HDC1010 [TI]

采用 WCSP 封装的 ±2% 低功耗数字湿度和温度传感器;
HDC1010
型号: HDC1010
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用 WCSP 封装的 ±2% 低功耗数字湿度和温度传感器

温度传感 传感器 温度传感器
文件: 总31页 (文件大小:1668K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Reference  
Design  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
HDC1010 具有温度传感器的低功耗、高精度数字湿度传感器  
1 特性  
3 说明  
1
相对湿度精度为 ±2%(典型值)  
HDC1010 是一款具有集成温度传感器的数字湿度传感  
器,其能够以超低功耗提供出色的测量精度。  
HDC1010 支持较宽的工作电源电压范围,并且相比竞  
争解决方案,该器件可为各类常见应用提供低成本和低  
功耗 优势。创新型 WLCSP(晶圆级芯片规模封装)  
凭借超紧凑型封装简化了电路板设计。HDC1010 的传  
感元件位于器件底部,这样可使 HDC1010 免受灰尘、  
粉尘以及其他环境污染物的影响,从而提高耐用性。湿  
度和温度传感器均经过出厂校准,校准数据存储在片上  
非易失性存储器中。  
温度精度为 ±0.2°C(典型值)  
高湿度下具有出色的稳定性  
14 位测量分辨率  
睡眠模式的电流为 100nA  
平均电源电流:  
1 sps11 位相对湿度 (RH) 测量时为 710nA  
1 sps11 RH 与温度测量时为 1.3µA  
电源电压为 2.7V 5.5V  
微型 2mm x 1.6mm 器件封装  
I2C 接口  
器件信息 (1)  
部件号  
HDC1010  
封装  
封装尺寸(标称值)  
2 应用  
DSBGA8 凸点)  
2.04mm x 1.59mm  
制热、通风与空调控制 (HVAC)  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
物联网 (IoT) 智能温度调节装置和室温监视器  
冰箱  
打印机  
白色家电  
医疗设备  
无线传感器(TIDA003740048400524)  
4 典型应用  
3.3 V  
VDD  
3.3 V  
3.3 V  
VDD  
RH  
HDC1010  
MCU  
I2C  
SDA  
SCL  
Registers  
and  
Logic  
Peripheral  
DRDYn  
ADR0  
ADR1  
ADC  
I2C  
GPIO  
OTP  
Calibration Coefficients  
TEMPERATURE  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNAS685  
 
 
 
 
 
