GC5325SEK [TI]

GC5325 Wideband Digital Predistortion Transmit Processor;
GC5325SEK
型号: GC5325SEK
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

GC5325 Wideband Digital Predistortion Transmit Processor

文件: 总24页 (文件大小:422K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
GC5325 Wideband Digital Predistortion Transmit Processor  
1
FEATURES  
Flexible DSP Algorithm Supports Existing and  
Emerging Wireless Standards  
23  
Integrated CFR and DPD Functions  
Supports Direct Interface to TI High-Speed  
Data Converters  
Up to 20-MHz Combined Signal Bandwidth  
CFR: Typically Meets 3GPP TS 25.141 <6.5 dB  
PAR, <8 dB PAR for 802.16e Signals  
APPLICATIONS  
DPD: Memory Compensation, Typical ACLR  
Improvement of 20 dB to 30 dB or More  
3GPP (W-CDMA, TD-SCDMA) Base Stations  
3GPP2 (CDMA2000) Base Stations  
WiMAX and WiBRO (OFDMA) Base Stations  
Multicarrier Power Amplifiers (MCPAs)  
Transmit- and Feedback-Channel Equalizers  
352-Ball S-PBGA Package, 27 mm × 27 mm  
1.2-V Core, 3.3-V I/O  
Typical Power Consumption = 1.9 W  
SYSTEM BLOCK DIAGRAM  
DAC5682Z  
TRF3703  
DAC  
DAC  
I/Q  
Modulator  
GC5325  
I/Q  
HPA  
Baseband  
Input  
LPA  
CFR–DPD  
LO  
TRF3761  
CDCM7005  
ADC  
ADS6149  
THS9001  
Mixer  
'C6727  
DSP  
B0278-02  
DESCRIPTION  
The GC5325 is a wideband digital predistortion transmit processor that includes a crest factor reduction (CFR)  
block and a digital predistortion (DPD) block with its associated feedback chain and capture buffers. The GC5325  
processes composite input bandwidths of up to 20 MHz and processes DPD sample rates of up to 140 MHz. The  
GC5325 accepts a composite signal over an interleaved parallel interface at a data rate of up to 140 MSPS. The  
GC5325 CFR block reduces the peak-to-average ratio (PAR) of wideband digital signals provided in quadrature  
(I/Q) format, such as those used in third-generation (3G) code division multiple access (CDMA) wireless and  
orthogonal frequency division multiple access (OFDMA) applications. The GC5325 DPD block reduces  
adjacent-channel leakage ratio (ACLR), or out-of-band energy, by 20 dB to 30 dB or more. The efficiency of  
follow-on power amplifiers (PAs) is substantially improved by reducing the PAR and ACLR of digital signals. The  
digital-to-RF conversion can be further simplified by the fractional interpolator between the CFR and the DPD  
blocks, and a bulk upconverter (BUC) in the final stage of the GC5325. This feature typically eliminates the need  
for superheterodyne (dual-stage) upconversion architectures. Transmit and feedback NCO/mixers provide  
additional flexibility in the system frequency planning.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
TMS320C64x, C55x, C64x are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2009, Texas Instruments Incorporated  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE OPTIONS  
PACKAGED DEVICE(1)  
TC  
352-ball S-PBGA package, 27 mm × 27 mm  
–40°C to 85°C  
GC5325IZND  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
GC5325 FUNCTIONAL BLOCK DIAGRAM  
TCK  
TRSTB  
TDI  
TMS  
RESETB SYNC SYNC INT UPDATA UPADDR OEB RDB WRB CEB  
OUT  
TDO  
4
3
16  
10  
GC5325  
MPU Interface  
JTAG  
BBin  
16  
BBFR  
Fractional  
Farrow  
Resampler  
Input  
Interface  
Circular  
Limiter  
CFR  
MFIO[19:18]  
2
(Optional;  
additional  
2 LSBs)  
BBCLK  
BB  
PLL  
DPDCLK  
(LVDS)  
DPD  
PLL  
FB  
Real to Complex  
(or Bypass)  
Feedback  
Equalizer  
ADC  
Interface  
Feedback NL  
Correction  
(LVDS)  
18 Pairs  
SYNCD  
(LVDS)  
TX  
Transmit  
Equalizer  
DAC  
Interface  
Bulk Interpolation  
+ Mixer  
DPD  
(Diff.)  
19 Pairs  
Capture Buffers  
BB Clock Domain  
DPD Clock Domain  
B0279-02  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
DETAILED DESCRIPTION  
GC5325 Introduction  
The GC5325 is a flexible transmit sector processor that includes a crest factor reduction (CFR) block and a  
digital predistortion (DPD) block and its associated feedback chain. The GC5325 processes composite input  
bandwidths of up to 40 MHz and processes DPD expansion bandwidths of up to 140 MHz (actual performance  
may vary for signal bandwidths exceeding 23 MHz). By reducing both the peak-to-average ratio (PAR) of the  
input signals using the CFR block and linearizing the power amplifier (PA) using the DPD block, the GC5325  
reduces the costs of multicarrier PAs (MCPA) for wireless infrastructure applications. The GC5325 applies CFR  
and DPD while a separate microprocessor (a Texas Instruments TMS320C6727 DSP) is used to optimize  
performance levels and maintain target PA performance levels.  
By including the GC5325 in their system architecture, manufacturers of BTS equipment can realize significant  
savings on power amplifier bill of materials (BOM) and overall operational costs due to the PA efficiency  
improvement. The GC5325 meets multicarrier 3G performance standards (PCDE, composite EVM, and ACLR) at  
PAR levels down to 6.5 dB and improves the ACLR, at the PA output, by 20 dB to 30 dB or more. The GC5325  
