DS92LV8028TUF/NOPB [TI]

8 通道 10:1 串行器 | NZH | 196 | -40 to 85;
DS92LV8028TUF/NOPB
型号: DS92LV8028TUF/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8 通道 10:1 串行器 | NZH | 196 | -40 to 85

驱动 接口集成电路 驱动器
文件: 总22页 (文件大小:723K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
DS92LV8028 8 Channel 10:1 Serializer  
Check for Samples: DS92LV8028  
1
FEATURES  
DESCRIPTION  
The DS92LV8028 integrates eight serializer devices  
2
All 8 Channels Synchronous to One Parallel  
Clock Rate, from 25 to 66 MHz  
into single chip. The DS92LV8028 can  
a
simultaneously serialize up to eight 10-bit data  
streams. The 10-bit parallel inputs are LVTTL signal  
levels. The serialized outputs are LVDS signals with  
extra drive current for point-to-point and lightly loaded  
multidrop applications. Each serializer block in the  
DS92LV8028 operates independently by using  
strobes from a single shared PLL.  
Duplicates Function of Multiple DS92LV1021  
and '1023 10-bit Serializer Devices  
Serializes from One to Eight 10-bit Parallel  
Inputs into Data Streams with Embedded  
Clock  
Eight 5 mA Modified Bus LVDS Outputs that  
are Capable to Drive Double Terminations  
The DS92LV8028 uses a single +3.3V power supply  
with a typical power dissipation of 740mW (3.3V /  
PRBS / 66 MHz). Each serializer channel has a  
unique power down control to further conserve power  
consumption.  
@Speed Test - PRBS Generation to Check  
LVDS Transmission Path to SCAN921224 or  
SCAN921260  
On Chip Filtering for PLL  
For high-speed LVDS serial data transmission, line  
quality is essential, thus the DS92LV8028 includes an  
@SPEED TEST function. Each Serializer channel  
has the ability internally generated a PRBS data  
pattern. This pattern is received by specific  
deserializers (SCAN921224) which have the  
740mW Typ Power Dissipation (Loaded, PRBS,  
66MHz, 3.3V)  
High Impedance Inputs and Outputs on Power  
Off  
Single Power Supply at +3.3V (+/-10%)  
196-Pin NFBGA Package  
complement  
PRBS  
verification  
circuit.  
The  
deserializer checks the data pattern for bit errors and  
reports any errors on the test verification pins on the  
deserializer.  
JTAG Pins Reserved for Next Version of  
Device  
Industrial Temperature Range Operation: -40  
to +85 °C  
For additional information  
Applications Information section in this datasheet.  
-
please see the  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2001–2013, Texas Instruments Incorporated  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
Block Diagram  
2
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
(1)(2)  
Absolute Maximum Ratings  
Supply Voltage (VCC  
)
0.3V to +4V  
0.3V to (VCC +0.3V)  
0.3V to +3.9V  
10ms  
LVCMOS/LVTTL Input Voltage  
Bus LVDS Driver Output Voltage  
Bus LVDS Output Short Circuit Duration  
θJA 196 NFBGA:  
θJC 196 NFBGA:  
34°C/W  
Package Thermal Resistance  
Storage Temperature  
Junction Temperature  
Lead Temperature  
8°C/W  
65°C to +150°C  
+125°C  
(Soldering, 10 seconds)  
Transistor Count:  
+225°C  
ESD Rating (HBM)  
±3.0kV  
Reliability Information  
37.5k  
(1) “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be specified. They are not meant to imply  
that the devices should be operated at these limits. The table of “Electrical Characteristics” specifies conditions of device operation.  
(2) If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications.  
Recommended Operating Conditions  
Min  
3.0  
40  
25  
Typ  
3.3  
Max  
3.6  
Units  
V
Supply Voltage (VCC  
)
Operating Free Air Temperature (TA)  
Clock Rate  
+25  
+85  
66  
°C  
MHz  
Electrical Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2)  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
LVCMOS/LVTTL DC Specifications  
VIH  
VIL  
VCL  
IIN  
High Level Input Voltage  
Low Level Input Voltage  
Input Clamp Voltage  
Input Current  
2.0  
VCC  
0.8  
V
V
DINn[0-9], TCLK,  
MS_PWDN, PWDNn,  
SYNCn, DEN,  
GND  
ICL = 18 mA  
0.87  
+/1  
1.5  
+10  
V
BIST_ACT,  
(3)  
BIST_SEL<0:3>  
VIN = 0V or 3.6V  
10  
μA  
Bus LVDS DC Specifications  
Over recommended operating supply and temperature unless otherwise specified.  
(1) Typical values are given for VCC = 3.3V and TA = +25°C.  
(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground  
except VOD, and ΔVOD which are differential voltages.  
(3) BIST_SEL pins are pull-up internally.  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
Electrical Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2)  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
Output Differential Voltage (DO+)  
- (DO-)  
VOD  
350  
500  
550  
35  
mV  
Output Differential Voltage  
Unbalance  
RL = 100, CL = 10pF  
ΔVOD  
3
mV  
to GND  
VOS  
Offset Voltage  
1.1  
1.2  
2
1.3  
35  
V
ΔVOS  
Offset Voltage Unbalance  
mV  
DO = 0V, Din = H,  
MS_PWDN and DEN =  
2.4V  
DOn+, DOn-  
IOS  
Output Short Circuit Current  
50  
-90  
mA  
MS_PWDN or DEN =  
0.8V, DO = 0V OR  
VDD  
IOZ  
Tri-State Output Current  
Power-Off Output Current  
-10  
-10  
+/-1  
10  
10  
µA  
µA  
VDD = 0V, DO = 0V or  
3.6V  
IOX  
+/1  
SER/DES SUPPLY CURRENT (apply to pins DVDD, PVDD and AVDD)  
Over recommended operating supply and temperature ranges unless otherwise specified.  
f = 25MHz  
f = 66MHz  
f = 25 MHz  
f = 66 MHz  
145  
175  
148  
263  
mA  
mA  
mA  
mA  
Supply Current  
(SYNC pattern)  
VCC = 3.6V,  
RL = 100 Ω  
ICCD  
166  
350  
Worst Case Supply Current  
(Checker-board pattern)  
VCC = 3.6V,  
RL = 100 Ω Figure 1  
ICCXD  
(Master)  
MS_PWDN = 0.1V,  
DEN = 0V  
Supply Current Powered Down  
22  
200  
μA  
MS_PWDN = 3V,  
PWDNn = 0V  
66 MHz  
25 MHz  
6
mA  
mA  
ICCXD  
(Ind. Ch)  
Worst Cast Power Saving Per  
Channel Disabled  
3.6  
4
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
 