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
目录  
8.4 Device Functional Modes.......................................... 9  
8.5 Programming........................................................... 10  
8.6 Register Map .......................................................... 14  
Application and Implementation ........................ 17  
9.1 Application Information............................................ 17  
9.2 Typical Application ................................................. 17  
9.3 Do's and Don'ts ...................................................... 18  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
典型应用................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 I2C Interface Electrical Characteristics..................... 6  
7.7 I2C Interface Timing Requirements ........................ 6  
7.8 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
8.1 Overview ................................................................... 9  
8.2 Functional Block Diagram ......................................... 9  
8.3 Feature Description................................................... 9  
9
10 Power Supply Recommendations ..................... 19  
11 Layout................................................................... 19  
11.1 Layout Guidelines ................................................. 19  
11.2 Layout Example .................................................... 21  
12 器件和文档支持 ..................................................... 22  
12.1 文档支持................................................................ 22  
12.2 接收文档更新通知 ................................................. 22  
12.3 社区资源................................................................ 22  
12.4 ....................................................................... 22  
12.5 静电放电警告......................................................... 22  
12.6 Glossary................................................................ 22  
13 机械、封装和可订购信息....................................... 22  
8
5 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2016) to Revision A  
Page  
已更改 产品预览量产数据”............................................................................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
6 Pin Configuration and Functions  
WLCSP (DSBGA)  
8 Pin YPA  
Top View  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
D2  
Pin Functions  
PIN  
I/O TYPE(1) DESCRIPTION  
NAME  
SCL  
NO.  
A1  
B1  
C1  
D1  
A2  
B2  
C2  
I
P
I
Serial clock line for I2C, open-drain; requires a pull-up resistor to VDD  
VDD  
Supply Voltage  
ADR0  
ADR1  
SDA  
Address select pin – hardwired to GND or VDD  
Address select pin – hardwired to GND or VDD  
I
I/O  
G
-
Serial data line for I2C, open-drain; requires a pull-up resistor to VDD  
Ground  
GND  
DNC  
Do not connect, or, may be connected to GND.  
Data ready, active low, open-drain. Requires a pull-up resistor to VDD. If not used tie to  
GND.  
DRDYn  
D2  
O
(1) P=Power, G=Ground, I=Input, O=Output  
Copyright © 2016, Texas Instruments Incorporated  
3
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-65  
MAX  
UNIT  
V
VDD  
SCL  
6
6
SDA  
Input Voltage  
6
6
DRDYn  
ADR0  
ADR1  
VDD+0.3  
VDD+0.3  
150  
Storage Temperature  
TSTG  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all  
pins  
±1000  
(1)  
V
Charged device model (CDM), per JEDEC specification –500 500  
JESD22-C101, all pins  
±250  
(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating range (unless otherwise noted)  
MIN  
2.7  
-40  
-20  
-20  
NOM  
MAX  
5.5  
125  
70  
UNIT  
V
VDD  
Supply Voltage  
3
TA, Temperature Sensor  
TA, Humidity Sensor(1)  
TA, Humidity sensor(1)  
Ambient Operating Temperature  
Ambient Operating Temperature  
Functional Operating Temperature  
°C  
°C  
85  
°C  
(1) See Figure 2  
7.4 Thermal Information  
HDC1010  
THERMAL METRIC(1)  
DSBGA -YPA  
8 PINS  
98.0  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
0.8  
Junction-to-board thermal resistance  
17.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.7  
ψJB  
17.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2016, Texas Instruments Incorporated  
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
7.5 Electrical Characteristics(1)  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. TA = 30°C,  
VDD = 3V, and RH = 40%.  
PARAMETER  
TEST CONDITION(2)  
MIN(3)  
TYP(4)  
MAX(3)  
UNIT  
POWER CONSUMPTION  
IDD  
Supply Current  
RH measurement, bit 12 of 0x02 register =  
0(5)  
190  
160  
220  
185  
200  
µA  
µA  
Temperature measurement, bit 12 of 0x02  
register = 0(5)  
Sleep Mode  
100  
710  
nA  
nA  
Average @ 1 measurement/second, RH (11  
bit), bit 12 of 0x02 register = 0(5)(6)  
Average @ 1 measurement/second, Temp  
(11 bit), bit 12 of 0x02 register = 0(5)(6)  
590  
1.3  
nA  
µA  
Average @ 1 measurement/second, RH  
(11bit) +temperature (11 bit), bit 12 of 0x02  
register = 1(5)(6)  
Startup (average on Start-up time)  
Peak current  
300  
7.2  
50  
µA  
mA  
µA  
IHEAT  
Heater Current(7)  
Average @ 1 measurement/second, RH  
(11bit) +temperature (11 bit), bit 12 of 0x02  
register = 1(5)(6)  
RELATIVE HUMIDITY SENSOR  
RHACC  
Accuracy  
Refer to Figure 2 in Typical Characteristics  
section.  
±2  
%RH  
RHREP  
RHHYS  
RHRT  
Repeatability(7)  
14 bit resolution.  
±0.1  
±1  
%RH  
%RH  
s
(8)  
Hysteresis  
10% RH 70%  
Response Time(9)  
Conversion Time(7)  
t 63%  
15  
(10)  
RHCT  
8 bit resolution  
11 bit resolution  
14 bit resolution  
Non-condensing  
2.50  
3.85  
6.50  
ms  
ms  
ms  
RHHOR  
RHLTD  
Operating Range(11)  
Long Term Drift(12)  
0
100  
%RH  
%RH/yr  
±0.25  
TEMPERATURE SENSOR  
TEMPACC Accuracy(7)  
TEMPREP Repeatability(7)  
5°C < TA< 60°C  
14 bit accuracy  
11 bit accuracy  
14 bit accuracy  
±0.2  
±0.1  
3.65  
6.35  
±0.4  
°C  
°C  
TEMPCT  
Conversion Time(7)  
ms  
ms  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond  
which the device may be permanently degraded, either mechanically or electrically.  
(2) Register values are represented as either binary (b is the prefix to the digits), or hexadecimal (0x is the prefix to the digits). Decimal  
values have no prefix.  
(3) Limits are ensured by testing, design, or statistical analysis at 30°C. Limits over the operating temperature range are ensured through  
correlations using statistical quality control (SQC) method.  
(4) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(5) I2C read/write communication and pull-up resistors current through SCL and SDA not included.  
(6) Average current consumption while conversion is in progress.  
(7) This parameter is specified by design and/or characterization and it is not tested in production.  
(8) The hysteresis value is the difference between an RH measurement in a rising and falling RH environment, at a specific RH point.  
(9) Actual response times will vary dependent on system thermal mass and air-flow.  
(10) Time for the RH output to change by 63% of the total RH change after a step change in environmental humidity.  
(11) Recommended humidity operating range is 10% to 70% RH. Prolonged operation outside this range may result in a measurement  
offset. The measurement offset will decrease after operating the sensor in this recommended operating range.  
(12) Drift due to aging effects at typical conditions (30°C and 20% to 50% RH). This value may be impacted by dust, vaporized solvents, out-  
gassing tapes, adhesives, packaging materials, etc.  
Copyright © 2016, Texas Instruments Incorporated  
5
 
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
Electrical Characteristics(1) (continued)  
The electrical ratings specified in this section apply to all specifications in this document, unless otherwise noted. TA = 30°C,  
VDD = 3V, and RH = 40%.  
PARAMETER  
TEST CONDITION(2)  
MIN(3)  
TYP(4)  
MAX(3)  
UNIT  
TEMPOR  
Operating Range  
-40  
125  
°C  
7.6 I2C Interface Electrical Characteristics  
At TA=30°C, VDD=3V (unless otherwise noted)  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
I2C INTERFACE VOLTAGE LEVEL  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
Output Low Voltage  
0.7xVDD  
V
V
0.3xVDD  
0.4  
VOL  
HYS  
CIN  
Sink current 3mA  
V
(1)  
Hysteresis  
0.1xVDD  
V
Input Capacitance on all digital pins  
0.5  
pF  
(1) This parameter is specified by design and/or characterization and it is not tested in production.  
7.7 I2C Interface Timing Requirements  
PARAMETER  
TEST CONDITION  
MIN  
TYP  
MAX  
UNIT  
I2C INTERFACE VOLTAGE LEVEL  
fSCL  
tLOW  
tHIGH  
tSP  
Clock Frequency  
10  
1.3  
0.6  
400  
kHz  
µs  
Clock Low Time  
Clock High Time  
µs  
Pulse width of spikes that must be  
suppressed by the input filter  
50  
15  
ns  
(1)  
tSTART  
Device Start-up time  
From VDD 2.7 V to ready for a  
10  
ms  
conversion(1)(2)  
(1) This parameter is specified by design and/or characterization and it is not tested in production.  
(2) Within this interval it is not possible to communicate to the device.  
SDA  
t
LOW  
t
SP  
SCL  
t
HIGH  
STOP START  
START  
REPEATED  
START  
Figure 1. I2C Timing  
6
Copyright © 2016, Texas Instruments Incorporated  
 
