HD3SS460IRHRR [TI]

USB Type-C 交替模式 4x6 差分开关 | RHR | 28 | -40 to 85;
HD3SS460IRHRR
型号: HD3SS460IRHRR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

USB Type-C 交替模式 4x6 差分开关 | RHR | 28 | -40 to 85

开关
文件: 总39页 (文件大小:2142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
HD3SS460 4 x 6 通道 USB Type-C™交替模式 MUX  
1 特性  
3 说明  
提供面向 USB Type-CTM 生态系统的 MUX 解决方  
HD3SS460 是一款高速双向无源开关,可采用复用或  
1
案,其中包括交替模式 (AM)  
解复用两种配置。该器件可通过负载点 (POL) 控制引  
脚进行切换,从而适应连接器换向。该器件还可通过  
AMSEL 控制引脚来实现双通道数据/双通道视频与所有  
四通道视频的复用。  
提供多种通道选择选项,其中包括 USBSS、双通  
AM 和四通道 AM  
5 Gbps USB3.1 1 代和包含 5.4 Gbps  
DisplayPort 1.2a AM 兼容  
该器件还针对低速引脚提供了交叉点 MUX,可满足可  
换向连接器实现的需求。  
与源设备/主机和接收设备/设备应用 兼容  
针对低速 SBU 引脚提供交叉点 MUX  
双向复用/解复用差动开关  
HD3SS460 是一款通用模拟差分无源开关,适用于所  
有高速接口 应用, 前提条件是该应用在 0V 2V 共  
模电压范围内发生偏置并且具有幅值高达 1800 mVpp  
的差分信令。该器件采用自适应跟踪,可确保信道在整  
个共模电压范围内保持不变。  
支持 0V 2V 共模电压  
功耗较低,关断电流和工作电流分别为 1μA 和  
0.6mA  
单电源电压 VCC3.3V±10%  
工业温度范围:–40°C 85°C  
该器件具有出色的动态特性,可在信号眼图衰减最小的  
情况下实现高速转换,并且附加抖动极少。该器件在工  
作模式下的功耗 < 2mW,关断模式下的功耗 < 5µW  
(可通过 EN 引脚切换模式)。  
2 应用  
可换向 USB Type-CTM 生态系统  
平板电脑、笔记本电脑、监视器、电话  
USB 主机和设备  
器件信息(1)  
扩展坞  
器件型号  
HD3SS460  
封装  
封装尺寸(标称值)  
QFN (RHR) (28)  
3.50mm x 5.50mm  
HD3SS460I  
HD3SS460  
HD3SS460I  
QFN (RNH) (30)  
2.50mm x 4.50mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
sp  
简化电路原理图  
应用  
SSRX SSTX  
USB Device/  
USB Host  
Hub  
C_SS[RX/TX][1/2]  
SS RX/TX  
SS RX/TX  
CRX1  
LnD  
LnC  
HD3SS460  
HD3SS460  
CTX1  
CTX2  
CRX2  
High Speed  
MUX  
4-6  
X-point  
MUX  
4-6  
X-point  
MUX  
USB  
TypeC  
Switches  
LnB  
LnA  
4/2 Ln DP  
AUX  
AUX  
4/2 Ln DP  
SBU1/2  
AMSEL  
POL  
EN  
DP Sink/ MST  
Hub  
DP Source  
VCC  
GND  
SBU1  
SBU2  
Copyright © 2016, Texas Instruments Incorporated  
Low Speed  
MUX  
CSBU1  
CSBU2  
Switches  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEM7  
 
 
 
 
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 14  
9.1 Application Information............................................ 14  
9.2 USB SS and DP as Alternate Mode ...................... 14  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings ............................................................ 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics........................................... 7  
7.6 High Speed Port Performance Parameters .............. 8  
7.7 High Speed Signal Path Switching Characteristics .. 8  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 25  
12 器件和文档支持 ..................................................... 27  
12.1 接收文档更新通知 ................................................. 27  
12.2 社区资源................................................................ 27  
12.3 ....................................................................... 27  
12.4 静电放电警告......................................................... 27  
12.5 Glossary................................................................ 27  
13 机械、封装和可订购信息....................................... 27  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (December 2016) to Revision D  
Page  
Deleted R187 from Figure 16 .............................................................................................................................................. 21  
Deleted R187 from Figure 19. .............................................................................................................................................. 23  
Changes from Revision B (June 2016) to Revision C  
Page  
已将 QFN (RNH) (30) 添加至器件信息............................................................................................................................... 1  
Added the RNH package option to the Device Comparison Table table ............................................................................... 4  
Added the RNH package option to the Pin Configuration and Functions section.................................................................. 5  
Changed the Description of pins LnBn, p, LnCn, p, LnDn, p, SSTXn, p, and SSRXn, p From: positive, negative To:  
negative, positive in the Pin Functions table .......................................................................................................................... 5  
Changed the Supply voltage MIN value From: 3.0 V To: 2.7 V in the Recommended Operating Conditions table.............. 6  
Added the RNH package option to the Thermal Information table ....................................................................................... 6  
Changed VIH to include a separate line entry for POL pin in the Electrical Characteristics table .......................................... 7  
Changes from Revision A (March 2015) to Revision B  
Page  
Changed text and Figure 3, Figure 4 in the USB SS and DP as Alternate Mode section for clarity. ................................. 14  
Added Figure 5 ..................................................................................................................................................................... 15  
Added Figure 6 ..................................................................................................................................................................... 16  
Deleted Table Pin Assignments for DP Source Pins and DP Sink Pins in the Detailed Design Procedure section............ 17  
Added Table 2, Table 3, Table 4, and Table 5 .................................................................................................................... 17  
Added Figure 8 through Figure 13 ...................................................................................................................................... 17  
Changed image for Figure 16 .............................................................................................................................................. 21  
Changed image for Figure 19............................................................................................................................................... 23  
2
版权 © 2015–2017, Texas Instruments Incorporated  
 