integrates easily into the transmit signal chain between baseband processors such as the Texas Instruments  
TMS320C64x™ DSP family and their high-performance data converters.  
A typical GC5325 system application would include the following transmit-chain components:  
TMS320C6727 digital signal processor (DSP)  
DAC5682 16-bit, 1-GSPS DAC (transmit path)  
CDCM7005 clock generator  
TRF3761 integrated VCO/PLL synthesizer  
TRF3703 quadrature modulator  
ADS5517 11-bit 200-MSPS or ADS6149 14-bit, 250-MSPS ADC (feedback path)  
AMC7823 analog monitoring and control circuit with GPIO and SPI  
Baseband Interface  
The GC5325 BB interface block accepts baseband signals over an interleaved parallel interface at a data rate of  
up to 140 MHz. The input interface supports up to 12 separate baseband carriers. The GC5325 input interface  
can be programmed in a wideband mode in which users are required to channelize the data using an external  
processor.  
Gain/Pilot Insertion/AntCal Insertion/Power Meter  
Baseband gain can be applied on a per-carrier basis to accurately control the individual channel power through  
the system. Also present is the functionality for adding pilot codes to the data stream for antenna calibration  
applications. Independent programmable RMS power meters for up to 12 channels are also included in this block  
of the device.  
Crest Factor Reduction (CFR)  
The GC5325 CFR block selectively reduces the peak-to-average ratio (PAR) of wideband digital signals provided  
in quadrature (I and Q) format, such as those used in third-generation (3G) code division multiple access  
(CDMA) wireless applications. The CFR block can reduce the PAR of W-CDMA Test Model 1 and Test Model 3  
signals down to 6.5 dB output PAR while still meeting all 3GPP requirements for ACLR, composite EVM, and  
peak code domain error (PCDE). The CFR block accepts input sampling rates up to 140 MSPS complex from the  
input interface.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
Fractional Farrow Resampler (FR)  
The CFR block output signal bandwidth is up to 40 MHz wide, sampled at up to 70 MSPS. However; the DPD  
block provides PA compensation over an expansion bandwidth of up to 140 MHz, using a complex sampling rate  
of up to 140 MSPS. To provide the requisite sampling rate of up to 140 MSPS at the input to DPD, the output of  
the CFR block must be resampled. The GC5325 performs this (nominally 2×) upsampling function using a  
Farrow filter resampler. The user-programmable Farrow resampler supports upsampling rates from 1× to 64×,  
with 16-bit precision on the interpolation ratio. It marks the transition of the input clock domain (driven by the  
input interface clock) to the transmit domain (driven by the DAC sampling clock).  
Digital Predistortion (DPD)  
The DPD block provides predistortion for up to Nth-order nonlinearities, and can correct multiple orders and  
lengths of PA memory effects. The predistortion correction terms are computed by an external processor (for  
example, TI TMS320C6727 DSP) based on PA feedback data captured in the GC5325. The external processor  
reads the captured data buffers from the GC5325 and writes back the newly computed DPD correction terms on  
a continuous basis. TI provides a base delivery of 'C6727 software to GC5325 customers that achieves a typical  
ACLR improvement of 20 dB to 30 dB or more when compared to a PA without DPD. The standard EMIF bus  
allows the user to provide an alternate DPD adaptation algorithm and DSP embodiment, if desired.  
Bulk Upconverter (BUC)  
The bulk upconverter block can interpolate the DPD block output by 1.5×, 2×, 3× with a complex output, or 6×  
with a real output. The complex-to-real converter block optionally modifies the DPD complex output stream into a  
real output stream. The bulk upconverter has flexible mixing options between its various interpolation stages.  
When used in combination, the bulk upconverter and the complex-to-real functions allow the GC5325 to output a  
16-bit real signal at up to 840 MSPS, or a complex signal at up to 420 MSPS. Next-generation data converters  
can accept sampling rates as high as 1 GSPS and sample widths of 16 bits. In a typical application, the bulk  
upconverter outputs a 737.28-MSPS real sampling rate (16 bits/sample) directly to the DAC on a modified center  
frequency of 184.32 MHz (1/4 of the 737.28-MSPS sampling rate). The bulk upconverter has multiple  
high-speed, low-voltage, single-ended/differential output interfaces to existing and future TI DACs.  
Feedback Path (FB)  
The feedback block accepts an external A/D converter input that represents the PA output signal. This feedback  
signal is processed by a feedback path that adjusts for gain, frequency, and phase anomalies in the RF-to-IF  
downconversion chain. The feedback path includes an 8-tap complex receive equalizer and lookup tables that  
can compensate for the nonlinearities in the RF-to-IF part of the feedback chain. The block also includes a  