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
7.8 Typical Characteristics  
Unless otherwise noted. TA = 30°C, VDD = 3V.  
1
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10  
Typical  
Typical  
9
8
7
6
5
4
3
2
1
0
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Temp (°C)  
RH (%RH)  
Figure 2. RH Accuracy vs. RH  
Figure 3. Temperature Accuracy vs. Temperature  
300  
275  
250  
225  
200  
175  
150  
125  
100  
300  
275  
250  
225  
200  
175  
150  
125  
100  
T= -20°C  
T= 25°C  
T= 40°C  
T= 85°C  
T= 125°C  
Vdd=2.7V  
Vdd=3V  
Vdd=3.3V  
Vdd=5V  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5
0
25  
50  
75  
100  
125  
Vdd (V)  
Temp (°C)  
Figure 4. Supply Current vs. Supply Voltage, RH  
Measurement  
Figure 5. Supply Current vs. Temperature, RH Measurement  
300  
275  
250  
225  
200  
175  
150  
125  
100  
300  
T= -20°C  
T= 25°C  
T= 40°C  
T= 85°C  
T= 125°C  
Vdd=2.7V  
Vdd=3V  
Vdd=3.3V  
Vdd=5V  
275  
250  
225  
200  
175  
150  
125  
100  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5
0
25  
50  
75  
100  
125  
Vdd (V)  
Temp (°C)  
Figure 6. Supply Current vs. Supply Voltage, Temp  
Measurement  
Figure 7. Supply Current vs. Temperature, Temp  
Measurement  
Copyright © 2016, Texas Instruments Incorporated  
7
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise noted. TA = 30°C, VDD = 3V.  
1200  
1200  
1000  
800  
600  
400  
200  
0
T= -20°C  
T= 25°C  
T= 40°C  
Vdd=2.7V  
Vdd=3V  
Vdd=3.3V  
Vdd=5V  
1000  
800  
600  
400  
200  
0
T= 85°C  
T= 125°C  
2.7  
3
3.3  
3.6  
3.9  
4.2  
4.5  
4.8  
5
0
25  
50  
75  
100  
125  
Vdd (V)  
Temp (°C)  
Figure 8. Supply Current vs. Supply Voltage, Sleep Mode  
Figure 9. Supply Current vs. Temperature, Sleep Mode  
8
Copyright © 2016, Texas Instruments Incorporated  
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
8 Detailed Description  
8.1 Overview  
The HDC1010 is a digital humidity sensor with integrated temperature sensor that provides excellent  
measurement accuracy at very low power. The sensing element of the HDC1010 is placed on the bottom part of  
the device, which makes the HDC1010 more robust against dirt, dust, and other environmental contaminants.  
Measurement results can be read out through the I2C compatible interface. Resolution is based on the  
measurement time and can be 8, 11, or 14 bits for humidity; 11 or 14 bits for temperature.  
8.2 Functional Block Diagram  
RH  
VDD  
HDC1010  
SDA  
SCL  
DRDYn  
ADR0  
ADR1  
Registers  
and  
Logic  
ADC  
I2C  
OTP  
Calibration Coefficients  
TEMPERATURE  
GND  
Copyright © 2016, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 Power Consumption  
One of the key features of the HDC1010 is its low power consumption, which makes the device suitable in  
battery or power harvesting applications. In these applications the HDC1010 spends most of the time in sleep  
mode: with a typical 100nA of current consumption in sleep mode, the averaged current consumption is minimal.  
Its low consumption in measurement mode minimizes any self-heating.  
8.3.2 Voltage Supply Monitoring  
The HDC1010 monitors the supply voltage level and indicates when the voltage supply of the HDC1010 is less  
than 2.8V. This information is useful in battery-powered systems in order to inform the user to replace the  
battery. This is reported in the BTST field (register address 0x02:bit[11]) which is updated after power-on reset  
(POR) and after each measurement request.  
8.3.3 Heater  
The heater is an integrated resistive element that can be used to test the sensor or to drive condensation off the  
sensor. The heater can be activated using HEAT, bit 13 in Configuration Register. The heater helps in reducing  
the accumulated offset after long exposure at high humidity conditions.  
Once enabled the heater is turned on only in the measurement mode. To have a reasonable increase of the  
temperature it is suggested to increase the measurement data rate.  
8.4 Device Functional Modes  
The HDC1010 has two modes of operation: sleep mode and measurement mode. After power up, the HDC1010  
is in sleep mode. In this mode, the HDC1010 waits for I2C input including commands to configure the conversion  
times, read the status of the battery, trigger a measurement, and read measurements. Once it receives a  
command to trigger a measurement, the HDC1010 moves from sleep mode to measurement mode. In  
measurement mode, the HDC1010 acquires the configured measurements and sets the DRDYn line low when  
the measurement is complete. After completing the measurement and setting DRDYn low, the HDC1010 returns  
to sleep mode.  
Copyright © 2016, Texas Instruments Incorporated  
9
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
8.5 Programming  
8.5.1 I2C Serial Bus Address Configuration  
To communicate with the HDC1010, the master must first address slave devices via a slave address byte. The  
slave address byte consists of seven address bits and a direction bit that indicates the intent to execute a read or  
write operation. The HDC1010 features two address pins to allow up to 4 devices to be addressed on a single  
bus. Table 1 describes the pin logic levels used to properly connect up to 4 devices. The state of the ADR0 and  
ADR1 pins is sampled on every bus communication and should be set before any activity on the interface  
occurs. The address pin is read at the start of each communication event.  
Table 1. HDC1010 ADDRESS  
ADR1  
ADR0  
ADDRESS (7-bit address)  
1000000  
0
0
1
1
0
1
0
1
1000001  
1000010  
1000011  
8.5.2 I2C Interface  
The HDC1010 operates only as a slave device on the I2C bus interface. It is not allowed to have on the I2C bus  
multiple devices with the same address. Connection to the bus is made via the open-drain I/O lines, SDA, and  
SCL. The SDA and SCL pins feature integrated spike-suppression filters and Schmitt triggers to minimize the  
effects of input spikes and bus noise. After power-up, the sensor needs at most 15 ms, to be ready to start RH  
and temperature measurement. During this power-up time the HDC1010 is only able to provide the content of the  
serial number registers (0xFB to 0xFF) if requested. After the power-up the sensor is in the sleep mode until a  
communication or measurement is performed. All data bytes are transmitted MSB first.  
8.5.2.1 Serial Bus Address  
To communicate with the HDC1010, the master must first address slave devices via a slave address byte. The  
slave address byte consists of seven address bits, and a direction bit that indicates the intent to execute a read  
or write operation.  
8.5.2.2 Read and Write Operations  
To access a particular register on the HDC1010, write the desired register address value to the Pointer Register.  
The pointer value is the first byte transferred after the slave address byte with the R/W bit low. Every write  
operation to the HDC1010 requires a value for the pointer register (refer to Figure 10).  
When reading from the HDC1010, the last value stored in the pointer by a write operation is used to determine  
which register is read by a read operation. To change the pointer register for a read operation, a new value must  
be written to the pointer. This transaction is accomplished by issuing the slave address byte with the R/W bit low,  
followed by the pointer byte. No additional data is required (refer to Figure 11).  
The master can then generate a START condition and send the slave address byte with the R/W bit high to  
initiate the read command. Note that register bytes are sent MSB first, followed by the LSB. A write operation in  
a read-only register such as (DEVICE ID, MANUFACTURER ID, SERIAL ID) returns a NACK after each data  
byte; read/write operation to unused address returns a NACK after the pointer; a read/write operation with  
incorrect I2C address returns a NACK after the I2C address.  
10  
Copyright © 2016, Texas Instruments Incorporated  
 