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
Changes from Original (January 2015) to Revision A  
Page  
Added full data sheet specification complement ................................................................................................................... 6  
Copyright © 2015–2017, Texas Instruments Incorporated  
3
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
5 Device Comparison Table(1)  
OPERATING  
PART NUMBER  
PINS  
TOP-SIDE MARKING  
TEMPERATURE (°C)  
0 to 70  
–40 to 85  
0 to 70  
HD3SS460RHR  
HD3SS460IRHR  
HD3SS460RNH  
HD3SS460IRNH  
28  
28  
30  
30  
3SS460  
3SS460I  
460RNH  
460IRNH  
–40 to 85  
(1) For all available packages, see the orderable addendum at the end of the data sheet. Package drawings, thermal data, and  
symbolization are available at www.ti.com/packaging  
4
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
6 Pin Configuration and Functions  
RHR Package With Thermal Pad  
(28-Pin WQFN)  
RNH Package With Thermal Pad  
(30-Pin WQFN)  
Top View  
Top View  
CRX1p  
CRX1n  
POL  
1
2
3
4
5
LnDp  
LnDn  
VCC  
24  
28 27 26 25  
CRX1p  
CRX1n  
POL  
1
2
3
4
5
LnDp  
LnDn  
VCC  
25  
30 29 28 27 26  
23  
22  
24  
23  
CTX1p  
CTX1n  
CTX2p  
CTX2n  
AMSEL  
CRX2p  
CRX2n  
LnCp  
LnCn  
CTX1p  
CTX1n  
CTX2p  
CTX2n  
AMSEL  
CRX2p  
CRX2n  
LnCp  
LnCn  
21  
20  
19  
22  
21  
20  
Thermal Pad  
GND  
Thermal Pad  
GND  
LnBp  
LnBn  
LnBp  
LnBn  
6
7
6
7
19  
18  
18  
17  
EN  
8
9
EN  
8
9
LnAp  
LnAn  
17  
LnAp  
LnAn  
16  
10 11 12 13 14 15 16  
10 11 12 13 14 15  
Pin Functions  
PIN  
(1)  
TYPE  
DESCRIPTION  
RHR  
NO.  
RNH  
NO.  
NAME  
VCC  
GND  
POL  
22  
PAD  
3
23  
13, 28, PAD  
3
P
Power  
G
Ground  
Input  
Provides MUX control (Table 1)  
3-Level  
Input  
AMSEL  
EN  
8
8
Provides MUX configurations (Table 1)  
3-Level  
Input  
17  
18  
Enable signal; also provides MUX control (Table 1)  
CRX1p, n  
CTX1p, n  
CTX2p, n  
CRX2p, n  
LnAn, p  
1, 2  
1, 2  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
High Speed Signal Port CRX1 positive, negative  
High Speed Signal Port CTX1 positive, negative  
High Speed Signal Port CTX2 positive, negative  
High Speed Signal Port CRX2 positive, negative  
High Speed Signal Port LnA positive, negative  
High Speed Signal Port LnB negative, positive  
High Speed Signal Port LnC negative, positive  
High Speed Signal Port LnD negative, positive  
High Speed Signal Port SSTX negative, positive  
High Speed Signal Port SSRX negative, positive  
Low Speed Signal Port CSBU 1, 2  
4, 5  
4, 5  
6, 7  
6, 7  
9, 10  
9, 10  
15, 16  
18, 19  
20, 21  
23, 24  
25, 26  
27, 28  
11, 12  
13, 14  
16, 17  
19, 20  
21, 22  
24, 25  
26, 27  
29, 30  
11, 12  
14, 15  
LnBn, p  
LnCn, p  
LnDn, p  
SSTXn, p  
SSRXn, p  
CSBU1, 2  
SBU1, 2  
Low Speed Signal Port SBU 1, 2  
(1) High speed data ports (CRX[1/2][p/n], Ln[A-D][p,n], and SS[T/R]X[p/n]) incorporate 20kpull down resistors that are switched in when a  
port is not selected and switched out when the port is selected.  
Copyright © 2015–2017, Texas Instruments Incorporated  
5
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–65  
MAX  
4
UNIT  
V
Supply Voltage, VCC  
Differential High Speed I/O Voltages, C[R/T]X[1/2][p/n], Ln[A-D][p/n], SS[R/T]X[p/n]  
Low Speed I/O Voltages, CSBU[1/2], SBU[1/2]  
Control signal voltages, POL, AMSEL, EN  
2.5  
4
V
V
4
V
Storage temperature, Tstg  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V
V(ESD)  
Electrostatic discharge  
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 250-V CDM is possible with the necessary precautions.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
0
NOM  
3.3  
25  
MAX  
3.6  
70  
UNIT  
VCC  
TA  
Supply voltage  
V
HD3SS460  
HD3SS460I  
Operating free air temperature  
°C  
–40  
0
25  
85  
VCM  
VIN  
High speed port common mode voltage  
Low Speed signal voltage  
2
V
0
VCC  
1.8  
Vdiff  
High speed port differential voltage  
0
Vpp  
7.4 Thermal Information  
HD3SS460  
QFN (RNH)  
THERMAL METRIC(1)  
QFN (RHR)  
28 PINS  
44.0  
UNIT  
30 PINS  
51.6  
37.5  
17.5  
0.7  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
34.8  
14.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.7  
ψJB  
17.3  
6.8  
24.5  
RθJC(bot)  
6.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
7.5 Electrical Characteristics  
typical values for all parameters are at VDD = 3.3 V and TA = 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Input low voltage, control pins POL,  
AMSEL, EN  
VIL  
VIH  
VIM  
–0.1  
0.4  
Input high voltage, control pins  
AMSEL, EN  
VCC –0.4  
1.7  
VCC +0.1  
VCC +0.1  
V
Input high voltage, control pins POL  
Input mid-level voltage, control pins  
AMSEL, EN  
VCC/2 –0.3  
VCC/2 VCC/2 +0.3  
Leakage current on active  
ILK-DIFF-ACTIVE differential IO pins, VCC = 3.6 V,  
pin at 0 or 2.4 V.  
1
Leakage current on inactive  
differential IO pins, VCC = 3.6V, pin  
at 2.4 V.  
ILK-DIFF-  
INACTIVE  
150  
1
Input high current, control pins  
POL, AMSEL, EN and signal pins  
CSBU1/2, SBU1/2  
IIH  
µA  
Input low current, control pins POL,  
AMSEL, EN and signal pins  
CSBU1/2, SBU1/2  
IIL  
1
1
Input mid-level current, control pins  
AMSEL, EN  
IIM  
IOFF  
IDD  
Device shutdown current  
1
5
Device active current, EN=H or M  
0.6  
0.9  
mA  
Switch ON resistance for high  
speed differential signals  
VCC = 3.3 V, VCM = 0-2 V,  
IO = - 8 mA  
RON(HS)  
RON(LS)  
8
14  
Switch ON resistance for low speed VCC = 3.3 V, VCM = 0-2 V,  
signals  
12  
IO = - 8 mA  
Ω
(RON(MAX) – RON(MIN)) over VCM  
range VCC = 3.3 V, VCM = 0-2 V,  
IO = - 8 mA  
High speed differential signals’ ON  
resistance flatness for a channel  
RFLAT(ON,HS)  
1.5  
1
High speed differential signals’  
input capacitance  
CON(HS)  
pF  
Copyright © 2015–2017, Texas Instruments Incorporated  
7
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
7.6 High Speed Port Performance Parameters  
under recommended operating conditions; RLOAD, RSC = 50 Ω (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
–23  
–9  
MAX  
UNIT  
100 Mhz SS Paths  
2.5 Ghz SS Paths  
RL  
Differential return loss  
100 MHz AM Paths  
2. 7GHz AM Paths  
100 Mhz SS Paths  
2.5 Ghz SS Paths  
100 MHz AM Paths  
2.7 GHz AM Paths  
100 Mhz  
–23  
–13  
–0.7  
–1.6  
–0.7  
–1.4  
–50  
–26  
–25  
–80  
–30  
–28  
–50  
–26  
–25  
4.2  
IL  
Differential insertion loss  
Differential off isolation  
dB  
OI  
2.5 Ghz  
2.7 GHz  
100 Mhz  
Differential cross talk, Between  
CRX1/2 and CTX1/2  
2.5 Ghz  
2.7 Ghz  
Xtalk  
100 Mhz  
Differential cross talk, Between  
CRX1 and CRX2 or CTX1 and  
CTX2  
2.5 Ghz  
2.7 Ghz  
BWSS  
BWAM  
BWSBU  
Differential –3 dB BW SS Paths  
Differential –3 dB BW AM Paths  
Low-speed switch –3 dB BW  
GHz  
MHz  
5.4  
500  
7.7 High Speed Signal Path Switching Characteristics  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
100  
50  
UNIT  
tPD  
Switch propagation delay  
Inter-Pair output skew (CH-CH)  
Intra-Pair output skew (bit-bit)  
tSK(O)  
tSK(b-b)  
RSC and RLOAD = 50 Ω, Figure 2  
ps  
5
Control signals POL, AMSEL and  
EN (H/M toggle) to switch ON time  
tON  
3
1
RSC and RLOAD = 50 Ω, Figure 1  
µs  
Control signals POL, AMSEL and  
EN (H/M toggle) to switch OFF time  
tOFF  
Timing Diagrams  
50%  
POL, AMSEL, EN (H/M)  
90%  
10%  
High/Low Speed Signals  
Toff  
Ton  
Figure 1. Switch ON/OFF Time  
8
Copyright © 2015–2017, Texas Instruments Incorporated  
 
