DSLVDS1048PWR [TI]

3.3V LVDS 四通道高速差动线路接收器 | PW | 16 | -40 to 85;
DSLVDS1048PWR
型号: DSLVDS1048PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3V LVDS 四通道高速差动线路接收器 | PW | 16 | -40 to 85

文件: 总25页 (文件大小:1072K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
DSLVDS1048 3.3V LVDS 四通道高速差动线路接收器  
1 特性  
EN EN* 输入将接受 AND 运算并控制 TRI-STATE  
1
输出。这些使能端由四个接收器共用。DSLVDS1048  
和配套的 LVDS 线路驱动器(例如 DSLVDS1047)为  
高速点对点接口应用提供了大功率 PECL/ECL 器件的  
替代 产品。  
旨在用于信号速率高达 400Mbps 的应用  
直通引脚排列可简化 PCB 布局  
150ps 通道到通道偏斜(典型值)  
100ps 差动偏斜(典型值)  
2.7ns 最大传播延迟  
器件信息(1)  
3.3V 电源设计  
器件型号  
封装  
封装尺寸(标称值)  
在断电模式下,LVDS 输入端具有高阻抗  
低功耗设计(3.3V 静态条件下为 40mW)  
能够与现有 5V LVDS 驱动器交互操作  
接受小摆幅(350mV 典型值)差动信号电平  
支持输入失效防护  
DSLVDS1048  
TSSOP (16)  
5.00mm × 4.40mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
1. 703A I2C  
DSLVDS1048  
开路、短路及终止失效防护  
DSLVDS1047  
0V 100mV 阈值区域  
RIN1+  
RIN1-  
DOUT1+  
DOUT1-  
工作温度范围:-40°C +85°C  
符合或超出 ANSI/TIA/EIA-644 标准  
可采用 TSSOP 封装  
DIN1  
DIN2  
DIN3  
Driver  
Driver  
Driver  
Receiver  
Receiver  
Receiver  
ROUT1  
2 应用  
DOUT2+  
DOUT2-  
RIN2+  
RIN2-  
ROUT2  
多功能打印机  
板对板通信  
测试和测量  
打印机  
DOUT3+  
DOUT3-  
RIN3+  
RIN3-  
数据中心互连  
实验室仪表  
超声波扫描仪  
ROUT3  
3 说明  
DOUT4+  
DOUT4-  
RIN4+  
RIN4-  
DIN4  
ROUT4  
Driver  
Receiver  
DSLVDS1048 器件是一款四路 CMOS 直通差动线路  
接收器,专为需要超低功耗和高数据速率的 应用 而设  
计。该器件旨在使用低电压差动信号 (LVDS) 技术支持  
超过 400Mbps (200MHz) 的数据速率。  
EN  
EN  
EN*  
EN*  
DSLVDS1048 接受低电压(350mV 典型值)差动输入  
信号,并将其转换为 3V CMOS 输出电平。该接收器  
支持 TRI-STATE 功能,可用于对输出进行多路复用。  
该接收器还支持开路、短路及终止 (100Ω) 输入失效防  
护。该接收器的输出在所有失效防护条件下均为高电  
平。DSLVDS1048 采用了直通引脚排列,可简化 PCB  
布局。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SNLS624  
 
 
 
 
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
9.1 Application Information............................................ 12  
9.2 Typical Application ................................................. 12  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Switching Characteristics.......................................... 5  
6.7 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
9
10 Power Supply Recommendations ..................... 14  
11 Layout................................................................... 14  
11.1 Layout Guidelines ................................................. 14  
11.2 Layout Example .................................................... 15  
12 器件和文档支持 ..................................................... 16  
12.1 接收文档更新通知 ................................................. 16  
12.2 社区资源................................................................ 16  
12.3 ....................................................................... 16  
12.4 静电放电警告......................................................... 16  
12.5 术语表 ................................................................... 16  
13 机械、封装和可订购信息....................................... 17  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2018 9 月  
*
最初发布版本。  
2
Copyright © 2018, Texas Instruments Incorporated  
 
