DS92LV2411 [TI]

5MHz 至 50MHz 24 位 Channel Link II 串行器;
DS92LV2411
型号: DS92LV2411
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

5MHz 至 50MHz 24 位 Channel Link II 串行器

文件: 总56页 (文件大小:1135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
DS92LV241x 5 to 50 MHz 24-Bit Channel Link II Serializer And Deserializer  
1 Features  
3 Description  
The DS92LV2411 (Serializer) and DS92LV2412  
(Deserializer) chipset translates a parallel 24–bit  
LVCMOS data interface into a single high-speed CML  
serial interface with embedded clock information. This  
single serial stream eliminates skew issues between  
clock and data, reduces connector size and  
interconnect cost for transferring a 24-bit, or less, bus  
over FR-4 printed circuit board backplanes,  
differential or coax cables.  
1
24-Bit Data, 3–Bit Control, 5 to 50 MHz Clock  
Application Payloads up to 1.2 Gbps  
AC Coupled Interconnects: STP up to 10 m or  
Coax 20+ m  
1.8 V or 3.3 V Compatible LVCMOS I/O Interface  
Integrated Terminations on Ser and Des  
AT-SPEED BIST Mode and Reporting Pin  
Configurable by Pins or I2C Compatible Serial  
Control Bus  
In addition to the 24-bit data bus interface, the  
DS92LV2411/12 also features a 3-bit control bus for  
slow speed signals. This allows implementing video  
and display applications with up to 24–bits per pixel  
(RGB888).  
Power Down Mode Minimizes Power Dissipation  
>8 kV HBM ESD Rating  
SERIALIZER — DS92LV2411  
Programmable  
transmit  
de-emphasis,  
receive  
Supports Spread Spectrum Clocking (SSC) on  
Inputs  
equalization, on-chip scrambling and DC balancing  
enables long distance transmission over lossy cables  
and backplanes. The DS92LV2412 automatically  
locks to incoming data without an external reference  
clock or special sync patterns, providing easy “plug-  
and-go” or “hot plug” operation. EMI is minimized by  
the use of low voltage differential signaling, receiver  
drive strength control, and spread spectrum clocking  
capability.  
Data Scrambler for Reduced EMI  
DC-Balance Encoder for AC Coupling  
Selectable Output VOD and Adjustable De-  
emphasis  
DESERIALIZER — DS92LV2412  
Random Data Lock; no Reference Clock  
Required  
The DS92LV2411/12 chipset is programmable though  
an I2C interface as well as through Pins. A built-in  
AT-SPEED BIST feature validates link integrity and  
may be used for system diagnostics.  
Adjustable Input Receiver Equalization  
LOCK (Real Time Link Status) Reporting Pin  
Selectable Spread Spectrum Clock Generation  
(SSCG) and Output Slew Rate Control (OS) to  
Reduce EMI  
The DS92LV2411 is offered in a 48-Pin WQFN and  
the DS92LV2412 is offered in a 60-Pin WQFN  
package. Both devices operate over the full industrial  
temperature range of -40°C to +85°C.  
2 Applications  
Embedded Video and Display  
Medical Imaging  
Device Information  
PART NUMBER  
DS92LV2411  
DS92LV2412  
PACKAGE  
WQFN (48)  
WQFN (60)  
BODY SIZE (NOM)  
7.00 mm × 7.00 mm  
9.00 mm × 9.00 mm  
Factory Automation  
Office Automation — Printer, Scanner  
Security and Video Surveillance  
General Purpose Data Communication  
4 Typical Application Schematic  
V
V
DDn  
1.8V  
V
V
DDIO  
DDIO  
(1.8Vor3.3V)  
DDn  
1.8V (1.8Vor3.3V)  
DI[7:0]  
DI[15:8]  
DI[23:16]  
CI1  
CI2  
CI3  
DO[7:0]  
DO[15:8]  
DO[23:16]  
CO1  
CO2  
CO3  
Channel Link II  
1 Pair /AC Coupled  
Graphic  
Processor  
OR  
Video  
Imager  
OR  
24-bit RGB  
Display  
OR  
0.1 PF  
0.1 PF  
DOUT+  
DOUT-  
RIN+  
RIN-  
ASIC/FPGA  
CLKIN  
CLKOUT  
100 ohm STP Cable  
ASIC/FPGA  
DS92LV2411  
Serializer  
DS92LV2412  
Deserializer  
LOCK  
PASS  
PDB  
CMF  
PDB  
BISTEN  
BISTEN  
RFB  
VODSEL  
DeEmph  
STRAP pins  
not shown  
SCL  
SDA  
ID[x]  
SCL  
SDA  
ID[x]  
Optional  
Optional  
DAP  
DAP  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Table of Contents  
8.1 Overview ................................................................. 22  
8.2 Functional Block Diagrams ..................................... 22  
8.3 Feature Description................................................. 23  
8.4 Device Functional Modes........................................ 34  
8.5 Programming........................................................... 34  
8.6 Register Maps......................................................... 37  
Applications and Implementation ...................... 40  
9.1 Application Information............................................ 40  
9.2 Typical Applications ................................................ 40  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Typical Application Schematic............................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications....................................................... 10  
7.1 Absolute Maximum Ratings .................................... 10  
7.2 ESD Ratings............................................................ 10  
7.3 Recommended Operating Conditions..................... 10  
7.4 Thermal Information................................................ 11  
7.5 Serializer DC Electrical Characteristics .................. 11  
7.6 Deserializer DC Electrical Characteristics .............. 12  
7.7 DC and AC Serial Control Bus Characteristics....... 13  
7.8 Recommended Timing For The Serial Control Bus 14  
7.9 Recommended Serializer Timing For CLKIN.......... 18  
7.10 Serializer Switching Characteristics...................... 19  
7.11 Deserializer Switching Characteristics.................. 20  
7.12 Typical Characteristics.......................................... 21  
Detailed Description ............................................ 22  
9
10 Power Supply Recommendations ..................... 44  
11 Layout................................................................... 44  
11.1 Layout Guidelines ................................................. 44  
11.2 Layout Example .................................................... 44  
12 Device and Documentation Support ................. 47  
12.1 Related Links ........................................................ 47  
12.2 Trademarks........................................................... 47  
12.3 Electrostatic Discharge Caution............................ 47  
12.4 Glossary................................................................ 47  
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 47  
8
5 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (April 2014) to Revision E  
Page  
Changed "Terminal" terminology back to "Pin" ..................................................................................................................... 1  
Added statement about checkerboard pattern from deserializer data output when in BIST mode ..................................... 32  
Added note that BISTEN pin must be high and REG = 0 to use BIST mode. .................................................................... 32  
Changed deserializer Reg 0x02[6] definition to match correct OSS_SEL behavior ............................................................ 38  
Changes from Revision C (April 2013) to Revision D  
Page  
Added Handling Ratings and Thermal Characteristics and updated datasheet to new layout. ............................................ 1  
Changed Serializer Supply current power down test condition from VDDIO from 13.6V to 3.6V .......................................... 12  
Added DC to "Deserializer Electrical Characteristics".......................................................................................................... 12  
Changed typical value to 36mA instead of 37mA ............................................................................................................... 12  
Changed Test condition of VOUT for determining IOZ ........................................................................................................... 12  
Added max value for VIL when using 1.8V I/O LVCMOS .................................................................................................... 12  
Changed IOL from 3mA to 1.25mA ..................................................................................................................................... 13  
Changed parentheses location of UI equation for clarification ............................................................................................ 20  
Added characteristic graphics for serializer CML driver output and deserializer LVCMOS clock output ............................ 21  
Added applications graphics of the serializer output with and without de-emphasis .......................................................... 43  
Added layout example and stencil diagram graphics........................................................................................................... 44  
Changes from Revision B (April 2013) to Revision C  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 43  
2
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
 
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
6 Pin Configuration and Functions  
48-Pin WQFN  
Package RHS  
Top View  
DI10  
DI11  
DI12  
DI13  
DI14  
DI15  
DI16  
DI17  
DI18  
DI19  
DI20  
DI21  
VODSEL  
De-Emph  
VDDTX  
PDB  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
DOUT+  
DOUT-  
RES2  
DS92LV2411  
TOP VIEW  
DAP = GND  
VDDHS  
RES1  
RES0  
VDDP  
CONFIG[1]  
Pin Functions, DS92LV2411 Serializer(1)  
PIN  
TYPE  
DESCRIPTION  
NAME  
LVCMOS PARALLEL INTERFACE  
NO.  
CI1  
CI2  
CI3  
5
3
4
I, LVCMOS Control Signal Input  
w/ pull-down For Display/Video Application:  
CI1 = Data Enable Input  
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control  
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition  
pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00).  
The signal is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter  
setting.  
I, LVCMOS Control Signal Input  
w/ pull-down For Display/Video Application:  
CI2 = Horizontal Sync Input  
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control  
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition  
pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00).  
The signal is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter  
setting.  
I, LVCMOS Control Signal Input  
w/ pull-down For Display/Video Application:  
CI3 = Vertical Sync Input  
CI3 is limited to 1 transition per 130 clock cycles. Thus, the minimum pulse width allowed is  
130 clock cycle wide.  
(1) NOTE: 1 = HIGH, 0 = LOW  
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms then a capacitor on  
the PDB Pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Pin Functions, DS92LV2411 Serializer(1) (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
CLKIN  
NO.  
10  
I, LVCMOS Clock Input  
w/ pull-down Latch/data strobe edge set by RFB Pin.  
DI[7:0]  
34, 33, 32, 29, I, LVCMOS Parallel Interface Data Input Pins  
28, 27, 26, 25 w/ pull-down For 8–bit RED Display: DI7 = R7 – MSB, DI0 = R0 – LSB.  
DI[15:8]  
DI[23:16]  
42, 41, 40, 39, I, LVCMOS Parallel Interface Data Input Pins  
38, 37, 36, 35 w/ pull-down For 8–bit GREEN Display: DI15 = G7 – MSB, DI8 = G0 – LSB.  
2, 1, 48, 47,  
I, LVCMOS Parallel Interface Data Input Pins  
46, 45, 44, 43 w/ pull-down For 8–bit BLUE Display: DI23 = B7 – MSB, DI16 = B0 – LSB.  
CONTROL AND CONFIGURATION  
BISTEN  
31  
I, LVCMOS BIST Mode — Optional  
w/ pull-down BISTEN = 0, BIST is disabled (normal operation)  
BISTEN = 1, BIST is enabled  
CONFIG[1:  
0]  
13, 12  
I, LVCMOS 00: Control Signal Filter DISABLED. Interfaces with DS92LV2412 or DS92LV0412  
w/ pull-down 01: Control Signal Filter ENABLED. Interfaces with DS92LV2412 or DS92LV0412  
10: Reverse compatibility mode to interface with the DS90UR124 or DS99R124Q  
11: Reverse compatibility mode to interface with the DS90C124  
De-Emph  
23  
I, Analog  
w/ pull-up  
De-Emphasis Control  
De-Emph = open (float) - disabled  
To enable De-emphasis, tie a resistor from this Pin to GND or control via register.  
See Table 2.  
This can also be controlled by I2C register access.  
ID[x]  
PDB  
6
I, Analog  
I2C Serial Control Bus Device ID Address Select — Optional  
Resistor to Ground and 10 kpull-up to 1.8V rail. See Table 11.  
21  
I, LVCMOS Power-down Mode Input  
w/ pull-down PDB = 1, Ser is enabled (normal operation).  
Refer to ”Power Up Requirements and PDB Pin” in the Applications Information Section.  
PDB = 0, Ser is powered down  
When the Ser is in the power-down state, the driver outputs (DOUT+/-) are both logic high,  
the PLL is shutdown, IDD is minimized. Control Registers are RESET.  
RES[2:0]  
RFB  
18, 16, 15  
11  
I, LVCMOS Reserved - tie LOW  
w/ pull-down  
I, LVCMOS Clock Input Latch/Data Strobe Edge Select  
w/ pull-down RFB = 1, parallel interface data and control signals are latched on the rising clock edge.  
RFB = 0, parallel interface data and control signals are latched on the falling clock edge.  
This can also be controlled by I2C register access.  
SCL  
8
9
I, LVCMOS I2C Serial Control Bus Clock Input - Optional  
Open Drain SCL requires an external pull-up resistor to 3.3V.  
SDA  
I/O, LVCMOS I2C Serial Control Bus Data Input / Output - Optional  
Open Drain SDA requires an external pull-up resistor 3.3V.  
VODSEL  
24  
I, LVCMOS Differential Driver Output Voltage Select  
w/ pull-down VODSEL = 1, CML VOD is ±420 mV, 840 mVp-p (typ) — long cable / De-Emph applications  
VODSEL = 0, CML VOD is ±280 mV, 560 mVp-p (typ) — short cable (no De-emph), low  
power mode.  
This is can also be control by I2C register.  
4
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
NAME  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Pin Functions, DS92LV2411 Serializer(1) (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
CHANNEL-LINK II — CML SERIAL INTERFACE  
DOUT-  
19  
O, CML  
Inverting Output.  
The output must be AC Coupled with a 0.1 µF capacitor.  
DOUT+  
20  
O, CML  
Non–Inverting Output.  
The output must be AC Coupled with a 0.1 µF capacitor.  
POWER AND GROUND  
GND  
DAP  
Ground  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connect to the ground plane (GND) with at least 9 vias.  
VDDHS  
VDDIO  
VDDL  
17  
30  
7
Power  
Power  
Power  
Power  
Power  
TX High Speed Logic Power, 1.8 V ±5%  
LVCMOS I/O Power, 1.8 V ±5% OR 3.3 V ±10%  
Logic Power, 1.8 V ±5%  
VDDP  
14  
22  
PLL Power, 1.8 V ±5%  
VDDTX  
Output Driver Power, 1.8 V ±5%  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DS92LV2411 DS92LV2412  
 