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
Serializer Timing Requirements for TCLK  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2)  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
tTCP  
Transmit Clock Period  
15.15  
40  
ns  
Transmit Clock High  
Time  
tTCIH  
tTCIL  
tCLKT  
tJIT  
40  
40  
50  
50  
3
60  
60  
%
%
Transmit Clock Low  
Time  
See Figure 3  
TCLK  
TCLK Input Transition  
Time  
6
ns  
TCLK Input Jitter  
80  
psrms  
(1) Typical values are given for VCC = 3.3V and TA = +25°C.  
(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground  
except VOD, and ΔVOD which are differential voltages.  
Serializer Switching Characteristics  
Over recommended operating supply and temperature ranges unless otherwise specified.(1)  
(2)  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
Bus LVDS Low-to-High  
Transition Time  
tLLHT  
198  
236  
400  
ps  
RL = 100Ω  
CL=10pF to GND  
Figure 2  
(3)  
DOn+, DOn-  
Bus LVDS High-to-Low  
Transition Time  
tLHLT  
tDIS  
115  
1.5  
1.5  
232  
400  
ps  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DIN (0-9) Setup to  
TCLK  
RL = 100,  
CL=10pF to GND  
Figure 4  
DINn(0-9), TCLK  
DIN (0-9) Hold from  
TCLK  
tDIH  
DO ± HIGH to  
TRI-STATE Delay  
tHZD  
tLZD  
tZHD  
tZLD  
tSPD  
tPLD  
5.7  
6.9  
6.2  
5.8  
12  
12  
DO ± LOW to TRI-  
STATE Delay  
RL = 100,  
CL=10pF to GND  
Figure 5  
DOn+, DOn-, DEN  
DO ± TRI-STATE to  
HIGH Delay  
12  
DO ± TRI-STATE to  
LOW Delay  
12  
SYNC Pattern Delay,  
Figure 8  
4*tTCP  
5*tTCP  
513*tTCP  
TCLK, SYNCn,  
DOn+, DOn-,  
MS_PWDN  
RL = 100Ω  
CL=10pF to GND  
Serializer PLL Lock  
Time, Figure 6  
510*tTCP  
RL = 100Ω  
CL=10pF to GND  
Figure 7  
DINn(0-9), TCLK,  
DOn+, DOn-  
tSD  
Serializer Delay  
tTCP + 3.2  
tTCP + 3.5  
63*tTCP  
tTCP + 6  
ns  
Individual Channel  
Power up Time  
TCLK, DOn+, DOn-,  
PWDNn  
tICR  
tMCR  
tSTE  
tSTD  
60*tTCP  
70*tTCP  
ns  
ns  
ns  
ns  
RL = 100,  
CL=10pF to GND  
TCLK, DOn+, DOn-,  
MS_PWDN Figure 6  
Master Power up Time  
510*tTCP  
513*tTCP  
@Speed Test Enable  
Time  
RL = 100Ω  
RL = 100Ω  
10*tTCP  
7*tTCP  
BIST_ACT,  
BIST_SEL (0:3),  
TCLK, DOn+, DOn-  
@Speed Test Disable  
Time  
25 MHz  
66 MHz  
130  
80  
ps  
ps  
Channel to Channel  
Skew  
RL = 100,  
CL=10pF to GND  
tSKEW  
(1) Typical values are given for VCC = 3.3V and TA = +25°C.  
(2) Current into device pins is defined as positive. Current out of device pins is defined as negative. Voltages are referenced to ground  
except VOD, and ΔVOD which are differential voltages.  
(3) tLLHT, tLHLT, tDJIT and tRJIT specifications are ensured by design using statistical analysis.  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
Serializer Switching Characteristics (continued)  
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2)  
Symbol  
Parameter  
Conditions  
Pin/Freq.  
Min  
Typ  
Max  
Units  
RL = 100,  
25MHz  
18.4  
20.7  
ps  
(3)  
(3)  
tRJIT  
Random Jitter  
CL=10pF to GND  
(4)  
66MHz  
25MHz  
66MHz  
7.5  
45  
92  
8.8  
40  
ps  
ps  
ps  
RL = 100,  
130  
190  
Deterministic Jitter,  
Figure 9  
tDJIT  
CL=10pF to GND  
(5)  
40  
(4) tRJIT specification is the rms jitter measurement of the serializer output when the device is transmitting SYNC pattern.  
(5) tDJIT specification is measured with the serializer output transmitting PRBS pattern from the internal BIST mode. It is a measurement of  
the center distribution of 0V (differential) crossing in comparsion with the ideal bit position. See Figure 9  
AC Timing Diagrams and Test Circuits  
Figure 1. ’Worst Case Icc Test Pattern  
Figure 2. Serializer Bus LVDS Output Load and Transition Times  
Figure 3. Serializer Input Clock Transition Time  
6
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
 