real-to-complex conversion to facilitate signal processing. The GC5325 connects directly to the ADS5444,  
ADS5545, ADS5546, and ADS5517 among others, without requiring external components. The GC5325  
simplifies timing by providing a FIFO for each ADC port, sampling the input data using the ADC data-ready  
signal.  
Microprocessor Interface (MPU)  
The MPU interface is designed to interface with external memory interface (EMIF) ports on TI DSPs operating in  
asynchronous mode. It consists of a 16-bit bidirectional data bus, a 10-bit address bus, and RDB, WRB, OEB,  
and CEB control signals. The interface fully supports TI C55x™, C64x™ DSPs and, with minimal effort, supports  
the low-cost 'C6727 floating-point DSP.  
Smart Capture Buffers (SCB)  
The GC5325 has two capture buffers, each 4096 complex words deep, which are periodically read by the  
external coefficient update controller (DSP) in order to optimize the DPD coefficients. The first capture buffer can  
be used to capture:  
The output of the Farrow resampler; this is also called the reference signal.  
The feedback output; this represents the waveform as seen by the PA.  
The error output  
Testbus(31:16)  
The second capture buffer can be used to provide:  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
The output of the Farrow resampler; this is also called the reference signal.  
The feedback output; this represents the waveform as seen by the PA.  
The error output  
Testbus(15:0)  
The reference and feedback buffers are time-aligned by the GC5325, because there may be a delay of tens or  
even hundreds of samples between the transmitted signal and the feedback signal from the PA output. The  
capture controller can trigger a capture on several different metrics, including an above-threshold peak count or  
an average signal power value.  
Input and Output Syncs  
The GC5325 features multiple-user programmable input syncs. These are typically used as trigger mechanisms  
to activate features within the device. These triggers can be provided internally or through externally provided  
inputs. The input syncs can be used to trigger:  
Power measurements  
Initializing/loading the feedback, equalizer, LUTs, etc.  
Flush out data within the processing blocks of the device  
Feedback path tuner alignment  
Capturing and sourcing of data through SCBs  
Programmable Power Meters  
There are three power meter locations/functions within the GC5325. The first is a channel RMS power meter.  
The second power meter is located at the output of the CFR block, and the final power detector is similar to the  
CFR output power detector and is located at the Farrow resampler output. This power meter can measure RMS  
power integrated up to a million samples at the DPD sample rate.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
Pin Assignment and Descriptions  
GND Package  
(Bottom View)  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
VDD  
SHV  
A
B
C
D
E
F
VSS1 VSS1 VSS1 VSS1 FB1 FB5 FB9 FB11 FB15 FB17 FB21 FB25 FB27  
FB31 FB35 VSSA2 SYNCC BB15 BB11 BB7 BB3 BB0 VSS1 VSS1 VSS1  
FB30 FB34 VDDA2 SYNCB BBFR BB12 BB8 BB4 BB1 VSS1 VSS1 VDD1  
VDD  
SHV  
VDD1 VSS1 VSS1 VSS1 FB0 FB4 FB8 FB10 FB14 FB16 FB20 FB24 FB26  
ADC  
IREF  
VDD  
SHV  
VSS1 VDD1 VSS1 VSS1 NC FB3 FB7 VDD1 FB13  
VSS1 VSS1 VDD1 VSS1 NC FB2 FB6 VDD1 FB12  
VSS1 VSS1 VSS1 VDD1  
FB19 FB23 VDD1  
FB29 FB33 VDD1 SYNCA BBCLK BB13 BB9 BB5 BB2 VSS1 VDD1 VSS1  
ADC  
VREF  
VDD  
SHV  
SYNC  
OUT  
FB18 FB22 VDD1  
FB28 FB32 VSS1  
VDD1 BB14 BB10 BB6 VSS1 VDD1 VSS1 VSS1  
VDD1 VSS1 VSS1 VSS1  
VSS1 VSS1 VSS1 VDD1  
VDD1 VDD1 VSS1 VSS1  
VDD  
VSS1 VSS1 VSS1  
SHV  
VDD  
G
H
J
VSS1 VSS1 VSS1  
SHV  
UP  
UP  
UP  
NC  
NC VPP1 VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
ADDR2 ADDR1 ADDR0  
UP  
UP  
UP  
VPP1 NC  
NC VDD1  
ADDR5 ADDR4 ADDR3  
VDD  
VDD1  
SHV  
UP  
UP  
UP  
K
L
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ADDR8 ADDR7 ADDR6  
VDD  
SHV  
UP  
WRB  
ADDR9  
NC VDD1  
NC VDD1  
M
N
P
R
T
VDD1 OEB CEB RDB  
UP UP  
UP  
VDD  
VDD1  
SHV  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
DATA2 DATA1 DATA0  
VDD  
NC MFIO18 VDD1  
VSS1 VSS1  
SHV  
UP  
UP  
UP  
MFIO19 NC  
NC VDD1  
NC VDD1  
DATA5 DATA4 DATA3  
VDD  
SHV  
UP  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
VPP2  
DATA6  
VDD  
VDD1  
SHV  
UP  
UP  
U
V
W
Y
VPP2  
DATA8 DATA7  
UP  
UP  
UP  
NC VDD1  
NC VDD1  
DATA11DATA10 DATA9  
UP UP  
UP  
DATA14DATA13 DATA12  
VDD  
SHV  
UP  
VSS1 VSS1  
DATA15  
NC VSS1 VSS1 VDD1  
AA VSS1 VSS1 VSS1 VDD1  
AB VSS1 VSS1 VSS1 VDD1  
VDD1 VSS1 VSS1 VSS1  
VDD1 VDD1 VSS1 VSS1  
RESET VDD DPD  
SHV CLK  
DAC  
REFP  
AC VSS1 VSS1 VDD1  
VSS1 VDD1 TX2 TX6 TX10 TX14 VDDS VSS1  
TX25 TX29 TX33 TX37 VSS1 VDD1 VDD2 VSS1 VDD1 VSS1 VSS1  
B
DPD DPD  
IREF CLKC  
DAC  
REFN  
VDD  
SHV  
AD VSS1 VDD1 VSS1 VSS1  
AE VDD1 VSS1 VSS1 VSS1  
VSS1 VDDA1 TX3 TX7 TX11 TX15 VDDS VSS1  
TX24 TX28 TX32 TX36  
VDD1 VSS2 VSS1 VSS1 VDD1 VSS1  
DPD  
SYNCD  
VREF  
VDD  
SHV  
INTER-  
TX0 TX4 TX8 TX12 TX16 VDDS TX19 TX21 TX23 TX27 TX31 TX35 TRSTB TDI  