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
Vcc  
50 Ω  
C[R/T]X[1/2]p  
C[R/T]X[1/2]n  
Ln[D-A]/SS[T/R]Xp  
50 Ω  
50 Ω  
Ln[D-A]/SS[T/R]Xn  
50 Ω  
SEL  
C[R/T]X[1/2]p  
50%  
50%  
C[R/T]X[1/2]n  
Ln[D-A]/SS[T/R]Xp  
50%  
50%  
Ln[D-A]/SS[T/R]Xn  
tP1  
t2  
tP2  
t4  
t1  
t3  
Ln[x]/SS[x]Xp  
50%  
Ln[x]/SS[x]Xn  
Ln[y]/SS[y]Xp  
tSK(O)  
Ln[y]/SS[y]Xn  
tPD= Max(tp1, tp2  
)
tSK(O) = Difference between t PD for any two  
pairs of outputs  
tSK(b-b) = 0.5 X |(t4 – t3) + (t1 – t2)|  
Figure 2. Propagation Delay and Skew  
Copyright © 2015–2017, Texas Instruments Incorporated  
9
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The HD3SS460 is a high-speed bi-directional passive 4-6 cross-point switch in mux or demux configurations.  
Based on control pin POL the device provides switching to accommodate USB Type-C plug flipping. The device  
provides multiple signal switching options that allow system implementation flexibility.  
The HD3SS460 is a generic analog, differential passive switch that can work for any high speed interface  
applications as long as it is biased at a common mode voltage range of 0-2 V and has differential signaling with  
differential amplitude up to 1800 mVpp. It employs an adaptive tracking that ensures the channel remains  
unchanged for entire common mode voltage range  
Excellent dynamic characteristics of the device allow high speed switching with minimum attenuation to the  
signal eye diagram with very little added jitter.  
8.2 Functional Block Diagram  
SSRX SSTX  
CRX1  
LnD  
LnC  
CTX1  
CTX2  
CRX2  
High Speed  
MUX  
Switches  
LnB  
LnA  
AMSEL  
POL  
EN  
VCC  
GND  
SBU1  
SBU2  
Low Speed  
MUX  
CSBU1  
CSBU2  
Switches  
Copyright © 2016, Texas Instruments Incorporated  
10  
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
8.3 Feature Description  
8.3.1 High Speed Differential Signal Switching  
Based on control pin AMSEL the device provides muxing options of:  
1. 1 port (RX and TX) USB3.1 SS data / 2Ch video (or any other Alternate Mode data)  
2. All 4Ch video (or any other Alternate Mode data)  
3. 1 port (RX and TX) USB3.1 SS data  
4. 1 port (RX and TX) USB3.1 SS data / 2Ch video (or any other Alternate Mode data) with option of choosing  
video from two different source/sink  
5. 1 port (RX and TX) USB3.1 SS data / 2Ch video (or any other Alternate Mode data) with option of choosing  
video 2 Ln Video or 1 Ln Video from two different source/sink  
8.3.2 Low Speed SBU Signal Switching  
The device also provides cross point muxing for low speed SBU signals as needed in USB Type-C flippable  
connector implementation. The device provides the option to choose the USB only implementation where SBU  
ports are in tri-state.  
8.3.3 Output Enable and Power Savings  
The HD3SS460 has two power modes, active/normal operating mode and standby/shutdown mode. During  
standby mode, the device consumes very little current to save the maximum power. To enter standby mode, the  
EN control pin is pulled low and must remain low. For active/normal operation, the EN control pin should be  
pulled high to VDD through a resistor or dynamically controlled to switch between H or M.  
HD3SS460 consumes <2 mW of power when operational and <5 µW in shutdown mode, exercisable by the EN  
pin.  
8.4 Device Functional Modes  
8.4.1 Device High Speed Switch Control Modes  
Table 1. MUX Control for High Speed and Low Speed SBU Channels  
HIGH SPEED SIGNAL  
POL  
AMSEL  
EN  
CONFIGURATIONS  
SBU SIGNAL FLOW  
FLOW(1)  
SSRX SSTX  
CRX1  
LnD  
LnC  
LnB  
LnA  
2CH USBSS + 2CH AM  
(Normal)  
CSBU1  
SBU1  
SBU2  
L
L
H
CTX1  
CTX2  
CRX2  
CSBU2  
SSRX SSTX  
CRX1  
CTX1  
CTX2  
CRX2  
LnD  
LnC  
LnB  
LnA  
2CH USBSS + 2CH AM  
(Flipped)  
CSBU1  
CSBU2  
SBU1  
SBU2  
H
L
H
(1) All positive signals connect to positive and negative to negative  
Copyright © 2015–2017, Texas Instruments Incorporated  
11  
 
