)  
BIT NUMBER  
DS92LV2422  
DS90UR124  
DS99R124Q-Q1  
DS90C124  
Bit 26  
Bit 25  
Bit 24  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
B1  
B0  
G1  
G0  
R1  
R0  
DE  
VS  
HS  
B7  
B6  
B5  
B4  
B1  
B0  
G1  
G0  
R1  
R0  
DE  
VS  
HS  
B7  
B6  
B5  
B4  
RXIN3  
N/A  
N/A  
N/A  
ROUT20  
ROUT19  
ROUT18  
ROUT17  
ROUT16  
ROUT15  
ROUT14  
ROUT20  
ROUT19  
ROUT18  
ROUT17  
ROUT16  
ROUT15  
ROUT14  
RXIN2  
TXOUT2  
40  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
Application Information (continued)  
Table 14. Serializer Alternate Color or Data Mapping (continued)  
CHANNEL  
LINK  
RGB (LSB  
EXAMPLE)  
BIT NUMBER  
DS92LV2422  
DS90UR124  
DS99R124Q-Q1  
DS90C124  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
Bit 8  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
B3  
B2  
G7  
G6  
G5  
G4  
G3  
G2  
R7  
R6  
R5  
R4  
R3  
R2  
B3  
B2  
G7  
G6  
G5  
G4  
G3  
G2  
R7  
R6  
R5  
R4  
R3  
R2  
ROUT13  
ROUT12  
ROUT11  
ROUT10  
ROUT9  
ROUT13  
ROUT12  
ROUT11  
ROUT10  
ROUT9  
RXIN1  
TXOUT1  
ROUT8  
ROUT8  
ROUT7  
ROUT7  
ROUT6  
ROUT6  
ROUT5  
ROUT5  
ROUT4  
ROUT4  
RXIN0  
ROUT3  
TXOUT0  
ROUT3  
ROUT2  
ROUT2  
ROUT1  
ROUT1  
ROUT0  
ROUT0  
ROUT23(1)  
ROUT22(1)  
ROUT21(1)  
OS2(1)  
OS1(1)  
OS0(1)  
ROUT23(1)  
ROUT22(1)  
ROUT21(1)  
N/A  
N/A  
N/A  
N/A  
DS92LV0421  
SETTINGS  
MAPSEL = 0  
CONFIG[1:0] = 00  
CONFIG[1:0] = 10  
CONFIG[1:0] = 11  
(1) These bits are not supported by the DS92LV0421.  
Table 15. Deserializer Alternate Color or Data Mapping  
CHANNEL  
LINK  
RGB (LSB  
EXAMPLE)  
BIT NUMBER  
DS92LV2421  
DS90UR241  
DS99R421  
DS90C241  
Bit 26  
Bit 25  
Bit 24  
Bit 23  
Bit 22  
Bit 21  
Bit 20  
Bit 19  
Bit 18  
Bit 17  
Bit 16  
Bit 15  
Bit 14  
Bit 13  
Bit 12  
Bit 11  
Bit 10  
Bit 9  
B1  
B1  
B0  
G1  
G0  
R1  
R0  
DE  
VS  
HS  
B7  
B6  
B5  
B4  
B3  
B2  
G7  
G6  
G5  
G4  
G3  
B0  
G1  
TXOUT3  
N/A  
N/A  
N/A  
G0  
R1  
R0  
DE  
VS  
DIN20  
DIN19  
DIN18  
DIN17  
DIN16  
DIN15  
DIN14  
DIN13  
DIN12  
DIN11  
DIN10  
DIN9  
DIN20  
DIN19  
DIN18  
DIN17  
DIN16  
DIN15  
DIN14  
DIN13  
DIN12  
DIN11  
DIN10  
DIN9  
HS  
B7  
TXOUT2  
RXIN2  
B6  
B5  
B4  
B3  
B2  
G7  
TXOUT1  
G6  
RXIN1  
G5  
Bit 8  
G4  
DIN8  
DIN8  
Bit 7  
G3  
DIN7  
DIN7  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Table 15. Deserializer Alternate Color or Data Mapping (continued)  
CHANNEL  
LINK  
RGB (LSB  
EXAMPLE)  
BIT NUMBER  
DS92LV2421  
DS90UR241  
DS99R421  
DS90C241  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
G2  
R7  
R6  
R5  
R4  
R3  
R2  
G2  
R7  
R6  
R5  
R4  
R3  
R2  
DIN6  
DIN5  
DIN6  
DIN5  
DIN4  
DIN4  
TXOUT0  
DIN3  
RXIN0  
DIN3  
DIN2  
DIN2  
DIN1  
DIN1  
DIN0  
DIN0  
DIN23(1)  
DIN22(1)  
DIN21(1)  
OS2(1)  
OS1(1)  
OS0(1)  
DIN23(1)  
DIN22(1)  
DIN21(1)  
N/A  
N/A  
N/A  
N/A  
DS92LV0422  
SETTINGS  
MAPSEL = 0  
CONFIG[1:0] = 00  
CONFIG[1:0] = 10  
CONFIG[1:0] = 11  
(1) These bits are not supported by the DS92LV0422.  
42  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
8.2 Typical Application  
8.2.1 DS92LV0421 Typical Connection  
Figure 36 shows a typical application of the DS92LV0421 serializer in pin control mode for a 24-bit application.  