VSS1 VSS1 VSS1 VDD1  
RUPT  
SYNC  
TEST  
AF VSS1 VSS1 VSS1 VSS1 VSS1  
VSSA1 TX1 TX5 TX9 TX13 TX17 VSS1 TX18 TX20 TX22 TX26 TX30 TX34 TMS TCK TDO  
VSS1 VSS1 VSS1  
DC  
MODE  
= Baseband Input  
= Transmit Ouput  
= Miscellaneous  
= JTAG Interface  
= Feedback Input  
= Multi-Function Input/Output  
= NC  
= Microprocessor Interface  
= Power and Biasing  
P0077-01  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
Table 1. TERMINAL FUNCTIONS  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
NO.  
MICROPROCESSOR INTERFACE  
OEB  
M3  
M2  
M1  
L2  
I
I
I
I
I
Output enable  
Chip enable  
Read  
CEB  
RDB  
WRB  
Write  
UPADDR[9:0]  
L1, K3, K2, K1, J3, J2, J1, H3, H2, H1  
Microprocessor address  
Y1, W3, W2, W1, V3, V2, V1, U3, U2, T1, R3, R2, R1,  
N3, N2, N1  
UPDATA[15:0]  
INTERRUPT  
I/O  
O
Microprocessor data  
AE5  
Microprocessor interrupt  
POWER AND BIASING  
B1, B26, C2, C10, C14, C19, C25, D3, D8, D14, D19,  
D24, E4, E23, F3, F4, F23, H4, H23, J4, J23, K4, K23,  
L4, L23, M4, M23, N4, N23, P4, P23, R4, R23, T4,  
T23, U4, U23, V4, V23, W4, W23, Y23, AA4, AA23,  
AB3, AB4, AB23, AC3, AC6, AC19, AC24, AD2, AD6,  
AD25, AE1, AE26  
VDD1  
PWR 1.2-V supply  
A1, A2, A3, A23, A24, A25, A26, B2, B3, B23, B24,  
B25, C1, C3, C23, C24, C26, D1, D2, D4, D10, D23,  
D25, D26, E1, E2, E3, E24, E25, E26, F1, F2, F24,  
F25, F26, G1, G2, G3, G24, G25, G26, P1, P2, Y2,  
Y3, Y24, Y25, AA1, AA2, AA3, AA24, AA25, AA26,  
AB1, AB2, AB24, AB25, AB26, AC1, AC2, AC4, AC7,  
AC13, AC20, AC25, AC26, AD1, AD3, AD4, AD13,  
AD20, AD23, AD24, AD26, AE2, AE3, AE4, AE23,  
AE24, AE25, AF1, AF2, AF3, AF14, AF22, AF23,  
AF24, AF25, AF26  
VSS1  
PWR Ground  
VDD2  
VSS2  
VDDS  
AC5  
NC  
NC  
Do not connect  
Do not connect  
AD5  
AC14, AD14, AE14  
PWR 1.8-V supply  
A13, B13, C13, D13, G4, G23, K24, L3, N24, P3, T3,  
U24, Y4, AC22, AD7, AE20  
VDDSHV  
PWR 3.3-V supply  
VDDA1  
AD19  
AF20  
B10  
PWR 1.2-V supply (requires filtering)  
PWR Ground (requires filtering)  
PWR 1.2-V supply (requires filtering)  
PWR Ground (requires filtering)  
PWR 1.2-V supply  
VSSA1  
VDDA2  
VSSA2  
A10  
VPP1  
H24, J26  
T2, U1  
AD22  
AE22  
AC12  
AD12  
C17  
VPP2  
PWR 1.2-V supply  
DPDIREF  
DPDVREF  
DACREFP  
DACREFN  
ADCIREF  
ADCVREF  
PWR DPD bias 1 kto VSS  
PWR DPD bias to VDD  
PWR DAC bias 50-to VSS  
PWR DAC bias 50-to VDDS  
PWR ADC bias 1 kto VSS  
PWR ADC bias to VDD  
D17  
BASEBAND INPUT  
A8, D7, C7, B7, A7, D6, C6, B6, A6, D5, C5, B5, A5,  
C4, B4, A4  
BB[15:0]  
I
Baseband input signal  
BBCLK  
C8  
I
I
I
Baseband input clock  
BBFR  
B8  
Baseband frame for sample and channel timing  
LSBs for 18-bit baseband input signal [-2, -1]  
MFIO[19:18]  
R26, P24  
MISCELLANEOUS  
RESETB  
AC23  
I
Chip reset (active-low .Required.)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
Table 1. TERMINAL FUNCTIONS (continued)  
TERMINAL  
I/O  
DESCRIPTION  
NAME  
SYNCA  
NO.  
C9  
I
I
Programmable general-purpose sync  
Programmable general-purpose sync  
Programmable general-purpose sync  
Programmable general-purpose sync  
Complementary of SYNCD  
SYNCB  
B9  
SYNCC  
A9  
I
SYNCD  
AE21  
AF21  
D9  
I
SYNCDC  
SYNCOUT  
DPDCLK  
DPDCLKC  
TESTMODE  
I
O
I
Programmable general-purpose sync output  
Clock to DPD  
AC21  
AD21  
AF4  
I
Complementary clock to DPD  
Tie to ground  
I
JTAG INTERFACE  
TCK  
AF6  
I
I
JTAG clock  
TDI  
AE6  
AF5  
AE7  
AF7  
JTAG data in  
TDO  
TRSTB  
TMS  
O
I
JTAG data out  
JTAG reset (active-low); pull down if JTAG is not used.  
JTAG mode select  
I
SIGNALS (See mode selection guide for pin assignment)  
AC8, AD8, AE8, AF8, AC9, AD9, AE9, AF9, AC10,  
AD10, AE10, AF10, AC11, AD11, AE11, AF11, AE12,  
TX[37:0]  
AF12, AE13, AF13, AF15, AE15, AD15, AC15, AF16,  
AE16, AD16, AC16, AF17, AE17, AD17, AC17, AF18,  
AE18, AD18, AC18, AF19, AE19  
O
Transmit to DAC(s)  
A11, B11, C11, D11, A12, B12, C12, D12, A14, B14,  
A15, B15, C15, D15, A16, B16, C16, D16, A17, B17,  
A18, B18, C18, D18, A19, B19, A20, B20, C20, D20,  
A21, B21, C21, D21, A22, B22  
FB[35:0]  
NC  
I
Feedback from ADC(s)  
No connect  
Y26, W24, W25, W26, V24, V25, V26, U25, U26, T24,  
T25, T26, R24, R25, P25, P26, N25, N26, M24, M25,  
M26, L24, L25, L26, K25, K26, J24, J25, H25, H26,  
D22, C22  
10 W  
VDD1  
VDDA1 or VDDA2  
0.01 mF  
1 mF  
10 W  
VSS1  
VSSA1 or VSSA2  
S0315-01  
Figure 1. GC5325 PLL Power Supply Filter  
The two PLLs require an analog supply. These can be generated by filtering the core digital supply (Vdd). A  
representative filter is shown in Figure 1. The two PLLs should have separate filters and be located as close as  
reasonable to their respective pins (especially the bypass capacitors). The ferrite beads should be series 50R  
(similar to Murata P/N: BLM31P500SPT Description: IND FB BLM31P500SPT 50R 1206). In particular, supply  
VDDA1 must be less than or equal to VDD1 when VDD1 is at the low end of the required range. The series  
resistor assures this condition is met.  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
 