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
Figure 4. Serializer Setup/Hold Times  
Figure 5. Serializer Input Clock Transition Time TRI-STATE Test Circuit and Timing  
Figure 6. Serializer PLL lock Time and MS_PWDN TRI-STATE Delays  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
Figure 7. Serializer Delay  
Figure 8. SYNC Timing Delays  
Figure 9. Deterministic Jitter and Ideal Bit Position  
8
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
Figure 10. Icc vs Freq  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
FUNCTIONAL DESCRIPTION  
The DS92LV8028 combines eight 10:1 serializers into a single chip. Each of the eight serializers accepts 10 or  
less data bits. The serializers then multiplex the data into a serial stream with embedded clock bits and route to  
the LVDS output. The LVDS output is a 5 mA current loop driver. It provides enough drive for point-to-point and  
lightly loaded multidrop applications. The serialized data stream is compatible with the DS92LV1210,  
DS92LV1212A, DS92LV1224, DS92LV1260 10-bit deserializers from TI.  
Each of the eight channels on the DS92LV8028 has their own serializer function but share a single PLL. There is  
a single Transmit Clock (TCLK) for all eight channels. The data on all eight 10-bit interfaces is latched into the  
device with the rising edge of TCLK. Each of the serialized data streams is independent of the others and  
includes the embedded clock information. The skew between the serializer outputs is minimal.  
There is a master power-down signal (MS_PWDN) to put the entire device into a low power consumption state.  
In addition, there is a power-down control signal for each of the eight channels. This allows the device to  
efficiently operate as one to eight 10-bit serializers.  
The @SPEED TEST signal initiates the sending of a random data pattern over the LVDS links. This allows for  
testing the links for bit error rates at the frequency they will be carrying data. In addition, the JTAG boundary  
scan circuits will be added to the device at a later date. The JTAG signal pins are reserved on this version. See  
package connection diagram.  
The DS92LV8028 has four operating modes. They are the Initialization, Data Transfer, Resynchronization,  
@SPEED TEST states. In addition, there are two passive states: Power-down and TRI-STATE.  
The following sections describe each operating mode and passive state.  
Initialization  
Before the '8028 serializes and transmits data, it and the receiving deserializer device(s) must initialize the link.  
Initialization refers to synchronizing the Serializer's and the Deserializer's PLLs to local clocks. The local clocks  
should be the same frequency, or within the specified range if from different sources. After all devices  
synchronize to local clocks, the Deserializers synchronize to the Serializers as the second and final initialization  
step.  
Step 1: After applying power to the serializer, the outputs are held in TRI-STATE and the on-chip power-  
sequencing circuitry disables the internal circuits. When Vcc reaches VccOK (2.1V), the PLL in the serializer  
begins locking to the local clock (TCLK). A local on-board data source or other source provides the specified  
clock input to the TCLK pin.  
After locking to TCLK, the serializer is now ready to send data or SYNC patterns, depending on the level of the  
SYNC input or a data stream at the data inputs. The SYNC pattern sent by the serializer consists of six ones and  
six zeros switching at the input clock rate.  
Step 2: The Deserializer PLL must synchronize to the Serializer to complete the initialization. (Refer to the  
deserializer data sheet for operation details during this step of the Initialization State.) The Deserializer identifies  
the rising clock edge in a synchronization pattern or non-repetitive data pattern. Depending on the data pattern  
that it is being transmitted, the Deserializer will synchronize to the data stream from the Serializer after some  
delay. At the point where the Deserializer's PLL locks to the embedded clock, the LOCK pin goes low and valid  
data appears on the output.  
The user's application determines control of the SYNC signal input. One recommendation is a direct feedback  
loop from the LOCK pin on the deserializer. The serializer stops sending SYNC patterns when the SYNC input  
returns to a low state.  
Data Transfer  
After initialization, the serializer accepts data from the inputs DINn0 to DINn9. The serializer uses the rising edge  
of the TCLK input to latch incoming data. If the SYNCn input is high for 4 TCLK cycles, the data on DINn0-DINn9  
is ignored and SYNC pulses are transferred.  
The serial data stream includes a start bit and stop bit appended by the serializer, which frame the ten data bits.  
The start bit is always high and the stop bit is always low. The start and stop bits also function as clock bits  
embedded in the serial stream.  
10  
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
 