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
5 Pin Configuration and Functions  
PW Package  
16-Pin TSSOP  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Receiver enable pin: When EN is low, the receiver is disabled. When EN is high and EN* is low  
or open, the receiver is enabled. If both EN and EN* are open circuit, then the receiver is  
disabled.  
EN  
16  
I
I
Receiver enable pin: When EN* is high, the receiver is disabled. When EN* is low or open and  
EN is high, the receiver is enabled. If both EN and EN* are open circuit, then the receiver is  
disabled.  
EN*  
9
GND  
RIN+  
RIN−  
12  
Ground pin  
2, 3, 6, 7  
1, 4, 5, 8  
I
I
Noninverting receiver input pin  
Inverting receiver input pin  
Receiver output pin  
10, 11, 14,  
15  
ROUT  
VCC  
O
13  
Power supply pin, +3.3V ± 0.3V  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)(2)  
See  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
4
UNIT  
V
Supply voltage (VCC  
Input voltage (RIN+, RIN−  
Enable input voltage (EN, EN*)  
Output voltage (ROUT  
)
)
3.6  
V
VCC + 0.3  
VCC + 0.3  
866  
V
)
V
PW0016A package  
mW  
Maximum package power dissipation  
at +25°C  
Derate PW0016A  
package  
above +25°C  
6.9  
mW/°C  
Lead temperature soldering  
Maximum junction temperature  
Storage temperature, Tstg  
(4 s)  
260  
150  
150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
Copyright © 2018, Texas Instruments Incorporated  
3
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
±10000  
±1200  
UNIT  
Human-body model (HBM)  
Machine model  
V(ESD)  
Electrostatic discharge(1)  
V
(1) ESD Rating:  
HBM (1.5 kΩ, 100 pF)  
EIAJ (0 Ω, 200 pF)  
6.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
UNIT  
V
Supply voltage, VCC  
3.3  
3.6  
3
Receiver input voltage  
GND  
40  
V
Operating free air temperature, TA  
25  
85  
°C  
6.4 Thermal Information  
DSLVDS1048  
PW (TSSOP)  
16 PINS  
110.2  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
47  
54.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
6.1  
ψJB  
54.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.(1)(2)  
PARAMETER  
TEST CONDITIONS  
VCM = +1.2 V, 0.05 V, 2.95 V(3)  
VID = 200 mV peak to peak?(4)  
PIN  
MIN  
TYP  
MAX UNIT  
VTH  
Differential input high threshold  
Differential input low threshold  
Common-mode voltage range  
100  
mV  
mV  
V
VTL  
100  
0.1  
VCMR  
2.3  
10  
10  
20  
RIN+  
,
RIN−  
VIN = +2.8 V  
VCC = 3.6 V or 0 V  
VIN = 0 V  
10  
10  
–20  
±5  
±1  
±1  
IIN  
Input current  
μA  
VIN = +3.6 V  
VCC = 0 V  
IOH = 0.4 mA, VID = +200 mV, input  
terminated, input shorted  
VOH  
Output high voltage  
2.7  
3.3  
V
VOL  
IOS  
IOZ  
Output low voltage  
IOL = 2 mA, VID = 200 mV  
Enabled, VOUT = 0 V(5)  
0.25  
100  
10  
V
ROUT  
Output short-circuit current  
Output TRI-STATE current  
15  
10  
47  
mA  
μA  
Disabled, VOUT = 0 V or VCC  
±1  
(1) Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground  
unless otherwise specified.  
(2) All typicals are given for: VCC = 3.3 V, TA = 25°C.  
(3) VCC is always higher than RIN+ and RINvoltage. RINand RIN+ are allowed to have a voltage range 0.2 V to VCCVID/2. However, to  
be compliant with AC specifications, the common voltage range is 0.1 V to 2.3 V.  
(4) The VCMR range is reduced for larger VID. Example: if VID = 400 mV, the VCMR is 0.2 V to 2.2 V. The fail-safe condition with inputs  