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
Table 1. MUX Control for High Speed and Low Speed SBU Channels (continued)  
HIGH SPEED SIGNAL  
FLOW(1)  
POL  
AMSEL  
EN  
CONFIGURATIONS  
SBU SIGNAL FLOW  
SSRX SSTX  
CRX1  
LnD  
LnC  
LnB  
LnA  
CSBU1  
SBU1  
SBU2  
L
H
H
4CH AM (Normal)  
CTX1  
CTX2  
CRX2  
CSBU2  
SSRX SSTX  
CRX1  
CTX1  
CTX2  
CRX2  
LnD  
LnC  
LnB  
LnA  
CSBU1  
CSBU2  
SBU1  
SBU2  
H
H
M
M
M
H
H
H
M
4CH AM (Flipped)  
2CH USBSS (Normal)  
2CH USBSS (Flipped)  
SSRX SSTX  
CRX1  
CTX1  
CTX2  
CRX2  
LnD  
LnC  
LnB  
LnA  
All Low Speed SBU  
L
Ports HighZ  
SSRX SSTX  
CRX1  
CTX1  
CTX2  
CRX2  
LnD  
LnC  
LnB  
LnA  
All Low Speed SBU  
Ports HighZ  
H
SSRX SSTX  
CRX1  
CTX1  
CTX2  
CRX2  
LnD  
LnC  
LnB  
LnA  
2CH USBSS + 2CH AM  
(Normal)  
CSBU1  
CSBU2  
SBU1  
SBU2  
L
12  
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
Device Functional Modes (continued)  
Table 1. MUX Control for High Speed and Low Speed SBU Channels (continued)  
HIGH SPEED SIGNAL  
FLOW(1)  
POL  
AMSEL  
EN  
CONFIGURATIONS  
SBU SIGNAL FLOW  
SSRX SSTX  
CRX1  
LnD  
LnC  
LnB  
LnA  
2CH USBSS + 2CH AM  
(Flipped)  
CSBU1  
SBU1  
SBU2  
H
M
M
CTX1  
CTX2  
CRX2  
CSBU2  
SSRX SSTX  
CRX1  
CTX1  
CTX2  
CRX2  
LnD  
LnC  
LnB  
LnA  
2CH USBSS + 2CH AM from  
alternate GPU (Normal)  
CSBU1  
CSBU2  
SBU1  
SBU2  
L
L
M
SSRX SSTX  
CRX1  
CTX1  
CTX2  
CRX2  
LnD  
LnC  
LnB  
LnA  
2CH USBSS + 2CH AM from  
alternate GPU (Flipped)  
CSBU1  
CSBU2  
SBU1  
SBU2  
H
L
M
L
H
H
M
M
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
H
All Low Speed SBU  
Ports HighZ  
X
X
L
All High Speed Ports HighZ  
All High Speed Ports HighZ  
Copyright © 2015–2017, Texas Instruments Incorporated  
13  
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
HD3SS460 can be utilized for a wide range of muxing needs. This is general purpose passive cross-point switch.  
The channels have independent adaptive common mode tracking allowing flexibility. As long as recommended  
electrical use conditions are met the device can be used number of ways as described in Table 1.  
NOTE  
HD3SS460 does not provide common mode biasing for the channel. Therefore it is  
required that the device is biased from either side for all active channels.  
9.2 USB SS and DP as Alternate Mode  
HD3SS460 can be used USB Type-C ecosystem with DP as alternate mode in two distinct application  
configurations – one is for DP Source/USB Host, the other one for the DP Sink/USB Device/Dock. Figure 3 and  
Figure 4 illustrate typical application block diagrams for these two cases. Detail schematics are illustrated in  
Detailed Design Procedure section. Other applications and or use cases possible where these examples can be  
used as general guidelines.  
Figure 3 and Figure 4 depict the AC coupling capacitor placement examples. TI recommends placing the  
capacitors as shown in the illustrations for the backward compatibility and interoperability purposes as some of  
the existing USB systems may present Vcm, exceeding the typical range of 0–2 V on SS differential pairs.  
Ü{.3 Iost  
bo !/ /oupling /aps  
{{Çó {{wó  
ꢀ[0+  
ꢀ[0>  
wó1+  
wó1>  
0ꢁ1 µC  
0ꢁ1 µC  
ꢀ[1+  
ꢀ[1>  
Çó1+  
Çó1>  
I53{{460  
ꢀ[2+  
ꢀ[2>  
Çó2+  
Çó2>  
ꢀ[3+  
ꢀ[3>  
wó2+  
wó2>  
/opyright © 2016, Çexas Lnstruments Lncorporated  
Figure 3. Block Diagram for a Type C Interface Using DP as Alternate Mode – Source/Host  
14  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
USB SS and DP as Alternate Mode (continued)  
Ü{.3 Üpstreꢀm ꢁort  
bo !/ /oupling /ꢀps  
{{wó {{Çó  
wó1+  
wó1>  
a[0+  
a[0>  
0ꢂ1 µC  
0ꢂ1 µC  
Çó1+  
Çó1>  
a[1+  
a[1>  
5ꢁ {ink  
I53{{460  
Çó2+  
Çó2>  
a[2+  
a[2>  
wó2+  
wó2>  
a[3+  
a[3>  
/opyright © 2016, Çexꢀs Lnstruments Lncorporꢀted  
Figure 4. Diagram for a Type C Interface Using DP as Alternate Mode – Sink/Device/Dock  
Figure 5 and Figure 6 depict the AC coupling capacitor recommendations in case the upstream or downstream  
port connected internally to the HD3SS460 presents Vcm greater than 2 V.  
ëcm > 2.0 ë  
ꢁ00 nC  
ꢁ00 nC  
100 lQ  
100 lQ  
100 lQ  
100 lQ  
{{Çó {{wó  
I53{{460  
0.1 µC  
a[0+  
a[0>  
wó1+  
wó1>  
a[1+  
a[1>  
0.1 µC  
0.1 µC  
Çó1+  
Çó1>  
5ꢀ {ource  
a[2+  
a[2>  
Çó2+  
Çó2>  
0.1 µC  
a[3+  
a[3>  
wó2+  
wó2>  
/opyright © 2016, Çexꢂs Lnstruments Lncorporꢂted  
Figure 5. HD3SS460 USB Host (DP Source with SS USB Vcm)  
Copyright © 2015–2017, Texas Instruments Incorporated  
15  
 
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
USB SS and DP as Alternate Mode (continued)  
ëcm > 2.0 ë  
ꢁ00 nC  
ꢁ00 nC  
100 lQ  
100 lQ  
100 lQ  
100 lQ  
{{Çó {{wó  
wó1+  
wó1>  
a[0+  
a[0>  
0.1 µC  
0.1 µC  
Çó1+  
Çó1>  
a[1+  
a[1>  
5ꢀ {ink  
I53{{460  
Çó2+  
Çó2>  
a[2+  
a[2>  
wó2+  
wó2>  
a[3+  
a[3>  
/opyright © 2016, Çexꢂs Lnstruments Lncorporꢂted  
Figure 6. HD3SS460 USB Upstream (DP Sink Implementation Example)  
9.2.1 Design Requirements  
DESIGN PARAMETERS  
VCC  
EXAMPLE VALUES  
3.3 V  
Decoupling capacitors  
0.1 µF  
75-200nF (100nF shown) USBSS TX p and n lines require AC capacotprs. Alternate  
mode signals may or may not require AC capacitors  
AC Capacitors  
Control pins  
Controls pins can be dynamically controlled or pin-strapped. The POL signal is  
controlled by CC logic in the Type-C ecosystem.  
16  
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
9.2.2 Detailed Design Procedure  
The reference schematics shown in this document are based upon the pin assignment defined in the Alternate  
mode over Type C specification as shown in Figure 7 below.  
Figure 7. Pin Assignment – Alternate Mode Over Type C  
Table 2 represents the example pin mapping to HD3SS460 for the DP Source pin assignments C, D, E and F,  
DP Sink pin assignments C and D.  
Table 2. SOURCE Pin Assignment Option C and E (AMSEL = H, EN = H)  
460 PIN MAPPING TO DP SOURCE (GPU)  
POL = L POL = H  
LnA(ML0) LnD(ML3)  
RECEPTACLE PIN  
NUMBER  
460 PIN MAPPING TO  
TYPE C CONNECTOR  
A11/10  
CRX2  
CTX1  
A2/3  
B11/10  
B2/3  
A8  
LnC(ML2)  
LnB(ML1)  
CRX1  
CTX2  
LnD(ML3)  
LnA(ML0)  
LnB(ML1)  
LnC(ML2)  
CSBU1  
CSBU2  
SBU1(AUXP)  
SBU2(AUXN)  
SBU2(AUXN)  
SBU1(AUXP)  
B8  
HD3SS460  
Video Source (GPU)  
A11 / A10  
A2 / A3  
CRX2  
CTX1  
LnA/LnD  
LnC/LnB  
ML0/ML3  
ML2/ML1  
0.1 mF  
0.1 mF  
B11 / B10  
B2 / B3  
CRX1  
CTX2  
LnD/LnA  
LnB/LnC  
ML3/ML0  
ML1/ML2  
SBU1/2  
SBU2/1  
AUXN/N  
AUXP/P  
A8 / B8  
CSBU1/2  
Type-C  
Connector  
wed text indicates ꢀh[ = I  
Ü{. {{ lines are internally  
unconnected under tꢁis mode  
xI/L Iost  
Copyright © 2016, Texas Instruments Incorporated  
Figure 8. SOURCE Pin Assignment Option C and E (AMSEL = H, EN = H)  
Copyright © 2015–2017, Texas Instruments Incorporated  
17  
 