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
60-Pin WQFN  
Package NKB  
Top View  
NC  
RES  
NC  
46  
47  
48  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VDDL  
VDDIR  
RIN+  
DO8/OSC_SEL0  
DO9/OSC_SEL1  
DO10/OSC_SEL2  
DO11  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
RIN-  
CMF  
ROUT+  
ROUT-  
VDDCMLO  
VDDR  
ID[x]  
VDDIO  
DS92LV2412  
TOP VIEW  
DO12/EQ0  
DO13/EQ1  
DO14/EQ2  
DO15/EQ3  
DO16  
DAP = GND  
BOLD PIN NAME ± indicates I/O strap  
VDDPR  
VDDSC  
PDB  
pin associated with output pin  
DO17/RFB  
DO18/OSS_SEL  
NC  
NC  
(1)  
Pin Functions, DS92LV2412 Deserializer  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
LVCMOS PARALLEL INTERFACE  
CLKOUT  
5
O, LVCMOS Pixel Clock Output  
In power-down (PDB = 0), output is controlled by the OSS_SEL Pin (See Table 6). Data  
strobe edge set by RFB.  
CO1  
6
O, LVCMOS Control Signal Output  
For Display/Video Application:  
CO1 = Data Enable Output  
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control  
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition  
pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00).  
The signal is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter  
setting.  
In power-down (PDB = 0), output is controlled by the OSS_SEL Pin (See Table 6).  
(1) NOTE: 1 = HIGH, 0 = LOW  
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms then a capacitor on  
the PDB Pin is needed to ensure PDB arrives after all the VDD have settled to the recommended operating voltage.  
6
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Pin Functions, DS92LV2412 Deserializer (1) (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
CO2  
8
O, LVCMOS Control Signal Output  
For Display/Video Application:  
CO2 = Horizontal Sync Output  
Control signal pulse width must be 3 clocks or longer to be transmitted when the Control  
Signal Filter is enabled (CONFIG[1:0] = 01). There is no restriction on the minimum transition  
pulse when the Control Signal Filter is disabled (CONFIG[1:0] = 00).  
The signal is limited to 2 transitions per 130 clocks regardless of the Control Signal Filter  
setting.  
In power-down (PDB = 0), output is controlled by the OSS_SEL Pin (See Table 6).  
CO3  
7
O, LVCMOS Control Signal Output  
For Display/Video Application:  
CO3 = Vertical Sync Output  
CO3 is different than CO1 and CO2 because it is limited to 1 transition per 130 clock cycles.  
Thus, the minimum pulse width allowed is 130 clock cycle wide.  
The CONFIG[1:0] Pins have no affect on CO3 signal  
In power-down (PDB = 0), output is controlled by the OSS_SEL Pin (See Table 6).  
DO[7:0]  
DO[15:8]  
DO[23:16]  
LOCK  
33, 34, 35,  
I, STRAP,  
Parallel Interface Data Output Pins  
36, 37, 39, O, LVCMOS For 8–bit RED Display: DO7 = R7 – MSB, DO0 = R0 – LSB.  
40, 41  
In power-down (PDB = 0), outputs are controlled by the OSS_SEL (See Table 6). These  
Pins are inputs during power-up (See STRAP Inputs).  
20, 21, 22,  
I, STRAP,  
Parallel Interface Data Output Pins  
23, 25, 26, O, LVCMOS For 8–bit GREEN Display: DO15 = G7 – MSB, DO8 = G0 – LSB.  
27, 28  
In power-down (PDB = 0), outputs are controlled by the OSS_SEL (See Table 6). These  
Pins are inputs during power-up (See STRAP Inputs).  
9, 10, 11,  
I, STRAP,  
Parallel Interface Data Input Pins  
12, 14, 17, O, LVCMOS For 8–bit BLUE Display: DO23 = B7 – MSB, DO16 = B0 – LSB.  
18, 19  
In power-down (PDB = 0), outputs are controlled by the OSS_SEL (See Table 6). These  
Pins are inputs during power-up (See STRAP Inputs).  
32  
O, LVCMOS LOCK Status Output  
LOCK = 1, PLL is Locked, outputs are active LOCK = 0, PLL is unlocked, DO[23:0], CO1,  
CO2, CO3 and CLKOUT output states are controlled by OSS_SEL (See Table 6). May be  
used as Link Status or to flag when Video Data is active (ON/OFF).  
PASS  
42  
O, LVCMOS PASS Output (BIST Mode)  
PASS = 1, error free transmission  
PASS = 0, one or more errors were detected in the received payload  
Route to test point for monitoring, or leave open if unused.  
(2)  
CONTROL AND CONFIGURATION — STRAP PINS  
CONFIG[1:0]  
10 [DO22],  
9 [DO23]  
STRAP  
00: Control Signal Filter DISABLED. Interfaces with DS92LV2411 or DS92LV0411  
I, LVCMOS 01: Control Signal Filter ENABLED. Interfaces with DS92LV2411 or DS92LV0411  
w/ pull-down 10: Reverse compatibility mode to interface with the DS90UR241 or DS99R241  
11: Reverse compatibility mode to interface with the DS90C241  
EQ[3:0]  
20 [DO15],  
21 [DO14],  
STRAP  
I, LVCMOS (See Table 3).  
Receiver Input Equalization  
22 [DO13], w/ pull-down This can also be controlled by I2C register access.  
23 [DO12]  
LF_MODE  
12 [DO20]  
STRAP  
SSCG Low Frequency Mode  
I, LVCMOS Only required when SSCG is enabled, otherwise LF_MODE condition is a DON’T CARE (X).  
w/ pull-down LF_MODE = 1, SSCG in low frequency mode (CLK = 5-20 MHz)  
LF_MODE = 0, SSCG in high frequency mode (CLK = 20-50 MHz)  
This can also be controlled by I2C register access.  
MAP_SEL[1:0]  
40[D],  
41 [D]  
STRAP  
Bit mapping reverse compatibility / DS90UR241 Options  
I, LVCMOS Pin or Register Control  
w/ pull-down Default setting is b'00.  
(2) For a High State, use a 10 kpull up to VDDIO; for a Low State, the IO includes an internal pull down. The STRAP Pins are read upon  
power-up and set device configuration. Pin Number listed along with shared data output name in square brackets.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Pin Functions, DS92LV2412 Deserializer (1) (continued)  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
OP_LOW  
42 [PASS]  
STRAP  
Outputs held LOW when LOCK = 1  
I, LVCMOS NOTE: Do not use any other strap options with this strap function enabled  
w/ pull-down OP_LOW = 1: all outputs are held LOW during power up until released by programming  
OP_LOW release/set register HIGH.  
NOTE: Before the device is powered up, the outputs are in TRI-STATE  
See Figure 26 and Figure 27  
OP_LOW = 0: all outputs toggle normally as soon as LOCK goes HIGH (default)  
This can also be controlled by I2C register access.  
OS_CLKOUT  
OS_DATA  
OSS_SEL  
11 [DO21]  
14 [DO19]  
17 [DO18]  
STRAP  
Output CLKOUT Slew Select  
I, LVCMOS OS_CLKOUT = 1, Increased CLKOUT slew rate  
w/ pull-down OS_CLKOUT = 0, Normal CLKOUT slew rate (default)  
This can also be controlled by I2C register access.  
STRAP  
Output DO[23:0], CO1, CO2, CO3 Slew Select  
I, LVCMOS OS_DATA = 1, Increased DO slew rate  
w/ pull-down OS_DATA = 0, Normal DO slew rate (default)  
This can also be controlled by I2C register access.  
STRAP  
Output Sleep State Select  
I, LVCMOS OSS_SEL is used in conjunction with PDB to determine the state of the outputs in Power  
w/ pull-down Down (Sleep). (See Table 6).  
NOTE: OSS_SEL STRAP CANNOT BE USED IF OP_LOW = 1  
This can also be controlled by I2C register access.  
RFB  
18 [DO17]  
STRAP  
Clock Output Strobe Edge Select  
I, LVCMOS RFB = 1, parallel interface data and control signals are strobed on the rising clock edge.  
w/ pull-down RFB = 0, parallel interface data and control signals are strobed on the falling clock edge.  
This can also be controlled by I2C register access.  
OSC_SEL[2:0] 26 [DO10],  
27 [DO9],  
STRAP  
Oscillator Selectl  
I, LVCMOS (See Table 7 and Table 8).  
28 [DO8]  
w/ pull-down This can also be controlled by I2C register access.  
SSC[3:0]  
34 [DO6],  
35 [DO5],  
36 [DO4],  
37 [DO3]  
STRAP  
Spread Spectrum Clock Generation (SSCG) Range Select  
I, LVCMOS (See Table 4 and Table 5).  
w/ pull-down This can also be controlled by I2C register access.  
CONTROL AND CONFIGURATION  
BISTEN  
44  
I, LVCMOS BIST Enable Input — Optional  
w/ pull-down BISTEN = 0, BIST is disabled (normal operation)  
BISTEN = 1, BIST is enabled  
ID[x]  
NC  
56  
I, Analog  
I2C Serial Control Bus Device ID Address Select — Optional  
Resistor to Ground and 10 kpull-up to 1.8V rail. (See Table 11).  
1, 15, 16,  
30, 31, 45,  
46, 60  
Not Connected  
Leave Pin open (float)  
PDB  
59  
I, LVCMOS Power Down Mode Input  
w/ pull-down PDB = 1, Des is enabled (normal operation).  
Refer to “Power Up Requirements and PDB Pin” in the Applications Information Section.  
PDB = 0, Des is in power-down.  
When the Des is in the power-down state, the LVCMOS output state is determined by  
Table 6. Control Registers are RESET.  
RES  
SCL  
SDA  
47  
3
I, LVCMOS Reserved - tie LOW  
w/ pull-down  
I, LVCMOS I2C Serial Control Bus Clock Input - Optional  
Open Drain SCL requires an external pull-up resistor to 3.3V.  
2
I/O, LVCMOS I2C Serial Control Bus Data Input / Output - Optional  
Open Drain SDA requires an external pull-up resistor to 3.3V.  
8
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
NAME  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Pin Functions, DS92LV2412 Deserializer (1) (continued)  
PIN  
TYPE  
DESCRIPTION  
NO.  
CHANNEL-LINK II — CML SERIAL INTERFACE  
CMF  
51  
I, Analog  
Common-Mode Filter  
VCM center-tap is a virtual ground which may be AC coupled to ground to increase receiver  
common mode noise immunity. Recommended value is 4.7 μF or higher.  
RIN+  
49  
50  
52  
I, CML  
I, CML  
O, CML  
True Input. The input must be AC Coupled with a 0.1 μF capacitor.  
Inverting Input. The input must be AC Coupled with a 0.1 μF capacitor.  
RIN-  
ROUT+  
True Output — Receive Signal after the Equalizer  
NC if not used or connect to test point for monitor. Requires I2C control to enable.  
ROUT-  
53  
O, CML  
Ground  
Inverting Output — Receive Signal after the Equalizer  
NC if not used or connect to test point for monitor. Requires I2C control to enable.  
POWER AND GROUND(3)  
GND  
DAP  
DAP is the large metal contact at the bottom side, located at the center of the WQFN  
package. Connected to the ground plane (GND) with at least 9 vias.  
VDDCMLO  
VDDIO  
VDDIR  
VDDL  
54  
13, 24, 38  
48  
Power  
Power  
Power  
Power  
Power  
Power  
Power  
RX High Speed Logic Power, 1.8 V ± 5%  
LVCMOS I/O Power, 1.8 V ± 5% OR 3.3 V ± 10% (VDDIO  
)
Input Power, 1.8 V ±5%  
29  
Logic Power, 1.8 V ±5%  
VDDPR  
VDDR  
57  
PLL Power, 1.8 V ±5%  
43, 55  
4, 58  
RX High Speed Logic Power, 1.8 V ±5%  
SSCG Power, 1.8 V ±5%  
VDDSC  
(3) Power must be supplied to all power Pins for normal operation  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DS92LV2411 DS92LV2412  
 
