ERJ-8GEYJ302V [TI]

This document contains the following chapters; 本文档包含以下章节
ERJ-8GEYJ302V
型号: ERJ-8GEYJ302V
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

This document contains the following chapters
本文档包含以下章节

文件: 总26页 (文件大小:323K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DAC7573, DAC6573, and  
DAC5573 Evaluation Module  
User’s Guide  
January 2004  
Data Acquisition  
SLAU125  
 
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
EVM IMPORTANT NOTICE  
Texas Instruments (TI) provides the enclosed product(s) under the following conditions:  
This evaluation kit being sold by TI is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION  
PURPOSES ONLY and is not considered by TI to be fit for commercial use. As such, the goods being provided  
may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective  
considerations, including product safety measures typically found in the end product incorporating the goods.  
As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic  
compatibility and therefore may not meet the technical requirements of the directive.  
Should this evaluation kit not meet the specifications indicated in the EVM User’s Guide, the kit may be returned  
within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE  
WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED,  
IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY  
PARTICULAR PURPOSE.  
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user  
indemnifies TI from all claims arising from the handling or use of the goods. Please be aware that the products  
received may not be regulatory compliant or agency certified (FCC, UL, CE, etc.). Due to the open construction  
of the product, it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic  
discharge.  
EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE  
TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.  
TI currently deals with a variety of customers for products, and therefore our arrangement with the user is not  
exclusive.  
TI assumes no liability for applications assistance, customer product design, software performance, or  
infringement of patents or services described herein.  
Please read the EVM User’s Guide and, specifically, the EVM Warnings and Restrictions notice in the EVM  
User’s Guide prior to handling the product. This notice contains important safety information about temperatures  
and voltages. For further safety concerns, please contact the TI application engineer.  
Persons handling the product must have electronics training and observe good laboratory practice standards.  
No license is granted under any patent right or other intellectual property right of TI covering or relating to any  
machine, process, or combination in which such TI products or services might be or are used.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
EVM WARNINGS AND RESTRICTIONS  
It is important to operate this EVM within the input voltage range of 0 V - VDD +0.3 V and the  
output voltage range of 4.5 V and 18 V.  
Exceeding the specified input range may cause unexpected operation and/or irreversible  
damage to the EVM. If there are questions concerning the input range, please contact a TI  
field representative prior to connecting the input power.  
Applying loads outside of the specified output range may result in unintended operation and/or  
possible permanent damage to the EVM. Please consult the EVM User’s Guide prior to  
connecting any load to the EVM output. If there is uncertainty as to the load specification,  
please contact a TI field representative.  
During normal operation, some circuit components may have case temperatures greater than  
100°C. The EVM is designed to operate properly with certain components above 100°C as  
long as the input and output ranges are maintained. These components include but are not  
limited to linear regulators, switching transistors, pass transistors, and current sense  
resistors. These types of devices can be identified using the EVM schematic located in the  
EVM User’s Guide. When placing measurement probes near these devices during operation,  
please be aware that these devices may be very warm to the touch.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  
Preface  
Read This First  
About This Manual  
This user’s guide describes the characteristics, operation, and the use of the  
DAC7573, DAC6573, DAC5573 Evaluation Module. It covers all pertinent  
areas involved to properly use this EVM board along with the devices that it  
supports. The physical PCB layout, schematic diagram and circuit  
descriptions are included.  
How to Use This Manual  
This document contains the following chapters:  
Chapter 1 – EVM Overview  
Chapter 2 – PCB Design  
Chapter 3 – EVM Operation  
Information About Cautions and Warnings  
This book may contain cautions and warnings.  
This is an example of a caution statement.  
A caution statement describes a situation that could potentially  
damage your software or equipment.  
This is an example of a warning statement.  
A warning statement describes a situation that could potentially  
cause harm to you.  
iii  
Trademarks  
The information in a caution or a warning is provided for your protection.  
Please read each caution and warning carefully.  
Related Documentation From Texas Instruments  
To obtain a copy of any of the following TI documents, call the Texas  
Instruments Literature Response Center at (800) 477–8924 or the Product  
Information Center (PIC) at (972) 644–5580. When ordering, identify this  
manual by its title and literature number. Updated documents can also be  
obtained through our Web site at www.ti.com.  
Data Sheets:  
DAC7573  
DAC6573  
DAC5573  
REF02  
Literature Number:  
SLAS398  
SLAS402  
SLAS401  
SBVS-003A  
PDS-998H  
PDS-1309B  
OPA627  
OPA2132  
Questions about this or other Data Converter EVMs?  
If you have questions about this or other Texas Instruments Data Converter  
evaluation modules, feel free to e-mail the Data Converter Application Team  
at datacnvapps@list.ti.com Include in the subject heading the product you  
have questions or concerns with.  
FCC Warning  
This equipment is intended for use in a laboratory test environment only. It gen-  
erates, uses, and can radiate radio frequency energy and has not been tested  
for compliance with the limits of computing devices pursuant to subpart J of  
part 15 of FCC rules, which are designed to provide reasonable protection  
against radio frequency interference. Operation of this equipment in other en-  
vironments may cause interference with radio communications, in which case  
the user at his own expense will be required to take whatever measures may  
be required to correct this interference.  
Trademarks  
2
I C is a trademark of Philips Corporation.  
iv  
Contents  
1
EVM Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1  
1.1  
1.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
1.2.1 Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
1.2.2 Reference Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
EVM Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
1.3  
2
3
PCB Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1  
2.1  
2.2  
PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
EVM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1  
3.1  
3.2  
3.3  
3.4  
Factory Default Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
Host Processor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
EVM Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Output Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.4.1 Unity Gain Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