 
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Table 3. SOURCE Pin Assignment Option D and F (AMSEL = L, EN = H)  
460 PIN MAPPING TO DP SOURCE (GPU)  
POL = L POL = H  
LnA(ML0)  
RECEPTACLE PIN  
NUMBER  
460 PIN MAPPING TO  
TYPE C CONNECTOR  
A11/10  
CRX2  
CTX1  
SSRX  
A2/3  
B11/10  
B2/3  
A8  
SSTX  
LnB(ML1)  
LnA(ML0)  
SSTX  
CRX1  
CTX2  
SSRX  
LnB(ML1)  
SBU1(AUXP)  
SBU2(AUXN)  
CSBU1  
CSBU2  
SBU2(AUXN)  
SBU1(AUXP)  
B8  
Space  
HD3SS460  
HD3SS460  
Video Source (GPU)  
Video Source (GPU)  
A11 / A10  
A2 / A3  
CRX2  
CTX1  
LnA  
LnC  
A11 / A10  
A2 / A3  
CRX2  
CTX1  
CRX1  
CTX2  
LnA  
LnC  
ML1  
ML3  
ML0  
ML2  
0.1 mF  
0.1 mF  
0.1 mF  
B11 / B10  
B2 / B3  
CRX1  
CTX2  
LnD  
LnB  
ML2  
ML0  
B11 / B10  
B2 / B3  
LnD  
LnB  
ML3  
ML1  
0.1 mF  
SBU1  
SBU2  
SBU2  
SBU1  
AUXN  
AUXP  
AUXN  
AUXP  
A8 / B8  
A8 / B8  
CSBU1/2  
CSBU1/2  
Type-C  
Type-C  
Connector  
Connector  
[n/ and [n5 lines are internally  
unconnected under this mode  
[n/ and [n5 lines are internally  
unconnected under this mode  
xI/L Iost  
xI/L Iost  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9. SOURCE Pin Assignment Option D and F Figure 10. SOURCE Pin Assignment Option D and  
(AMSEL = L, EN = H, POL = L) F (AMSEL = L, EN = H, POL = H)  
Table 4. SINK Pin Assignment Option C (AMSEL = H, EN = H)  
460 PIN MAPPING TO DP SOURCE (GPU)  
POL = L POL = H  
LnA(ML1) LnD(ML2)  
RECEPTACLE PIN  
NUMBER  
460 PIN MAPPING TO  
TYPE C CONNECTOR  
A11/10  
CRX2  
CTX1  
A2/3  
B11/10  
B2/3  
A8  
LnC(ML3)  
LnB(ML0)  
CRX1  
CTX2  
LnD(ML2)  
LnA(ML1)  
LnB(ML0)  
LnC(ML3)  
CSBU1  
CSBU2  
SBU1(AUXN)  
SBU2(AUXP)  
SBU2(AUXP)  
SBU1(AUXN)  
B8  
HD3SS460  
Video Sink  
ML1/ML2  
A11 / A10  
A2 / A3  
CRX2  
CTX1  
LnA/LnD  
LnC/LnB  
0.1 mF  
0.1 mF  
ML3/ML0  
B11 / B10  
B2 / B3  
CRX1  
CTX2  
LnD/LnA  
LnB/LnC  
ML2/ML1  
ML0/ML3  
SBU1/2  
SBU2/1  
AUXN/P  
AUXP/N  
A8 / B8  
CSBU1/2  
Type-C  
Connector  
wed text indicates ꢀh[ = I  
Ü{. {{ lines are internally  
unconnected under tꢁis mode  
{{ IÜ./5evice  
Copyright © 2016, Texas Instruments Incorporated  
Figure 11. SINK Pin Assignment Option C (AMSEL = H, EN = H)  
18  
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
Table 5. SINK Pin Assignment Option D (AMSEL = L, EN = H)  
460 PIN MAPPING TO DP SOURCE (GPU)  
POL = L POL = H  
LnA(ML1)  
RECEPTACLE PIN  
NUMBER  
460 PIN MAPPING TO  
TYPE C CONNECTOR  
A11/10  
CRX2  
CTX1  
SSRX  
A2/3  
B11/10  
B2/3  
A8  
SSTX  
LnB(ML0)  
LnA(ML1)  
SSTX  
CRX1  
CTX2  
SSRX  
LnB(ML0)  
SBU1(AUXN)  
SBU2(AUXP)  
CSBU1  
CSBU2  
SBU2(AUXP)  
SBU1(AUXN)  
B8  
Space  
HD3SS460  
HD3SS460  
Video Source (GPU)  
Video Source (GPU)  
A11 / A10  
A2 / A3  
CRX2  
CTX1  
LnA  
LnC  
A11 / A10  
A2 / A3  
CRX2  
CTX1  
CRX1  
CTX2  
LnA  
LnC  
ML1  
ML3  
ML0  
ML2  
0.1 mF  
0.1 mF  
0.1 mF  
B11 / B10  
B2 / B3  
CRX1  
CTX2  
LnD  
LnB  
ML2  
ML0  
B11 / B10  
B2 / B3  
LnD  
LnB  
ML3  
ML1  
0.1 mF  
SBU1  
SBU2  
SBU2  
SBU1  
AUXN  
AUXP  
AUXN  
AUXP  
A8 / B8  
A8 / B8  
CSBU1/2  
CSBU1/2  
Type-C  
Type-C  
Connector  
Connector  
[n/ and [n5 lines are internally  
unconnected under this mode  
[n/ and [n5 lines are internally  
unconnected under this mode  
xI/L Iost  
xI/L Iost  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 12. SINK Pin Assignment Option D  
(AMSEL = L, EN = H, POL=L)  
Figure 13. SINK Pin Assignment Option D  
(AMSEL = L, EN = H, POL=H)  
Copyright © 2015–2017, Texas Instruments Incorporated  
19  
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Schematic diagrams Figure 14, Figure 15, and Figure 16 show the DP Source/USB Host implementation; and,  
Figure 17, Figure 18, and Figure 19 show the DP Sink/USB Device/HUSB Hub/Dock implementation,  
respectively.  
VBUS  
TypeC Connector and Source Pin Mapping  
J2  
A4  
A9  
B4  
B9  
VBUS1  
VBUS2  
VBUS3  
VBUS4  
C8  
10uF  
GND  
A1  
A2  
A3  
GND  
B12  
B11  
B10  
A5  
B5  
CC1  
CC2  
CC1  
CC2  
ML2P SSTXP1  
ML1P SSTXP2  
SSRXP1 ML3P  
SSRXP2 ML0P  
A8  
B8  
CSBU1  
CSBU2  
SBU1  
SBU2  
ML2N SSTXN1  
ML1N SSTXN2  
SSRXN1 ML3N  
SSRXN1 ML0N  
Note: It is  
recommended to  
add isolation  
circuit if  
voltage is to be  
present on any  
of the I/Os  
while the  
USB2_N0  
USB2_P0  
A7  
A6  
DN1  
DP1  
VBUS A4  
B9 VBUS  
B6  
B7  
DP2  
DN2  
CC1  
DP1  
DN1  
A5  
A6  
A7  
B8 SBU2  
AUXN  
AUXP  
A2  
A3  
CTX1P  
CTX1N  
SSTXP1  
SSTXN1  
B7 DN2  
B6 DP2  
B5 CC2  
B4 VBUS  
HD3SS460  
device is off.  
A11  
A10  
CRX2P  
CRX2N  
SSRXP2  
SSRXN2  
B2  
B3  
CTX2P  
CTX2N  
SSTXP2  
SSTXN2  
AUXP  
AUXN  
SBU1 A8  
VBUS A9  
B11  
B10  
CRX1P  
CRX1N  
SSRXP1  
Shield6SSRXN1  
Shield5  
g6  
g5  
g4  
g3  
g2  
g1  
A1  
A12  
B1  
Shield4 GND0  
Shield3 GND1  
Shield2 GND2  
Shield1 GND3  
ML0N SSRXN2  
ML3N SSRXN1  
B3 SSTXN2  
SSTXN1  
ML1N  
ML2N  
A10  
A11  
A12  
B12  
ML0P SSRXP2  
ML3P SSRXP1  
B2 SSTXP2  
SSTXP1  
ML1P  
ML2P  
USB_TypeC_Receptacle_  
GND  
B1 GND  
CSBU1  
CSBU2  
pull-down  
resistor  
between 1MΩ-2MΩ  
is recommended  
on SBU1 and  
SBU2.  
R156  
2MΩ  
R158  
2MΩ  
Copyright © 2016, Texas Instruments Incorporated  
Figure 14. Schematic Implementations for DP Source/ USB Host (1 of 3)  
20  
Copyright © 2015–2017, Texas Instruments Incorporated  
 