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
The Serializer transmits the data and clock bits (10+2 bits) at 12 times the TCLK frequency. For example, if  
TCLK is 40 MHz, the serial rate is 40 X 12 = 480 Mbps. Since only 10 bits are from input data, the serial  
'payload' rate is 10 times the TCLK frequency. For instance, if TCLK = 40 MHz, the payload data rate is 40 X 10  
= 400 Mbps. TCLK is provided by the data source and must be in the range 25 MHz to 66 MHz nominal.  
The serializer outputs (DO0± – DO7±) can drive a point-to-point connection or lightly loaded multidrop  
connections. The outputs transmit data when the driver enable pin (DEN) is high, MS_PWDN and PWDNn are  
high, and SYNCn is low. When DEN is driven low, all the serializer output pins will enter TRI-STATE.  
When any one of eight attached Deserializer channels synchronizes to the input from the Serializer, it drives its  
LOCK pin low and synchronously delivers valid data on the output. The Deserializer locks to the embedded  
clock, uses it to generate multiple internal data strobes, and drives the embedded clock on the RCLK pin. The  
RCLK is synchronous to the data on the ROUT pins. While LOCK is low, data on ROUT is valid. Otherwise,  
ROUT is invalid.  
Resynchronization  
Whenever one of the connected DS92LV1212, '1212A, '1224, or '1260 deserializers loses lock, it will  
automatically try to resynchronize to the data stream from the serializer. If the data stream is not a repetitive  
pattern, then the deserializer will automatically lock.  
For example, if the deserializer's received embedded clock edge is not detected two times in succession, the  
PLL loses lock and the LOCK pin is driven high. The '1212, '1212A, '1224, or '1260 deserializers will  
automatically begin searching for the embedded clock edge. If it is a random data pattern, the deserializer will  
lock to that stream. If the data pattern is repetitive, the deserializer’s PLL will not lock in order to prevent the  
deserializer to lock to the data pattern rather than the clock. We refer to such patterns as repetitive-multiple-  
transition, RMT.  
Therefore, if the data stream is not random data or the deserializer is the DS92LV1210, there needs to be a  
feedback path from the deserializer to the serializer. This feedback path can be as simple as connecting the  
deserializer's LOCK pin to the serializer's SYNC pin. This will automatically signal the serializers to send SYNC  
patterns whenever the deserializer loses lock.  
The user has the choice of allowing the deserializer to resynchronize to the data stream, or to force  
synchronization by pulsing the Serializer SYNC pin. This scheme is left up to the user discretion.  
Power-down  
The Power-down state is a low power sleep mode that the Serializer and Deserializer typically occupy while  
waiting for initialization, or to reduce power when there are no pending data transfers. The DS92LV8028  
serializers enter Power-down when MS_PWDN is driven low. In Power-down, the PLL stops and the outputs go  
into TRI-STATE. To exit Power-down, the system drives MS_PWDN high.  
Each of the serializers in the '8028 also has an individual power down, PWDNn control pin. This control enables  
the deactivation of individual serializers while allowing others to operate normally. The benefit is that spare  
serializers can be allocated for backup operation, but not consuming power until employed for data transfers.  
Upon exiting Power-down, the Serializer enters the Initialization state. The system must then allow time to  
initialize before data transfer can begin.  
TRI-STATE  
When the system drives DEN pin low, the serializer outputs enter TRI-STATE. This will TRI-STATE the output  
pins (DO0± to DO7±). When the system drives DEN high, the serializers will return to the previous state as long  
as all other control pins remain static (PWDNn, TCLK, SYNCn, and DINn[0:9]).  
@SPEED Test Feature  
Since the high-speed LVDS serial data transmission line quality is essential to the chipset operation, a means of  
checking this signal integrity is built into the DS92LV8028 serializer. Each Serializer channel has the ability to  
transfer an internally generated PRBS data pattern. This pattern traverses the transmission line to the  
deserializer. Specific deserializers (SCAN921224 for example) have the complement PRBS pattern verification  
circuit. The deserializer checks the data pattern for bit errors and reports any errors on the test verification pins  
on the deserializer.  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
The @SPEED feature uses 5 signal pins. The BIST_SEL[0:3] and BIST_ACT pins together determine the  
functions of the BIST mode. The BIST_ACT signal activates the test feature. The BIST_SEL[0:2] select 1 of 8  
channels as the output for the BIST pattern. All channels perform BIST when BIST_ACT = H and  
BIST_SEL[0:3]=08H.  
The JTAG pins are reserved on this version of the serializer. They will be JTAG compliant functionality on the  
next version. The @SPEED test will also be available through a JTAG command when available.  
Truth Table (BIST mode)  
No BIST function performed when BIST_SEL (0:3) are set from 9H to FH even when BIST_ACT is set at HIGH. See  
(1)  
BIST_ACT  
BIST_SEL <3>  
BIST_SEL <2>  
BIST_SEL <1>  
BIST_SEL <0>  
MODE  
H
H
H
H
H
H
H
H
L
L
L
L
L
L
L
L
L
L
L
L
L
H
L
BIST on channel 0  
BIST on channel 1  
BIST on channel 2  
BIST on channel 3  
BIST on channel 4  
BIST on channel 5  
BIST on channel 6  
BIST on channel 7  
L
H
H
L
L
H
L
H
H
H
H
L
H
L
H
H
H
BIST on ALL  
CHANNELS  
H
H
L
L
L
L
L
X
H
X
H
X
H
X
H
NO BIST  
Default - NO BIST  
(1) BIST_SEL pins are pull-up internally.  
12  
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
 