3.4.2 Output Gain of Two . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
3.4.3 Capacitive Load Drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
3.4.4 Optional Signal Conditioning Op Amp (U8B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Jumper Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
3.5  
3.6  
v
Figures  
1-1  
2-1  
2-2  
2-3  
2-4  
2-5  
2-6  
2-7  
EVM Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-4  
Top Silkscreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Layer 1 (Top Signal Plane) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Layer 2 (Ground Plane) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
Layer 3 (Power Plane) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Layer 4 (Bottom Signal Plane) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Bottom Silkscreen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-4  
Drill Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-5  
Tables  
1-1  
2-1  
3-1  
3-2  
3-3  
3-4  
3-5  
3-6  
Featured DAC Selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
Parts List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
DACx573EVM Factory-Default Jumper Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
DACx573 Output Channel Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
Unity Gain Output Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Gain of Two Output Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4  
Capacitive-Load Drive Jumper Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5  
Jumper Setting Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
vi  
Chapter 1  
EVM Overview  
This chapter gives a general overview of the DAC7573, DAC6573, and  
DAC5573 evaluation module (EVM), and describes some of the factors that  
must be considered in using this module.  
Topic  
Page  
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
1.2 Power Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2  
1.3 EVM Basic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3  
1-1  
Features  
1.1 Features  
This EVM features the DAC7573, DAC6573 and DAC5573 family of  
digital-to-analog converters. In this user’s guide, the EVM is referred to as the  
DACx573 EVM to cover all supported DAC parts. The DACx573 EVM provides  
a quick and easy way to evaluate the functionality and performance of these  
2
12-bit, 10-bit, and 8-bit resolution, quad-channel, and serial I C-input DACs.  
The following table shows the three DAC types this EVM supports. The EVM  
2
also provides an I C serial interface to communicate with any host  
microprocessor- or TI DSP-based system.  
Table 1-1.Featured DAC Selections  
EVM Version  
Installed Device (DUT)  
DAC7573IPW  
DAC Channels Resolution  
DAC7573 EVM  
4
4
4
12-Bit  
10-Bit  
8-Bit  
DAC6573 EVM  
DAC6573IPW  
DAC5573 EVM  
DAC5573IPW  
1.2 Power Requirements  
This section describes the power requirements of this EVM.  
1.2.1 Supply Voltage  
The power supply requirement for the digital section (V ) of this EVM is  
DD  
typically 5 V, connected via J5-1 or J6-10 when used with another EVM or  
interface card. It is referenced to ground through the J5-2 and J6-5 terminals.  
The power supply requirements for the analog section of this EVM are as  
follows:  
V
CC  
and V range from 15.75 V to -15.75 V maximum, and connects  
SS  
through J1-3 and J1-1 respectively, or through the J6-1 and J6-2 termi-  
nals.  
The 5-VA supply connects through J5-3 or J6-3 and the 3.3-VA supply con-  
nects through J6-8.  
All analog power supplies are referenced to analog ground through the  
J1-2 and J6-6 terminals.  
The analog power supply for the device under test (DUT), U1, can be supplied  
by either 5 VA or 3.3 VA via jumper W1. This allows the DACx573 analog  
section to operate from either supply while the I/O and digital section is  
powered by 5 V, V  
.
DD  
The V  
supply is mainly used as the positive rail of the external output  
CC  
operational amplifier (op amp), U2, the reference chip, U3, and the reference  
buffer, U8. The negative rail of the output op amp, U2, can be selected between  
V
SS  
and AGND via jumper W5. The external op amp is installed as an option  
to provide output signal conditioning, to boost capacitive load drive (via W15),  
and for other output-mode requirements.  
1-2  
EVM Basic Functions  
Caution  
To avoid potential damage to the EVM board, make sure that the  
correct cables are connected to their respective terminals as  
labeled on the EVM board.  
Stresses above the maximum listed voltage ratings may cause  
permanent damage to the device.  
1.2.2 Reference Voltage  
The 5-V precision voltage reference is provided to supply the external voltage  
reference for the DAC through REF02, U3, via jumper W4 by shorting pins 1  
and 2. The reference voltage goes through 100-kpotentiometer R11 in  
series with 20-kR10 to allow the user to adjust the reference voltage to a  
desired level. The voltage reference is then buffered through U8A to the DUT.  
Test points TP1, TP2, and TP5 are also provided, as well as J4-18 and J4-20,  
to allow the user to connect another external reference source if the onboard  
reference circuit is not used. The external voltage reference must not exceed  
5 Vdc.  
The REF02 precision reference is powered by V (15 V) through the J1-3  
CC  
or J6-1 terminal.  
Caution  
When applying an external voltage reference through TP1 or J4-20,  
make sure that it does not exceed 5 V maximum. Otherwise, this  
can permanently damage the installed device under test (DUT).  
1.3 EVM Basic Functions  
The DACx573 EVM is a functional-evaluation platform to demonstrate the  
operation of the DACx573 family of digital-to-analog converters. Functional  
evaluation of the DAC device can be conducted with any microprocessor, TI  
DSP, or a waveform generator.  
Header connectors J2 and P2 allow control signals and data from a host  
processor or waveform generator to interface with the DACx573 EVM using  
a custom-built cable.  
Specific adapter interface boards are also available for many TI DSP Starter  
Kits (DSKs). Specify the correct adapter interface board for the TI DSP Starter  
Kit to be used. In addition, an MSP430-based platform (HPA449) that uses the  
MSP430F449 microprocessor is available that directly interfaces with this  
EVM. For more information regarding the adapter-interface board or the  
HPA449 platform, please call Texas Instruments or send email to  
dataconvapps@list.ti.com.  
EVM Overview  
1-3  
EVM Basic Functions  
The DAC outputs can be monitored through the J4 header connector. All the  
outputs can be switched by their respective jumpers W2, W11, W12, and W13  
for stacking. Stacking allows eight DAC channels to be used, provided that the  
2
I C address is unique for each EVM board stacked.  
In addition, one DAC output can be fed to the noninverting side of output op  
amp U2 by installing a jumper across the appropriate pins of J4. Output op amp  
U2 must first be configured correctly for the desired waveform characteristic.  
Refer to Chapter 3 of this user’s guide for more information.  
A block diagram of the EVM is shown in Figure 1-1.  
Figure 1-1. EVM Block Diagram  
VCC  
VSS  
VCC  
GND  
VSS  
GND  
VDD  
(J1)  
(J5)  
(J6)  
(P6)  
3.3 VA  
VDD  
5 VA  
External  
Reference  
Module  
W4  
A0  
A1  
A2  
A3  
TP1  
(J2)  
(P2)  
V
H
REF  
W2  
W11  
W12  
W13  
(J4)  
(P4)  
DAC Out  
TP3  
DAC Module  
SDA  
SCL  
LDAC  
Output  
4 CH  
Buffer  
8 CH  
VREF  
V
L
REF  
A0 A1 A2 A3  
W8 W9  
W3  
Module  
W10  
TP2  
W7  
H
W15  
W6  
TP5  
W5  
VSS  
1-4  
 