The LVDS inputs require external 100-Ω differential termination resistors. The CML outputs require 0.1-µF, AC-  
coupling capacitors to the line. The line driver includes internal termination. Bypass capacitors are placed near  
the power supply pins. At a minimum, four 0.1-µF capacitors and a 4.7-µF capacitor must be used for local  
device bypassing. Ferrite beads are placed on the power lines for effective noise suppression. System GPO  
(General Purpose Output) signals control the PDB and BISTEN pins. A delay cap is placed on the PDB signal to  
delay the enabling of the device until power is stable.  
The application assumes connection to the companion deserializer (DS92LV0422), and therefore the  
configuration pins CONFIG[1:0] are also both tied low. In this example, the cable is long, and therefore the  
VODSEL pin is tied high and a De-Emphasis value is selected by the resistor R1. The interface to the host is  
with 1.8-V LVCMOS levels, thus the VDDIO pin is connected also to the 1.8-V rail. The optional serial bus control  
is not used in this example, thus the SCL, SDA and ID[X] pins can be left open.  
DS92LV0421  
1.8V  
VDDIO  
VDDIO  
VDDTX  
VDDHS  
C10 C8  
C9  
C11  
FB1  
C3  
C4  
FB2  
VDDP  
VDDL  
C12  
C5  
C6  
FB3  
FB4  
RxCLKIN-  
RxCLKIN+  
RxIN3-  
RxIN3+  
VDDRX  
Channel Link  
Interface  
RxIN2-  
RxIN2+  
C7  
FB5  
LVDS  
100 W Terminations  
RxIN1-  
RxIN1+  
RxIN0-  
RxIN0+  
C1  
C2  
Serial  
Channel Link II  
Interface  
DOUT+  
DOUT-  
1.8V  
10k  
ID[X]  
SCL  
SDA  
RID  
VDDIO  
VODSEL  
De-Emph  
R1  
Host  
Control  
BISTEN  
PDB  
NOTE:  
R
C1-C2 = 0.1 mF (50 WV)  
C3-C9 = 0.1 mF  
C10-C12 = 4.7 mF  
C13 = >10 mF  
RES7  
RES6  
RES5  
RES4  
RES3  
RES2  
C13  
CONFIG1  
CONFIG0  
MAPSEL  
R = 10 kW  
R1 (cable insertion loss specific)  
RID (see ID[x] Resistor Value Table)  
FB1-FB5: Impedance = 1 kW,  
low DC resistance (<1W)  
RES1  
RES0  
DAP (GND)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 36. DS92LV0421 Typical Connection Diagram  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Typical Application (continued)  
8.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 16 as the input parameters.  
Table 16. Design Parameters  
PARAMETER  
VDDIO  
VALUE  
1.8 V or 3.3 V  
1.8 V  
VDDL, VDDP, VDDHS, VDDTX, VDDRX  
AC Coupling Capacitor for DOUT±  
100 nF  
8.2.1.2 Detailed Design Procedure  
The DOUT± outputs require 100-nF, AC-coupling capacitors to the line. Channel-Link data input pairs require an  
external 100-Ω termination for standard LVDS levels. The power supply filter capacitors are placed near the  
power supply pins. A smaller capacitance capacitor must be placed closer to the power supply pins. Adding a  
ferrite bead is optional, and if used, TI recommends using a ferrite bead with 1-kΩ impedance and low DC  
resistance (less than 1 Ω). The VODSEL pin is tied to VDDIO for long cable applications. The de-emphasis pin  
may connect a resistor to Ground (see Table 2). The PDB and BISTEN pins are assumed to be controlled by a  
microprocessor. The PDB must remain in a low state until all power supply voltages reach the final voltage. The  
CONFIG[1:0] pins are set depending on operating modes and backward compatibility (see Table 10). The  
MAPSEL pin sets the mapping scheme (see Figure 23 and Figure 24). The SCL, SDA, and ID[X] pins can be left  