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
1
9
1
9
SCL  
SDA  
!6  
!5  
!4  
!3  
!2  
!1  
!0  
ꢂ7  
ꢂ6  
ꢂ5  
ꢂ4  
ꢂ3  
ꢂ2  
ꢂ1  
ꢂ0  
R/W  
{tart by  
ꢀaster  
!ck by  
{lave  
!ck by  
{lave  
Frame 1  
7-bit Serial Bus Address Byte  
Frame 2  
Pointer Register Byte  
1
9
1
9
SCL  
SDA  
ꢁ15 ꢁ14 ꢁ13 ꢁ12 ꢁ11 ꢁ10  
ꢁ9  
ꢁ8  
ꢁ7  
ꢁ6  
ꢁ5  
ꢁ4  
ꢁ3  
ꢁ2  
ꢁ1  
ꢁ0  
!ck by  
{lave  
!ck by  
{lave  
{top by  
ꢀaster  
Frame 3  
Data MSB from  
MASTER  
Frame 4  
Data LSB from  
MASTER  
Figure 10. Writing Frame (Configuration Register)  
1
9
1
9
SCL  
SDA  
!6 !5 !4 !3 !2 !1 !0 R/W  
ꢃ7 ꢃ6 ꢃ5 ꢃ4 ꢃ3 ꢃ2 ꢃ1 ꢃ0  
{tart by  
ꢀaster  
!ck by  
{lave  
!ck by  
{lave  
Frame 1  
Frame 2  
7-bit Serial Bus Address Byte  
Pointer Register Byte  
1
9
1
9
1
9
SCL  
SDA  
!6 !5 !4 !3 !2 !1 !0 R/W  
ꢁ15 ꢁ14 ꢁ13 ꢁ12 ꢁ11 ꢁ10 ꢁ9 ꢁ8  
ꢁ7 ꢁ6 ꢁ5 ꢁ4 ꢁ3 ꢁ2 ꢁ1 ꢁ0  
{tart by  
ꢀaster  
!ck by  
{lave  
!ck by  
ꢀaster  
ꢂack by {top by  
ꢀaster ꢀaster  
Frame 4  
Data MSB from  
Slave  
Frame 5  
Data LSB from  
Slave  
Frame 3  
7-bit Serial Bus Address Byte  
Figure 11. Reading Frame (Configuration Register)  
8.5.2.3 Device Measurement Configuration  
By default the HDC1010 will first perform a temperature measurement followed by a humidity measurement. On  
power-up, the HDC1010 enters a low power sleep mode and is not actively measuring. Use the following steps  
to perform a measurement of both temperature and humidity and then retrieve the results:  
1. Configure the acquisition parameters in register address 0x02:  
(a) Set the acquisition mode to measure both temperature and humidity by setting Bit[12] to 1.  
(b) Set the desired temperature measurement resolution:  
Set Bit[10] to 0 for 14 bit resolution.  
Set Bit[10] to 1 for 11 bit resolution.  
(c) Set the desired humidity measurement resolution:  
Set Bit[9:8] to 00 for 14 bit resolution.  
Set Bit[9:8] to 01 for 11 bit resolution.  
Set Bit[9:8] to 10 for 8 bit resolution.  
2. Trigger the measurements by executing a pointer write transaction with the address pointer set to 0x00.  
Refer to Figure 12.  
Copyright © 2016, Texas Instruments Incorporated  
11  
 