Chapter 2  
PCB Design  
This chapter describes the physical and mechanical characteristics of the  
EVM. The bill of materials is also included in this chapter.  
Topic  
Page  
2.1 PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2  
2.2 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6  
2-1  
PCB Layout  
2.1 PCB Layout  
The DACx573 EVM demonstrates the performance of the installed DAC  
device under test, as specified in the data sheet. Careful analysis of the  
physical restrictions and performance-degrading factors of the EVM is vital to  
a successful design implementation. The obvious attributes that can cause  
poor performance of the EVM can be avoided during schematic design by  
proper component selection and correct circuit-design practices. The circuit  
must include adequate bypassing, identifying, and managing the analog and  
digital signals and understanding the mechanical attributes of the  
components.  
The less obvious part of the design lies in the PCB layout. The main concerns  
are component placement and proper signal routing. The bypass capacitors  
must be placed as close as possible to the pins and the analog and digital  
signals must be properly separated from each other. The power and ground  
planes are very important and require careful consideration. A solid plane is  
preferred, but sometimes impractical. When solid planes are not possible, a  
well-designed split plane can suffice. When considering a split-plane design,  
analyze the component placement and carefully divide the board into its  
analog and digital sections starting from the device under test. The ground  
plane plays an important role in controlling noise and other effects that can  
contribute to DAC output error. To ensure that return currents are handled  
properly, route the appropriate signals only in their respective sections. Route  
analog traces only directly above or below the analog section, and the digital  
traces in the digital section. Minimize trace length, but use the widest possible  
trace allowable in the design. These design practices are demonstrated in  
subsequent figures in this section.  
The DACx573 EVM board is constructed on a four-layer printed circuit board  
using a copper-clad FR-4 laminate material. The printed circuit board has a  
dimension of 43,1800 mm (1.7000 inch) X 82,5500 mm (3.2500 inch), and the  
board thickness is 1,5748 mm (0.0620 inch). Figure 2-1 through Figure 2-6  
show the individual artwork layers.  
2-2  
PCB Layout  
Figure 2-1. Top Silkscreen  
DACx573  
REV A  
LAYER SILKSCREEN  
TOP  
Figure 2-2. Layer 1 (Top Signal Plane)  
DACx573  
REV A  
LAYER 1 TOP SIGNAL LAYER  
Figure 2-3. Layer 2 (Ground Plane)  
DACx573 REV A  
LAYER 2 SPLIT GND PLANE  
PCB Design  
2-3  
PCB Layout  
Figure 2-4. Layer 3 (Power Plane)  
DACx5/3 REV A  
LAYER 3 SPLIT POWER PLANE  
Figure 2-5. Layer 4 (Bottom Signal Plane)  
DACx573  
REV A  
LAYER 4  
BOTTOM SIGNAL LAYER  
Figure 2-6. Bottom Silkscreen  
DACx573  
REV A  
LAYER  
SILKSCREEN BOTTOM  
2-4  
PCB Layout  
Figure 2-7. Drill Drawing  
PCB Design  
2-5  
Bill of Materials  
2.2 Bill of Materials  
Table 2-1.Parts List  
Item #  
Qty Designator  
Mfr.  
Part Number  
Description  
1
2
C9 C10  
Panasonic  
ECUV1H105JCH  
1-µF, 1206 multilayer-ceramic  
capacitor  
2
3
4
5
4
C1 C2 C3 C7  
C12  
Panasonic  
Panasonic  
Kemet  
ECJ3VB1C104K  
ECUV1H102JCH  
C1210C106K8PAC  
ERJ-8GEY0R00V  
0.1-µF, 1206 multilayer-ceramic  
capacitor  
1
1-nF, 1206 multilayer ceramic  
capacitor  
3
C5 C6 C11  
10-µF, 1210 multilayer ceramic X5R  
capacitor  
17  
R8 R17 R25  
R26 R27 R28  
R29 R30 R31  
R32 R33 R34  
R35 R36 R37  
R38 R39  
Panasonic  
0-, 1/4-W 1206 chip resistor  
6
7
8
9
2
1
1
6
R15 R16  
Panasonic  
Panasonic  
Panasonic  
Panasonic  
ERJ-8GEYJ431V  
ERJ-8GEYJ101V  
ERJ-8ENF2002V  
ERJ-8GEYJ302V  
430-, 1/4-W 1206 chip resistor  
100-,1/4-W 1206 chip resistor  
20-k,1/4-W 1206 chip resistor  
3-k, 1/4-W 1206 chip resistor  
R13  
R10  
R1 R2 R3 R4  
R5 R7  
10  
11  
3
1
R6 R12 R14  
R9  
Panasonic  
Bourns  
ERJ-8ENF1002V  
3214W-203E  
10-k,, 1/4-W 1206 chip resistor  
20-k, BOURNS_32X4W series 5T  
pot  
12  
13  
14  
15  
1
1
2
2
R11  
J6  
Bourns  
Samtec  
Samtec  
3214W-104E  
100-k, BOURNS_32X4W series 5T  
pot  
TSM-105-01-T-DV  
TSM-110-01-S-DV-M  
ED555/3DS  
5X2X0.1, 10-pin 3 A isolated power  
socket  
J2 J4  
J1 J5  
10X2X.1, 20 Pin 0.025” sq SMT  
socket  
On-Shore  
3-pin terminal connector  
Technology  
2
DAC7573IPW  
DAC6573IPW  
DAC5573IPW  
12-bit, quad output, I C DAC  
2
10-bit, quad output, I C DAC  
16  
1
U1  
Texas Instruments  
2
8-bit, quad output, I C DAC  
17  
18  
1
1
U2  
U3  
Texas Instruments OPA627AU  
Texas Instruments REF02AU  
8-SOP(D) precision op amp  
5-V, 8-SOP(D) precision voltage  
reference  
19  
20  
1
7
U8  
Texas Instruments OPA2132UA  
8-SOP(D) Dual Precision Op Amp  
Turret terminal test point  
TP1 TP2 TP3 Mill-max  
TP4 TP5 TP6  
TP7  
2348-2-01-00-00-07-0  
21  
2
P2 P4  
(see Note)  
Samtec  
SSW-110-22-S-D-VS-P 20-pin 0.025” square SMT  
terminal strips  
22  
23  
1
6
P6 (see Note) Samtec  
SSW-105-F-D-VS-K  
22-03-2021  
3-A isolated 10-pin power header  
2 position jumper, 0.1” spacing  
W3 W7 W8  
Molex  
W9 W10 W15  
24  
8
W1 W2 W4  
W5 W6 W11  
W12 W13  
Molex  
22-03-2031  
3 position jumper, 0.1” spacing  
Note: P2, P4, and P6 parts are not shown in the schematic diagram. All the P-designated parts are installed on the bottom side  