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
Table 2. GC5325 TX Interface Options  
PIN FUNCTION  
PIN NAME  
I/O  
DESCRIPTION  
TX (Single-Channel HSTL)  
TX10, TX6, TX2, TX0, TX4, TX8, TX12, TX16, TX23, TX27,  
TX31, TX35, TX32, TX36, TX29, TX25  
DAC[15:0]P  
DAC[15:0]N  
O
O
DAC positive output  
DAC negative output  
TX11, TX7, TX3, TX1, TX5, TX9, TX13, TX17, TX22, TX26,  
TX30, TX34, TX33, TX37, TX28, TX24  
DACCLK  
TX21  
TX20  
TX14  
TX15  
O
O
O
O
Clock to DAC  
DACCLKC  
DACSYNCP  
DACSYNCN  
Complementary clock to DAC  
Positive output data sync  
Negative output data sync  
Table 3. GC5325 FB Interface Options  
PIN FUNCTION  
PIN NAME  
I/O  
DESCRIPTION  
Feedback (Single-Channel SDR LVDS or DDR LVDS)  
FB2, FB4, FB6, FB8, FB10, FB12, FB14, FB16, FB20,  
FB22, FB24, FB26, FB28, FB30, FB32, FB34  
ADC[15:0]P  
ADC[15:0]N  
I
I
ADC positive feedback from PA output  
ADC negative feedback from PA output  
FB3, FB5, FB7, FB9, FB11, FB13, FB15, FB17, FB21,  
FB23, FB25, FB27, FB29, FB31, FB33, FB35  
ADCCLK  
ADCLKC  
FB0  
FB1  
I
I
Clock from ADC  
Complementary clock from ADC  
Feedback (Single- or Dual-Channel DDR LVDS)  
ADCA[7:0]P  
ADCA[7:0]N  
ADCACLK  
FB2, FB4, FB6, FB8, FB10, FB12, FB14, FB16  
I
I
I
I
I
I
I
I
ADC-A positive feedback from PA output  
ADC-A negative feedback from PA output  
Clock from ADC-A  
FB3, FB5, FB7, FB9, FB11, FB13, FB15, FB17  
FB0  
ADCACLKC  
ADCB[7:0]P  
ADCB[7:0]N  
ADCBCLK  
FB1  
Complementary clock from ADC-A  
ADC-B positive feedback from PA output  
ADC-B negative feedback from PA output  
Clock from ADC-B  
FB20, FB22, FB24, FB26, FB28, FB30, FB32, FB34  
FB21, FB23, FB25, FB27, FB29, FB31, FB33, FB35  
FB18  
FB19  
ADCBCLKC  
Complementary clock from ADC-B  
MPU Interface Guidelines  
The following section describes the hardware interface between the recommended microprocessor, external  
memory, and the GC5325. Users may select a microprocessor that meets their specific system requirements.  
Although the hardware can support multiple options, the recommended TMS320C6727 DSP is also fully  
supported with host control and adaptation software. Figure 2 illustrates the hardware interface between the DSP  
to GC5325 and SDRAM. The external memory is required to accommodate the computational efforts of the  
adaptation algorithm. Although the system evaluation kit suggests dual parallel 64-Mb/PC133 (128-Mb) memory  
modules provided by Samsung (K4S641632H-TC(L)75), other memory alternatives are available. The processing  
speed or convergence time of the adaptation algorithm is not strictly limited by the external memory speed rating.  
The use of an external inverter, with minimal propagation delay, is required for OEB of the GC5325; this device is  
necessary when using a TMS320C6727 DSP. Additional documentation for the hardware interface is available in  
the Hardware Designer’s Resource Guide application report (SPRAA87) and TMS320C672x DSP External  
Memory Interface (EMIF) user's guide (SPRU711).  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
EM_D[31:0]  
EM_A[12:0]  
EM_BA[1:0]  
EM_CS[2]B  
EM_RWB  
EM_WEB  
UPDATA[15:0]  
UPADDR[9:1]  
UPADDR[0]  
CEB  
GC5325  
OEB  
WRB  
C6727 DSP  
Asynchronous  
Mode  
EM_OEB  
RDB  
AXRO[7]  
INTERRUPT  
EM_CS[0]B  
EM_WE_DQM[3:0]B  
EM_CLK  
DQ[31:16] / DQ[15:0]1  
A[11:0]  
EM_CKE  
CSB  
EM_RASB  
DQM[3:0]  
EM_CASB  
SDRAM  
1M ´ 16 ´ 4  
(64Mb) ´ 2  
BA[1:0]  
CLK  
CKE  
RASB  
CASB  
WEB  
B0280-02  
NOTE: Dual SDRAM modules are used, upper and lower EMIF data lines are split to access each respective memory  
module.  
Figure 2. DSP to GC5325/SDRAM Interface Specifications  
In a typical implementation, the system configuration software resides locally (in nonvolatile memory) to ensure  
proper operation at power up. The adaptation algorithm should also reside in the same location; at power up, the  
host should transfer/load the software from the nonvolatile memory (FLASH) to the 'C6727 DSP. The size of the  
software required to support the GC5325 and 'C6727 should be no more than 128 Mb (16 MB); however, this  
allocation is subject to change pending algorithm improvements. The suggested host-to-DSP interface is through  
the UHPI port. See Chapter 0.  
The port can be configured into multiple modes of data transfer; the Multiplexed Host Address/Data Dual  
Halfword Mode is suggested for this application.  
Additional specifications and documents for the TMS320C6727 DSP are available from Texas Instruments at:  
http://focus.ti.com/docs/prod/folders/print/tms320c6727b.html.  
Typical Baseband Interface  
The GC5325 baseband interface receives time-interleaved I and Q data for each channel over the 16- or 18-bit  
input bus. The BB[15..0] bus is the 16-bit interface or the top 16 bits of the 18-bit interface. The frame strobe  
BBFS signal is used to identify the first channel I data. The data is input in channel order, I then Q. The  
baseband clock is used to register the interleaved IQ data and frame strobe.  
The hardware sync signals SyncA, SyncB, and SyncC are used to time-align internal GC5325 operations. A  
0-to-1 transition clocked by BBClock is an active sync signal.  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
Customer  
Baseband-Data  
Processor  
GC5325  
FRAME STROBE  
BBFR  
BASEBAND  