open when these serial bus control pins are unused. The RES[7:0] pins and DAP must be tied to Ground.  
8.2.1.3 Application Curves  
Figure 38. Serializer CML Output Stream,  
RXCLKIN = 65 MHz, VODSEL = H  
Figure 37. Serializer CML Output Stream,  
RXCLKIN = 65 MHz, VODSEL = L  
44  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
8.2.2 DS92LV0422 Typical Application  
Figure 39 shows a typical application of the DS92LV0422 for a 24-bit application. The CML inputs require 0.1-µF,  
AC-coupling capacitors to the line, and the receiver provides internal termination. Bypass capacitors are placed  
near the power supply pins. At a minimum, four 0.1-µF capacitors and a 4.7-µF capacitor must be used for local  
device bypassing. Ferrite beads are placed on the power lines for effective noise suppression. System GPO  
(General Purpose Output) signals control the PDB and BISTEN pins. A delay cap is placed on the PDB signal to  
delay the enabling of the device until power is stable.  
The application assumes connection to the companion serializer (DS92LV0421), and therefore the configuration  
pins CONFIG[1:0] are also both tied low. The interface to the host is with 1.8-V LVCMOS levels, thus the VDDIO  
pin is connected also to the 1.8-V rail. The optional serial bus control is not used in this example, thus the SCL,  
SDA, and ID[X] pins can be left open.  
DS92LV0422  
3.3V  
1.8V  
FB4  
FB1  
VDDL  
VDDTX  
C6  
C7  
C11  
C3  
C4  
C8  
C12  
C9  
VDDL  
FB2  
VDDIO  
FB5  
VDDA  
VDDA  
VDDIO  
C13  
C10  
FB3  
VDDP  
C5  
VDDSC  
VDDSC  
TxCLKOUT+  
TxCLKOUT-  
C1  
C2  
TxOUT3+  
TxOUT3-  
TxOUT2+  
TxOUT2-  
TxOUT1+  
TxOUT1-  
TxOUT0+  
TxOUT0-  
RIN+  
Serial  
Channel Link II  
Interface  
Channel  
Link  
Interface  
RIN-  
CMF  
C15  
BISTEN  
PDB  
Host  
Control  
LOCK  
PASS  
R
C14  
1.8V  
OEN  
OSS_SEL  
LFMODE  
VODSEL  
MAPSEL  
10k  
RID  
ID[X]  
SCL  
SDA  
C1 - C2 = 0.1 mF (50 WV)  
C3 œ C10 = 0.1 mF  
C11 - C13 = 4.7 mF  
C14, C15 = >10 mF  
R = 10 kW  
RID (See ID[x] Resistor Value Table)  
FB1 - FB5: Impedance = 1 kW  
Low DC resistance ( <1W)  
CONFIG1  
CONFIG0  
RES  
GND  
8
SSC[2]  
SSC[1]  
SSC[0]  
DAP (GND)  
Copyright © 2016, Texas Instruments Incorporated  
Figure 39. DS92LV0422 Typical Connection Diagram  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
8.2.2.1 Design Requirements  
For this design example, use the parameters listed in Table 17 as the input parameters.  
Table 17. Design Parameters  
PARAMETER  
VDDIO  
VALUE  
1.8 V or 3.3 V  
1.8 V  
VDDL, VDDP, VDDSC, VDDA  
VDDTX  
3.3 V  
AC Coupling Capacitor for RIN±  
100 nF  
8.2.2.2 Detailed Design Procedure  
The RIN± inputs require 100-nF, AC-coupling capacitors to the line. The power supply filter capacitors are placed  
near the power supply pins. A smaller capacitance capacitor must be placed closer to the power supply pins. The  
device has one configuration pin (EQ) called a strap pin, which is pulled down by default. For a high state, use a  
10-kΩ resistor pullup to VDDIO. The PDB and BISTEN pins are assumed to be controlled by a microprocessor.  
The PDB must remain in a low state until all power supply voltages reach the final voltage. The SCL, SDA, and  