of the PC board opposite the J-designated counterpart. Example, J2 is installed on the top side while P2 is installed in the  
bottom side opposite of J2. Not all parts listed in the BOM are installed in the EVM as they are specific to the DUT installed.  
2-6  
Chapter 3  
EVM Operation  
This chapter details the operation of the EVM to guide the user in evaluating  
the onboard DAC and in interfacing the EVM to a host processor.  
Refer to the specific DAC data sheet, as listed in the Related Documentation  
From Texas Instruments section in the Preface of this user’s guide for more  
information about the DAC serial interface and other related topics.  
The EVM board is factory-configured to operate in the unipolar output mode.  
Topic  
Page  
3.1 Factory Default Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.2 Host Processor Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2  
3.3 EVM Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.4 The Output Op Amp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3  
3.5 Jumper Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6  
3.6 Schematic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7  
3-1  
Factory Default Setting  
3.1 Factory Default Setting  
The EVM board is factory-configured to operate in unipolar 5-V output mode.  
Table 3-1.DACx573EVM Factory-Default Jumper Configuration  
DACx573 EVM CONFIGURATION  
Jumper  
Reference  
W1  
Function  
Position  
1-2  
Analog supply for the DACx573 is 5 VA.  
DAC output A (VOUTA) is routed to J4-2.  
W2  
1-2  
W3  
Open  
VREFH is not routed to the inverting input of the op  
amp.  
W4  
1-2  
Onboard external buffered reference U3 is routed to  
V
REFH.  
W5  
1-2  
Negative supply rail of U2 op amp is supplied by V  
VREFL is tied to AGND.  
SS.  
W6  
1-2  
W7  
Closed  
Closed  
Closed  
Closed  
1-2  
A0 pin is tied to DGND.  
W8  
A1 pin is tied to DGND.  
W9  
A3 pin is tied to DGND.  
W10  
W11  
W12  
W13  
W15  
J4  
A2 pin is tied to DGND.  
DAC output B (VOUTB) is routed to J4-4.  
DAC output C (VOUTC) is routed to J4-6.  
DAC output D (VOUTD) is routed to J4-8.  
Output op amp U2 is configured for a gain of 2.  
1-2  
1-2  
Closed  
1-2  
DAC output A (VOUTA) is connected to the noninvert-  
ing input of output op amp U2.  
3.2 Host Processor Interface  
Because the host processor controls the DAC, proper operation depends on  
the correct interface of the host processor and the EVM board. Properly written  
code is also required to operate the DAC.  
A host-platform-specific cable assembly can be made to connect the EVM to  
2
the host processor through J2 for the I C serial control and data signals. The  
output is monitored through J4.  
An interface adapter board is available for specific TI DSP starter kits as well  
as for an MSP430-based microprocessor as mentioned in section 1.3. Using  
the interface board alleviates the tedious task of building custom cables and  
allows easy configuration of a simple evaluation system.  
2
This DACx573 EVM interfaces with any host processor capable of I C  
protocols or the popular TI DSP. For more information regarding the serial  
interface of the particular DAC installed, refer to the specific DAC data sheet,  
as listed in the Related Documentation From Texas Instruments section in the  
Preface of this user’s guide.  
3-2  
EVM Stacking  
3.3 EVM Stacking  
EVM stacking enables the designer to evaluate two DACx573s in tandem to  
yield an eight-channel output. A maximum of two DACx573 EVMs are allowed  
because the output terminal, J4, dictates the number of DAC channels that can  
be connected without colliding. Table 3-2 shows how the DAC output  
channels are mapped to the output terminal, J4, with respect to the jumper  
positions of W2, W11, W12, and W13.  
Table 3-2.DACx573 Output Channel Mapping  
Jumper  
Reference  
Function  
Position  
W2  
1-2  
DAC output A (VOUTA) is routed to J4-2.  
DAC output A (VOUTA) is routed to J4-10.  
DAC output B (VOUTB) is routed to J4-4.  
DAC output B (VOUTB) is routed to J4-12.  
DAC output C (VOUTC) is routed to J4-6.  
DAC output C (VOUTC) is routed to J4-14.  
DAC output D (VOUTD) is routed to J4-8.  
DAC output D (VOUTD) is routed to J4-16.  
2-3  
1-2  
2-3  
1-2  
2-3  
1-2  
2-3  
W11  
W12  
W13  
2
Each DAC EVM in a stacked configuration must have a unique I C address.  
This is accomplished by configuring address jumpers W7 and W8 (refer to the  
2
data sheet for I C addressing).  
The LDAC signal can be shared to have a synchronous DAC-output update  
and can be hardware-driven by GPIO0. If software control of the LDAC is  
desired, the GPIO0 signal must be set low through software or J2-pin 2 can  
be strapped to DGND.  
3.4 Output Op Amp  
The EVM includes an optional signal conditioning circuit for the DAC output  
through an external operational amplifier, U2. Only one DAC output channel  
can be monitored at any given time because the odd numbered pins (J4-1 to  
J4-7) are tied together. The output op amp gain is configured at two by default.  
The unbuffered outputs of the DAC can be probed through the even pins of J4,  
the output terminal, which also provides mechanical stability when stacking or  
plugging into an interface board. J4 also provides easy access for monitoring  
up to eight DAC channels when stacking two EVMs together, as described in  
section 3.3.  
The following sections describe various configurations of the output amplifier,  
U2.  
EVM Operation  
3-3  
 