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings(1)(2)(3)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
MAX  
2.5  
UNIT  
V
Supply Voltage – VDDn (1.8 V)  
Supply Voltage – VDDIO  
LVCMOS I/O Voltage  
Receiver Input Voltage  
Driver Output Voltage  
Junction Temperature  
4.0  
V
(VDDIO + 0.3)  
(VDD + 0.3)  
(VDD + 0.3)  
+150  
V
V
V
°C  
°C  
Storage Temperature Range (Tstg  
)
65  
+150  
(1) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(2) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of  
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or  
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating  
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions.  
(3) For soldering specifications, see product folder at www.ti.com and http://www.ti.com/lit/SNOA549  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±8000  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
V(ESD)  
Electrostatic discharge  
±1000  
±250  
V
Machine Model (MM)  
IEC61000–4–2), RD = 330, CS = 150pF  
Air Discharge (DOUT+, DOUT-  
Contact Discharge (DOUT+, DOUT-  
Air Discharge (RIN+, DIN-  
Contact Discharge (RIN+, RIN-  
)
±2500  
±800  
)
V(ESD)  
Electrostatic discharge  
V
)
±2500  
±800  
)
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible if necessary precautions are taken. Pins listed as DOUT+, DOUT- or RIN+, DIN- may actually have higher  
performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible if necessary precautions are taken. Pins listed as DOUT+, DOUT- or RIN+, DIN- may actually have higher  
performance.  
7.3 Recommended Operating Conditions  
MIN  
1.71  
1.71  
TYP  
1.8  
MAX  
1.89  
1.89  
UNIT  
V
Supply Voltage (VDDn  
)
LVCMOS Supply Voltage (VDDIO  
)
)
1.8  
V
OR  
LVCMOS Supply Voltage (VDDIO  
3.0  
40  
5
3.3  
3.6  
+85  
50  
V
Operating Free Air Temperature (TA)  
Clock Frequency  
Supply Noise(1)  
+25  
°C  
MHz  
mVP-P  
50  
(1) Supply noise testing was done with minimum capacitors on the PCB. A sinusoidal signal is AC coupled to the VDDn (1.8V) supply with  
amplitude = 100 mVp-p measured at the device VDDn Pins. Bit error rate testing of input to the Ser and output of the Des with 10 meter  
cable shows no error when the noise frequency on the Ser is less than 750 kHz. The Des on the other hand shows no error when the  
noise frequency is less than 400 kHz.  
10  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
7.4 Thermal Information  
RHS(2)  
48 PINS  
27.1  
NKB(3)  
60 PINS  
24.6  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
RθJC(top)  
4.5  
2.8  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) Ratings for maximum dissipation capacity (215 mW).  
(3) Ratings for maximum dissipation capacity (478 mW).  
7.5 Serializer DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
LVCMOS INPUT DC SPECIFICATIONS  
VDDIO = 3.0 to 3.6V  
2.2  
VDDIO  
VDDIO  
0.8  
High Level Input  
Voltage  
VIH  
V
V
0.65*  
VDDIO  
VDDIO = 1.71 to 1.89V  
DI[23:0],  
VDDIO = 3.0 to 3.6V  
GND  
Low Level Input  
Voltage  
CI1,CI2,CI3, CLKIN,  
PDB, VODSEL,  
RFB, BISTEN,  
CONFIG[1:0]  
VIL  
0.35*  
VDDIO  
VDDIO = 1.71 to 1.89V  
GND  
VDDIO = 3.0 to  
3.6V  
–15  
–15  
±1  
±1  
+15  
+15  
IIN  
Input Current  
VIN = 0V or VDDIO  
μA  
VDDIO = 1.71 to  
1.89V  
CML DRIVER DC SPECIFICATIONS  
VODSEL = 0  
VODSEL = 1  
VODSEL = 0  
±205  
±320  
±280  
±420  
560  
±355  
±520  
Differential Output  
Voltage  
VOD  
mV  
RL = 100Ω, De-  
emph = disabled,  
Figure 2  
Differential Output  
Voltage (DOUT+) –  
(DOUT-)  
mVp-p  
mVp-p  
VODp-p  
ΔVOD  
VOS  
VODSEL = 1  
840  
RL = 100Ω, De-  
emph = disabled,  
VODSEL = L  
1
50  
mV  
Offset Voltage –  
Single-ended At TP A  
and B, Figure 1  
RL = 100Ω, De-  
emph = disabled  
VODSEL = 0  
VODSEL = 1  
0.65  
V
V
DOUT+, DOUT-  
1.575  
Offset Voltage  
RL = 100Ω, De-emph = disabled  
Unbalance Single-  
ended At TP A and B,  
Figure 1  
ΔVOS  
1
mV  
DOUT+/- = 0V,  
De-emph =  
disabled  
Output Short Circuit  
Current  
IOS  
VODSEL = 0  
–36  
100  
mA  
Internal Output  
Termination Resistor  
RTO  
80  
120  
Ω
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3V, Ta = +25 degC, and at the Recommended Operation Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device Pins is defined as positive. Current out of a device Pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH and VTL which are differential voltages.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Serializer DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)(2)(3)  
PARAMETER  
SUPPLY CURRENT  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX  
UNIT  
Serializer Supply  
Checker Board  
VDD = 1.89V  
VDDIO = 1.89V  
VDDIO = 3.6V  
VDD33 = 1.89V  
VDDIO = 1.89V  
VDDIO = 3.6V  
VDD33 = 1.89V  
VDDIO = 1.89V  
VDDIO = 3.6V  
All VDD Pins  
75  
3
85  
5
mA  
mA  
mA  
mA  
mA  
mA  
µA  
IDDT1  
Current (includes load  
current) RL = 100 Ω,  
CLKIN = 50 MHz  
Pattern, De-emph  
= 3kΩ, VODSEL  
= H, Figure 9  
VDDIO  
IDDIOT1  
IDDT2  
IDDIOT2  
IDDZ  
11  
65  
3
15  
Checker Board  
Pattern, De-emph  
= 6kΩ, VODSEL  
= L, Figure 9  
All VDD Pins  
VDDIO  
75  
5
11  
40  
5
15  
Serializer Supply  
Current Power-down  
PDB = 0V , (All  
other LVCMOS  
Inputs = 0V)  
All VDD Pins  
VDDIO  
1000  
10  
µA  
IDDIOZ  
10  
20  
µA  
7.6 Deserializer DC Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
3.3 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 3.0 to 3.6V  
High Level Input  
Voltage  
VIH  
2.2  
VDDIO  
V
V
Low Level Input  
Voltage  
PDB, BISTEN  
VIL  
GND  
–15  
0.8  
IIN  
Input Current  
VIN = 0V or VDDIO  
±1  
+15  
μA  
V
IOH = 0.5 mA, RDS = L  
High Level Output  
Voltage  
DO[23:0], CO1,  
CO2, CO3,  
VOH  
2.4  
VDDIO  
V
CLKOUT, LOCK,  
PASS  
Low Level Output  
Voltage  
IOL = +0.5 mA, RDS = L  
VOL  
IOS  
IOZ  
GND  
36  
0.4  
V
VDDIO = 3.3V, VOUT = 0V,  
OS_PCLK/DATA = L/H  
CLKOUT  
Outputs  
Output Short Circuit  
Current  
mA  
μA  
VDDIO = 3.3V, VOUT = 0V,  
OS_PCLK/DATA = L/H  
TRI-STATE Output  
Current  
PDB = 0V, OSS_SEL = 0V, VOUT = H Outputs  
–15  
+15  
1.8 V I/O LVCMOS DC SPECIFICATIONS – VDDIO = 1.71 to 1.89V  
High Level Input  
Voltage  
VIH  
1.235  
VDDIO  
V
Low Level Input  
Voltage  
PDB, BISTEN  
VIL  
GND  
–15  
0.595  
+15  
V
µA  
V
IIN  
Input Current  
VIN = 0V or VDDIO  
±1  
High Level Output  
Voltage  
IOH = 0.5 mA, RDS = L  
VDDIO  
DO[23:0], CO1,  
CO2, CO3,  
VOH  
VDDIO  
0.45  
CLKOUT, LOCK,  
PASS  
Low Level Output  
Voltage  
IOL = +0.5 mA, RDS = L  
VOL  
GND  
0.45  
V
VDDIO = 1.8V, VOUT = 0V,  
OS_PCLK/DATA = L/H  
CLKOUT  
Outputs  
18  
18  
mA  
mA  
Output Short Circuit  
Current  
IOS  
VDDIO = 1.8V, VOUT = 0V,  
OS_PCLK/DATA = L/H  
(1) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as  
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and  
are not ensured.  
(2) Typical values represent most likely parametric norms at VDD = 3.3V, Ta = +25 degC, and at the Recommended Operation Conditions at  
the time of product characterization and are not ensured.  
(3) Current into device Pins is defined as positive. Current out of a device Pin is defined as negative. Voltages are referenced to ground  
except VOD, ΔVOD, VTH and VTL which are differential voltages.  
12  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Deserializer DC Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)  
PARAMETER  
TEST CONDITIONS  
PIN/FREQ.  
MIN  
TYP  
MAX UNIT  
TRI-STATE Output  
Current  
IOZ  
PDB = 0V, OSS_SEL = 0V, VOUT = H Outputs  
VCM = +1.2V (Internal VBIAS)  
–15  
+15  
µA  
CML RECEIVER DC SPECIFICATIONS  
Differential Input  
VTH  
+50  
–50  
mV  
mV  
Threshold High Voltage  
Differential Input  
VTL  
Threshold Low Voltage  
RIN+, RIN-  
Common Mode  
VCM  
12  
V
µA  
Ω
Voltage, Internal VBIAS  
IIN  
Input Current  
VIN = 0V or VDDIO  
–15  
80  
+15  
120  
Internal Input  
Termination Resistor  
RTI  
RIN+, RIN-  
100  
LOOP THROUGH CML DRIVER OUTPUT DC SPECIFICATIONS – EQ TEST PORT  
Differential Output  
Voltage  
RL = 100Ω  
VOD  
VOS  
RT  
542  
1.4  
mV  
V
ROUT+/-  
ROUT+/-  
Offset Voltage Single-  
ended  
RL = 100Ω  
Internal Termination  
Resistor  
80  
100  
120  
Ω
SUPPLY CURRENT  
Deserializer  
Supply Current  
(includes load current) H, CL = 4pF,  
Checker Board  
Pattern, RDS =  
VDD = 1.89V  
VDDIO = 1.89V  
VDDIO = 3.6V  
VDD = 1.89V  
VDDIO = 1.89V  
VDDIO = 3.6V  
All VDD Pins  
VDDIO  
93  
33  
62  
40  
5
110  
45  
mA  
mA  
mA  
µA  
IDD1  
IDDIO1  
IDDZ  
75  
CLKOUT = 50 MHz  
Figure 9  
Deserializer Supply  
Current Power Down  
PDB = 0V, All  
other LVCMOS  
Inputs = 0V  
All VDD Pins  
VDDIO  
3000  
50  
µA  
IDDIOZ  
10  
100  
µA  
7.7 DC and AC Serial Control Bus Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
Input High Level  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VIH  
SDA and SCL  
SDA and SCL  
2.2  
VDD 3.3V  
V
V
VIL  
Input Low Level Voltage  
Input Hysteresis  
Output Low Voltage(1)  
GND  
0.8  
VHY  
VOL  
Iin  
>50  
mV  
V
SDA, IOL = 1.25mA, VDDIO = 3.3V  
SDA or SCL, Vin = VDDIO or GND  
SDA, RPU = X, Cb 400pF  
0
0.4  
-15  
+15  
µA  
ns  
ns  
ns  
ns  
ns  
pF  
tR  
SDA RiseTime – READ  
SDA Fall Time – READ  
Set Up Time — READ  
Hold Up Time — READ  
Input Filter  
40  
25  
tF  
tSU;DAT  
tHD;DAT  
tSP  
520  
55  
50  
Cin  
Input Capacitance  
SDA or SCL  
<5  
(1) Specification is ensured by characterization and is not tested in production.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DS92LV2411 DS92LV2412  
 
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
7.8 Recommended Timing For The Serial Control Bus  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
fSCL  
SCL Clock Frequency  
Standard Mode  
Fast Mode  
100 kHz  
400 kHz  
tLOW  
SCL Low Period  
SCL High Period  
Standard Mode  
Fast Mode  
4.7  
1.3  
4.0  
0.6  
4.0  
µs  
µs  
µs  
µs  
µs  
tHIGH  
Standard Mode  
Fast Mode  
tHD;STA  
Hold time for a start or a  
repeated start condition,  
Figure 18  
Standard Mode  
Fast Mode  
0.6  
4.7  
0.6  
µs  
µs  
µs  
tSU:STA  
Set Up time for a start or a  
repeated start condition,  
Figure 18  
Standard Mode  
Fast Mode  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data Hold Time,  
Figure 18  
Standard Mode  
Fast Mode  
0
0
3.45  
0.9  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
Data Set Up Time,  
Figure 18  
Standard Mode  
Fast Mode  
250  
100  
4.0  
0.6  
4.7  
Set Up Time for STOP  
Condition, Figure 18  
Standard Mode  
Fast Mode  
Bus Free Time  
Between STOP and START,  
Figure 18  
Standard Mode  
Fast Mode  
1.3  
µs  
tr  
tf  
SCL and SDA Rise Time,  
Figure 18  
Standard Mode  
Fast Mode  
1000  
300  
300  
300  
ns  
ns  
ns  
ns  
SCL and SDA Fall Time,  
Figure 18  
Standard Mode  
Fast mode  
A
B
A'  
C
C
Scope  
A
50:ꢀ  
50:ꢀ  
B
B'  
50:ꢀ  
50:ꢀ  
Figure 1. Serializer Test Circuit  
DOUT+  
VOD-  
VOD+  
DOUT-  
GND  
VOS  
VOD+  
(DOUT+) - (DOUT+  
)
0V  
VODp-p  
VOD-  
Figure 2. Serializer Output Waveforms  
14  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
+VOD  
0V  
80%  
20%  
(DOUT+) - (DOUT-)  
-VOD  
t
t
LHLT  
LLHT  
Figure 3. Serializer Output Transition Times  
t
t
TCIL  
t
TCIH  
TCP  
V
DDIO  
CLKIN  
w/ RFB = L  
80%  
20%  
1/2 V  
DDIO  
GND  
tCLKT  
tCLKT  
V
DDIO  
V
V
IHmin  
ILmax  
DI[23:0],  
CI1,CI2,CI3  
GND  
t
t
DIH  
DIS  
Figure 4. Serializer Input CLKIN Waveform And Set And Hold Times  
PDB  
1/2 V  
DDIO  
CLKIN  
"X"  
active  
t
PLD  
DOUT  
(Diff.)  
Driver On  
Driver OFF, V  
OD  
= 0V  
Figure 5. Serializer Lock Time  
1/2 V  
DDIO  
PDB  
CLKIN  
active  
"X"  
t
XZD  
DOUT  
(Diff.)  
active  
Driver OFF, V  
OD  
= 0V  
Figure 6. Serializer Disable Time  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DS92LV2411 DS92LV2412  
 
 
 
 
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
DIN[23:0],  
SYMBOL N  
SYMBOL N+1  
CI1,CI2,CI3  
t
SD  
CLKIN  
(RFB = L)  
START  
BIT  
STOP START  
BIT BIT  
STOP  
BIT  
DOUT  
(Diff.)  
SYMBOL N-1  
SYMBOL N  
Figure 7. Serializer Latency Delay  
t
t
DJIT  
DJIT  
VOD (+)  
DOUT  
(Diff.)  
TxOUT_E_O  
0V  
VOD (-)  
t
(1 UI)  
BIT  
Figure 8. Serializer Output Jitter  
V
DDIO  
CLKIN/  
CLKOUT  
w/ RFB = L  
GND  
V
DDIO  
DI/DO (odd),  
CI2/CO2, CI3/CO3  
GND  
V
DDIO  
DI/DO (even),  
CI1/CO1  
GND  
Figure 9. Checkerboard Data Pattern  
V
DDIO  
80%  
20%  
GND  
t
t
CHL  
CLH  
Figure 10. Deserializer LVCMOS Transition Times  
START  
BIT  
STOP START  
BIT BIT  
STOP  
BIT  
RIN  
(Diff.)  
SYMBOL N  
SYMBOL N+1  
t
DD  
CLKOUT  
(RFB = L)  
DO[23:0],  
SYMBOL N-2  
SYMBOL N-1  
SYMBOL N  
CO1,CO2,CO3  
Figure 11. Deserializer Delay – Latency  
16  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
 
 
 