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
ESD Components  
Place in pass through manner with no stub  
U8  
1
2
3
4
5
10  
9
8
7
6
CTX1N  
CTX1P  
D1  
D1-  
NC10  
NC9  
GND GND  
CRX1N  
CRX1P  
NC7  
NC6  
D2+  
D2-  
TPD4E05U06  
U9  
1
2
3
4
5
10  
9
8
7
6
CTX2P  
CTX2N  
D1  
D1-  
NC10  
NC9  
GND GND  
CRX2P  
CRX2N  
NC7  
NC6  
D2+  
D2-  
TPD4E05U06  
U12  
CC1  
CC2  
USB2_P0  
1
14  
13  
12  
11  
10  
9
NC1  
NC2  
NC3  
NC4  
GND GND  
NC5 D3+  
NC6 D3-  
D1+  
2
3
4
5
6
7
D1-  
D2+  
D2-  
USB2_N0  
CSBU1  
CSBU2  
8
TPD6E05U06  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. Schematic Implementations for DP Source/ USB Host (2 of 3)  
3P3V  
3P3V  
C3  
0.1uF  
R188  
10K  
R6  
10K  
U2  
Connect to control  
logic to select  
swtich  
configuration(i.e. CC  
control logic)  
Connect to  
Type C SSTX/RX  
pins  
POL  
AMSEL  
EN  
POL  
AMSEL  
EN  
AC Coupling caps to  
accomodate higher Vcm  
on some USB devices  
USB3_TX0N  
USB3_TX0P  
SSTXN  
SSTXP  
Connect to USB  
CRX1N  
CRX1P  
CRX1P  
CRX1N  
Host/Hub SS TX/RX  
pairs  
USB3_RX0N  
USB3_RX0P  
C49 0.1uF  
SSRXN  
SSRXP  
CTX1N  
CTX1P  
CTX1P  
CTX1N  
C48 0.1uF  
C51 0.1uF  
ML0P  
ML0N  
LNAN  
LNAP  
CTX2N  
CTX2P  
CTX2P  
CTX2N  
C50 0.1uF  
ML1P  
ML1N  
LNBN  
LNBP  
CRX2N  
CRX2P  
CRX2P  
CRX2N  
ML0..ML3:  
Connect to  
DP Source  
MainLink  
lanes  
ML2P  
ML2N  
LNCN  
LNCP  
ML3P  
ML3N  
LNDN  
LNDP  
Connect to  
Type C SBU  
pins  
CSBU1  
CSBU2  
SBU1  
SBU2  
CSBU1  
CSBU2  
SBU1  
SBU2  
Connect to  
DP Source  
AUX  
Channels  
HD3SS460  
NOTE: ALL DIFF PAIRS ARE  
ROUTED 85 TO 90 OHMS  
DIFFERENTIAL AND 50 OHMS  
COMMON MODE. ALL OTHER  
TRACES ARE 50 OHM.  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. Schematic Implementations for DP Source/ USB Host (3 of 3)  
Copyright © 2015–2017, Texas Instruments Incorporated  
21  
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
VBUS  
TypeC Connector and Pin Mapping  
J2  
A4  
A9  
B4  
B9  
VBUS1  
VBUS2  
VBUS3  
VBUS4  
GND  
A1  
A2  
GND  
B12  
B11  
B10  
C8  
10uF  
ML3P  
ML0P  
SSTXP1  
SSTXP2  
SSRXP1  
SSRXP2  
ML2P  
ML1P  
A5  
B5  
CC1  
CC2  
CC1 pg3  
CC2 pg3  
CC1  
CC2  
ML3N  
ML0N  
SSTXN1  
SSTXN2  
A3  
SSRXN1  
SSRXN1  
ML2N  
ML1N  
A8  
B8  
CSBU1  
CSBU2  
SBU1  
SBU2  
Note: It is  
VBUS  
CC1  
A4  
B9 VBUS  
USB2_N0  
USB2_P0  
A7  
A6  
recommended to  
add isolation  
circuit if  
voltage is to be  
present on any  
of the I/Os  
while the  
HD3SS460  
device is off.  
DN1  
DP1  
A5  
B8 SBU2  
B7 DN1  
B6 DP1  
B5 CC2  
B4 VBUS  
AUXP  
AUXN  
B6  
B7  
DP2  
DN2  
DP1  
A6  
A2  
A3  
CTX1P  
CTX1N  
SSTXP1  
SSTXN1  
DN1  
A7  
A11  
A10  
CRX2P  
CRX2N  
SSRXP2  
SSRXN2  
AUXN  
AUXP  
SBU1  
VBUS  
A8  
B2  
B3  
CTX2P  
CTX2N  
SSTXP2  
SSTXN2  
A9  
B11  
B10  
CRX1P  
CRX1N  
SSRXP1  
Shield6 SSRXN1  
Shield5  
g6  
g5  
g4  
g3  
g2  
g1  
ML1N  
ML2N  
SSRXN2  
SSRXN1  
B3 SSTXN2  
SSTXN1  
ML0N  
ML3N  
A10  
A11  
A12  
A1  
A12  
B1  
Shield4  
Shield3  
Shield2  
Shield1  
GND0  
GND1  
GND2  
GND3  
ML1P  
ML2P  
SSRXP2  
SSRXP1  
B2 SSTXP2  
SSTXP1  
ML0P  
ML3P  
B12  
USB_TypeC_Receptacle_  
GND  
B1 GND  
CSBU1  
CSBU2  
pull-down  
resistor  
between 1M-2M  
is  
R156  
2M  
R158  
2M  
recommended  
on SBU1 and  
SBU2.  
Copyright © 2016, Texas Instruments Incorporated  
Figure 17. Schematic Implementations for DP Sink/ USB Device/HUB/Dock (1 of 3)  
ESD Components  
Place in pass through manner with no stub  
U8  
CTX1N  
CTX1P  
1
2
3
4
5
10  
9
8
7
6
D1+ NC10  
D1- NC9  
GND GND  
CRX1N  
CRX1P  
D2+  
D2-  
NC7  
NC6  
TPD4E05U06  
U9  
CTX2P  
CTX2N  
1
2
3
4
5
10  
9
8
7
6
D1+ NC10  
D1- NC9  
GND GND  
CRX2P  
CRX2N  
D2+  
D2-  
NC7  
NC6  
TPD4E05U06  
U12  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC1  
CC2  
USB2_P0  
NC1  
NC2  
NC3  
NC4  
GND GND  
NC5  
NC6  
D1+  
D1-  
D2+  
D2-  
USB2_N0  
CSBU1  
CSBU2  
D3+  
D3-  
8
TPD6E05U06  
Copyright © 2016, Texas Instruments Incorporated  
Figure 18. Schematic Implementations for DP Sink/ USB Device/HUB/Dock (2 of 3)  
22  
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. Schematic Implementations for DP Sink/ USB Device/HUB/Dock (3 of 3)  
10 Power Supply Recommendations  
There is no power supply sequence required for HD3SS460. However it is recommended that EN is asserted low  
after device supply VCC is stable and within specification. It is also recommended that ample decoupling  
capacitors are placed at the device VCC near the pin.  
Copyright © 2015–2017, Texas Instruments Incorporated  
23  
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
High performance layout practices are paramount for board layout for high speed signals to ensure good signal  
integrity. Even minor imperfection can cause impedance mismatch resulting reflection. Special care is warranted  
for traces, connections to device, and connectors.  
11.1.1 Critical Routing  
The high speed differential signals must be routed with great care to minimize signal quality degradation between  
the connector and the source or sink of the high speed signals by following the guidelines provided in this  
document. Depending on the configuration schemes, the speed of each differential pair can reach a maximum  
speed of 5.4 Gbps. These signals are to be routed first before other signals with highest priority.  
Each differential pair should be routed together with controlled differential impedance of 85 to 90-Ω and 50-Ω  
common mode impedance. Keep away from other high speed signals. The number of vias should be kept to  
minimum. Each pair should be separated from adjacent pairs by at least 3 times the signal trace width. Route  
all differential pairs on the same group of layers (Outer layers or inner layers) if not on the same layer. No 90  
degree turns on any of the differential pairs. If bends are used on high speed differential pairs, the angle of  
the bend should be greater than 135 degrees.  
Length matching:  
Keep high speed differential pairs lengths within 5 mil of each other to keep the intra-pair skew minimum.  
The inter-pair matching of the differential pairs is not as critical as intra-pair matching. The SSTX and  
SSRX pairs do not have to match while they need to be routed as short as possible.  
Keep high speed differential pair traces adjacent to ground plane.  
Do not route differential pairs over any plane split  
ESD components on the high speed differential lanes should be placed nearest to the connector in a pass  
through manner without stubs on the differential path. In order to control impedance for transmission lines, a  
solid ground plane should be placed next to the high- speed signal layer. This also provides an excellent low-  
inductance path for the return current flow.  
Placement recommendation would be: Connector – ESD Components --- HD3SS460  
For ease of routing, the P and N connection of the USB3.1 differential pairs to the HD3SS460 pins can be  
swapped as long as the corresponding pairs are swapped on the other end of the switch The example is  
shown in the reference EVM schematics section of this document. The P/N can be swapped on USB 3.1  
connection of the switch for ease of routing purposes.  
11.1.2 General Routing/Placement Rules  
Route all high-speed signals first on un-routed PCB: SSTXP/N, SSRXT/N, LNAP/N, LNB P/N, LNC P/N, LND  
P/N, CTX*P/N. The stub on USB2 D+ and D- pairs should not exceed 3.5mm.  
Follow 20H rule (H is the distance to reference plane) for separation of the high-speed trace from the edge of  
the plane  
Minimize parallelism of high speed clocks and other periodic signal traces to high speed lines  
All differential pairs should be routed on the top or bottom layer (microstrip traces) if possible or on the same  
group of layers. Vias should only be used in the breakout region of the device to route from the top to bottom  
layer when necessary. Avoid using vias in the main region of the board at all cost. Use a ground reference via  
next to signal via. Distance between ground reference via and signal need to be calculated to have similar  
impedance as traces.  
All differential signals should not be routed over plane split. Changing signal layers is preferable to crossing  
plane splits.  
Use of and proper placement of stitching caps when split plane crossing is unavoidable to account for high-  
frequency return current path  
Route differential traces over a continuous plane with no interruptions.  
Do not route differential traces under power connectors or other interface connectors, crystals, oscillators, or  
any magnetic source.  
Route traces away from etching areas like pads, vias, and other signal traces. Try to maintain a 20 mil keep-  
out distance where possible.  
24  
Copyright © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
Layout Guidelines (continued)  
Decoupling capacitors should be placed next to each power terminal on the HD3SS460. Care should be  
taken to minimize the stub length of the trace connecting the capacitor to the power pin.  
Avoid sharing vias between multiple decoupling capacitors.  
Place vias as close as possible to the decoupling capacitor solder pad.  
Widen VCC/GND planes to reduce effect of static and dynamic IR drop.  
The VBUS traces/planes must be wide enough to carry maximum of 2 A current.  
11.2 Layout Example  
Figure 20, Figure 21, and Figure 22 illustrate some guidelines for layout. Actual layout should be optimized for  
various factors such as board geometry, connector type, and application.  
Figure 20. USB Type C Connector to HD3SS460 Signal Routing  
Figure 21. Dual SMT Mid-Mount Type C Connector Layout Example Zoom-in  
Copyright © 2015–2017, Texas Instruments Incorporated  
25  
 