Output Op Amp  
3.4.1 Unity Gain Output  
The buffered output configuration can be used to prevent loading the DAC.  
However, it may present some slight distortion because of the feedback  
resistor and capacitor. The user can tailor the feedback circuit to closely match  
the desired wave shape by simply removing R7 and C11 and replacing them  
with the desired values. R7 can be replaced with a zero-ohm resistor and C11  
can be left open, if desired.  
Table 3-3 shows the jumper settings for the unity gain configuration of the  
output buffer in unipolar or bipolar supply mode.  
Table 3-3.Unity Gain Output Jumper Settings  
Jumper Setting  
Reference  
Function  
Unipolar  
Bipolar  
Disconnects TP2 input or AGND from the in-  
verting input of the op amp  
W3  
W5  
Open  
2-3  
Open  
Supplies VSS to the negative rail of the op amp  
or ties it to AGND  
1-2  
Disconnects negative input of the op amp  
from AGND  
W15  
Open  
Open  
3.4.2 Output Gain of Two  
Table 3-4 shows the proper jumper settings of the EVM for the 2× gain output  
of the DAC.  
Table 3-4.Gain of Two Output Jumper Settings  
Jumper Setting  
Reference  
Function  
Unipolar  
Bipolar  
Inverting input of output op amp U2 is con-  
nected to VREFH for use as its offset voltage  
with a gain of 2. Jumper W15 must be open.  
Closed  
Open  
2-3  
Closed  
W3  
VREFH is disconnected from the inverting in-  
put of output op amp U2. Jumper W15 must  
be closed.  
Open  
1-2  
Supplies power, VSS, to the negative rail of op  
amp U2 for bipolar supply mode, or ties it to  
AGND for unipolar supply mode  
W5  
Configures op amp U2 for a gain of 2 output  
without an offset voltage. Jumper W3 must be  
open.  
Closed  
Open  
Closed  
Open  
W15  
Inverting input of op amp U2 is disconnected  
from AGND. Jumper W3 must be closed.  
3-4  
 