 
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
1/2 V  
PDB  
DDIO  
RIN  
(Diff.)  
active  
"X"  
t
XZR  
CLKOUT,  
DO[23:0],  
CO1,CO2,CO3  
PASS, LOCK  
active  
Z (TRI-STATE)  
Figure 12. Deserializer Disable Time (OSS_SEL = 0)  
2.0V  
PDB  
0.8V  
RIN  
(Diff.)  
'RQ¶Wꢀ&DUH  
t
DDLT  
TRI-STATE  
or LOW  
LOCK  
Z or L  
t
RxZ  
DO[23:0],  
CO1,CO2,CO3  
TRI-STATE or LOW or Pulled Up  
Z or L or PU  
CLKOUT  
(RFB = L)  
TRI-STATE or LOW  
IN LOCK TIME  
Z or L  
OFF  
OFF  
ACTIVE  
Figure 13. Deserializer PLL Lock Times And PDB Tri-State Delay  
V
DDIO  
CLKOUT  
w/RFB = H  
1/2 V  
DDIO  
GND  
V
DDIO  
DO[23:0],  
CO1,CO2,CO3  
1/2 V  
t
1/2 V  
DDIO  
DDIO  
GND  
t
ROS  
ROH  
Figure 14. Deserializer Output Data Valid (Setup And Hold) Times With SSCG = Off  
V
DDIO  
CLKOUT  
w/RFB = H  
1/2 V  
DDIO  
GND  
DO[23:0],  
CO1,CO2,CO3  
1/2 V  
1/2 V  
DDIO  
DDIO  
V
DDIO  
GND  
t
t
ROH  
ROS  
Figure 15. Deserializer Output Data Valid (Setup And Hold) Times With SSCG = On  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DS92LV2411 DS92LV2412  
 
 
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Ideal Data  
Bit End  
Sampling  
Window  
Ideal Data Bit  
Beginning  
V
TH  
0V  
RxIN_TOL  
Left  
RxIN_TOL  
Right  
V
TL  
Ideal Center Position (t /2)  
BIT  
t
(1 UI)  
BIT  
t
RJIT = RxIN_TOL (Left + Right)  
Sampling Window = 1 UI - t  
RJIT  
Figure 16. Receiver Input Jitter Tolerance  
BISTEN  
1/2 V  
DDIO  
tPASS  
PASS  
(w/ errors)  
1/2 V  
DDIO  
Prior BIST Result  
Current BIST Test - Toggle on Error  
Result Held  
Figure 17. BIST Pass Waveform  
SDA  
SCL  
t
BUF  
t
t
LOW  
t
f
HD;STA  
t
r
t
t
SP  
t
f
r
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 18. Serial Control Bus Timing Diagram  
7.9 Recommended Serializer Timing For CLKIN  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
5 MHz to 50 MHz, Figure 4  
MIN  
20  
TYP  
MAX UNIT  
tTCP  
Transmit Input CLKIN Period  
Transmit Input CLKIN High Time  
Transmit Input CLKIN Low Time  
CLKIN Input Transition Time  
T
0.5T  
0.5T  
200  
0.6T  
0.6T  
2.4  
ns  
ns  
tTCIH  
tTCIL  
0.4T  
0.4T  
0.5  
ns  
tCLKT  
SSCIN  
ns  
CLKIN Input – Spread Spectrum  
at 50 MHz  
fmod  
fdev  
35  
kHz  
±0.02  
fMOD  
kHz  
18  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
 
 
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
7.10 Serializer Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tLHT  
Ser Output Low-to-High  
Transition Time, Figure 3  
RL = 100, De-emphasis = disabled,  
VODSEL = 0  
200  
ps  
RL = 100, De-emphasis = disabled,  
VODSEL = 1  
200  
200  
200  
ps  
ps  
ps  
ns  
ns  
tHLT  
Ser Output High-to-Low  
Transition Time, Figure 3  
RL = 100, De-emphasis = disabled,  
VODSEL = 0  
RL = 100, De-emphasis = disabled,  
VODSEL = 1  
tDIS  
tDIH  
tXZD  
tPLD  
tSD  
Input Data - Setup Time,  
Figure 4  
DI[23:0], CI1, CI2, CI3 to CLKIN  
2
2
Input Data - Hold Time,  
Figure 4  
CLKIN to DI[23:0], CI1, CI2, CI3  
Ser Output Active to OFF  
Delay, Figure 6  
Serializer PLL Lock Time(1)  
Figure 5  
8
1.4  
15  
10  
ns  
ms  
ns  
UI  
UI  
UI  
,
RL = 100Ω  
RL = 100Ω  
Serializer Delay - Latency,  
Figure 7  
144*T  
0.28  
0.27  
0.35  
145*T  
tDJIT  
Ser Output Total Jitter,  
Figure 8  
RL = 100, De-Emph = disabled,  
RANDOM pattern, CLKIN = 50 MHz  
RL = 100, De-Emph = disabled,  
RANDOM pattern, CLKIN = 43MHz  
RL = 100, De-Emph = disabled,  
RANDOM pattern, CLKIN = 5MHz  
λSTXBW  
Serializer Jitter Transfer  
Function -3 dB Bandwidth  
CLKIN = 50 MHz  
CLKIN = 43 MHz  
CLKIN = 20 MHz  
CLKIN = 5MHz  
CLKIN = 50 MHz  
CLKIN = 43 MHz  
CLKIN = 20 MHz  
CLKIN = 5MHz  
3
2.3  
MHz  
MHz  
MHz  
kHz  
dB  
1.3  
650  
0.84  
0.83  
0.83  
0.28  
δSTX  
Serializer Jitter Transfer  
Function Peaking  
dB  
dB  
dB  
(1) When the Serializer output is at TRI-STATE the Deserializer will lose PLL lock. Resynchronization / Relock must occur before data  
transfer require tPLD  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
7.11 Deserializer Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.  
PARAMETER  
CLK Output Period  
TEST CONDITIONS  
tRCP = tTCP  
PIN/FREQ.  
CLKOUT  
MIN  
20  
TYP  
T
MAX UNIT  
tRCP  
tRDC  
200  
0.57T  
0.65T  
0.60T  
ns  
ns  
ns  
ns  
CLK Output Duty Cycle  
SSCG = OFF, 5 – 50MHz  
SSCG = ON, 5 – 20 MHz  
SSCG = ON, 20 – 50 MHz  
0.43T  
0.35T  
0.40T  
0.50T  
0.59T  
0.53T  
tCLH  
LVCMOS  
VDDIO = 1.8V,  
CL = 4pF,  
OS_CLKOUT/DATA = L  
CLKOUT/DO[23:0],  
CO1, CO2, CO3  
Low-to-High  
Transition Time,  
Figure 10  
2.1  
2.0  
ns  
ns  
ns  
ns  
T
VDDIO = 3.3V  
CL = 4pF,  
OS_CLKOUT/DATA = H  
tCHL  
LVCMOS  
VDDIO = 1.8V  
CL = 4pF,  
OS_CLKOUT/DATA = L  
CLKOUT/DO[23:0],  
CO1, CO2, CO3  
High-to-Low  
Transition Time,  
Figure 10  
1.6  
VDDIO = 3.3V  
CL = 8 pF,  
OS_CLKOUT/DATA = H  
1.5  
tROS  
tROH  
tDDLT  
Data Valid before  
VDDIO = 1.71 to 1.89V or  
CLKOUT – Set Up Time, VDDIO = 3.0 to 3.6V  
DO[23:0], CO1, CO2,  
CO3  
0.27  
0.4  
0.45  
0.55  
Figure 14  
CL = 4pF (lumped load)  
Data Valid after  
CLKOUT – Hold Time,  
Figure 14  
VDDIO = 1.71 to 1.89V or  
VDDIO = 3.0 to 3.6V  
CL = 4pF (lumped load)  
DO[23:0], CO1, CO2,  
CO3  
T
Deserializer Lock Time,  
Figure 13  
SSC[3:0] = OFF,  
See(1)  
CLKOUT = 5MHz  
3
4
ms  
ms  
ms  
ms  
ns  
SSC[3:0] = OFF,  
See(1)  
CLKOUT = 50MHz  
CLKOUT = 5MHz  
SSC[3:0] = ON,  
See(1)  
30  
SSC[3:0] = ON,  
See(1)  
CLKOUT = 50MHz  
CLKOUT = 5 to 50 MHz  
6
tDD  
Des Delay - Latency,  
Figure 11  
SSC[3:0] = ON,  
See(2)  
139*T  
140*T  
tDPJ  
Des Period Jitter  
SSC[3:0] = OFF,  
See(3)  
CLKOUT = 5MHz  
CLKOUT = 10MHz  
CLKOUT = 50MHz  
CLKOUT = 5MHz  
CLKOUT = 10MHz  
CLKOUT = 50MHz  
jitter freq <2MHz  
jitter freq >6MHz  
975  
500  
550  
675  
375  
500  
0.9  
1700  
1000  
1250  
1150  
900  
ps  
ps  
ps  
tDCCJ  
Des Cycle-to-Cycle Jitter SSC[3:0] = OFF,  
See(2)  
ps  
ps  
1150  
ps  
UI(4)  
tIIT  
Des Input Jitter  
Tolerance, Figure 16  
EQ = OFF,  
SSCG = OFF,  
CLKOUT = 50 MHz  
0.5  
UI(4)  
BIST MODE  
tPASS  
BIST PASS Valid Time,  
BISTEN = 1, Figure 17  
1
10  
µs  
SSCG MODE  
fDEV  
Spread Spectrum  
Clocking Deviation  
Frequency  
Under typical conditions  
Under typical conditions  
CLKOUT = 5 to 50 MHz,  
SSC[3:0] = ON  
±0.005  
fMOD  
±0.02  
fMOD  
KHz  
kHz  
fMOD  
Spread Spectrum  
Clocking Modulation  
Frequency  
CLKOUT = 5 to 50 MHz,  
SSC[3:0] = ON  
8
100  
(1) tPLD and tDDLT is the time required by the serializer and deserializer to obtain lock when exiting power-down state with an active clock.  
(2) tDCCJ is the maximum amount of jitter between adjacent clock cycles.  
(3) tDPJ is the maximum amount the period is allowed to deviate over many samples.  
(4) UI – Unit Interval is equivalent to one serialized data bit width (1UI = 1 / (28*CLK) ). The UI scales with clock frequency.  
20  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
7.12 Typical Characteristics  
50 MHz TX  
Pixel Clock  
Input  
(2 V/DIV)  
CML Serializer  
Data  
Throughput  
(100 mV/DIV)  
50 MHz RX  
Pixel Clock  
Input  
(2 V/DIV)  
Time (20 ns/DIV)  
Time (1 ns/DIV)  
Note: On the rising edge of each clock period, the CML driver outputs Note: When both devices are locked and the scope is triggered from  
a low Stop bit, high Start bit, and 28 DC-scrambled data bits.  
Figure 19. Serializer CML Driver Output with 50 MHz TX  
Pixel Clock.  
the TX pixel clock, the RX clock is genlocked to the TX pixel clock  
and does not drift.  
Figure 20. Comparison of Deserializer LVCMOS RX Clock  
Output locked to a 50 MHz TX Pixel Clock.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The DS92LV2411 / DS92LV2412 chipset transmits and receives 24-bits of data and 3 control signals over a  
single serial CML pair operating at 140 Mbps to 1.4 Gbps. The serial stream also contains an embedded clock,  
video control signals and the DC-balance information which enhances signal quality and supports AC coupling.  
The Des can attain lock to a data stream without the use of a separate reference clock source, which greatly  
simplifies system complexity and overall cost. The Des also synchronizes to the Ser regardless of the data  
pattern, delivering true automatic “plug and lock” performance. It can lock to the incoming serial stream without  
the need of special training patterns or sync characters. The Des recovers the clock and data by extracting the  
embedded clock information, validating and then deserializing the incoming data stream providing a parallel  
LVCMOS video bus to the display or ASIC/FPGA.  
The DS92LV2411 / DS92LV2412 chipset can operate in 24-bit color depth (with DE, HS, VS encoded within the  
serial data stream). In 18–bit color applications, the three video control signals maybe sent encoded within the  
serial bit stream (restrictions apply) along with six additional general purpose signals.  
8.2 Functional Block Diagrams  
VODSEL  
De-Emph  
DI[23:0]  
CI1/DE  
CI2/HS  
CI3/VS  
DOUT+  
DOUT-  
RFB  
Pattern  
Generator  
CLKIN  
PLL  
CONFIG[1:0]  
PDB  
Timing and  
Control  
SCL  
SCA  
ID[x]  
BISTEN  
DS92LV2411 ± SERIALIZER  
22  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Functional Block Diagrams (continued)  
STRAP INPUT  
LF_MODE  
OS_CLKOUT  
OS_DATA  
OSS_SEL  
RFB  
EQ [3:0]  
OSC_SEL [2:0]  
SSC [3:0]  
CONFIG [1:0]  
MAP_SEL [1:0]  
SSCG  
ROUT+  
ROUT-  
CMF  
DO[23:0]  
CO1/DE  
CO2/HS  
CO3/VS  
RIN+  
EQ  
RIN-  
STRAP INPUT  
Error  
Detector  
PASS  
BISTEN  
PDB  
OP_LOW  
Clock and  
Data  
Recovery  
CLKOUT  
LOCK  
Timing and  
Control  
SCL  
SCA  
ID[x]  
DS92LV2412 ± DESERIALIZER  
8.3 Feature Description  
8.3.1 Serializer Functional Description  
The Ser converts a wide parallel input bus to a single serial output data stream, and also acts as a signal  
generator for the chipset Built In Self Test (BIST) mode. The device can be configured via external Pins or  
through the optional serial control bus. The Ser features enhance signal quality on the link by supporting: a  
selectable VOD level, a selectable de-emphasis signal conditioning and also the Channel Link II data coding that  
provides randomization, scrambling, and DC Balancing of the data. The Ser includes multiple features to reduce  
EMI associated with display data transmission. This includes the randomization and scrambling of the data and  
also the system spread spectrum clock support. The Ser features power saving features with a sleep mode, auto  
stop clock feature, and optional LVCMOS (1.8 V) parallel bus compatibility.  
8.3.1.1 EMI Reduction Features  
8.3.1.1.1 Data Randomization and Scrambling  
Channel Link II Ser / Des feature a 3 step encoding process which enables the use of AC coupled interconnects  
and also helps to manage EMI. The serializer first passes the parallel data through a scrambler which  
randomizes the data. The randomized data is then DC balanced. The DC balanced and randomized data then  
goes through a bit shuffling circuit and is transmitted out on the serial line. This encoding process helps to  
prevent static data patterns on the serial stream. The resulting frequency content of the serial stream ranges  
from the parallel clock frequency to the nyquist rate. For example, if the Ser / Des chip set is operating at a  
parallel clock frequency of 50 MHz, the resulting frequency content of serial stream ranges from 50 MHz to 700  
MHz ( 50 MHz *28 bits = 1.4 Gbps / 2 = 700 MHz ).  
8.3.1.1.2 Ser — Spread Spectrum Compatibility  
The Ser CLKIN is capable of tracking spread spectrum clocking (SSC) from a host source. The CLKIN will  
accept spread spectrum tracking up to 35 kHz modulation and ±0.5, ±1 or ±2% deviations (center spread). The  
maximum conditions for the CLKIN input are: a modulation frequency of 35 kHz and amplitude deviations of ±2%  
(4% total).  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Feature Description (continued)  
8.3.1.2 Integrated Signal Conditioning Features — Ser  
8.3.1.2.1 Ser — VOD Select (VODSEL)  
The Ser differential output voltage may be increased by setting the VODSEL Pin High. When VODSEL is Low,  
the VOD is at the standard (default) level. When VODSEL is High, the VOD is increased in level. The increased  
VOD is useful in extremely high noise environments and also on extra long cable length applications. When  
using de-emphasis it is recommended to set VODSEL = H to avoid excessive signal attenuation especially with  
the larger de-emphasis settings. This feature may be controlled by the external Pin or by register.  
Table 1. Differential Output Voltage  
INPUT  
EFFECT  
VOD  
mV  
VOD  
mVp-p  
VODSEL  
H
L
±420  
±280  
840  
560  
8.3.1.2.2 Ser — De-Emphasis (De-Emph)  
The De-Emph Pin controls the amount of de-emphasis beginning one full bit time after a logic transition that the  
Ser drives. This is useful to counteract loading effects of long or lossy cables. This Pin should be left open for  
standard switching currents (no de-emphasis) or if controlled by register. De-emphasis is selected by connecting  
a resistor on this Pin to ground, with R value between 0.5 kto 1 M, or by register setting. When using De-  
Emphasis it is recommended to set VODSEL = H.  
Table 2. De-Emphasis Resistor Value  
RESISTOR VALUE (k)  
DE-EMPHASIS SETTING  
Open  
0.6  
Disabled  
- 12 dB  
- 9 dB  
1.0  
2.0  
- 6 dB  
5.0  
- 3 dB  
0.00  
VDD = 1.8V,  
= 25oC  
T
A
-2.00  
-4.00  
-6.00  
-8.00  
-10.00  
-12.00  
-14.00  
1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06  
R VALUE - LOG SCALE (:)  
Figure 21. De-Emph vs. R Value  
24  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
8.3.1.3 Power Saving Features  
8.3.1.3.1 Ser — Power Down Feature (PDB)  
The Ser has a PDB input Pin to ENABLE or POWER DOWN the device. This Pin is controlled by the host and is  
used to save power, disabling the link when the it is not needed. In the POWER DOWN mode, the high-speed  
driver outputs are both pulled to VDD and present a 0V VOD state. Note – in POWER DOWN, the optional Serial  
Bus Control Registers are RESET.  
8.3.1.3.2 Ser — Stop Clock Feature  
The Ser will enter a low power SLEEP state when the CLKIN is stopped. A STOP condition is detected when the  
input clock frequency is less than 3 MHz. The clock should be held at a static Low or high state. When the  
CLKIN starts again, the Ser will then lock to the valid input clock and then transmits the serial data to the Des.  
Note – in STOP CLOCK SLEEP, the optional Serial Bus Control Registers values are RETAINED.  
8.3.1.3.3 1.8 V or 3.3 V VDDIO Operation  
The Ser parallel bus and Serial Bus Interface can operate with 1.8 V or 3.3 V levels (VDDIO) for host compatibility.  
The 1.8 V levels will offer lower noise (EMI) and also a system power savings.  
8.3.1.4 Ser — Pixel Clock Edge Select (RFB)  
The RFB Pin determines the edge that the data is latched on. If RFB is High, input data is latched on the Rising  
edge of the CLKIN. If RFB is Low, input data is latched on the Falling edge of the CLKIN. Ser and Des maybe  
set differently. This feature may be controlled by the external Pin or by register.  
8.3.1.5 Optional Serial Bus Control  
Please see the following section on the optional Serial Bus Control Interface.  
8.3.1.6 Optional BIST Mode  
Please see the following section on the chipset BIST mode for details.  
8.3.2 Deserializer Functional Description  
The Des converts a single input serial data stream to a wide parallel output bus, and also provides a signal  
check for the chipset Built In Self Test (BIST) mode. The device can be configured via external Pins and strap  
Pins or through the optional serial control bus. The Des features enhance signal quality on the link with an  
integrated equalizer on the serial input and Channel Link II data encoding which provides randomization,  
scrambling, and DC balancing of the data. The Des includes multiple features to reduce EMI associated with  
data transmission. This includes the randomization and scrambling of the data, the output spread spectrum clock  
generation (SSCG) support and output clock and data slew rate select. The Des features power saving features  
with a power down mode, and optional LVCMOS (1.8 V) interface compatibility.  
8.3.2.1 Integrated Signal Conditioning Features — Des  
8.3.2.1.1 Des — Input Equalizer Gain (Eq)  
The Des can enable receiver input equalization of the serial stream to increase the eye opening to the Des input.  
Note this function cannot be seen at the RxIN+/- input but can be observed at the serial test port (ROUT+/-)  
enabled via the Serial Bus control registers. The equalization feature may be controlled by the external Pin or by  
register.  
Table 3. Receiver Equalization Configuration  
INPUTS  
EFFECT  
EQ3  
EQ2  
L
EQ1  
L
EQ0  
H
L
L
L
L
~1.5 dB  
~3 dB  
L
H
H
H
L
H
~4.5 dB  
~6 dB  
H
H
H
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Table 3. Receiver Equalization Configuration (continued)  
INPUTS  
EFFECT  
EQ3  
H
EQ2  
L
EQ1  
L
EQ0  
H
~7.5 dB  
~9 dB  
H
L
H
H
H
H
L
H
~10.5 dB  
~12 dB  
OFF*  
H
H
H
H
X
X
X
L
* Default Setting is EQ = Off  
8.3.2.2 EMI Reduction Features  
8.3.2.2.1 Des — Output Slew Rate Select (OS_CLKOUT/OS_DATA)  
The parallel data outputs and clock outputs of the deserializer feature selectable output slew rates. The slew rate  
of the CLKOUT Pin is controlled by the strap Pin or register OS_CLKOUT, while the data outputs (DO[23:0] and  
CO[3:1]) are controlled by the strap Pin or register OS_DATA. When OS_CLKOUT/DATA = HIGH, the maximum  
slew rate is selected. When the OS_CLKOUT/DATA = LOW, the minimum slew rate is selected. Use the higher  
slew rate when driving longer traces or a heavier capacitive load.  
8.3.2.2.2 Des — Common Mode Filter Pin (CMF) — Optional  
The Des provides access to the center tap of the internal termination. A capacitor may be placed on this Pin for  
additional common-mode filtering of the differential pair. This can be useful in high noise environments for  
additional noise rejection capability. A 4.7 µF capacitor may be connected to this Pin to Ground.  
8.3.2.2.3 Des — SSCG Generation — Optional  
The Des provides an internally generated spread spectrum clock (SSCG) to modulate its outputs. Both clock and  
data outputs are modulated. This will aid to lower system EMI. Output SSCG deviations to ±2% (4% total) at up  
to 100 kHz modulations is available. See Table 4. This feature may be controlled by external STRAP Pins or by  
register.  
Table 4. SSCG Configuration (LF_MODE = L) — Des Output  
SSC[3:0] INPUTS  
RESULT  
LF_MODE = L (20 - 50 MHz)  
SSC3  
L
SSC2  
L
SSC1  
L
SSC0  
L
fdev (%)  
NA  
fmod (kHz)  
Disable  
L
L
L
H
L
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
L
L
H
H
L
CLK/2168  
CLK/1300  
L
L
H
L
L
H
H
H
H
L
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
H
H
H
H
L
L
H
L
CLK/868  
CLK/650  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
26  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
 