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
3. Wait for the measurements to complete, based on the conversion time (refer to Electrical Characteristics(1)  
for the conversion time). Alternatively, wait for the assertion of DRDYn.  
4. Read the output data:  
Read the temperature data from register address 0x00, followed by the humidity data from register address  
0x01 in a single transaction as shown in Figure 14. A read operation will return a NACK if the contents of the  
registers have not been updated as shown in Figure 13.  
To perform another acquisition with the same measurement configuration simply repeat steps 2 through 4.  
If only a humidity or temperature measurement is desired, the following steps will perform a measurement and  
retrieve the result:  
1. Configure the acquisition parameters in register address 0x02:  
(a) Set the acquisition mode to independently measure temperature or humidity by setting Bit[12] to 0.  
(b) For a temperature measurement, set the desired temperature measurement resolution:  
Set Bit[10] to 0 for 14 bit resolution.  
Set Bit[10] to 1 for 11 bit resolution.  
(c) For a humidity measurement, set the desired humidity measurement resolution:  
Set Bit[9:8] to 00 for 14 bit resolution.  
Set Bit[9:8] to 01 for 11 bit resolution.  
Set Bit[9:8] to 10 for 8 bit resolution.  
2. Trigger the measurement by executing a pointer write transaction. Refer to Figure 12  
Set the address pointer to 0x00 for a temperature measurement.  
Set the address pointer to 0x01 for a humidity measurement.  
3. Wait for the measurement to complete, based on the conversion time (refer to Electrical Characteristics(1) for  
the conversion time). Alternatively, wait for the assertion of DRDYn.  
4. Read the output data:  
Retrieve the completed measurement result from register address 0x00 or 0x01, as appropriate, as shown in  
Figure 10. A read operation will return a NACK if the measurement result is not yet available, as shown in  
Figure 13.  
To perform another acquisition with the same measurement configuration repeat steps 2 through 4.  
It is possible to read the output registers (addresses 0x00 and 0x01) during an Temperature or Relative Humidity  
measurement without affecting any ongoing measurement. Note that a write to address 0x00 or 0x01 while a  
measurement is ongoing will abort the ongoing measurement. If the newest acquired measurement is not read,  
DRDYn stays low until the next measurement is triggered.  
1
9
1
9
SCL  
SDA  
!6 !5 !4 !3 !2 !1 !0 R/W  
ꢁ7 ꢁ6 ꢁ5 ꢁ4 ꢁ3 ꢁ2 ꢁ1 ꢁ0  
{tart by  
ꢀaster  
!ck by  
{lave  
!ck by  
{lave  
Frame 1  
Frame 2  
7-bit Serial Bus Address Byte  
Pointer Register Byte  
Figure 12. Trigger Humidity/Temperature Measurement  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond  
which the device may be permanently degraded, either mechanically or electrically.  
12  
Copyright © 2016, Texas Instruments Incorporated  
 