DATA[15..0]  
BB[15..0]  
BASEBAND  
DATA[–1..–2]  
MFIO[19..18]  
SYNC-HW1  
SYNC-HW2  
SYNC-HW3  
SYNC A  
SYNC B  
SYNC C  
BASEBAND  
CLOCK  
BB CLK  
B0292-02  
Figure 3. Typical Baseband Interface  
GENERAL SPECIFICATIONS  
ABSOLUTE MAXIMUM RATINGS  
VALUE  
UNIT  
V
VDD, VDDA  
VDDS  
Core supply voltage  
–0.3 to 1.32  
–0.3 to 2  
Digital supply voltage for TX  
Digital supply voltage  
V
VDDSHV  
VIN  
–0.3 to 3.6  
–0.5 to VDDSHV + 0.5  
–20 to 20  
V
Input voltage (under/overshoot)  
Clamp current for an input/output  
Storage temperature  
V
mA  
°C  
°C  
Tstg  
–65 to 150  
300  
Lead soldering temperature, 10 seconds  
ESD Classification Class 2 (Required 2-kV HBM, 500-V CDM) (Passed 2.5-kV  
HBM, 500-V CDM, 200-V MM)  
Moisture sensitivity Class 3 (1 week floor life at 30°C/60% H)  
Reflow conditions JEDEC standard  
260  
C  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
VDD, VDDA2, VPP Core supply voltages.  
1.14  
1.2  
1.26  
V
Note VDDA2 VDD  
(1)  
VDDA1  
VDDS  
Analog supply for DPD PLL  
Digital supply voltage for TX  
Digital supply voltage  
See  
1
1.71  
3.15  
1.1  
1.8  
3.3  
VDD  
1.89  
3.45  
V
V
V
VDDSHV  
IDD, IDDA1, IDDA2  
IPP  
,
Combined supply current for Vdd, Vdda1,  
Vdda2, and VPP  
3
A
IDDS  
IDDSHV  
TC  
Digital supply current for TX  
Digital supply current  
Case temperature  
0.25  
0.3  
85  
A
A
(2)  
(3)  
See  
See  
-40  
30  
°C  
°C  
TJ  
Junction temperature  
105  
(1) VDDA1 must be less than VDD1 when VDD1 is low. See recommended filtering circuit in Figure 1. Maximum observed current on  
VDDA1 is 8 mA.  
(2) Chip specifications in are production tested to 90°C case temperature. QA tests are performed at 85°C.  
(3) Thermal management may be required for full-rate operation. Sustained operation at elevated temperatures reduces long-term reliability.  
Lifetime calculations based on maximum junction temperature of 105°C.  
THERMAL CHARACTERISTICS  
PARAMETER  
Thermal resistance, junction-to-ambient (still air)  
Theta junction to ambient (1 m/s)  
352 BGA at 4 W  
UNITS  
°C/W  
°C/W  
°C/W  
°C/W  
RθJA  
15  
RθJMA1  
RθJC  
11.8  
0.92  
5.3  
Thermal resistance, junction-to-case  
Thermal resistance, junction-to-board  
RθJB  
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
GENERAL ELECTRICAL CHARACTERISTICS  
Describes the electrical characteristics for the baseband interface, multifunction I/O (MFIO), DPD clock and fast sync, MPU  
and JTAG interfaces over recommended operating conditions. Device is production tested at 90C for the given specification  
and characterized at –40C (unless otherwise noted).  
PARAMETER  
CMOS INTERFACE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIL  
CMOS voltage input, low  
CMOS voltage input, high  
CMOS voltage output, low  
CMOS voltage output, high  
Pullup current  
0.8  
VDDSHV  
0.5  
V
V
VIH  
VOL  
VOH  
2
IOL = 2 mA  
IOH = –2 mA  
VIN = 0 V  
V
2.4  
40  
VDDSHV  
200  
V
|IPU  
|
100  
µA  
µA  
|IIN  
|
Leakage current  
VIN = 0 or VIN = VDDSHV  
5
DAC INTERFACE (DAC P/N[15:0])  
Output differential swing,  
VO(diff)  
(1)  
(1)  
250  
mV  
mV  
| VO(diff) | = | VOH – VOL  
|
Common mode voltage,  
(VOH + VOL)/2  
V(COMM)  
1000  
LVDS INTERFACE (FB[35:0], DPDCLK/C, SYNCD/C)  
Vi  
Input voltage range  
0
250  
90  
2000  
mV  
mV  
0 < Vi < 2000 mV  
Input differential voltage,  
|Vpos – Vneg|  
Vi(diff)  
1000 mV < Vi < 1400 mV, FB[35:0] only  
RIN  
Input differential impedance  
80  
120  
2.2  
POWER SUPPLY  
Idyn Core current  
(2)  
See  
A
(1) HSTL output levels are measured at 675 Mb/s delay and with 100-load from P to N. Drive strength set to 0x360. Contact TI for  
operations above 675 Mb/s.  
(2) Operating at 280 MHz core, 840 TX port, maximum filtering, nominal supplies  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
GENERAL SWITCHING CHARACTERISTICS  
Describes the electrical characteristics for the baseband interface, MFIO, Fast Sync, and MPU interfaces over recommended  
operating conditions (unless otherwise noted)  
PARAMETER  
BASEBAND INTERFACE  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
fCLK(BB)  
Baseband input clock frequency  
25  
140  
MHz  
ns  
BB[15:0], BBFR, SYNCA, SYNCB,  
and SYNCC; MFIO18/19  
tsu(BB)  
Input data setup time before BBCLK↑  
1.3  
BB[15:0], BBFR, SYNCA, SYNCB,  
and SYNCC; MFIO18/19  
th(BB)  
Input data hold time after BBCLK↑  
Input data hold time after BBCLK↑  
1.5  
2
ns  
ns  
Valid for SYNCA, SYNCB, and  
SYNCC  
th(SYNCA, -B, -C)  
DutyCLK(BB)  
tjCLK(BB)  
Duty cycle  
30%  
70%  
Baseband input clock cycle-to-cycle jitter(1)  
–2.5%  
2.5%  
(1) Percent of baseband PLL clock period. The baseband PLL clock is typically 2×–4× the baseband clock frequency.  
1/fCLK(BB)  
BBCLK  
I(ch = 1, t = 1)  
Q(ch = 1, t = 1)  
Q(ch = N, t = 1)  
I(ch = 1, t = 2)  
BB[15:0]  
tsu(BB)  
th(BB)  
BBFR  
T0284-01  
Figure 4. Baseband Timing Specifications (ex. Four Interleaved I/Q Channels)  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
Table 12. DPD CLOCK AND FAST SYNC SWITCHING CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
100  
30%  
0.2  
MAX  
280  
UNIT  
fCLK(DPD)  
DPD input clock frequency  
DPD input clock duty cycle  
Input hold time after DPDCLK↑  
Input setup time after DPDCLK↑  
Input hold time after DPDCLK↑  
Input setup time after DPDCLK↑  