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Table 5. SSCG Configuration (Lf_mode = H) — Des Output  
SSC[3:0] INPUTS  
RESULT  
LH_MODE = H (5 - 20 MHz)  
SSC3  
SSC2  
L
SSC1  
L
SSC0  
L
fdev (%)  
NA  
fmod (kHz)  
L
L
Disable  
L
L
H
L
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
±2.0  
±0.5  
±1.0  
±1.5  
L
L
H
H
L
CLK/620  
CLK/370  
L
L
H
L
L
H
H
H
H
L
L
L
H
L
L
H
H
L
L
H
L
H
H
H
H
H
H
H
H
L
L
H
L
CLK/258  
CLK/192  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
Frequency  
fdev(max)  
F
F
F
CLKOUT+  
CLKOUT  
CLKOUT-  
fdev(min)  
Time  
1/fmod  
Figure 22. SSCG Waveform  
8.3.2.2.4 1.8 V or 3.3 V VDDIO Operation  
The Des parallel bus and Serial Bus Interface can operate with 1.8 V or 3.3 V levels (VDDIO) for target host  
compatibility. The 1.8 V levels will offer a lower noise (EMI) and also a system power savings.  
8.3.2.3 Power Saving Features  
8.3.2.3.1 Des — Powerdown Feature (PDB)  
The Des has a PDB input Pin to ENABLE or POWER DOWN the device. This Pin can be controlled by the  
system to save power, disabling the Des when the display is not needed. An auto detect mode is also available.  
In this mode, the PDB Pin is tied High and the Des will enter POWER DOWN when the serial stream stops.  
When the serial stream starts up again, the Des will lock to the input stream and assert the LOCK Pin and output  
valid data. In POWER DOWN mode, the Data and CLKOUT output states are determined by the OSS_SEL  
status. Note – in POWER DOWN, the optional Serial Bus Control Registers are RESET.  
8.3.2.3.2 Des — Stop Stream Sleep Feature  
The Des will enter a low power SLEEP state when the input serial stream is stopped. A STOP condition is  
detected when the embedded clock bits are not present. When the serial stream starts again, the Des will then  
lock to the incoming signal and recover the data. Note – in STOP STREAM SLEEP, the optional Serial Bus  
Control Registers values are RETAINED.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
8.3.2.4 Des — Clock-Data Recovery Status Flag (Lock) And Output State Select (OSS_SEL)  
When PDB is driven HIGH, the CDR PLL begins locking to the serial input and LOCK goes from TRI-STATE to  
LOW (depending on the value of the OSS_SEL setting). After the DS92LV2412 completes its lock sequence to  
the input serial data, the LOCK output is driven HIGH, indicating valid data and clock recovered from the serial  
input is available on the parallel bus and clock outputs. The CLKOUT output is held at its current state at the  
change from OSC_CLK (if this is enabled via OSC_SEL) to the recovered clock (or vice versa).  
If there is a loss of clock from the input serial stream, LOCK is driven Low and the state of the outputs are based  
on the OSS_SEL setting (STRAP Pin configuration or register).  
8.3.2.5 Des — Oscillator Output — Optional  
The Des provides an optional clock output when the input clock (serial stream) has been lost. This is based on  
an internal oscillator. The frequency of the oscillator may be selected. This feature may be controlled by the  
external Pin or by register. See Table 7 and Table 8.  
Table 6. OSS_SEL And PDB Configuration — Des Outputs  
INPUTS  
PDB  
OUTPUTS  
SERIAL  
INPUT  
OSS_SEL  
CLKOUT  
DO[23:0], CO1,  
CO2, CO3  
LOCK  
PASS  
X
L
L
L
H
L
Z
Z
Z
Z
Z
L
Z
Z
L
X
Z
L
Static  
Static  
Active  
H
H
H
L
H
X
Z
Z*  
L
L
Active  
Active  
H
H
*NOTE — If Pin is strapped HIGH the output will be pulled up  
Table 7. OSC (Oscillator) Mode — Des Output  
INPUTS  
OUTPUTS  
EMBEDDED CLK  
CLKOUT  
DO[23:0]/CO1/CO2/CO3  
LOCK  
PASS  
NOTE *  
OSC  
L
L
H
Output  
Present  
Toggling  
Active  
H
H
* NOTE — Absent and OSC_SEL 000  
28  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
 