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
1
9
SCL  
SDA  
!6 !5 !4 !3 !2 !1 !0 R/W  
{tart by  
ꢀaster  
ꢁack by  
{lave  
Frame 3  
7-bit Serial Bus Address Byte  
Figure 13. Read Humidity/Temperature Measurement (Data Not Ready)  
1
9
1
9
1
9
SCL  
SDA  
!6 !ꢀ !4 !3 !2 !1 !0 R/W  
51ꢀ 514 513 512 511 510 59 58  
57 56 5ꢀ 54 53 52 51 50  
{tꢁrt by  
aꢁster  
!ck by  
{lꢁve  
!ck by  
aꢁster  
!ck by  
aꢁster  
Frame 4  
Data MSB from  
Slave  
Frame 5  
Data LSB from  
Slave  
Frame 3  
7-bit Serial Bus Address Byte  
1
9
1
9
SCL  
51ꢀ 514 513 512 511 510 59 58  
57 56 5ꢀ 54 53 52 51 50  
SDA  
!ck by  
aꢁster  
ꢂꢁck by {top by  
aꢁster aꢁster  
Frame 6  
Data MSB from  
Slave  
Frame 7  
Data LSB from  
Slave  
Figure 14. Read Humidity and Temperature Measurement (Data Ready)  
Copyright © 2016, Texas Instruments Incorporated  
13  
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
8.6 Register Map  
The HDC1010 contains data registers that hold configuration information, temperature and humidity  
measurement results, and status information.  
Table 2. Register Map  
Pointer  
0x00  
Name  
Reset value  
0x0000  
Description  
Temperature  
Humidity  
Temperature measurement output  
Relative Humidity measurement output  
HDC1010 configuration and status  
First 2 bytes of the serial ID of the part  
Mid 2 bytes of the serial ID of the part  
Last byte bit of the serial ID of the part  
ID of Texas Instruments  
0x01  
0x0000  
0x02  
Configuration  
Serial ID  
0x1000  
0xFB  
0xFC  
0xFD  
0xFE  
0xFF  
device dependent  
device dependent  
device dependent  
0x5449  
Serial ID  
Serial ID  
Manufacturer ID  
Device ID  
0x1000  
ID of HDC1010 device  
Registers from 0x03 to 0xFA are reserved and should not be written.  
The HDC1010 has an 8-bit pointer used to address a given data register. The pointer identifies which of the data  
registers should respond to a read or write command on the two-wire bus. This register is set with every write  
command. A write command must be issued to set the proper value in the pointer before executing a read  
command. The power-on reset (POR) value of the pointer is 0x00, which selects a temperature measurement.  
8.6.1 Temperature Register  
The temperature register is a 16-bit result register in binary format (the 2 LSBs D1 and D0 are always 0). The  
result of the acquisition is always a 14 bit value. The accuracy of the result is related to the selected conversion  
time (refer to Electrical Characteristics(1)). The temperature can be calculated from the output data with:  
TEMPERATURE  
[
15:00  
]
÷
Temperature(èC)=  
*165èC-40èC  
216  
«
Table 3. Temperature Register Description (0x00)  
Name  
Registers  
[15:02]  
Description  
TEMPERATURE  
Temperature  
Reserved  
Temperature measurement (read only)  
Reserved, always 0 (read only)  
[01:00]  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond  
which the device may be permanently degraded, either mechanically or electrically.  
8.6.2 Humidity Register  
The humidity register is a 16-bit result register in binary format (the 2 LSBs D1 and D0 are always 0). The result  
of the acquisition is always a 14 bit value, while the accuracy is related to the selected conversion time (refer to  
Electrical Characteristics(1)). The humidity can be calculated from the output data with:  
HUMIDITY  
216  
[15:00  
]
÷
Relative Humidity(% RH)=  
*100%RH  
«
Table 4. Humidity Register Description (0x01)  
Name  
Registers  
Description  
HUMIDITY  
[15:02]  
Relative  
Relative Humidity measurement (read only)  
Humidity  
[01:00]  
Reserved  
Reserved, always 0 (read only)  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond  
which the device may be permanently degraded, either mechanically or electrically.  
14  
Copyright © 2016, Texas Instruments Incorporated  
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
8.6.3 Configuration Register  
This register configures device functionality and returns status.  
Table 5. Configuration Register Description (0x02)  
NAME  
REGISTERS  
[15]  
DESCRIPTION  
Normal Operation, this bit self clears  
Software Reset  
RST  
Software reset  
bit  
0
1
0
0
1
0
1
0
1
0
1
Reserved  
HEAT  
[14]  
[13]  
Reserved  
Heater  
Reserved, must be 0  
Heater Disabled  
Heater Enabled  
MODE  
BTST  
TRES  
[12]  
[11]  
[10]  
Mode of  
acquisition  
Temperature or Humidity is acquired.  
Temperature and Humidity are acquired in sequence, Temperature first.  
Battery voltage > 2.8V (read only)  
Battery voltage < 2.8V (read only)  
14 bit  
Battery Status  
Temperature  
Measurement  
Resolution  
11 bit  
HRES  
[9:8]  
[7:0]  
Humidity  
Measurement  
Resolution  
00  
01  
10  
0
14 bit  
11 bit  
8 bit  
Reserved  
Reserved  
Reserved, must be 0  
8.6.4 Serial Number Registers  
These registers contain a 40bit unique serial number for each individual HDC1010.  
Table 6. Serial Number Register Description (0xFB)  
Name  
Registers  
Description  
SERIAL ID[40:25]  
[15:0]  
Serial Id bits  
Device Serial Number bits from 40 to 25 (read only)  
Table 7. Serial Number Register Description (0xFC)  
Name  
Registers  
Description  
SERIAL ID[24:9]  
[15:0]  
Serial Id bits  
Device Serial Number bits from 24 to 9 (read only)  
Table 8. Serial Number Register Description (0xFD)  
Name  
Registers  
[15:7]  
Description  
SERIAL ID[8:0]  
Serial Id bits  
Reserved  
Device Serial Number bits from 8 to 0 (read only)  
Reserved, always 0 (read only)  
[6:0]  
8.6.5 Manufacturer ID Register  
This register contains a factory-programmable identification value that identifies this device as being  
manufactured by Texas Instruments. This register distinguishes this device from other devices that are on the  
same I2C bus. The manufacturer ID reads 0x5449.  
Table 9. Manufacturer ID Register Description (0xFE)  
Name  
Registers  
Description  
MANUFACTURER  
ID  
[15:0]  
Manufacturer  
ID  
0x5449  
Texas instruments ID (read only)  
Copyright © 2016, Texas Instruments Incorporated  
15  
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
8.6.6 Device Register ID  
This register contains a factory-programmable identification value that identifies this device as a HDC1010. This  
register distinguishes this device from other devices that are on the same I2C bus. The Device ID for the  
HDC1010 is 0x1000.  
Table 10. Device ID Register Description (0xFF)  
Name  
Registers  
Description  
DEVICE ID  
[15:0]  
Device ID  
0x1000  
HDC1010 Device ID (read only)  
16  
Copyright © 2016, Texas Instruments Incorporated  
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
An HVAC system thermostat control is based on environmental sensors and a micro-controller. The micro-  
controller acquires data from humidity sensors and temperature sensors and controls the heating/cooling system.  
The collected data are then showed on a display that can be easily controlled by the micro controller. Based on  
data from the humidity and temperature sensor, the heating/cooling system then maintains the environment at  
customer-defined preferred conditions.  
9.2 Typical Application  
In a battery-powered HVAC system thermostat, one of the key parameters in the selection of components is the  
power consumption. The HDC1010, with its 1.3μA of current consumption (average consumption over 1s for RH  
and Temperature measurements) in conjunction with an MSP430 represents an excellent choice for the low  
power consumption, which extends the battery life. A system block diagram of a battery powered HVAC or  
Thermostat is shown in Figure 15.  
DISPLAY  
Temp 29°C  
RH 40%  
-
+
Lithium  
ion battery  
TPL5110  
TIME xx:xx  
Date xx/xx/xxxx  
EN/  
ONE_SHOT  
VDD  
DRV  
DELAY/  
M_DRIVE  
GND  
DONE  
KEYBOARD  
Button  
RH  
VDD  
HDC1010  
ADC  
VDD  
MCU  
I2C  
SDA  
SCL  
Registers  
and  
Logic  
Peripheral  
DRDYn  
ADR0  
ADR1  
I2C  
GPIO  
Button  
Button  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
OTP  
Calibration Coefficients  
GPIO  
GND  
TEMPERATURE  
GND  
To Air  
Conditioning  
System  
Copyright © 2016, Texas Instruments Incorporated  
Figure 15. Typical Application Schematic HVAC  
9.2.1 Design Requirements  
In order to correctly sense the ambient temperature and humidity, the HDC1010 should be positioned away from  