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
Functional Block Diagram  
Figure 11. DS92LV8028 Functional Block Diagram  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
APPLICATION INFORMATION  
USING THE DS92LV8028  
The DS92LV8028 is an easy to use serializer that combines eight 10:1 serializers into a single chip with a  
maximum payload of 5.28Gbps. Each of the eight serializers accepts 10 or less data bits. The serializers then  
multiplex the data into a serial data stream with embedded clock bits and route to the LVDS output at up to  
660Mbps per channels. The LVDS output is a 5 ma current loop driver that can be used for point-to-point and  
lightly loaded multidrop applications. Each of the eight channels has their own serializer function but share a  
single Transmit Clock (TCLK) with a single PLL for the entire chip. The data on all eight channels is latched into  
the device with the rising edge of TCLK and the data stream is compatible with the DS92LV1210,  
DS92LV1212A, DS92LV1224, DS92LV1260 deserializers from TI.  
If using less than 10 bits of data, it is recommended to tie off adjacent bits to the embedded clock bits to prevent  
causing a RMT in the data payload. For example, if only using 8 bits, tie D0 High and D9 Low.  
Power Considerations  
All CMOS design of the Serializer and Deserializer makes them inherently low power devices. Additionally, the  
constant current source nature of the LVDS outputs minimize the slope of the speed vs. ICC curve of CMOS  
designs.  
PCB LAYOUT AND POWER SYSTEM CONSIDERATIONS  
Circuit board layout and stack-up for the BLVDS devices should be designed to provide low-noise power feed to  
the device. Good layout practice will also separate high-frequency or high-level inputs and outputs to minimize  
unwanted stray noise pickup, feedback and interference. Power system performance may be greatly improved by  
using thin dielectrics (2 to 4 mils) for power / ground sandwiches. This arrangement provides plane capacitance  
for the PCB power system with low-inductance parasitic, especially proven effective at high frequencies above  
approximately 50MHz, and makes the value and placement of external bypass capacitors less critical. External  
bypass capacitors should include both RF ceramic and tantalum electrolytic types. RF capacitors may use values  
in the range of 0.01 uF to 0.1 uF. Tantalum capacitors may be in the 2.2 uF to 10 uF range. Voltage rating of the  
tantalum capacitors should be at least 5X the power supply voltage being used.  
It is a recommended practice to use two vias at each power pin as well as at all RF bypass capacitor terminals.  
Dual vias reduce the interconnect inductance by up to half, thereby reducing interconnect inductance and  
extending the effective frequency range of the bypass components. Locate RF capacitors as close as possible to  
the supply pins, and use wide low impedance traces (not 50 Ohm traces). Surface mount capacitors are  
recommended due to their smaller parasitics. When using multiple capacitors per supply pin, locate the smaller  
value closer to the pin. A large bulk capacitor is recommend at the point of power entry. This is typically in the  
50uF to 100uF range and will smooth low frequency switching noise. It is recommended to connect power and  
ground pins straight to the power and ground plane, with the bypass capacitors connected to the plane with via  
on both ends of the capacitor. Connecting a power or ground pin to an external bypass capacitor will increase  
the inductance of the path.  
A small body size X7R chip capacitor, such as 0603, is recommended for external bypass. Its small body size  
reduces the parasitic inductance of the capacitor. User must pay attention to the resonance frequency of these  
external bypass capacitors, usually in the range of 20-30MHz range. To provide effective bypassing, very often,  
multiple capacitors are used to achieve low impedance between the supply rails over the frequency of interest. At  