Output Op Amp  
3.4.3 Capacitive Load Drive  
Another output configuration option is to drive a wide range of capacitive loads.  
All op amps under certain conditions may become unstable depending on  
configuration, gain, and load value. In unity gain, the OPA627 op amp performs  
well with large capacitive loads. Increasing the gain and adding a load resistor  
further improves the capacitive load drive capability.  
Table 3-5 shows the proper jumper settings of the EVM for the 2× gain output  
of the DAC.  
Table 3-5.Capacitive-Load Drive Jumper Settings  
Jumper Setting  
Reference  
Function  
Unipolar  
Bipolar  
VREFH is disconnected from the inverting in-  
put of output op amp U2.  
W3  
Open  
Open  
Supplies power, VSS, to the negative rail of op  
amp U2 for bipolar supply, or ties it to AGND  
for unipolar supply.  
W5  
2-3  
1-2  
Capacitive load drive output of DAC is routed  
to jumper-W15 pin 1, and this pin can be used  
as the output terminal.  
W15  
Open  
Open  
3.4.4 Optional Signal Conditioning Op Amp (U8B)  
One device of the dual-op amp OPA2132 (U8) is used for reference buffering  
(U8A), while the other is unused. This unused op amp (U8B) is available for  
user-configured circuitry. The 1206-package resistor and capacitor footprints  
associated with the U8B op amp are unpopulated and available for easy  
configuration. TP6 and TP7 test points are not installed for maximum flexibility  
of input-signal configuration. No test point is available for the output due to  
space restrictions, but a wire can be simply soldered to the output of the op  
amp via the unused component pads connected to it.  
Once the op amp circuit design is determined, it is easily implemented by  
simply populating the desired components and leaving unused component  
footprints unpopulated.  
EVM Operation  
3-5  
 