shorted is not supported over the common-mode range of 0 V to 2.4 V, but is supported only with inputs shorted and no external  
common-mode voltage applied. A VID up to VCC – 0 V may be applied to the RIN+/ RINinputs with the Common-Mode voltage set to  
VCC/2. Propagation delay and Differential Pulse skew decrease when VID is increased from 200 mV to 400 mV. Skew specifications  
apply for 200 mV VID 800 mV over the common-mode range.  
(5) Output short-circuit current (IOS) is specified as magnitude only; minus sign indicates direction only. Only one output should be shorted  
at a time; do not exceed maximum junction temperature specification.  
4
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
Electrical Characteristics (continued)  
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.(1)(2)  
PARAMETER  
Input high voltage  
Input low voltage  
Input current  
TEST CONDITIONS  
PIN  
MIN  
2
TYP  
MAX UNIT  
VIH  
VIL  
II  
VCC  
0.8  
10  
V
V
GND  
10  
1.5  
EN,  
EN*  
VIN = 0 V or VCC, other Input = VCC or GND  
±5  
μA  
V
VCL  
Input clamp voltage  
ICL = 18 mA  
0.8  
No load supply current  
receivers enabled  
ICC  
EN = VCC, inputs open  
EN = GND, inputs open  
9
1
15  
5
mA  
mA  
VCC  
No load supply current  
receivers disabled  
ICCZ  
6.6 Switching Characteristics  
Over Supply Voltage and Operating Temperature ranges, unless otherwise specified.(1)(2)(3)(4)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.2  
TYP  
2
MAX UNIT  
tPHLD  
tPLHD  
tSKD1  
Differential propagation delay high to low  
2.7  
2.7  
0.4  
ns  
ns  
ns  
Differential propagation delay low to high  
1.2  
2
(5)  
Differential pulse skew |tPHLD tPLHD  
|
0.1  
Differential channel-to-channel skew; same  
device(3)  
CL = 15 pF  
VID = 200 mV  
tSKD2  
0.15  
0.5  
ns  
(Figure 16 and Figure 17)  
tSKD3  
tSKD4  
tTLH  
tTHL  
tPHZ  
tPLZ  
Differential part-to-part skew(4)  
Differential part-to-part skew(6)  
Rise time  
1
1.5  
1
ns  
ns  
0.5  
0.5  
8
ns  
Fall time  
1
ns  
Disable time high to Z  
Disable time low to Z  
Enable time Z to high  
Enable time Z to low  
Maximum operating frequency(7)  
14  
14  
14  
14  
ns  
RL = 2 kΩ  
CL = 15 pF  
(Figure 18 and Figure 19)  
8
ns  
tPZH  
tPZL  
9
ns  
9
ns  
fMAX  
All channels switching  
200  
250  
MHz  
(1) All typicals are given for: VCC = 3.3 V, TA = 25°C.  
(2) Generator waveform for all tests unless otherwise specified: f = 1 MHz, ZO = 50 Ω, tr and tf (0% to 100%) 3 ns for RIN  
.
(3) tSKD2, channel-to-channel skew is defined as the difference between the propagation delay of one channel and that of the others on the  
same chip with any event on the inputs.  
(4) tSKD3, part-to-part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices  
at the same VCC, and within 5°C of each other within the operating temperature range.  
(5) tSKD1 is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of  
the same channel  
(6) tSKD4, part-to-part skew, is the differential channel-to-channel skew of any event between devices. This specification applies to devices  
over recommended operating temperature and voltage ranges, and across process distribution. tSKD4 is defined as |MaxMin| differential  
propagation delay.  
(7) fMAX generator input conditions: tr = tf < 1 ns (0% to 100%), 50% duty cycle, differential (1.05-V to 1.35-V peak to peak). Output criteria:  
60 / 40% duty cycle, VOL (maximum 0.4 V), VOH (minimum 2.7 V), Load = 15 pF (stray plus probes).  
Copyright © 2018, Texas Instruments Incorporated  
5
 