high frequency, it is also a common practice to use two via from power and ground pins to the planes, reducing  
the impedance at high frequency.  
Some devices provide separate power and ground pins for different portions of the circuit. This is done to isolate  
switching noise effects between different sections of the circuit. Separate planes on the PCB are typically not  
required. Pin Description tables typically provide guidance on which circuit blocks are connected to which power  
pin pairs. In some cases, an external filter many be used to provide clean power to sensitive circuits such as  
PLLs.  
Use at least a four layer board with a power and ground plane. Locate CMOS (TTL) swings away from the LVDS  
lines to prevent coupling from the CMOS lines to the LVDS lines. Closely-coupled differential lines of 100 Ohms  
are typically recommended for LVDS interconnect. The closely-coupled lines help to ensure that coupled noise  
will appear as common-mode and thus is rejected by the receivers. Also the tight coupled lines will radiate less.  
14  
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
TRANSMISSION MEDIA  
The DS92LV8028 Serializers can be used in point-to-point configuration of a backplane across PCB traces or  
through cable interconnect. In point-to-point configurations the transmission media needs only to be terminated at  
the receiver end. The DS92LV8028 may also be used with double terminations for a total load or 50 Ohms for  
use in certain limited multidrop applications. Termination impedances lower than 50 Ohms is not recommended.  
TERMINATION  
Termination of the LVDS interconnect is required. For point-to-point applications termination should be located at  
the load end. Nominal value is 100 Ohms to match the line's differential impedance. Place the resistor as close  
to the receiver inputs as possible to minimize the resulting stub between the termination resistor and receiver.  
Additional general guidance can be found in the LVDS Owner's Manual - available in PDF format from the TI  
web site at SNLA187  
DS92LV8028 BLVDS SERIALIZER BYPASS RECOMMENDATIONS  
General device specific guidance is given below. Exact guidance can not be given as it is dictated by other board  
level /system level criteria. This includes the density of the board, power rails, power supply, and other integrated  
circuit power supply needs.  
For a typical application circuit, please see Figure 12.  
DVDD = DIGITAL SECTION POWER SUPPLY  
These pins supply the digital portion of the device. A 0.1uF capacitor is sufficient for these pins.  
PVDD = PLL SECTION POWER SUPPLY  
The PVDD pin supplies the PLL circuit. The PLL(s) require clean power for the minimization of Jitter. A supply  
noise frequency in the 300kHZ to 1MHz range can cause increased output jitter. Certain power supplies may  
have switching frequencies or high harmonic content in this range. If this is the case, filtering of this noise  
spectrum may be required. A notch filter response is best to provide a stable VDD, suppression of the noise  
band, and good high-frequency response (clock fundamental). This may be accomplished with a pie filter (CRC  
or CLC). The pie filter should be located close to the PVDD power pin. Separate power planes for the PVDD pins  
is typically not required.  
AVDD = LVDS SECTION POWER SUPPLY  
The AVDD pin supplies the LVDS portion of the circuit. The DS92LV8028 has nine AVDD pins. Due to the nature  
of the design, current draw is not excessive on these pins. A 0.1uF capacitor is sufficient for these pins. If space  
is available, a 0.01uF may be used in parallel with the 0.1uF capacitor for additional high frequency filtering.  
GROUNDs  
The AGND pin should be connected to the signal common in the cable for the return path of any common-mode  
current. Most of the LVDS current will be odd-mode and return within the interconnect pair. A small amount of  