 
HD3SS460  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
www.ti.com.cn  
Layout Example (continued)  
Figure 22. Dual-row SMT Mid-mount Type C with ESD Components  
26  
版权 © 2015–2017, Texas Instruments Incorporated  
HD3SS460  
www.ti.com.cn  
ZHCSDI9D JANUARY 2015REVISED JANUARY 2017  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请访问 www.ti.com.cn 您器件对应的产品文件夹。点击右上角的提醒我 (Alert me) 注册后,  
即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
USB Type-C is a trademark of USB-IF, Inc..  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015–2017, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
HD3SS460IRHRR  
HD3SS460IRHRT  
HD3SS460IRNHR  
HD3SS460IRNHT  
HD3SS460RHRR  
HD3SS460RHRT  
HD3SS460RNHR  
HD3SS460RNHT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHR  
RHR  
RNH  
RNH  
RHR  
RHR  
RNH  
RNH  
28  
28  
30  
30  
28  
28  
30  
30  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 70  
3SS460I  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
3SS460I  
460IRNH  
460IRNH  
3SS460  
3SS460  
460RNH  
460RNH  
0 to 70  
0 to 70  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HD3SS460IRHRR  
HD3SS460IRHRT  
HD3SS460IRNHR  
HD3SS460IRNHT  
HD3SS460RHRR  
HD3SS460RHRT  
HD3SS460RNHR  
HD3SS460RNHT  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHR  
RHR  
RNH  
RNH  
RHR  
RHR  
RNH  
RNH  
28  
28  
30  
30  
28  
28  
30  
30  
3000  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
3.8  
3.8  
2.8  
2.8  
3.8  
3.8  
2.8  
2.8  
5.8  
5.8  
4.8  
4.8  
5.8  
5.8  
4.8  
4.8  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
8.0  
8.0  
4.0  
4.0  
8.0  
8.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
HD3SS460IRHRR  
HD3SS460IRHRT  
HD3SS460IRNHR  
HD3SS460IRNHT  
HD3SS460RHRR  
HD3SS460RHRT  
HD3SS460RNHR  
HD3SS460RNHT  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
WQFN  
RHR  
RHR  
RNH  
RNH  
RHR  
RHR  
RNH  
RNH  
28  
28  
30  
30  
28  
28  
30  
30  
3000  
250  
346.0  
210.0  
367.0  
210.0  
346.0  
210.0  
367.0  
210.0  
346.0  
185.0  
367.0  
185.0  
346.0  
185.0  
367.0  
185.0  
33.0  
35.0  
35.0  
35.0  
33.0  
35.0  
35.0  
35.0  
3000  
250  
3000  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RHR 28  
3.5 x 5.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4210249/B  
www.ti.com  
PACKAGE OUTLINE  
RHR0028A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
0.5  
0.3  
5.6  
5.4  
0.3  
0.2  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
0.8 MAX  
C
SEATING PLANE  
0.08  
0.05  
0.00  
2±0.1  
2X 1.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
11  
14  
24X 0.5  
10  
15  
2X  
4.5  
4±0.1  
SEE TERMINAL  
DETAIL  
1
24  
0.3  
28X  
28  
25  
0.5  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A  
B
28X  
0.3  
0.05  
4219075/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2)  
SYMM  
28X (0.6)  
28X (0.25)  
25  
28  
1
24  
24X (0.5)  
(0.66)  
(5.3)  
TYP  
SYMM  
(4)  
(
0.2) TYP  
VIA  
15  
10  
11  
14  
(0.75) TYP  
(3.3)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219075/A 11/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RHR0028A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
(0.55) TYP  
28  
25  
28X (0.6)  
28X (0.25)  
1
24  
24X (0.5)  
SYMM  
(1.32)  
TYP  
(5.3)  
METAL  
TYP  
6X (1.12)  
15  
10  
14  
11  
6X (0.89)  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
75% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4219075/A 11/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RNH0030A  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
(0.2)  
30.000  
DETAIL A  
OPTIONAL SIDE WALL  
SEE DETAIL A  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
2X 1.6  
1.2 0.05  
(0.1) TYP  
4X (0.2)  
EXPOSED  
THERMAL PAD  
11  
15  
26X 0.4  
10  
16  
2X  
3.6  
3.2 0.05  
1
25  
0.25  
30X  
30  
26  
0.15  
PIN 1 ID  
0.1  
C A B  
0.35  
30X  
0.05  
0.25  
4221819/B 10/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNH0030A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.2)  
(0.7) TYP  
26  
30  
30X (0.5)  
1
25  
30X (0.2)  
26X (0.4)  
(1.2)  
SYMM  
(4.4)  
(3.2)  
(
0.2) TYP  
VIA  
(R0.05) TYP  
16  
10  
4X (0.2)  
11  
15  
SYMM  
(2.4)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221819/B 10/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNH0030A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.13)  
SYMM  
30  
26  
30X (0.5)  
1
25  
30X (0.2)  
26X (0.4)  
2X  
(1.39)  
SYMM  
(4.4)  
(0.8)  
METAL  
TYP  
(R0.05) TYP  
16  
10  
4X (0.2)  
11  
15  
(2.4)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
82% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4221819/B 10/2017  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