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
Figure 2. Output High Voltage vs Power Supply Voltage  
Figure 3. Output Low Voltage vs Power Supply Voltage  
Figure 5. Output TRI-STATE Current vs Power Supply  
Voltage  
Figure 4. Output Short-Circuit Current vs Power Supply  
Voltage  
Figure 6. Differential Transition Voltage vs Power Supply  
Voltage  
Figure 7. Power Supply Current vs Ambient Temperature  
6
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
Typical Characteristics (continued)  
Figure 9. Differential Propagation Delay vs Ambient  
Temperature  
Figure 8. Differential Propagation Delay vs Power Supply  
Voltage  
Figure 10. Differential Propagation Delay vs Differential  
Input Voltage  
Figure 11. Differential Propagation Delay vs Common-Mode  
Voltage  
Figure 12. Differential Skew vs Power Supply Voltage  
Figure 13. Differential Skew vs Ambient Temperature  
Copyright © 2018, Texas Instruments Incorporated  
7
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Figure 14. Transition Time vs Power Supply Voltage  
Figure 15. Transition Time vs Ambient Temperature  
8
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
7 Parameter Measurement Information  
Figure 16. Receiver Propagation Delay and Transition Time Test Circuit  
Figure 17. Receiver Propagation Delay and Transition Time Waveforms  
CL includes load and test jig capacitance.  
S1 = VCC for tPZL and tPLZ measurements.  
S1 = GND for tPZH and tPHZ measurements.  
Figure 18. Receiver TRI-STATE Delay Test Circuit  
Figure 19. Receiver TRI-STATE Delay Waveforms  
Copyright © 2018, Texas Instruments Incorporated  
9
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
LVDS drivers and receivers are intended to be primarily used in an uncomplicated point-to-point configuration as  
shown in Figure 20. This configuration provides a clean signaling environment for the fast edge rates of the  
drivers. The receiver is connected to the driver through a balanced media which may be a standard twisted pair  
cable, a parallel pair cable, or simply PCB traces. Typically, the characteristic impedance of the media is in the  
range of 100 Ω. A termination resistor of 100 Ω (selected to match the media) is located as close to the receiver  
input pins as possible. The termination resistor converts the driver output (current mode) into a voltage that is  
detected by the receiver. Other configurations are possible such as a multi-receiver configuration, but the effects  
of a mid-stream connector(s), cable stub(s), and other impedance discontinuities as well as ground shifting, noise  
margin limits, and total termination loading must be considered.  
The DSLVDS1048 differential line receiver is capable of detecting signals as low as 100 mV, over a ±1-V  
common-mode range centered around +1.2 V. This is related to the driver offset voltage which is typically +1.2 V.  
The driven signal is centered around this voltage and may shift ±1 V around this center point. The ±1-V shifting  
may be the result of a ground potential difference between the ground reference of the driver and the ground  
reference of the receiver, the common-mode effects of coupled noise, or a combination of the two. The AC  
parameters of both receiver input pins are optimized for a recommended operating input voltage range of 0 V to  
+2.4 V (measured from each pin to ground). The device operates for receiver input voltages up to VCC, but  