heat sources on the PCB. Generally, it should not be close to the LCD and battery. Moreover, to minimize any  
self-heating of the HDC1010 it is recommended to acquire at a maximum sample rate of 1sps (RH + Temp). In  
home systems, humidity and the temperature monitoring rates of less than 1sps (even 0.5sps or 0.2sps) can be  
still effective.  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
When a circuit board layout is created from the schematic shown in Figure 15 a small circuit board is possible.  
The accuracy of a RH and temperature measurement depends on the sensor accuracy and the setup of the  
sensing system. The HDC1010 samples relative humidity and temperature in its immediate environment, it is  
therefore important that the local conditions at the sensor match the monitored environment. Use one or more  
openings in the physical cover of the thermostat to obtain a good airflow even in static conditions. Refer to the  
layout below ( Figure 20) for a PCB layout which minimizes the thermal mass of the PCB in the region of the  
HDC1010, which can improve measurement response time and accuracy.  
9.2.3 Application Curve  
The data showed below have been acquired with the HDC1010EVM. A humidity chamber was used to control  
the environment.  
Figure 16. RH vs. Time  
9.3 Do's and Don'ts  
9.3.1 Soldering  
For soldering HDC1010 use the standard soldering profile IPC/JEDEC J-STD-020 with peak temperatures at 260  
°C. Refer to the document SNVA009 for more details on the DSBGA package. In the document refer to DSBGA  
package with bump size 0.5mm pitch and 0.32mm diameter.  
When soldering the HDC1010 it is mandatory to use no-clean solder paste and no board wash shall be applied.  
The HDC1010 should be limited to a single IR reflow and no rework is recommended.  
9.3.2 Chemical Exposure and Sensor Protection  
The humidity sensor is not a standard IC and therefore should not be exposed to particulates or volatile  
chemicals such as solvents or other organic compounds. If any type of protective coating must be applied to the  
circuit board, the sensor must be protected during the coating process.  
9.3.3 High Temperature and Humidity Exposure  
Long exposure outside the recommended operating conditions may temporarily offset the RH output. Table 11  
shows the RH offset values that can be expected for exposure to 85°C and 85% RH for duration between 12 and  
500 hours (continuos).  
18  
Copyright © 2016, Texas Instruments Incorporated  
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
Table 11. Induced RH Offset Due to Extended Exposure to High Humidity and High Temperature  
(85°C/85% RH)  
85°C/85% RH Duration (hours)  
12  
24  
168  
500  
RH Offset (%)  
3
6
12  
15  
When the sensor is exposed to less severe conditions, Figure 17 shows the typical RH offset at other  
combinations of temperature and RH.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
±3%  
±4%  
±2%  
±3%  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (°C)  
Figure 17. Relative Humidity Accuracy vs Temperature  
10 Power Supply Recommendations  
The HDC1010 require a voltage supply within 2.7V and 5.5V. A multilayer ceramic bypass X7R capacitor of  
0.1µF between VDD and GND pin is recommended.  
11 Layout  
11.1 Layout Guidelines  
The Relative Humidity sensor element is located on the bottom side of the package. It is positioned between the  
two rows of bumps  
It is recommended to not route any traces below the sensor element. Moreover the external components, such  
as pull-up resistors and bypass capacitors need to be placed next to the 2 rows of bumps or on the bottom side  
of the PCB in order to guarantee a good air flow.  
It is recommended to isolate the sensor from the rest of the PCB by eliminating copper layers below the device  
(GND, VDD) and creating a slot into the PCB around the sensor to enhance thermal isolation.  
11.1.1 Surface Mount  
Two types of PCB land patterns are used for surface mount packages:  
1. Non-solder mask defined (NSMD)  
2. Solder mask defined (SMD)  
Pros and cons of NSMD and SMD:  
1. The NSMD configuration is preferred due to its tighter control of the copper etch process and a reduction in  
the stress concentration points on the PCB side compared to SMD configuration.  
2. A copper layer thickness of less than 1 oz. is recommended to achieve higher solder joint stand-off. A 1 oz.  
(30 micron) or greater copper thickness causes a lower effective solder joint stand-off, which may  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
Layout Guidelines (continued)  
compromise solder joint reliability.  
3. For the NSMD pad geometry, the trace width at the connection to the land pad should not exceed 2/3 of the  
pad diameter.  
0.05 MAX  
(
0.263)  
METAL  
METAL  
UNDER  
MASK  
0.05 MIN  
(
0.263)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
Figure 18. Solder Mask  
11.1.2 Stencil Printing Process  
1. Use laser cutting followed by electro-polishing for stencil fabrication  
2. If possible, offset apertures from land pads to maximize separation and minimize possibility of bridging for  
DSBGA packages  
3. Use Type 3 (25 to 45 micron particle size range) or finer solder paste for printing  
(0.5) TYP  
8X ( 0.25)  
(R0.05) TYP  
1
2
A
B
SYMM  
(0.5) TYP  
C
D
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
SCALE:25X  
Figure 19. Solder Paste  
20  
Copyright © 2016, Texas Instruments Incorporated  
HDC1010  
www.ti.com.cn  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
11.2 Layout Example  
The only component next to the device is the supply bypass capacitor. Since the relative humidity is dependent  
on the temperature, the HDC1010 should be positioned away from hot points present on the board such as  
battery, display or micro-controller. Slots around the device can be used to reduce the thermal mass, for a  
quicker response to environmental changes.  
Çht [!ò9w  
.hÇÇha [!ò9w  
Figure 20. Layout  
版权 © 2016, Texas Instruments Incorporated  
21  
HDC1010  
ZHCSFF0A MAY 2016REVISED AUGUST 2016  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
《适用于星型网络的无线湿度和温度传感器节点参考设计,可实现 10 年以上的纽扣电池使用寿命》 TIDA-00374  
《适用于低于 1GHz 的星型网络的湿度和温度传感器节点,可实现 10 年以上的纽扣电池使用寿命》 TIDA-00484  
《具有 NFC 接口的超低功耗多传感器数据记录器参考设计TIDA-00524  
HDC1010 德州仪器 (TI) 湿度传感器》SNAA216  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏  
22  
版权 © 2016, Texas Instruments Incorporated  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
HDC1010YPAR  
HDC1010YPAT  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YPA  
YPA  
8
8
3000 RoHS & Green  
250 RoHS & Green  
SAC405 SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
3N  
3N  
SAC405 SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Sep-2016  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
HDC1010YPAR  
HDC1010YPAT  
DSBGA  
DSBGA  
YPA  
YPA  
8
8
3000  
250  
178.0  
178.0  
8.4  
8.4  
1.68  
1.68  
2.13  
2.13  
0.76  
0.76  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Sep-2016  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
HDC1010YPAR  
HDC1010YPAT  
DSBGA  
DSBGA  
YPA  
YPA  
8
8
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
YPA0008  
DSBGA - 0.675 mm max height  
SCALE 8.000  
DIE SIZE BALL GRID ARRAY  
A
B
E
BALL A1  
CORNER  
D
0.675 MAX  
C
SEATING PLANE  
0.265  
0.215  
BALL TYP  
1
TYP  
D
C
1.5  
TYP  
0.5  
TYP  
D: Max = 2.07 mm, Min = 2.01 mm  
E: Max = 1.62 mm, Min = 1.56 mm  
B
A
1
2
0.335  
0.305  
8X  
C A  
0.005  
B
4215068/A 11/2013  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
YPA0008  
DSBGA - 0.675 mm max height  
DIE SIZE BALL GRID ARRAY  
0.275  
0.250  
(0.5) TYP  
2
8X  
1
A
B
C
SYMM  
(0.5) TYP  
D
SYMM  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.05 MAX  
0.05 MIN  
(
0.263)  
METAL  
METAL  
UNDER  
MASK  
(
0.263)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4215068/A 11/2013  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
YPA0008  
DSBGA - 0.675 mm max height  
DIE SIZE BALL GRID ARRAY  
(0.5) TYP  
8X ( 0.25)  
(R0.05) TYP  
1
2
A
B
SYMM  
(0.5) TYP  
C
D
METAL  
TYP  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1mm THICK STENCIL  
SCALE:25X  
4215068/A 11/2013  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