HD3SS460IRHRT

USB Type-C 交替模式 4x6 差分开关 | RHR | 28 | -40 to 85
TI

HD3SS460IRNHR

USB Type-C 交替模式 4x6 差分开关 | RNH | 30 | -40 to 85
TI

HD3SS460IRNHT

USB Type-C 交替模式 4x6 差分开关 | RNH | 30 | -40 to 85
TI

HD3SS460RHRR

USB Type-C 交替模式 4x6 差分开关 | RHR | 28 | 0 to 70
TI

HD3SS460RHRT

USB Type-C 交替模式 4x6 差分开关 | RHR | 28 | 0 to 70
TI

HD3SS460RNHR

USB Type-C 交替模式 4x6 差分开关 | RNH | 30 | 0 to 70
TI

HD3SS460RNHT

USB Type-C 交替模式 4x6 差分开关 | RNH | 30 | 0 to 70
TI

HD3SS6126

USB 3.0 and USB 2.0 Differential Switch 2:1/1:2 MUX/DEMUX
TI

HD3SS6126EVM

HD3SS6126EVM Device Reference Design
TAOS

HD3SS6126RUAR

USB 3.0 and USB 2.0 Differential Switch 2:1/1:2 MUX/DEMUX
TI

HD3SS6126_14

USB 3.0 and USB 2.0 Differential Switch 2:1/1:2 MUX/DEMUX
TI

HD4-15530-2

Encoder/Decoder
ETC