current may be even-mode due to coupled noise, and driver imbalances. This current should return via a low  
impedance known path.  
A solid ground plane is recommended for DVDD, PVDD and AVDD. Using a split plane may have a potential  
problem of ground loops, or difference in ground potential at various ground pins of the device.  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
APPLICATION DIAGRAM  
Figure 12. Typical Application Circuit  
16  
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
Pin Diagram  
Figure 13. Top View of DS92LV8028 (196-pin NFBGA)  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: DS92LV8028  
DS92LV8028  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
www.ti.com  
Table 1. Pin Descriptions  
Pin Number  
Name  
Type  
Description  
C7, C9, C10, D6, D7, D9, E5, E7,  
G7  
AGND  
Analog ground.  
C6, C8, C11, D5, D8, D10, E6,  
E8, F7  
AVDD  
Analog power supply.  
3.3 V  
CMOS  
I
BIST Active. Control pin for BIST mode enable.When BIST_ACT = H  
and BIST_SEL (0:3) = 0H to 8H, device will go to BIST mode  
accordingly. See Truth Table (BIST mode) Default at Low  
B12  
A13, B13, D11, E11  
M14  
BIST_ACT  
3.3 V  
CMOS  
I
BIST_SEL  
(0:3)  
BIST select. Control pins for which serializer is set for BIST mode.  
See Truth Table (BIST mode) (1) Default at VDD  
3.3 V  
CMOS  
I
Serializer output data enable. Enable data output DOUTn (0:9). n =  
serializer number. When driven low, puts the Bus LVDS outputs in  
TRI-STATE. Default at Low.  
DEN  
A2, A3, A12, B2, B3, C2, C4,  
D12, E1, E2, E9, E10, E12, E13,  
E14, F6, F10, H10, K6, K10,  
M13, P1  
DGND  
Digital Ground.  
E3, E4, F1, F2, F3, F4, F11, F12,  
G1, G2, G3, G4, G11, G12, G14,  
H1, H2, H3, H4, H11, H12, H13,  
H14, J1, J2, J3, J4, J11, J12,  
J13, J14, K1, K2, K3, K4, K11,  
K12, K13, K14, L3, L4, L5, L6,  
L7, L8, L9, L10, L11, L12, L13,  
L14, M3, M4, M5, M6, M7, M8,  
M9, M10, M11, N3, N4, N5, N6,  
N7, N8, N9, N10, N11, P2, P3,  
P4, P5, P6, P7, P8, P9, P10 P11,  
P12  
3.3 V  
CMOS  
I
Data input. Inputs for the ten bit serializers. n = serializer number, x =  
bit number. Default at Low.  
DINnx  
B11-A11, B10-A10, B9-A9, B8-  
A8, B7-A7, A6-B6, A5-B5, A4-B4  
Bus LVDS  
O
Doutn±  
DVDD  
Bus LVDS differential outputs. n = serializer number.  
Digital power supply.  
A1, B1, C3, C5, D4, D13, D14,  
F5, F8, F9, F13, G6, G10, G13,  
H7,  
3.3 V  
CMOS  
I
Master Powerdown. MS_PWDN driven low shuts down the PLL and  
TRI-STATE all outputs, putting the device into a low power ’sleep’  
mode. Default at Low.  
N14  
MS_PWDN  
NC (1:12)  
G5, G8, G9, H5, H6, H8, H9, J5,  
J6, J7, J9, J10  
No connect.  
C1, D1  
D2, D3  
PGND  
PVDD  
PLL ground.  
PLL power supply.  
3.3 V  
CMOS  
I
N1, N2, N13, M1, M2, M12, P13,  
P14  
Individual Powerdown. PWDN (0:7) driven low puts individual  
serializer into TRI-STATE, low power ’sleep’ mode. Default at Low.  
PWDN (0:7)  
SYNC pattern enable. When driven high for a mininum of 4 cycles,  
SYNC patterns will be transmitted on the Bus LVDS serial output. The  
SYNC pattern sent by the serializer consists of six ones and six zeros  
switching at the input clock rate. SYNC pattern continues to be sent if  
SYNC continues at high. Default at Low. See Functional Description.  
3.3 V  
CMOS  
I
J8, K5, K7, K8, K9, L1, L2, N12  
SYNC (0:7)  
C13  
B14  
C14  
A14  
C12  
TCK  
TDI  
JTAG pin. Reserved for future use. Leave this pin floating.  
JTAG pin. Reserved for future use. Leave this pin floating.  
JTAG pin. Reserved for future use. Leave this pin floating.  
JTAG pin. Reserved for future use. Leave this pin floating.  
JTAG pin. Reserved for future use. Leave this pin floating.  
TDO  
TMS  
TRSTN  
3.3 V  
CMOS  
I
F14  
TCLK  
Transmit Clock. Input for 25MHz - 66 MHz (nominal) system clock.  
(1) BIST_SEL pins are pull-up internally.  
18  
Submit Documentation Feedback  
Copyright © 2001–2013, Texas Instruments Incorporated  
Product Folder Links: DS92LV8028  
 