ID[X] pins can be left open when these serial bus control pins are unused. The RES pin and DAP must be tied to  
Ground.  
8.2.2.3 Application Curves  
Çime (4 ns/5Lë)  
Çime (4 ns/5Lë)  
Figure 40. LVDS Parallel Output Data and Clock,  
PRBS-7, TXCLKOUT = 75 MHz, VODSEL = L  
Figure 41. LVDS Parallel Output Data and Clock,  
PRBS-7, TXCLKOUT = 75 MHz, VODSEL = H  
9 Power Supply Recommendations  
The VDD (VDDn and VDDIO) supply ramp must be faster than 1.5 ms with a monotonic rise. If slower than 1.5 ms,  
a capacitor on the PDB pin is required to ensure PDB arrives after all the VDD supplies have settled to the  
recommended operating voltage. When the PDB pin is pulled to VDDIO, TI recommends using a 10-kΩ pullup and  
a 22-µF cap to Ground to delay the PDB input signal.  
46  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
10 Layout  
10.1 Layout Guidelines  
Circuit board layout and stack-up for the LVDS serializer and deserializer devices must be designed to provide  
low-noise power feed to the device. Good layout practice also separates high frequency or high-level inputs and  
outputs to minimize unwanted stray noise pickup, feedback, and interference. Power system performance may  
be greatly improved by using thin dielectrics (2 to 4 mils) for power or ground sandwiches. This arrangement  
provides plane capacitance for the PCB power system with low-inductance parasitics, which has proven  
especially effective at high frequencies and makes the value and placement of external bypass capacitors less  
critical. External bypass capacitors must include both RF ceramic and tantalum electrolytic types. RF capacitors  
may use values in the range of 0.01 µF to 0.1 µF. Tantalum capacitors may be in the 2.2-µF to 10-µF range.  
Voltage rating of the tantalum capacitors must be at least 5x the power supply voltage being used.  
Surface-mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply pin, place the smaller value closer to the pin. A large bulk capacitor is recommended at the point of power  
entry. This is typically in the 50-µF to 100-µF range and smooths low frequency switching noise. TI recommends  
connecting power and ground pins directly to the power and ground planes with bypass capacitors connected to  
the plane, with vias on both ends of the capacitor. Connecting power or ground pins to an external bypass  
capacitor increases the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20 to 30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter may be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four-layer board with a power and ground plane. Place LVCMOS signals away from the CML lines  
to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ω are  
typically recommended for LVDS interconnects. The closely coupled lines help to ensure that coupled noise  
appears as common mode and thus is rejected by the receivers. The tightly coupled lines also radiate less.  
10.1.1 WQFN (LLP) Stencil Guidelines  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the LLP (WQFN) package is highly recommended to  
improve board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown in Figure 42 and  
Figure 43.  
Figure 42. No Pullback LLP, Single Row Reference Diagram  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: DS92LV0421 DS92LV0422  
 