HDC1010YPAR

采用 WCSP 封装的 ±2% 低功耗数字湿度和温度传感器 | YPA | 8 | -40 to 85
TI

HDC1010YPAT

采用 WCSP 封装的 ±2% 低功耗数字湿度和温度传感器 | YPA | 8 | -40 to 85
TI

HDC1050EVM

HDC1050EVM evaluation module (EVM) enables designers to evaluate the operation and performance of the HDC1050 Relative Humidity and Temperature sensor.
TAOS

HDC1080

2% RH 低功耗数字相对湿度传感器
TI

HDC1080DMBR

2% RH 低功耗数字相对湿度传感器 | DMB | 6 | -40 to 125
TI

HDC1080DMBT

2% RH 低功耗数字相对湿度传感器 | DMB | 6 | -40 to 125
TI

HDC10CA

375W LOW CAPACITANCE TRANSIENT VOLTAGE SUPPRESSOR
DIODES

HDC10CA-T

Trans Voltage Suppressor Diode, 375W, 10V V(RWM), Bidirectional, 1 Element, Silicon, PLASTIC, MINIDIP-4
DIODES

HDC1100-01

Serial-to-Parallel Converter
ETC

HDC1100-01P

Serial-to-Parallel Converter
ETC

HDC1100-03

Disk Pulse Detector
ETC