Jumper Setting  
3.5 Jumper Setting  
Table 3-6 shows the function of each specific jumper setting of the EVM.  
Table 3-6.Jumper Setting Function  
Jumper  
Reference  
Function  
Setting  
1
1
1
1
3
3
3
3
5-V analog supply is selected for AVDD  
.
+3.3-V analog supply is selected for AVDD  
Routes VOUTA to J4-2  
W1  
.
W2  
W3  
W4  
Routes VOUTA to J4-10  
Disconnects VREFH to the inverting input of output op amp U2.  
Connects VREFH to the inverting input of output op amp U2.  
1
1
1
1
1
1
3
3
3
3
3
3
Routes the adjustable, buffered, onboard 5-V reference to the VREFH input of the  
DACx573.  
Routes the user supplied reference from TP1 or J4-20 to the VREFH input of the  
DACx573.  
Negative supply rail of the output op amp U2 is powered by VSS for bipolar operation.  
Negative supply rail of the output op amp U2 is tied to AGND for unipolar operation.  
VREFL is tied to AGND.  
W5  
W6  
Routes the user-supplied negative reference from TP2 or J4-18 to the VREFL input of  
the DACx573. This voltage must be within the range of 0V to VREFH.  
A0 is set high through pullup-resistor R4. A0 can be driven by GPIO5.  
A0 is set low.  
W7  
W8  
A1 is set high through pullup-resistor R3. A1 can be driven by GPIO4.  
A1 is set low.  
A3 is set high through pullup-resistor R2. A3 can be driven by GPIO1.  
LDAC pin is set low and DAC update is accomplished via software.  
A2 is set high through pullup-resistor R1. A2 can be driven by GPIO3.  
A2 pin is set low.  
W9  
W10  
1
1
3
3
Routes VOUTB to J4-4  
Routes VOUTB to J4-12  
W11  
3-6  
 