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
PDB  
(DES)  
RIN  
(Diff.)  
active serial stream  
X
LOCK  
H
H
Z
Z
Z
Z
L
L
L
L
L
L
DO[23:0],  
CO1,CO2,CO3  
CLKOUT*  
(DES)  
Z
Z
Locking  
Active  
C0 or C1 Error  
In Bit Stream  
Active  
OFF  
OFF  
(Loss of LOCK)  
CONDITIONS: * RFB = L, and OSS_SEL Strap = L  
Figure 23. Des Outputs With Output State Select Low (OSS_SEL = L)  
PDB  
(DES)  
RIN  
(Diff.)  
active serial stream  
X
Z
Z
Z
H
H
LOCK  
L
L
Z
Z
Z
DO[23:0],  
CO1,CO2,CO3  
Z
Z
CLKOUT*  
(DES)  
C0 or C1 Error  
In Bit Stream  
OFF  
Locking  
Active  
Active  
OFF  
(Loss of LOCK)  
CONDITIONS: * RFB = L, and OSS_SEL Strap = H  
Figure 24. Des Outputs With Output State Select High (OSS_SEL = H)  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Table 8. OSC_SEL (Oscillator) Configuration  
OSC_SEL[2:0] INPUTS  
CLKOUT OSCILLATOR FREQUENCY  
OSC_SEL2  
OSC_SEL1  
OSC_SEL0  
L
L
L
L
L
H
L
Off – Feature Disabled – Default  
50 MHz ±40%  
25 MHz ±40%  
16.7 MHz ±40%  
12.5 MHz ±40%  
10 MHz ±40%  
8.3 MHz ±40%  
6.3 MHz ±40%  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
PDB  
(DES)  
RIN  
(Diff.)  
active serial stream  
X
Z
H
H
LOCK  
L
L
Z
Z
L
DO[23:0],  
CO1,CO2,CO3  
Z
L
CLKOUT*  
(DES)  
Z
Z
f
f
L
Z
H
H
PASS  
L
L
Z
Locking  
Active  
C0 or C1 Error  
In Bit Stream  
Active  
OFF  
OFF  
(Loss of LOCK)  
CONDITIONS: * RFB = L, OSS_SEL = H , and OSC_SEL not equal to 000.  
Figure 25. Des Outputs With Output State High And Clk Output Oscillator Option Enabled  
8.3.2.6 Des — OP_LOW — Optional  
The OP_LOW feature is used to hold the LVCMOS outputs, except for the LOCK output, at a LOW state. When  
the OP_LOW feature is enabled, the LVCMOS outputs will be held at logic LOW while LOCK = LOW. The user  
must toggle the OP_LOW Set/Reset register bit to release the outputs to the normal toggling state. Note that the  
release of the outputs can only occur when LOCK is HIGH. The OP_LOW strap option is assigned to the PASS  
Pin, at Pin location 42.  
Restrictions on other straps:  
1. Other strap options should not be used in order to keep the data and clock outputs at a true logic LOW state.  
Other features should be selected through the I2C register interface.  
2. The OSS_SEL feature is not available when OP_LOW is enabled.  
Outputs DO[23:0], CO[3:1] and CLKOUT are in TRI-STATE before PDB toggles HIGH because the OP-LOW  
strap value has not been recognized until the DS92LV2412 powers up. Figure 26 shows the user controlled  
release of the OP_LOW and automatic reset of OP_LOW set on the falling edge of LOCK. Figure 27 shows the  
user controlled release of OP_LOW and manual reset of OP_LOW set. Note manual reset of OP_LOW can only  
occur when LOCK is HIGH.  
30  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
2.0V  
PDB  
LOCK  
OP_ LOW  
SET  
(Strap pin)  
User  
User  
controlled  
controlled  
OP_ LOW  
RELEASE/SET  
(Register)  
DO[23:0],  
CO3, CO2, CO1  
TRI-  
STATE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TRI-  
STATE  
CLKOUT  
Figure 26. OP_LOW Auto Set  
2.0V  
PDB  
LOCK  
OP_LOW  
SET  
(Strap pin)  
User  
User  
controlled  
controlled  
OP_ LOW  
RELEASE/SET  
(Register)  
DO[23:0],  
CO3, CO2, CO1  
TRI-  
STATE  
ACTIVE  
ACTIVE  
TRI-  
STATE  
CLKOUT  
Figure 27. OP_LOW Manual Set/Reset  
8.3.2.7 Des — Clock Edge Select (RFB)  
The RFB Pin determines the edge that the data is strobed on. If RFB is High, output data is strobed on the  
Rising edge of the CLKOUT. If RFB is Low, data is strobed on the Falling edge of the CLKOUT. This allows for  
inter-operability with downstream devices. The Des output does not need to use the same edge as the Ser input.  
This feature may be controlled by the external Pin or by register.  
8.3.2.8 Des — Control Signal Filter — Optional  
The deserializer provides an optional Control Signal (C3, C2, C1) filter that monitors the three control signals and  
eliminates any pulses or glitches that are 1 or 2 parallel clock periods wide. Control signals must be 3 parallel  
clock periods wide (in its HIGH or LOW state, regardless of which state is active). This is set by the CONFIG[1:0]  
strap option or by I2C register control.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
8.3.2.9 Des — SSCG Low Frequency Optimization (Lf_mode)  
Text to come. This feature may be controlled by the external Pin or by Register.  
8.3.2.10 Des — Strap Input Pins  
Configuration of the device maybe done via configuration input Pins and the STRAP input Pins, or via the Serial  
Control Bus. The STRAP input Pins share select parallel bus output Pins. They are used to load in configuration  
values during the initial power up sequence of the device. Only a pull-up on the Pin is required when a HIGH is  
desired. By default the pad has an internal pull down, and will bias Low by itself. The recommended value of the  
pull up is 10 kΩ to VDDIO; open (NC) for Low, no pull-down is required (internal pull-down). If using the Serial  
Control Bus, no pull ups are required.  
8.3.3 Built In Self Test (BIST)  
An optional At-Speed Built In Self Test (BIST) feature supports the testing of the high-speed serial link. This is  
useful in the prototype stage, equipment production, in-system test and also for system diagnostics. In the BIST  
mode only a input clock is required along with control to the Ser and Des BISTEN input Pins. The Ser outputs a  
test pattern (PRBS7) and drives the link at speed. The Des detects the PRBS7 pattern and monitors it for errors.  
A PASS output Pin toggles to flag any payloads that are received with 1 to 24 errors. Upon completion of the  
test, the result of the test is held on the PASS output until reset (new BIST test or Power Down). A high on PASS  
indicates NO ERRORS were detected. A Low on PASS indicates one or more errors were detected. The duration  
of the test is controlled by the pulse width applied to the Des BISTEN Pin. During the BIST duration, the  
deserializer data outputs toggle with a checkerboard pattern.  
Inter-operability is supported between this Channel Link II device and all Channel Link II generations (Gen 1/2/3).  
Note: In order to use BIST mode, the BISTEN Pin must be pulled high and REG = 0. The serializer cannot be  
placed in BIST mode if REG = 1, as this will cause the DS92LV2411 to ignore the pin input voltage.  
8.3.3.1 Sample BIST Sequence  
See Figure 28 for the BIST mode flow diagram.  
Step 1: Place the DS92LV2411 Ser in BIST Mode by setting Ser BISTEN = H. For the DS92LV2411 Ser or  
DS99R421 Channel Link II Ser BIST Mode is enabled via the BISTEN Pin. A CLKIN is required for BIST. When  
the Des detects the BIST mode pattern and command (DCA and DCB code) the data and control signal outputs  
are shut off.  
Step 2: Place the DS92LV2412 Des in BIST mode by setting the BISTEN = H. The Des is now in the BIST mode  
and checks the incoming serial payloads for errors. If an error in the payload (1 to 24) is detected, the PASS Pin  
will switch low for one half of the clock period. During the BIST test, the PASS output can be monitored and  
counted to determine the payload error rate.  
Step 3: To Stop the BIST mode, the Des BISTEN Pin is set Low. The Des stops checking the data and the final  
test result is held on the PASS Pin. If the test ran error free, the PASS output will be High. If there was one or  
more errors detected, the PASS output will be Low. The PASS output state is held until a new BIST is run, the  
device is RESET, or Powered Down. The BIST duration is user controlled by the duration of the BISTEN signal.  
Step 4: To return the link to normal operation, the Ser BISTEN input is set Low. The Link returns to normal  
operation.  
Figure 29 shows the waveform diagram of a typical BIST test for two cases. Case 1 is error free, and Case 2  
shows one with multiple errors. In most cases it is difficult to generate errors due to the robustness of the link  
(differential data transmission etc.), thus they may be introduced by greatly extending the cable length, faulting  
the interconnect, reducing signal condition enhancements (De-Emphasis, VODSEL, or Rx Equalization).  
32  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Normal  
Step 1: SER in BIST  
BIST  
Wait  
Step 2: Wait, DES in BIST  
BIST  
start  
Step 3: DES in Normal  
Mode - check PASS  
BIST  
stop  
Step 4: SER in Normal  
Figure 28. BIST Mode Flow Diagram  
8.3.3.2 BER Calculations  
It is possible to calculate the approximate Bit Error Rate (BER). The following is required:  
Clock Frequency (MHz)  
BIST Duration (seconds)  
BIST test Result (PASS)  
The BER is less than or equal to one over the product of 24 times the CLK rate times the test duration. If we  
assume a 50 MHz clock, a 10 minute (600 second) test, and a PASS, the BERT is 1.39 X 10E-12  
The BIST mode runs a check on the data payload bits. The LOCK Pin also provides a link status. It the recovery  
of the C0 and C1 bits does not reconstruct the expected clock signal, the LOCK Pin will switch Low. The  
combination of the LOCK and At-Speed BIST PASS Pin provides a powerful tool for system evaluation and  
performance monitoring.  
BISTEN  
(SER)  
BISTEN  
(DES)  
CLKOUT  
(RFB = L)  
DO[23:0]  
CO1,CO2,CO3  
DATA  
(internal)  
PASS  
Prior Result  
Prior Result  
PASS  
FAIL  
X = bit error(s)  
DATA  
(internal)  
X
X
X
PASS  
BIST  
Result  
Held  
Normal  
PRBS  
Normal  
BIST Test  
BIST Duration  
Figure 29. BIST Waveforms  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
8.4 Device Functional Modes  
8.4.1 Data Transfer  
The DS92LV2411 / DS92LV2412 chipset will transmit and receive a pixel of data in the following format: C1 and  
C0 represent the embedded clock in the serial stream. C1 is always HIGH and C0 is always LOW. The  
remaining 26 bit spaces contain the scrambled, encoded and DC-Balanced serial data.  
8.4.2 Serializer and Deserializer Operating Modes and Reverse Compatibility (Config[1:0])  
The DS92LV2411 / DS92LV2412 chipset is compatible with other single serial lane Channel Link II or FPD-Link II  
devices. Configuration modes are provided for reverse compatibility with the DS90C241 / DS90C124 and also  
the DS90UR241 / DS90UR124 by setting the respective mode with the CONFIG[1:0] Pins on the Ser or Des as  
shown in Table and Table. This selection also determines whether the Control Signal Filter feature is enabled or  
disabled in the Normal mode. These configuration modes are selectable the control Pins only.  
Table 9. DS92LV2411 Serializer Modes  
CONFIG1  
CONFIG0  
MODE  
DES DEVICE  
Normal Mode, Control Signal Filter disabled DS92LV2412, DS92LV2412, DS92LV0422,  
DS92LV0412  
L
L
Normal Mode, Control Signal Filter enabled  
DS92LV2412, DS92LV2412, DS92LV0422,  
DS92LV0412  
L
H
H
H
L
Reverse Compatibility Mode  
Reverse Compatibility Mode  
DS90UR124, DS99R124  
DS90C124  
H
Table 10. DS92LV2412 Serializer Modes  
CONFIG1  
CONFIG0  
MODE  
SER DEVICE  
Normal Mode, Control Signal Filter disabled DS92LV2411, DS92LV2411, DS92LV0421,  
DS92LV0411  
L
L
Normal Mode, Control Signal Filter enabled  
DS92LV2411, DS92LV2411, DS92LV0421,  
DS92LV0411  
L
H
H
H
L
Reverse Compatibility Mode  
Reverse Compatibility Mode  
DS90UR241  
DS90C241  
H
8.4.3 Video Control Signal Filter — Serializer and Deserializer  
When operating the devices in Normal Mode, the Control Signals have the following restrictions:  
Normal Mode with Control Signal Filter Enabled: Control Signal 1 and Control Signal 2 — Only 2 transitions  
per 130 clock cycles are transmitted, the transition pulse must be 3 parallel clocks or longer.  
Normal Mode with Control Signal Filter Disabled: Control Signal 1 and Control Signal 2 — Only 2 transitions  
per 130 clock cycles are transmitted, no restriction on minimum transition pulse.  
Control Signal 3 — Only 1 transition per 130 clock cycles is transmitted , minimum pulse width is 130 clock  
cycles.  
Control Signals are defined as low frequency signals with limited transition. Glitches of a control signal can cause  
a visual error in display applications. This feature allows for the chipset to validate and filter out any high  
frequency noise on the control signals. See Figure.  
8.5 Programming  
8.5.1 Optional Serial Bus Control  
The Ser and Des may also be configured by the use of a serial control bus that is I2C protocol compatible. By  
default, the I2C reg_0x00'h is set to 00'h and all configuration is set by control/strap Pins. A write of 01'h to  
reg_0x00'h will enable/allow configuration by registers; this will override the control/strap Pins. Multiple devices  
may share the serial control bus since multiple addresses are supported. See Figure 30.  
34  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Programming (continued)  
The serial bus is comprised of three Pins. The SCL is a Serial Bus Clock Input. The SDA is the Serial Bus Data  
Input / Output signal. Both SCL and SDA signals require an external pull up resistor to VDDIO. For most  
applications a 4.7 k pull up resistor to VDDIO may be used. The resistor value may be adjusted for capacitive  
loading and data rate requirements. The signals are either pulled High, or driven Low.  
1.8V  
10 k  
V
DDIO  
ID[X]  
4.7k  
4.7k  
SER  
or  
R
ID  
HOST  
SCL  
SDA  
SCL  
SDA  
DES  
To other  
Devices  
Figure 30. Serial Control Bus Connection  
The third Pin is the ID[X] Pin. This Pin sets one of four possible device addresses. As shown in Figure 30 ,  
Table 11 and Table 12 different Resistor values could be used to set different SMBUS addresses.  
The Serial Bus protocol is controlled by START, START-Repeated, and STOP phases. A START occurs when  
SDA transitions Low while SCL is High. A STOP occurs when SDA transition High while SCL is also HIGH. See  
Figure 31  
SDA  
SCL  
S
P
STOP condition  
START condition, or  
START repeat condition  
Figure 31. Start and Stop Conditions  
To communicate with a remote device, the host controller (master) sends the slave address and listens for a  
response from the slave. This response is referred to as an acknowledge bit (ACK). If a slave on the bus is  
addressed correctly, it Acknowledges (ACKs) the master by driving the SDA bus low. If the address doesn't  
match a device's slave address, it Not-acknowledges (NACKs) the master by letting SDA be pulled High. ACKs  
also occur on the bus when data is being transmitted. When the master is writing data, the slave ACKs after  
every data byte is successfully received. When the master is reading data, the master ACKs after every data  
byte is received to let the slave know it wants to receive another data byte. When the master wants to stop  
reading, it NACKs after the last data byte and creates a stop condition on the bus. All communication on the bus  
begins with either a Start condition or a Repeated Start condition. All communication on the bus ends with a Stop  
condition. A READ is shown in Figure 32 and a WRITE is shown in Figure 33.  
If the Serial Bus is not required, the three Pins may be left open (NC).  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: DS92LV2411 DS92LV2412  
 