exceeding VCC turns on the ESD protection circuitry, which clamps the bus voltages.  
The DSLVDS1048 has a flow-through pinout that allows for easy PCB layout. The LVDS signals on one side of  
the device easily allows for matching electrical lengths of the differential pair trace lines between the driver and  
the receiver as well as allowing the trace lines to be close together to couple noise as common-mode. Noise  
isolation is achieved with the LVDS signals on one side of the device and the TTL signals on the other side.  
8.2 Functional Block Diagram  
10  
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
8.3 Feature Description  
8.3.1 Fail-Safe Feature  
The LVDS receiver is a high-gain, high-speed device that amplifies a small differential signal (20 mV) to CMOS  
logic levels. Due to the high gain and tight threshold of the receiver, take care to prevent noise from appearing as  
a valid signal.  
The internal fail-safe circuitry of the receiver is designed to source or sink a small amount of current, providing  
fail-safe protection (a stable known state of HIGH output voltage) for floating, terminated or shorted receiver  
inputs.  
1. Open Input Pins. The DSLVDS1048 is a quad receiver device, and if an application requires only 1, 2, or 3  
receivers, the unused channel(s) inputs must be left OPEN. Do not tie unused receiver inputs to ground or  
any other voltages. The input is biased by internal high value pullup and pulldown resistors to set the output  
to a HIGH state. This internal circuitry ensures a HIGH, stable output state for open inputs.  
2. Terminated Input. If the driver is disconnected (cable unplugged), or if the driver is in a TRI-STATE or  
power-off condition, the receiver output is again in a HIGH state, even with the end of cable 100-Ω  
termination resistor across the input pins. The unplugged cable can become a floating antenna which can  
pick up noise. If the cable picks up more than 10 mV of differential noise, the receiver may see the noise as  
a valid signal and switch. To ensure that any noise is seen as common-mode and not differential, a balanced  
interconnect should be used. Twisted pair cable offers better balance than flat ribbon cable.  
3. Shorted Inputs. If a fault condition occurs that shorts the receiver inputs together, thus resulting in a 0-V  
differential input voltage, the receiver output remains in a HIGH state. Shorted input fail-safe is not supported  
across the common-mode range of the device (GND to 2.4 V). It is only supported with inputs shorted and no  
external common-mode voltage applied.  
External lower value pullup and pulldown resistors (for a stronger bias) may be used to boost fail-safe in the  
presence of higher noise levels. The pullup and pulldown resistors must be in the 5-kto 15-krange to  
minimize loading and waveform distortion to the driver. The common-mode bias point must be set to  
approximately 1.2 V (less than 1.75 V) to be compatible with the internal circuitry.  
Additional information on fail-safe biasing of LVDS devices may be found in AN-1194 Failsafe Biasing of LVDS  
Interfaces (SNLA051).  
8.4 Device Functional Modes  
Table 1 lists the functional modes of the DSLVDS1048.  
Table 1. Truth Table  
ENABLES  
INPUT  
OUTPUT  
EN  
EN*  
RIN+ RIN  
VID 0 V  
ROUT  
H
L
VID ≤ −0.1 V  
H
L or Open  
Full Fail-safe  
OPEN/SHORT or  
Terminated  
H
Z
All other combinations of ENABLE inputs  
X
Copyright © 2018, Texas Instruments Incorporated  
11  
 