Schematic  
Jumper  
Setting  
Reference  
Function  
1
1
1
1
3
3
3
3
Routes VOUTC to J4-6  
Routes VOUTC to J4-14  
Routes VOUTD to J4-8  
Routes VOUTD to J4-16  
W12  
W13  
Disconnects the inverting input of output op amp U2 from AGND.  
W15  
Connects the inverting input of output op amp U2 to AGND for gain of 2.  
Legend:  
Indicates the corresponding pins that are shorted or closed.  
3.6 Schematic  
The schematic is on the following page.  
EVM Operation  
3-7  
1
2
3
4
5
6
Revision History  
+5VA  
+3.3VA  
REV  
ECN Number  
Approved  
W1  
AVDD  
VDD  
VDD  
R1  
R2  
R3  
10K  
R4  
R5  
3K  
R7  
3K  
C1  
C5  
10K  
10K  
10K  
0.1µF  
10µF  
C6  
C2  
VCC  
10µF  
0.1µF  
C9  
D
C
B
A
R25  
R26  
D
C
B
A
GPIO0  
GPIO1  
(LDAC)  
(A3)  
1µF  
0
0
U1  
AVDD  
4
12  
3
R8  
IO_V/DVDD  
VrefH  
U2_+IN  
3
2
U2  
R27  
R28  
GPIO2  
GPIO3  
OUT_A1  
(EN)  
(A2)  
R13  
100  
TP3  
0
6
U2_OUT  
0
0
VrefH  
VrefL  
16  
15  
14  
13  
OUT_A  
OUT_B  
W2  
VOUT  
A3/LDAC  
A2/EN  
A1  
W3  
U2_-IN  
Op Amp  
OUT_A2  
OUT_B1  
5
VrefL  
R38  
R39  
GPIO4  
GPIO5  
(A1)  
(A0)  
0
0
W11  
J4  
R14  
10K  
A0  
VSS  
2
1
3
5
7
9
OUT_B2  
OUT_C1  
4
R15 440/0  
R16 440/0  
SDI  
SCLK  
R29  
11  
10  
9
SDA/Din  
6
W9  
W8  
W7  
W10  
1
2
7
8
VoutA  
VoutB  
VoutC  
VoutD  
8
SCL/SCLK  
LDAC/SYNC  
10  
W5  
C10  
12 11  
14 13  
16 15  
18 17  
20 19  
FSX  
(SYNC)  
(LDAC)  
OUT_C  
OUT_D  
W12  
W13  
1µF  
0
R30  
0
-REFin  
+REFin  
GPIO0  
6
OUT_C2  
R6  
GND  
DAC7573/6573/5573  
10K  
OUTPUT HEADER  
C12  
OUT_D1  
OUT_D2  
DAC7573 = 12-Bit  
DAC6573 = 10-Bit  
DAC5573 = 8-Bit  
1nF  
W15  
VCC  
R9  
20K  
2
R12  
10K  
U3  
VCC  
5
2
8
7
6
3
1
TRIM OUT  
V+ TEMP  
TP4  
C7  
0.1µF  
NC  
NC  
NC  
C8  
NI  
C11  
Tantalum  
10µF  
R11  
REF02AU(8)  
2
3
2
C3  
R18  
R22  
1
NI  
0.1µF  
J2  
100K  
NI  
NI  
W4  
GPIO0  
(LDAC)  
U8A  
OPA2227UA  
TP6  
1
3
5
7
9
2
1
R31  
CLKX  
CLKR  
FSX  
FSR  
DX  
VrefH  
+Vin  
4
6
U8B  
GPIO1  
GPIO2  
(A3)  
(EN)  
0
0
0
3
R20  
R21  
R32  
R33  
5
8
R24  
NI  
7
NI  
NI  
R10  
20K  
TP1  
10  
+REFin  
-REFin  
6
GPIO3  
GPIO4  
SCL  
(A2)  
(A1)  
EXTERNAL  
11 12  
13 14  
15 16  
17 18  
19 20  
DR  
REFERENCE  
OPA2227UA  
TP5  
TP7  
-Vin  
NOTE: Voltage range of -REFin input should not exceed  
R17  
0
0 - VrefH.  
R23  
R19  
NI  
GPIO5  
SDA  
(A0)  
W6  
Serial Header  
R36  
0
VrefL  
DX  
C13  
NI  
R34  
SDI  
SCLK  
0
R35  
TP2  
0
R37  
0
CLKX  
J1  
J5  
+3.3VD+1.8VD +5VA VCC  
VSS -5VA +3.3VA VDD  
J6  
1
3
5
7
9
2
4
6
8
VSS  
VCC  
VDD  
+5VA  
10  
VCC = +15V Analog  
VDD = +2.7V to +5.0V Digital  
VSS = 0V to -15V Analog  
ti  
DACx573 EVM  
12500 TI Boulevard. Dallas, Texas 75243  
Title:  
Engineer:  
J. PARGUIAN  
DOCUMENTCONTROL #  
REV:  
A
6456605  
Drawn By:  
FILE:  
DATE:  
SIZE:  
1-Dec-2003  
SHEET:  
OF:  
DAC7573 RevA.Sch  
1
1
2
3
4
5
6

相关型号:

ERJ-8GEYJ30K

High Power Factor/Low THD
INFINEON

ERJ-8GEYJ333V

IRPLLNR5 Wide Range Input Linear Fluorescent Ballast
INFINEON

ERJ-8GEYJ431V

This document contains the following chapters
TI

ERJ-8GEYJ474V

IRPLLNR5 Wide Range Input Linear Fluorescent Ballast
INFINEON

ERJ-8GEYJ474V

Thick Film Chip Resistors
PANASONIC

ERJ-8GEYJ4R3V

ADSP-BF506F EZ-KIT Lite® Evaluation System Manual
ADI

ERJ-8GEYJ5.6K

High Power Factor/Low THD
INFINEON

ERJ-8GEYJ510

380W GaN WIDEBAND PULSED
RFMD

ERJ-8GEYJ563V

IRPLLNR5 Wide Range Input Linear Fluorescent Ballast
INFINEON

ERJ-8GEYJ56K

High Power Factor/Low THD
INFINEON

ERJ-8GEYJ680K

High Power Factor/Low THD
INFINEON

ERJ-8GEYJ684V

IRPLLNR5 Wide Range Input Linear Fluorescent Ballast
INFINEON