DS92LV8028  
www.ti.com  
SNLS152I NOVEMBER 2001REVISED APRIL 2013  
REVISION HISTORY  
Changes from Revision H (April 2013) to Revision I  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 18  
Copyright © 2001–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: DS92LV8028  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DS92LV8028TUF/NOPB  
ACTIVE  
NFBGA  
NZH  
196  
119  
RoHS & Green  
SNAGCU  
Level-3-260C-168 HR  
-40 to 85  
DS92LV8028T  
UF  
>B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
NZH0196A  
UJB196A (Rev C)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

DS92LX1621

10 - 50 MHz Channel Link III Serializer and Deserializer with Embedded Bi-Directional Control Channel
NSC

DS92LX1621

DS92LX1621/DS92LX1622 10 - 50 MHz DC-Balanced Channel Link III Serializer
TI

DS92LX1621SQ

DS92LX1621/DS92LX1622 10 - 50 MHz DC-Balanced Channel Link III Serializer
TI

DS92LX1621SQ/NOPB

具有双向控制通道的 10MHz 至 50MHz 直流平衡 Channel Link III 串行器 | RTV | 32 | -40 to 85
TI

DS92LX1621SQ/NOPB

IC LINE TRANSCEIVER, QCC32, 5 X 5 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-32, Line Driver or Receiver
NSC

DS92LX1621SQE

DS92LX1621/DS92LX1622 10 - 50 MHz DC-Balanced Channel Link III Serializer
TI

DS92LX1621SQE/NOPB

具有双向控制通道的 10MHz 至 50MHz 直流平衡 Channel Link III 串行器 | RTV | 32 | -40 to 85
TI

DS92LX1621SQE/NOPB

LINE TRANSCEIVER, QCC32, 5 X 5 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-32
ROCHESTER

DS92LX1621SQE/NOPB

IC LINE TRANSCEIVER, QCC32, 5 X 5 MM, 0.80 MM HEIGHT, 0.50 MM PITCH, LLP-32, Line Driver or Receiver
NSC

DS92LX1621SQX

DS92LX1621/DS92LX1622 10 - 50 MHz DC-Balanced Channel Link III Serializer
TI

DS92LX1621SQX/NOPB

具有双向控制通道的 10MHz 至 50MHz 直流平衡 Channel Link III 串行器 | RTV | 32 | -40 to 85
TI

DS92LX1621_14

10 - 50 MHz DC-Balanced Channel Link III Serializer and Deserializer with Bi-Directional Control Channel
TI