 
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Programming (continued)  
Table 11. Id[X] Resistor Value – DS92LV2411 Serializer  
RESISTOR  
RID kΩ  
ADDRESS  
7'b  
ADDRESS  
8'b  
0 APPENDED  
(WRITE)  
0.47  
2.7  
7b' 110 1001 (h'69)  
7b' 110 1010 (h'6A)  
7b' 110 1011 (h'6B)  
7b' 110 1110 (h'6E)  
8b' 1101 0010 (h'D2)  
8b' 1101 0100 (h'D4)  
8b' 1101 0110 (h'D6)  
8b' 1101 1100 (h'DC)  
8.2  
Open  
Table 12. Id[X] Resistor Value – DS92LV2412 Deserializer  
RESISTOR  
RID kΩ  
ADDRESS  
7'b  
ADDRESS  
8'b  
0 APPENDED  
(WRITE)  
0.47  
2.7  
7b' 111 0001 (h'71)  
7b' 111 0010 (h'72)  
7b' 111 0011 (h'73)  
7b' 111 0110 (h'76)  
8b' 1110 0010 (h'E2)  
8b' 1110 0100 (h'E4)  
8b' 1110 0110 (h'E6)  
8b' 1110 1100 (h'EC)  
8.2  
Open  
Register Address  
Slave Address  
Slave Address  
Data  
a
a
c
k
a
c
k
a
c
k
A
2
A
1
A
0
A
2
A
1
A
0
c
0
S
S
1
P
k
Figure 32. Serial Control Bus — Read  
Register Address  
Slave Address  
Data  
a
c
a
c
k
a
c
k
A
2
A
1
A
0
0
S
P
k
Figure 33. Serial Control Bus — Write  
36  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
8.6 Register Maps  
Table 13. Serializer — Serial Bus Control Registers  
ADD ADD  
(dec) (hex)  
REGISTER  
NAME  
Bit(s)  
R/W  
DEFAULT  
(bin)  
FUNCTION  
DESCRIPTION  
0
0
Ser Config 1  
7
6
5
R/W  
R/W  
R/W  
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
VODSEL  
0: Low  
1: High  
4
R/W  
R/W  
0
RFB  
0: Data latched on Falling edge of CLKIN  
1: Data latched on Rising edge of CLKIN  
3:2  
00  
CONFIG  
00: Control Signal Filter Disabled  
01: Control Signal Filter Enabled  
10: Reserved  
11: Reserved  
1
R/W  
0
SLEEP  
Note – not the same function as PowerDown  
(PDB)  
0: normal mode  
1: Sleep Mode – Register settings retained.  
0
7
R/W  
R/W  
R/W  
0
0
REG  
0: Configurations set from control Pins  
1: Configuration set from registers (except I2C_ID)  
1
2
1
2
Device ID  
REG ID  
ID[X]  
0: Address from ID[X] Pin  
1: Address from Register  
6:0  
1101000  
Serial Bus Device ID, Four IDs are:  
7b '1101 001 (h'69)  
7b '1101 010 (h'6A)  
7b '1101 011 (h'6B)  
7b '1101 110 (h'6E)  
All other addresses are Reserved.  
De-Emphasis  
Control  
7:5  
R/W  
000  
De-E Setting  
000: set by external Resistor  
001: -1 dB  
010: -2 dB  
011: -3.3 dB  
100: -5 dB  
101: -6.7 dB  
110: -9 dB  
111: -12 dB  
4
R/W  
R/W  
0
De-E EN  
0: De-Emphasis Enabled  
1: De-Emphasis Disabled  
3:0  
000  
Reserved  
Reserved  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Table 14. Deserializer — Serial Bus Control Registers  
ADD ADD  
(dec) (hex)  
REGISTER  
NAME  
Bit(s)  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DEFAULT  
(bin)  
FUNCTION  
LF_MODE  
DESCRIPTION  
0
0
Des Config 1  
7
6
0
0: 20 to 50 MHz SSCG Operation  
1: 5 to 20 MHz SSCG Operation  
0
OS_CLKOUT  
OS_DATA  
RFB  
0: Normal CLKOUT Slew Rate  
1: Increased CLKOUT Slew Rate  
5
0
0: Normal DATA Slew Rate  
1: Increased DATA Slew Rate  
4
0
0: Data strobed on Falling edge of CLKOUT  
1: Data strobed on Rising edge of CLKOUT  
3:2  
00  
CONFIG  
00: Normal Mode, Control Signal Filter Disabled  
01: Normal Mode, Control Signal Filter Enabled  
10: Reserved  
11: Reserved  
1
0
R/W  
R/W  
0
0
SLEEP  
Note – not the same function as PowerDown (PDB)  
0: Normal Mode  
1: Sleep Mode – Register settings retained.  
REG Control  
0: Configurations set from control Pins / STRAP  
Pins  
1: Configurations set from registers (except I2C_ID)  
1
2
1
2
Slave ID  
7
R/W  
R/W  
0
0: Address from ID[X] Pin  
1: Address from Register  
6:0  
1110000  
ID[X]  
Serial Bus Device ID, Four IDs are:  
7b '1110 001 (h'71)  
7b '1110 010 (h'72)  
7b '1110 011 (h'73)  
7b '1110 110 (h'76)  
All other addresses are Reserved.  
Des Features 1  
7
6
R/W  
R/W  
0
0
OP_LOW  
OSS_SEL  
0: Set outputs state LOW (except LOCK)  
1: Release output LOW state, outputs toggling  
normally  
Note: This register only works during LOCK = 1  
Output Sleep State Select  
0: CLKOUT, DO[23:0], CO1, CO2, CO3 = L, LOCK  
= Normal, PASS = H  
1: CLKOUT, DO[23:0], CO1, CO2, CO3 = Tri-State,  
LOCK = Normal, PASS = H  
5:4  
3
R/W  
R/W  
00  
0
Reserved  
Reserved  
OP_LOW Strap  
Bypass  
0: Strap will determine whether OP_LOW feature is  
ON or OFF  
1: Turns OFF OP_LOW feature  
2:0  
R/W  
00  
OSC_SEL  
000: disable  
001: 50 MHz ±40%  
010: 25 MHz ±40%  
011: 16.7 MHz ±40%  
100: 12.5 MHz ±40%  
101: 10 MHz ±40%  
110: 8.3 MHz ±40%  
111: 6.3 MHz ±40%  
38  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Table 14. Deserializer — Serial Bus Control Registers (continued)  
ADD ADD  
(dec) (hex)  
REGISTER  
NAME  
Bit(s)  
R/W  
DEFAULT  
(bin)  
FUNCTION  
EQ Gain  
DESCRIPTION  
3
3
Des Features 2  
7:5  
R/W  
000  
000: ~1.625 dB  
001: ~3.25 dB  
010: ~4.87 dB  
011: ~6.5 dB  
100: ~8.125 dB  
101: ~9.75 dB  
110: ~11.375 dB  
111: ~13 dB  
4
R/W  
R/W  
0
EQ Enable  
SSC  
0: EQ = disable  
1: EQ = enable  
3:0  
0000  
IF LF_MODE = 0, then:  
000: SSCG disable  
0001: fdev = ±0.5%, fmod = CLK/2168  
0010: fdev = ±1.0%, fmod = CLK/2168  
0011: fdev = ±1.5%, fmod = CLK/2168  
0100: fdev = ±2.0%, fmod = CLK/2168  
0101: fdev = ±0.5%, fmod = CLK/1300  
0110: fdev = ±1.0%, fmod = CLK/1300  
0111: fdev = ±1.5%, fmod = CLK/1300  
1000: fdev = ±2.0%, fmod = CLK/1300  
1001: fdev = ±0.5%, fmod = CLK/868  
1010: fdev = ±1.0%, fmod = CLK/868  
1011: fdev = ±1.5%, fmod = CLK/868  
1100: fdev = ±2.0%, fmod = CLK/868  
1101: fdev = ±0.5%, fmod = CLK/650  
1110: fdev = ±1.0%, fmod = CLK/650  
1111: fdev = ±1.5%, fmod = CLK/650  
IF LF_MODE = 1, then:  
000: SSCG disable  
0001: fdev = ±0.5%, fmod = CLK/620  
0010: fdev = ±1.0%, fmod = CLK/620  
0011: fdev = ±1.5%, fmod = CLK/620  
0100: fdev = ±2.0%, fmod = CLK/620  
0101: fdev = ±0.5%, fmod = CLK/370  
0110: fdev = ±1.0%, fmod = CLK/370  
0111: fdev = ±1.5%, fmod = CLK/370  
1000: fdev = ±2.0%, fmod = CLK/370  
1001: fdev = ±0.5%, fmod = CLK/258  
1010: fdev = ±1.0%, fmod = CLK/258  
1011: fdev = ±1.5%, fmod = CLK/258  
1100: fdev = ±2.0%, fmod = CLK/258  
1101: fdev = ±0.5%, fmod = CLK/192  
1110: fdev = ±1.0%, fmod = CLK/192  
1111: fdev = ±1.5%, fmod = CLK/192  
4
4
ROUT Config  
7
R/W  
R/W  
0
Repeater Enable 0: Output ROUT+/- = disable  
1: Output ROUT+/- = enable  
6:0  
0000000  
Reserved  
Reserved  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
9 Applications and Implementation  
9.1 Application Information  
The DS92LV2411/DS92LV2412 chipset is intended for interface between a host (graphics processor) and a  
Display. It supports an 24-bit color depth (RGB888). In a RGB888 application, 24 color bits (D[23:0), Pixel Clock  
(CLKIN) and three control bits (C1, C2, C3) are supported across the serial link with CLK rates from 5 to 50 MHz.  
The chipset may also be used in 18-bit color applications. In this application three to six general purpose signals  
may also be sent from host to display.  
The Des is expected to be located close to its target device. The interconnect between the Des and the target  
device is typically in the 1 to 3 inch separation range. The input capacitance of the target device is expected to  
be in the 5 to 10 pF range. Care should be taken on the CLK output trace as this signal is edge sensitive and  
strobes the data. It is also assumed that the fanout of the Des is one. If additional loads need to be driven, a  
logic buffer or mux device is recommended.  
9.2 Typical Applications  
V
V
DDn  
1.8V  
V
V
DDIO  
DDIO  
(1.8Vor3.3V)  
DDn  
1.8V (1.8Vor3.3V)  
DI[7:0]  
DI[15:8]  
DI[23:16]  
CI1  
CI2  
CI3  
DO[7:0]  
DO[15:8]  
DO[23:16]  
CO1  
CO2  
CO3  
Channel Link II  
1 Pair /AC Coupled  
Graphic  
Processor  
OR  
Video  
Imager  
OR  
24-bit RGB  
Display  
OR  
0.1 PF  
0.1 PF  
DOUT+  
DOUT-  
RIN+  
RIN-  
ASIC/FPGA  
CLKIN  
CLKOUT  
100 ohm STP Cable  
ASIC/FPGA  
DS92LV2411  
Serializer  
DS92LV2412  
Deserializer  
LOCK  
PASS  
PDB  
CMF  
PDB  
BISTEN  
BISTEN  
RFB  
VODSEL  
DeEmph  
STRAP pins  
not shown  
SCL  
SDA  
ID[x]  
SCL  
SDA  
ID[x]  
Optional  
Optional  
DAP  
DAP  
Figure 34. Typical Application Schematic for DS92LV2411, DS92LV2412 Ser/Des Pair  
9.2.1 Design Requirements  
For this typical design application, use the following as input parameters.  
Table 15. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
1.8 V or 3.3 V  
1.8 V  
VDDIO  
VDDn  
AC Coupling Capacitor for DOUT± and RIN±  
CLK Frequency  
0.1 µF  
50 MHz  
9.2.2 Detailed Design Procedure  
9.2.2.1 Typical Application Connection  
Figure 35 shows a typical connection diagram of the DS92LV2411 Ser in Pin control mode for a 24-bit  
application. The CML outputs require 0.1 µF AC coupling capacitors to the line. The line driver includes internal  
termination. Bypass capacitors are placed near the power supply Pins. At a minimum, four 0.1 µF capacitors and  
a 4.7 µF capacitor should be used for local device bypassing. System GPO (General Purpose Output) signals  
control the PDB and BISTEN Pins. In this application the RFB Pin is tied Low to latch data on the falling edge of  
40  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
the CLKIN. In this example the cable is long, therefore the VODSEL Pin is tied High and a De-Emphasis value is  
selected by the resistor R1. The interface to the host is with 1.8 V LVCMOS levels, thus the VDDIO Pin is  
connected also to the 1.8V rail. The optional Serial Bus control is not used in this example, thus the SCL, SDA  
and ID[x] Pins are left open. A delay cap is placed on the PDB signal to delay the enabling of the device until  
power is stable.  
DS92LV2411 (SER)  
1.8V  
VDDIO  
VDDIO  
VDDTX  
VDDHS  
C9  
C7  
C8  
C10  
FB1  
C3  
C4  
FB2  
FB3  
FB4  
DI0  
DI1  
DI2  
DI3  
DI4  
DI5  
DI6  
DI7  
VDDP  
VDDL  
C11  
C5  
C6  
DI8  
DI9  
C1  
C2  
DI10  
DI11  
DI12  
DI13  
DI14  
DI15  
Serial  
DOUT+  
DOUT-  
Channel Link II  
Interface  
LVCMOS  
Parallel  
Video  
Interface  
DI16  
DI17  
DI18  
DI19  
DI20  
DI21  
DI22  
DI23  
VDDIO  
CLKIN  
VODSEL  
De-Emph  
CI1  
CI2  
CI3  
1.8V  
R1  
LVCMOS  
Control  
Interface  
10k  
RID  
BISTEN  
PDB  
ID[X]  
SCL  
SDA  
C12  
NOTE:  
C1-C2 = 0.1 PF  
C3-C8 = 0.1 PF  
C9-11 = 4.7 PF  
C12 = >10 PF  
R1 (cable specific)  
RID (see ID[x] Resistor Value Table 12)  
FB1-FB4: Impedance = 1 k:,  
low DC resistance (<1:)  
CONFIG1  
CONFIG0  
RFB  
RES2  
RES1  
RES0  
DAP (GND)  
Figure 35. DS92LV2411 Typical Connection Diagram — Pin Control  
Figure 36 shows a typical connection diagram of the DS92LV2412 Des in Pin/strap control mode for a 24-bit  
application. The CML inputs utilize 0.1 µF coupling capacitors to the line and the receiver provides internal  
termination. Bypass capacitors are placed near the power supply Pins. At a minimum, seven 0.1 µF capacitors  
and two 4.7 µF capacitors should be used for local device bypassing. System GPO (General Purpose Output)  
signals control the PDB and the BISTEN Pins. In this application the RFB Pin is tied Low to strobe the data on  
the falling edge of the CLKOUT.  
Since the device in the Pin/STRAP mode, four 10 kpull up resistors are used on the parallel output bus to  
select the desired device features. CFEN is set to 1 for Normal Mode with Control Signal Filter enabled, this is  
accomplished with the STRAP pull-up on DO23. The receiver input equalizer is also enabled and set to provide  
7.5 dB of gain, this is accomplished with EQ[3:0] set to 1001'b with STRAP pull ups on DO12 and DO15. To  
reduce parallel bus EMI, the SSCG feature is enabled and set to fmod = CLK/2168 and ±1% with SSC[3:0] set to  
0010'b and a STRAP pull-up on DO4. The desired features are set with the use of the four pull up resistors.  
The interface to the target display is with 3.3V LVCMOS levels, thus the VDDIO Pin is connected to the 3.3 V  
rail. The optional Serial Bus Control is not used in this example, thus the SCL, SDA and ID[x] Pins are left open.  
A delay cap is placed on the PDB signal to delay the enabling of the device until power is stable.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
DS92LV2412 (DES)  
VDDIO  
1.8V  
VDDL  
VDDIO  
VDDIO  
VDDIO  
C13  
C11  
C8  
C12 C14  
C3  
C4  
C5  
VDDSC  
VDDPR  
VDDR  
C9  
C10  
C15  
C6  
VDDIR  
VDDIO  
EXAMPLE:  
STRAP  
Input  
VDDCMLO  
C16  
C7  
Pull-Ups  
(10k)  
DO0  
DO1  
DO2  
DO3  
DO4  
DO5  
DO6  
DO7  
C1  
C2  
Serial  
Channel Link II  
Interface  
RIN+  
RIN-  
CMF  
C17  
DO8  
DO9  
TP_A  
TP_B  
ROUT+  
ROUT-  
DO10  
DO11  
DO12  
DO13  
DO14  
DO15  
LVCMOS  
Parallel  
Video  
Host  
Control  
BISTEN  
PDB  
Interface  
C18  
DO16  
DO17  
DO18  
DO19  
DO20  
DO21  
DO22  
DO23  
1.8V  
10k  
RID  
ID[X]  
SCL  
SDA  
CO1  
CO2  
CO3  
C1 - C2 = 0.1 PF  
C3 - C12 = 0.1 PF  
C13, C16 = 4.7 PF  
C17 = 4.7 PF  
NC  
8
CLKOUT  
RES  
DAP (GND)  
LOCK  
PASS  
C18 = >10 PF  
RID (see ID[x] Resistor Value Table 13)  
FB1-FB4: Impedance = 1 k:,  
low DC resistance (<1:)  
Figure 36. DS92LV2412 Typical Connection Diagram — Pin Control  
9.2.2.2 Power Up Requirements and PDB Pin  
The VDD (VDDn and VDDIO) supply ramp should be faster than 1.5 ms with a monotonic rise. If slower then 1.5 ms  
then a capacitor on the PDB Pin is needed to ensure PDB arrives after all the VDD have settled to the  
recommended operating voltage. When PDB Pin is pulled to VDDIO, it is recommended to use a 10 kΩ pull-up  
and a 22 uF cap to GND to delay the PDB input signal.  
42  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
9.2.2.3 Transmission Media  
The Ser/Des chip set is intended to be used in a point-to-point configuration, through a PCB trace, through  
twisted pair cable or through 50coaxial cables. The Ser and Des provide internal terminations providing a  
clean signaling environment. The interconnect for the differential serial interface should present a differential  
impedance of 100. Use cables and connectors that have matched differential impedance to minimize  
impedance discontinuities. Shielded or un-shielded cables may be used depending upon the noise environment  
and application requirements.  
For 50coaxial cable serial interfaces, any unused input or output Pin must be terminated with an 0.1 µF AC  
coupling capacitor and a 50resistor to ground. The PCB traces and serial interconnect should have a single  
ended impedance of 50.  
9.2.2.4 Live Link Insertion  
The Ser and Des devices support live pluggable applications. The automatic receiver lock to random data “plug  
and go” hot insertion capability allows the DS92LV2412 to attain lock to the active data stream during a live  
insertion event.  
9.2.2.5 Serial Interconnect Guidelines  
See AN-1108 (SNLA008) and AN-905 (SNLA035) for full details.  
Use 100Ω coupled differential pairs  
Use the S/2S/3S rule in spacings  
S = space between the pair  
2S = space between pairs  
3S = space to LVCMOS signal  
Minimize the number of Vias  
Use differential connectors when operating above 500Mbps line speed  
Maintain balance of the traces  
Minimize skew within the pair  
Terminate as close to the TX outputs and RX inputs as possible  
Additional general guidance can be found in the LVDS Owner’s Manual - available in PDF format from the Texas  
Instruments web site at: http://www.ti.com/ww/en/analog/interface/lvds.shtml  
9.2.3 Application Curves  
CML  
Serializer Data  
Throughput  
CML  
Serializer Data  
Throughput  
(100 mV/DIV)  
(100 mV/DIV)  
50 MHz TX  
Pixel Clock  
Input  
50 MHz TX  
Pixel Clock  
Input  
(2 V/DIV)  
(2 V/DIV)  
Time (4 ns/DIV)  
Time (4 ns/DIV)  
Figure 37. Serializer Output with 50 MHz TX Pixel Clock,  
De-emphasis Disabled  
Figure 38. Serializer Output with 50 MHz TX Pixel Clock,  
De-emphasis Enabled  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
10 Power Supply Recommendations  
The devices are designed to operate from an input voltage supply of 1.8V. Some devices provide separate power  
and ground Pins for different portions of the circuit. This is done to isolate switching noise effects between  
different sections of the circuit. Separate planes on the PCB are typically not required. Pin Description tables  
typically provide guidance on which circuit blocks are connected to which power Pin pairs. In some cases, an  
external filter may be used to provide clean power to sensitive circuits such as PLLs.  
11 Layout  
11.1 Layout Guidelines  
Circuit board layout and stack-up for the Ser/Des devices should be designed to provide low-noise power feed to  
the device. Good layout practice will also separate high frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by  
using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance  
for the PCB power system with low-inductance parasitics, which has proven especially effective at high  
frequencies, and makes the value and placement of external bypass capacitors less critical. External bypass  
capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values in the  
range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
Surface mount capacitors are recommended due to their smaller parasitics. When using multiple capacitors per  
supply Pin, locate the smaller value closer to the Pin. A large bulk capacitor is recommend at the point of power  
entry. This is typically in the 50uF to 100uF range and will smooth low frequency switching noise. It is  
recommended to connect power and ground Pins directly to the power and ground planes with bypass capacitors  
connected to the plane with via on both ends of the capacitor. Connecting power or ground Pins to an external  
bypass capacitor will increase the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. The user must pay attention to the resonance frequency of  
these external bypass capacitors, usually in the range of 20-30 MHz. To provide effective bypassing, multiple  
capacitors are often used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two vias from power and ground Pins to the planes, reducing  
the impedance at high frequency.  
Use at least a four layer board with a power and ground plane. Locate LVCMOS signals away from the CML  
lines to prevent coupling from the LVCMOS lines to the CML lines. Closely-coupled differential lines of 100 Ohms  
are typically recommended for differential interconnect. The closely coupled lines help to ensure that coupled  
noise will appear as common-mode and thus is rejected by the receivers. The tightly coupled lines will also  
radiate less.  
Information on the WQFN style package is provided in TI Application Note: AN-1187 (SNOA401).  
11.2 Layout Example  
Stencil parameters such as aperture area ratio and the fabrication process have a significant impact on paste  
deposition. Inspection of the stencil prior to placement of the LLP package is highly recommended to improve  
board assembly yields. If the via and aperture openings are not carefully monitored, the solder may flow  
unevenly through the DAP. Stencil parameters for aperture opening and via locations are shown below:  
44  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
Layout Example (continued)  
Figure 39. No Pullback LLP, Single Row Reference Diagram  
Table 16. No Pullback LLP Stencil Aperture Summary for DS92LV2411 and DS92LV2412  
Device  
Pin  
Count  
MKT Dwg PCB I/O  
Pad Size  
PCB  
Pitch  
(mm)  
PCB DAP  
size (mm)  
Stencil I/O  
Aperture  
(mm)  
Stencil DAP Number of Gap Between DAP  
Aperture  
(mm)  
DAP  
Aperture  
Openings  
Aperture (Dim A  
mm)  
(mm)  
0.25 x  
SQA48A  
DS92LV2411  
DS92LV2412  
48  
60  
0.5  
0.5  
5.1 x 5.1  
7.2 x 7.2  
0.25 x 0.7  
0.25 x 0.9  
1.1 x 1.1  
16  
25  
0.2  
0.3  
0.6  
0.25 x  
SQA60B  
1.16 x 1.16  
0.8  
Figure 40. 48-Pin WQFN Stencil Example of Via and Opening Placement  
The following PCB layout examples are derived from the layout design of the DS9LV2411 and DS92LV2412 in  
the LV24EVK01 Evaluation Module User's Guide (SNLU006). These graphics and additional layout description  
are used to demonstrate both proper routing and proper solder techniques when designing in the Ser/Des pair.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
www.ti.com  
Figure 41. DS92LV2411 Serializer Example Layout  
Figure 42. DS92LV2412 Deserializer Example Layout  
46  
Submit Documentation Feedback  
Copyright © 2010–2015, Texas Instruments Incorporated  
Product Folder Links: DS92LV2411 DS92LV2412  
DS92LV2411, DS92LV2412  
www.ti.com  
SNLS302E MAY 2010REVISED FEBRUARY 2015  
12 Device and Documentation Support  
12.1 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 17. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
DS92LV2411  
DS92LV2412  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
12.2 Trademarks  
All trademarks are the property of their respective owners.  
12.3 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2010–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: DS92LV2411 DS92LV2412  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS92LV2411SQ/NOPB  
DS92LV2411SQE/NOPB  
DS92LV2411SQX/NOPB  
DS92LV2412SQ/NOPB  
DS92LV2412SQE/NOPB  
DS92LV2412SQX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
NKB  
NKB  
NKB  
48  
48  
48  
60  
60  
60  
1000 RoHS & Green  
250 RoHS & Green  
SN  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
LV2411SQ  
SN  
SN  
SN  
SN  
SN  
LV2411SQ  
LV2411SQ  
LV2412SQ  
LV2412SQ  
LV2412SQ  
2500 RoHS & Green  
1000 RoHS & Green  
250  
RoHS & Green  
2000 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DS92LV2411SQ/NOPB  
WQFN  
RHS  
RHS  
RHS  
NKB  
NKB  
NKB  
48  
48  
48  
60  
60  
60  
1000  
250  
330.0  
178.0  
330.0  
330.0  
178.0  
330.0  
16.4  
16.4  
16.4  
16.4  
16.4  
16.4  
7.3  
7.3  
7.3  
9.3  
9.3  
9.3  
7.3  
7.3  
7.3  
9.3  
9.3  
9.3  
1.3  
1.3  
1.3  
1.3  
1.3  
1.3  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
16.0  
16.0  
16.0  
16.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DS92LV2411SQE/NOPB WQFN  
DS92LV2411SQX/NOPB WQFN  
2500  
1000  
250  
DS92LV2412SQ/NOPB  
WQFN  
DS92LV2412SQE/NOPB WQFN  
DS92LV2412SQX/NOPB WQFN  
2000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DS92LV2411SQ/NOPB  
DS92LV2411SQE/NOPB  
DS92LV2411SQX/NOPB  
DS92LV2412SQ/NOPB  
DS92LV2412SQE/NOPB  
DS92LV2412SQX/NOPB  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHS  
RHS  
RHS  
NKB  
NKB  
NKB  
48  
48  
48  
60  
60  
60  
1000  
250  
356.0  
208.0  
356.0  
356.0  
208.0  
356.0  
356.0  
191.0  
356.0  
356.0  
191.0  
356.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
2500  
1000  
250  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
NKB0060B  
VQFN - 0.8 mm max height  
S
C
A
L
E
1
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
9.1  
8.9  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 7  
6.3 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
16  
30  
15  
31  
SYMM  
61  
2X 7  
1
0.3  
60X  
45  
0.2  
56X 0.5  
60  
46  
0.1  
C A B  
0.7  
0.5  
PIN 1 ID  
0.05  
60X  
4214995/A 03/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
6.3)  
SYMM  
SEE SOLDER MASK  
DETAIL  
60X (0.8)  
60X (0.25)  
46  
60  
1
45  
56X (0.5)  
(1.1) TYP  
(1.2) TYP  
SYMM  
(R0.05) TYP  
(
0.2) TYP  
VIA  
61  
(0.6) TYP  
(8.6)  
15  
31  
30  
16  
(0.6) TYP  
(1.2) TYP  
(1.1) TYP  
(8.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 8X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214995/A 03/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
NKB0060B  
VQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
25X ( 1)  
(1.2) TYP  
46  
60X (0.8)  
60X (0.25)  
60  
1
45  
56X (0.5)  
(R0.05) TYP  
(1.2) TYP  
(8.6)  
61  
SYMM  
15  
31  
16  
30  
SYMM  
(8.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 8X  
EXPOSED PAD 61  
63% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4214995/A 03/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