DPD clock cycle-to-cycle jitter  
MHz  
DutyCLK(DPD)  
th(SYNCD)  
70%  
See(1)  
See(1)  
ns  
ns  
ns  
ns  
tsu(SYNCD)  
0.4  
th(SYNCA, -B, -C)  
tsu(SYNCA, -B, -C)  
tjCLK(DPD)  
2
0.4  
–2.5%  
2.5%  
(1) SYNCD is the preferred sync for DPD clock and clock domain.  
DPDCLK  
DPDCLKC  
SYNCDC  
SYNCD  
tsu(SYNCD)  
th(SYNCD)  
SYNCA  
SYNCB  
SYNCC  
tsu(SYNCA, -B, -C)  
th(SYNCA, -B, -C)  
T0286-01  
Figure 5. DPD Clock and Fast Sync Timing Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
MPU SWITCHING CHARACTERISTICS (READ)  
PARAMETER  
TEST CONDITIONS  
WRB is HIGH.  
MIN  
5
MAX  
UNIT  
ns  
tsu(AD)  
tsu(CEB)  
tsu(OEB)  
td(RD)  
ADDR setup time to RDB↓  
CEB setup time to RDB↓  
WRB is HIGH.  
WRB is HIGH.  
WRB is HIGH.  
WRB is HIGH.  
7
ns  
OEB setup time to RDB↓  
2
ns  
DATA valid time after RDB↓  
14  
ns  
th(RD)  
ADDR hold time to RDB↑  
2
0
2
7
ns  
OEB, CEB hold time to RDB↑  
OEB hold time to RDB↑  
tHIGH(RD)  
tZ(RD)  
Time RDB must remain HIGH between READs.  
DATA goes high-impedance after OEBor RDB.  
WRB is HIGH(1)  
WRB is HIGH(1)  
.
.
ns  
ns  
7
(1) Controlled by design and process and not directly tested  
RDB  
tHIGH(RD)  
WRB  
th(OEB)  
tsu(OEB)  
OEB  
tsu(CEB)  
CEB  
tsu(AD)  
ADDR  
3-State  
DATA  
td(RD)  
tZ(RD)  
th(RD)  
T0287-01  
Figure 6. MPU READ Timing Specifications  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
MPU SWITCHING CHARACTERISTICS (WRITE)  
PARAMETER  
TEST CONDITIONS  
MIN  
5
MAX  
UNIT  
DATA and ADDR setup time to WRB↓  
CEB setup time to WRB↓  
tsu(WR)  
OEB and RDB are HIGH.  
7
ns  
OEB setup time to WRB↓  
2
DATA and ADDR hold time after WRB↑  
OEB and CEB hold time after WRB↑  
Time WRB and CEB must remain simultaneously LOW  
Time CEB or WRB must remain HIGH between WRITEs.  
2
th(WR)  
OEB and RDB are HIGH.  
ns  
0
tlow(WR)  
thigh(WR)  
OEB and RDB are HIGH.  
OEB and RDB are HIGH.  
15  
10  
ns  
ns  
RDB  
tlow(WR)  
thigh(WR)  
WRB  
OEB  
th(WR)  
tsu(WR)  
CEB  
ADDR  
DATA  
T0288-01  
Figure 7. MPU WRITE Timing Specifications  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
JTAG SWITCHING CHARACTERISTICS  
PARAMETER  
JTAG clock frequency  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
MHz  
ns  
fTCK  
50  
tp(TCKL)  
tp(TCKH)  
tsu(TDI)  
th(TDI)  
JTAG clock low period  
10  
10  
1
JTAG clock high period  
ns  
Input data setup time before TCK↑  
Input data hold time after TCK↑  
Output data delay from TCK↓  
Valid for TDI and TMS  
ns  
Valid for TDI and TMS  
6
ns  
td(TDO)  
8
ns  
1/fTCK  
TCK  
tp(TCKH)  
tp(TCKL)  
TDI  
tsu(TDI)  
th(TDI)  
TDO  
td(TDO)  
T0289-01  
Figure 8. JTAG Timing Specifications  
ELECTRICAL CHARACTERISTICS  
TX SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HSTL MODE – DDR ex. DAC5682  
(1)  
fCLK(DAC)  
DAC output clock frequency  
RL = 100 Ω  
420  
MHz  
(1) Because the output clock is DDR, this represents 840 MSPS real or 420 MSPS complex.  
1/fCLK(DAC)  
DACCLKC  
DACCLK  
DAC[15:0]P  
Q
I
I
DAC[15:0]N  
T0290-02  
Figure 9. TX Timing Specifications (HSTL – DDR)  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
LVDS SWITCHING CHARACTERISTICS  
Over recommended operating conditions (unless otherwise noted). The following table uses a shorthand nomenclature, NxM.  
N means the number of differential pairs used to transmit data from one ADC and M means the number of bits sent serially  
down each LVDS pair. Thus, 8x2 means 8 LVDS pairs each containing 2 bits of information sent serially.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16x1 SDR LVDS MODE ex. ADS5444  
(1)  
fCLK(ADC)  
tsu(ADC[#]P)  
th(ADC[#]P)  
ADC interface clock frequency  
See  
See  
See  
280  
MHz  
ps  
(1) (2)  
(1) (2)  
Input data setup time before CLK↑  
Input data hold time after CLK↑  
300  
600  
ps  
16x1 DDR LVDS MODE ex. ADS5463  
(1)  
fCLK(ADC)  
tsu(ADC[#]P)  
th(ADC[#]P)  
ADC interface clock frequency  
See  
See  
See  
140  
MHz  
ps  
(1) (2)  
(1) (2)  
Input data setup time before CLK↑↓  
Input data hold time after CLK↑↓  
100  
1200  
ps  
8x2 DDR LVDS MODE ex. ADS5545  
(1)  
fCLK(ADCA)  
ADCA interface clock frequency  
See  
280  
280  
MHz  
ps  
tsu(ADCA[#/2]P)  
th(ADCA[#/2]P)  
fCLK(ADCB)  
Input data setup time before CLK↑↓  
Input data hold time after CLK↑↓  
ADCB interface clock frequency  
Input data setup time before CLK↑↓  
Input data hold time after CLK↑↓  
See (1) (3). For port A  
See (1) (3). For port A  
430  
260  
ps  
(1)  
See  
MHz  
ps  
tsu(ADCB[#/2]P)  
th(ADCB[#/2]P)  
See (1) (4). For port B  
See (1) (4). For port B  
800  
400  
ps  
(1) Specifications are limited by GC5325 performance and may exceed the example ADC capabilities for the given interface.  
(2) Setup and hold measured for ADC[15:0]P, ADC[15:0]N valid for (VOD > 250 mV) to/from ADCCLK and ADCCLKC clock crossing (VOD  
=
0).  
(3) Setup and hold measured for ADCA[7:0]P, ADCA[7:0]N valid for (VOD > 250 mV) to/from ADCACLK and ADCACLKC clock crossing  
(VOD = 0).  
(4) Setup and hold measured for ADCB[7:0]P, ADCB[7:0]N valid for (VOD > 250 mV) to/from ADCBCLK and ADCBCLKC clock crossing  
(VOD = 0).  
1/fCLK(ADC)  
CLK  
CLKC  
ADC[15:0]P  
ADC[15:0]N  
tsu(ADC[#]P)  
th(ADC[#]P)  
T0286-02  
Figure 10. LVDS Timing Specifications (16 × 1 SDR LVDS)  
1/fCLK(ADC)  
CLK  
CLKC  
tsu(ADC[#]P)  