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The DSLVDS1048 has a flow-through pinout that allows for easy PCB layout. The LVDS signals on one side of  
the device easily allows for matching electrical lengths of the differential pair trace lines between the driver and  
the receiver as well as allowing the trace lines to be close together to couple noise as common-mode. Noise  
isolation is achieved with the LVDS signals on one side of the device and the TTL signals on the other side.  
9.2 Typical Application  
DSLVDS1048  
DSLVDS1047  
RIN1+  
RIN1-  
DOUT1+  
DOUT1-  
DIN1  
DIN2  
DIN3  
Driver  
Driver  
Driver  
Receiver  
Receiver  
Receiver  
ROUT1  
DOUT2+  
DOUT2-  
RIN2+  
RIN2-  
ROUT2  
DOUT3+  
DOUT3-  
RIN3+  
RIN3-  
ROUT3  
DOUT4+  
DOUT4-  
RIN4+  
RIN4-  
DIN4  
ROUT4  
Driver  
Receiver  
EN  
EN  
EN*  
EN*  
Figure 20. Balanced System Point-to-Point Application  
12  
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
Typical Application (continued)  
9.2.1 Design Requirements  
When using LVDS devices, it is important to remember to specify controlled impedance PCB traces, cable  
assemblies, and connectors. All components of the transmission media must have a matched differential  
impedance of about 100 Ω. They must not introduce major impedance discontinuities.  
Balanced cables (for example, twisted pair) are usually better than unbalanced cables (ribbon cable) for noise  
reduction and signal quality. Balanced cables tend to generate less EMI due to field canceling effects and also  
tend to pick up electromagnetic radiation as common-mode (not differential mode) noise which is rejected by the  
LVDS receiver.  
For cable distances < 0.5 M, most cables can be made to work effectively. For distances 0.5 M d 10 M,  
CAT5 (Category 5) twisted pair cable works well, is readily available, and relatively inexpensive.  
Table 2. Design Requirements  
DESIGN PARAMETERS  
Receiver Supply Voltage (VCC  
Receiver Output Voltage  
Signaling Rate  
EXAMPLE VALUE  
3.0 to 3.6 V  
0 to 3.6 V  
0 to 400 Mbps  
100 Ω  
)
Interconnect Characteristic Impedance  
Termination Resistance  
100 Ω  
Number of Receiver Nodes  
1
Ground shift between driver and receiver  
±1 V  
9.2.2 Detailed Design Procedure  
9.2.2.1 Probing LVDS Transmission Lines  
Always use high impedance (> 100k), low capacitance (< 2 pF) scope probes with a wide bandwidth (1 GHz)  
scope. Improper probing gives deceiving results.  
9.2.2.2 Threshold  
The LVDS Standard (ANSI/TIA/EIA-644) specifies a maximum threshold of ±100 mV for the LVDS receiver. The  
DSLVDS1048 supports an enhanced threshold region of 100 mV to 0 V. This is useful for fail-safe biasing. The  
threshold region is shown in the Voltage Transfer Curve (VTC) in Figure 21. The typical DSLVDS1048 LVDS  
receiver switches at about 35 mV.  
NOTE  
With VID = 0 V, the output is in a HIGH state. With an external fail-safe bias of +25 mV  
applied, the typical differential noise margin is now the difference from the switch point to  
the bias point.  
In the following example, this would be 60 mV of Differential Noise Margin (+25 mV (35 mV)). With the  
enhanced threshold region of 100 mV to 0 V, this small external fail-safe biasing of +25 mV (with respect to  
0 V) gives a DNM of a comfortable 60 mV. With the standard threshold region of ±100 mV, the external fail-safe  
biasing would need to be +25 mV with respect to +100 mV or +125 mV, giving a DNM of 160 mV which is  
stronger fail-safe biasing than is necessary for the DSLVDS1048. If more DNM is required, then a stronger fail-  
safe bias point can be set by changing resistor values.  
Copyright © 2018, Texas Instruments Incorporated  
13  
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
Figure 21. VTC of the DSLVDS1048 LVDS Receiver  
9.2.3 Application Curve  
Figure 22. Power Supply Current vs Frequency  
10 Power Supply Recommendations  
Although the DSLVDS1047 draws very little power while at rest, its overall power consumption increases due to  
a dynamic current component. The DSLVDS1048 power supply connection must take this additional current  
consumption into consideration for maximum power requirements.  
11 Layout  
11.1 Layout Guidelines  
Use at least 4 PCB layers (top to bottom): LVDS signals, ground, power, and TTL signals.  
Isolate TTL signals from LVDS signals, otherwise the TTL may couple onto the LVDS lines. Best practice is to  
put TTL and LVDS signals on different layers which are isolated by a power/ground plane(s).  
Keep drivers and receivers as close to the (LVDS port side) connectors as possible.  
11.1.1 Power Decoupling Recommendations  
Bypass capacitors must be used on power pins. Use high-frequency ceramic (surface mount is recommended)  
0.1-μF and 0.001-μF capacitors in parallel at the power supply pin with the smallest value capacitor closest to the  
device supply pin. Additional scattered capacitors over the printed-circuit board improves decoupling. Multiple  
vias must be used to connect the decoupling capacitors to the power planes. A 10-μF (35-V) or greater solid  