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
Layout Guidelines (continued)  
Table 18. No Pullback LLP Stencil Aperture Summary for DS92LV0421 and DS92LV0422  
NUMBER OF  
DAP  
APERTURE  
OPENINGS  
PCB I/O  
PAD SIZE  
(mm)  
PCB  
PITCH  
(mm)  
STENCIL I/O  
APERTURE  
(mm)  
STENCIL DAP  
APERTURE  
(mm)  
GAP BETWEEN  
DAP APERTURE  
(Dim A mm)  
PIN  
COUNT  
MKT  
DWG  
PCB DAP  
SIZE (mm)  
DEVICE  
DS92LV0421  
DS92LV0422  
36  
48  
SQA36A 0.25 × 0.6  
SQA48A 0.25 × 0.6  
0.5  
0.5  
4.6 x 4.6  
5.1 × 5.1  
0.25 × 0.7  
0.25 × 0.7  
1.0 × 1.0  
1.1 × 1.1  
16  
16  
0.2  
0.2  
Figure 43. 48-Pin WQFN Stencil Example of Via and Opening Placement  
Information on the WQFN style package is provided in Leadless Leadframe Package (LLP) Application Report  
(SNOA401).  
10.1.2 Transmission Media  
The serializer and deserializer chipset is intended to be used in a point-to-point configuration through a PCB  
trace or through twisted pair cable. The serializer and deserializer provide internal terminations for a clean  
signaling environment. The interconnect for LVDS must present a differential impedance of 100 Ω. Use cables  
and connectors that have matched differential impedance to minimize impedance discontinuities. Shielded or un-  
shielded cables may be used depending upon the noise environment and application requirements.  
10.1.3 LVDS Interconnect Guidelines  
See AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008) and AN-905 Transmission  
Line RAPIDESIGNER Operation and Applications Guide (SNLA035) for full details.  
Use 100-Ω coupled differential pairs  
Use the S, 2S, 3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of vias  
Use differential connectors when operating above 500-Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the Tx outputs and Rx inputs as possible  
Additional general guidance can be found in the LVDS Owner's Manual, available in PDF format from the TI  
website at: www.ti.com/lvds.  
48  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
10.2 Layout Example  
The following PCB layout examples are derived from the layout design of the LV04EVK01 Evaluation Module.  
These graphics and additional layout description are used to demonstrate both proper routing and proper solder  
techniques when designing in the serializer and deserializer pair.  
Figure 44. DS92LV0421 Serializer Example Layout  
Figure 45. DS92LV0422 Deserializer Example Layout  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
SNLS325D MAY 2010REVISED DECEMBER 2016  
www.ti.com  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.1.2 Development Support  
For developmental support, see the following:  
Overview for LVDS/M-LVDS/ECL/CML  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
Absolute Maximum Ratings for Soldering (SNOA549)  
Leadless Leadframe Package (LLP) Application Report (SNOA401)  
AN-1108 Channel-Link PCB and Interconnect Design-In Guidelines (SNLA008)  
AN-905 Transmission Line RAPIDESIGNER Operation and Applications Guide (SNLA035)  
11.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 19. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DS92LV0421  
DS92LV0422  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
11.4 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.5 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.6 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
50  
Submit Documentation Feedback  
Copyright © 2010–2016, Texas Instruments Incorporated  
Product Folder Links: DS92LV0421 DS92LV0422  
DS92LV0421, DS92LV0422  
www.ti.com  
SNLS325D MAY 2010REVISED DECEMBER 2016  
11.7 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.8 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2010–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: DS92LV0421 DS92LV0422  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS92LV0421SQ/NOPB  
DS92LV0421SQE/NOPB  
DS92LV0421SQX/NOPB  
DS92LV0422SQ/NOPB  
DS92LV0422SQE/NOPB  
DS92LV0422SQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJK  
NJK  
NJK  
RHS  
RHS  
RHS  
36  
36  
36  
48  
48  
48  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
LV0421  
SN  
SN  
SN  
SN  
SN  
LV0421  
LV0421  
LV0422  
LV0422  
LV0422  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2500 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS92LV0421SQ/NOPB  
WQFN  
NJK  
NJK  
NJK  
RHS  
RHS  
RHS  
36  
36  
36  
48  
48  
48  
1000  
250  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
6.3  
6.3  
6.3  
7.3  
7.3  
7.3  
6.3  
6.3  
6.3  
7.3  
7.3  
7.3  
1.5  
1.5  
1.5  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DS92LV0421SQE/NOPB WQFN  
DS92LV0421SQX/NOPB WQFN  
2500  
1000  
250  
DS92LV0422SQ/NOPB  
WQFN  
DS92LV0422SQE/NOPB WQFN  
DS92LV0422SQX/NOPB WQFN  
2500  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS92LV0421SQ/NOPB  
DS92LV0421SQE/NOPB  
DS92LV0421SQX/NOPB  
DS92LV0422SQ/NOPB  
DS92LV0422SQE/NOPB  
DS92LV0422SQX/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
NJK  
NJK  
NJK  
RHS  
RHS  
RHS  
36  
36  
36  
48  
48  
48  
1000  
250  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2500  
1000  
250  
2500  
Pack Materials-Page 2  
MECHANICAL DATA  
NJK0036A  
SQA36A (Rev A)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

DS92LV0421SQ

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0421SQ/NOPB

IC LINE DRIVER, QCC36, 6 X 6 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, LLP-36, Line Driver or Receiver
NSC

DS92LV0421SQ/NOPB

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器 | NJK | 36 | -40 to 85
TI

DS92LV0421SQE

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0421SQE/NOPB

IC LINE DRIVER, QCC36, 6 X 6 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, LLP-36, Line Driver or Receiver
NSC

DS92LV0421SQE/NOPB

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器 | NJK | 36 | -40 to 85
TI

DS92LV0421SQX

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0421SQX/NOPB

具有 LVDS 并行接口的 10MHz 至 75MHz Channel-Link II 串行器 | NJK | 36 | -40 to 85
TI

DS92LV0422

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0422

具有 LVDS 并行接口的 10 - 75MHz Channel Link II 解串器
TI

DS92LV0422SQ

10 - 75 MHz Channel Link II Serializer/Deserializer with LVDS Parallel Interface
NSC

DS92LV0422SQ/NOPB

具有 LVDS 并行接口的 10 - 75MHz Channel Link II 解串器 | RHS | 48 | -40 to 85
TI