DS92LV2411SQ

5-50MHz 24-Bit Channel Link II Serializer and Deserializer
NSC

DS92LV2411SQ/NOPB

5MHz 至 50MHz 24 位 Channel Link II 串行器 | RHS | 48 | -40 to 85
TI

DS92LV2411SQE

IC LINE DRIVER, QCC48, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-48, Line Driver or Receiver
NSC

DS92LV2411SQE/NOPB

5MHz 至 50MHz 24 位 Channel Link II 串行器 | RHS | 48 | -40 to 85
TI

DS92LV2411SQNOPB

IC LINE DRIVER, QCC48, 7 X 7 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, LLP-48, Line Driver or Receiver
NSC

DS92LV2411SQX

5-50MHz 24-Bit Channel Link II Serializer and Deserializer
NSC

DS92LV2411SQX/NOPB

5MHz 至 50MHz 24 位 Channel Link II 串行器 | RHS | 48 | -40 to 85
TI

DS92LV2412

5-50MHz 24-Bit Channel Link II Serializer and Deserializer
NSC

DS92LV2412

5MHz 至 50MHz 24 位 Channel Link II 解串器
TI

DS92LV2412SQ

5-50MHz 24-Bit Channel Link II Serializer and Deserializer
NSC

DS92LV2412SQ/NOPB

5MHz 至 50MHz 24 位 Channel Link II 解串器 | NKB | 60 | -40 to 85
TI

DS92LV2412SQE

IC LINE RECEIVER, QCC60, 9 X 9 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-60, Line Driver or Receiver
NSC