tantalum capacitor must be connected at the power entry point on the printed-circuit board between the supply  
and ground.  
14  
Copyright © 2018, Texas Instruments Incorporated  
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
Layout Guidelines (continued)  
11.1.2 Differential Traces  
Use controlled impedance traces that match the differential impedance of your transmission medium (that is,  
cable) and termination resistor. Run the differential pair trace lines as close together as possible as soon as they  
leave the IC (stubs must be < 10 mm long). This helps eliminate reflections and ensure noise is coupled as  
common-mode. In fact, we have seen that differential signals which are 1 mm apart radiate far less noise than  
traces 3 mm apart because magnetic field cancellation is much better with the closer traces. In addition, noise  
induced on the differential lines is much more likely to appear as common-mode which is rejected by the  
receiver.  
Match electrical lengths between traces to reduce skew. Skew between the signals of a pair means a phase  
difference between signals, which destroys the magnetic field cancellation benefits of differential signals and  
EMI, results. Remember the velocity of propagation, v = c/Er where c (the speed of light) = 0.2997 mm/ps or  
0.0118 in/ps.  
Do not rely solely on the autoroute function for differential traces. Carefully review dimensions to match  
differential impedance and provide isolation for the differential lines. Minimize the number or vias and other  
discontinuities on the line.  
Avoid 90° turns (these cause impedance discontinuities). Use arcs or 45° bevels.  
Within a pair of traces, the distance between the two traces should be minimized to maintain common-mode  
rejection of the receivers. On the printed-circuit board, this distance must remain constant to avoid discontinuities  
in differential impedance. Minor violations at connection points are allowable.  
11.1.3 Termination  
Use a termination resistor that best matches the differential impedance or your transmission line. The resistor  
must be between 90 and 130 . Remember that the current mode outputs need the termination resistor to  
generate the differential voltage. LVDS does not work without resistor termination. Typically, connecting a single  
resistor across the pair at the receiver end will suffice.  
Surface mount 1% to 2% resistors are best. PCB stubs, component lead, and the distance from the termination  
to the receiver inputs must be minimized. The distance between the termination resistor and the receiver must be  
< 10 mm (12 mm maximum).  
11.2 Layout Example  
DS90LV048A  
DS90LV047A  
1
2
3
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
16  
15  
14  
13  
12  
11  
10  
9
DOUT1-  
DOUT1+  
DOUT2+  
DOUT2-  
DOUT3-  
DOUT3+  
RIN1-  
RIN1+  
RIN2+  
RIN2-  
RIN3-  
RIN3+  
EN  
EN  
DIN1  
DIN2  
Series Termination (optional)  
ROUT1  
ROUT2  
LVCMOS  
Inputs  
LVCMOS  
Outputs  
Decoupling Cap  
4
5
4
5
VCC  
GND  
VCC  
GND  
Decoupling Cap  
6
7
6
7
ROUT3  
ROUT4  
EN*  
DIN3  
DIN4  
EN*  
DOUT4+  
DOUT4-  
RIN4+  
RIN4-  
Series Termination (optional)  
8
8
Input Termination  
(Required)  
Figure 23. Layout Recommendation  
版权 © 2018, Texas Instruments Incorporated  
15  
DSLVDS1048  
ZHCSIV4 SEPTEMBER 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
16  
版权 © 2018, Texas Instruments Incorporated  
DSLVDS1048  
www.ti.com.cn  
ZHCSIV4 SEPTEMBER 2018  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2018, Texas Instruments Incorporated  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
DSLVDS1048PWR  
DSLVDS1048PWT  
ACTIVE  
TSSOP  
TSSOP  
PW  
16  
16  
2500 RoHS & Green  
1000 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
DSLVDS  
1048  
ACTIVE  
PW  
SN  
DSLVDS  
1048  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
DSLVDS1048PWR  
DSLVDS1048PWT  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2500  
1000  
330.0  
330.0  
12.4  
12.4  
6.95  
6.95  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
DSLVDS1048PWR  
DSLVDS1048PWT  
TSSOP  
TSSOP  
PW  
PW  
16  
16  
2500  
1000  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

DSLVDS1048PWT

3.3V LVDS 四通道高速差动线路接收器 | PW | 16 | -40 to 85
TI

DSM

High Precision Bulk Metal® Foil Surface Mount Voltage Divider
VISHAY

DSM-098-B-25-P-F-FB-FT

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-F-FB-HJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-F-FB-RJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-L-FB-FT

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-L-FB-HJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-P-L-FB-RJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC
SAMTEC

DSM-098-B-25-P-S-FB-HJ

D Subminiature Connector, 25 Contact(s), Male, Solder Terminal
SAMTEC

DSM-098-B-25-S-L-FB-FT

D Subminiature Connector, 25 Contact(s), Female, Solder Terminal, Socket
SAMTEC

DSM-098-E-09-P-F-FB-FT

D Subminiature Connector, 9 Contact(s), Male, Solder Terminal
SAMTEC