ADC[15:0]P  
ADC[15:0]N  
th(ADC[#]P)  
T0292-01  
Figure 11. LVDS Timing Specifications (16 × 1 DDR LVDS)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): GC5325  
GC5325  
SLWS215JANUARY 2009.............................................................................................................................................................................................. www.ti.com  
1/fCLK(ADCx)  
CLK  
CLKC  
ADC[# bits/2]P  
Even Bits  
Even Bits  
Odd Bits  
Odd Bits  
ADC[# bits/2]N  
tsu(ADCx[#/2]P)  
th(ADCx[#/2]P)  
t = N  
t = N + 1  
T0293-01  
Figure 12. LVDS Timing Specifications (8 × 2 DDR LVDS)  
APPENDIX A  
See the TMS320C672x DSP Universal Host Port Interface (UHPI) reference guide (SPRU719).  
ADDR/DATA BUS (16-Bit)  
DATA READY  
UHPI_HD[15:0]  
UHPI_HRDYB  
HALFWORD STROBE  
CHIP SELECT  
UHPI_HD[16]/HHWIL  
UHPI_HCS  
BYTE ENABLE (1)  
C6727 DSP  
Asynchronous  
Mode  
UHPI_HBE[1:0]B  
UHPI_HCNTL[1:0]  
Host  
Processor  
CONTROL INPUT (2)  
FUNDAMENTAL STROBE  
READ/WRITE CONTROL  
DSP INTERRUPT  
UHPI_HCSB/UHPI_HDS[2:1]B  
UHPI_HRWB  
AMUTE2/HINTB  
AFSR2  
HOST INTERRUPT  
B0281-01  
(1) Byte enables are aplicable to single HPID accesses. All byte enables must be active during HPID with post-increment  
(burst) UHPI accesses.  
(2) Control inputs selecting between HPIA, HPIC, HPID, and HPID with post-increment accesses.  
Figure 13. Host-to-DSP Interface (Multiplexed Host Address/Data Dual Halfword)  
GLOSSARY OF TERMS  
3G  
Third generation (refers to next-generation wideband cellular systems that use CDMA)  
3GPP  
3GPP2  
ACLR  
ACPR  
ADC  
Third generation partnership project (W-CDMA specification, www.3gpp.org)  
Third generation partnership project 2 (cdma2000 specification, www.3gpp2.org)  
Adjacent channel leakage ratio (measure of out-of-band energy from one CDMA carrier)  
Adjacent channel power ratio  
Analog-to-digital converter  
BW  
Bandwidth  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): GC5325  
GC5325  
www.ti.com .............................................................................................................................................................................................. SLWS215JANUARY 2009  
CCDF  
CDMA  
CEVM  
CFR  
CMOS  
DAC  
dB  
Complementary cumulative distribution function  
Code division multiple access (spread spectrum)  
Composite error vector magnitude  
Crest factor reduction  
Complementary metal oxide semiconductor  
Digital-to-analog converter  
Decibels  
dBm  
DDR  
DSP  
EVM  
FIR  
Decibels relative to 1 mW (30 dBm = 1 W)  
Dual data rate (ADC output format)  
Digital signal processing or digital signal processor  
Error vector magnitude  
Finite impulse response (type of digital filter)  
In-phase and quadrature (signal representation)  
Intermediate frequency  
I/Q  
IF  
IIR  
Infinite impulse response (type of digital filter)  
Joint Test Action Group (chip debug and test standard 1149.1)  
Local oscillator  
JTAG  
LO  
LSB  
Least-significant bit  
Mb  
Megabits (divide by 8 for megabytes MB)  
MSB  
MSPS  
PA  
Most-significant bit  
Megasamples per second (1×106 samples/s)  
Power amplifier  
PAR  
PCDE  
PDC  
PDF  
RF  
Peak-to-average ratio  
Peak code domain error  
Peak detection and cancellation (stage)  
Probability density function  
Radio frequency  
RMS  
SDR  
SEM  
SNR  
UMTS  
W-CDMA  
WiBRO  
WiMAX  
Root mean square (method to quantify error)  
Single data rate (ADC output format)  
Spectrum emission mask  
Signal-to-noise ratio (usually measured in dB or dBm)  
Universal mobile telephone service  
Wideband code division multiple access (synonymous with 3GPP)  
Wireless broadband (Korean initiative IEEE 802.16e)  
Worldwide Interoperability of Microwave Access (IEEE 802.16e)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): GC5325  
PACKAGE OPTION ADDENDUM  
www.ti.com  
3-Feb-2009  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
GC5325IZND  
ACTIVE  
BGA  
ZND  
352  
40  
Pb-Free  
(RoHS)  
SNAGCU  
Level-3-260C-168 HR  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
Medical  
Security  
Logic  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
Power Mgmt  
power.ti.com  
Transportation and  
Automotive  
www.ti.com/automotive  
Microcontrollers  
RFID  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
Wireless  
www.ti.com/video  
www.ti.com/wireless-apps  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
TI E2E Community Home Page  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2011, Texas Instruments Incorporated  

相关型号:

GC5328

GC5328 Low-Power Wideband Digital Predistortion Transmit Processor
TI

GC5328IZER

Wideband Transmit IC Solution with integrated Digital Predistortion, Digital Upconversion 484-BGA -40 to 85
TI

GC5330

Wideband Transmit-Receive Digital Signal Processors
TI

GC5330IZEV

Wideband Transmit-Receive Digital Signal Processors
TI

GC5337

Wideband Transmit-Receive Digital Signal Processors
TI

GC5337IZEV

Wideband Transmit-Receive Digital Signal Processors
TI

GC55

High Value Thick Film Resistors
TTELEC

GC554M7FI

High Value Thick Film Resistors
TTELEC

GC554M7JI

High Value Thick Film Resistors
TTELEC

GC562

GC562 - Telecoil Preamplifier
ETC

GC570

GC570 - DynamEQ? II WDRC IC
ETC

GC5732C42

Gunn Diode, 8GHz Min, 0.4W P(O), Continuous Wave,
ASI