HPA02287PHPR [TI]

10-W/15-W Digital Audio Power Amplifier with Integrated Cap-Free HP Amplifier; 10 W / 15 W数字音频功率放大器集成无电容耳机放大器
HPA02287PHPR
型号: HPA02287PHPR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10-W/15-W Digital Audio Power Amplifier with Integrated Cap-Free HP Amplifier
10 W / 15 W数字音频功率放大器集成无电容耳机放大器

放大器 功率放大器
文件: 总68页 (文件大小:1253K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
10-W/15-W Digital Audio Power Amplifier with Integrated Cap-Free HP Amplifier  
Check for Samples: TAS5717, TAS5719  
1
FEATURES  
2
Audio Input/Output  
Benefits  
TAS5717 Supports 2×10 W and TAS5719  
Supports 2×15 W Output  
EQ: Speaker Equalization Improves Audio  
Performance  
Wide PVDD Range, From 4.5 V to 26 V  
DRC: Dynamic Range Compression. Can  
Be Used As Power Limiter. Enables  
Speaker Protection, Easy Listening,  
Night-Mode Listening  
Efficient Class-D Operation Eliminates  
Need for Heatsinks  
Requires Only 3.3 V and PVDD  
DirectPath Technology: Eliminates Bulky  
DC Blocking Capacitors  
One Serial Audio Input (Two Audio  
Channels)  
I2C Address Selection via PIN (Chip Select)  
Stereo Headphone/Stereo Line Drivers:  
Adjust Gain via External Resistors,  
Dedicated Active Headpone Mute Pin, High  
Signal-to-Noise Ratio  
Supports 8-kHz to 48-kHz Sample Rate  
(LJ/RJ/I2S)  
External Headphone-Amplifier Shutdown  
Signal  
Two-Band DRC: Set Two Different  
Thresholds for Low- and High-Frequency  
Content  
Integrated CAP-Free Headphone Amplifier  
Stereo Headphone (Stereo 2-V RMS Line  
Driver) Outputs  
DESCRIPTION  
Audio/PWM Processing  
The TAS5717/TAS5719 is a 10-W/15-W, efficient,  
digital audio-power amplifier for driving stereo  
bridge-tied speakers. One serial data input allows  
processing of up to two discrete audio channels and  
seamless integration to most digital audio processors  
and MPEG decoders. The device accepts a wide  
Independent Channel Volume Controls With  
24-dB to Mute  
Programmable Two-Band Dynamic Range  
Control  
14 Programmable Biquads for Speaker EQ  
Programmable Coefficients for DRC Filters  
DC Blocking Filters  
range of input data and data rates.  
programmable data path routes these channels to the  
internal speaker drivers.  
A fully  
The TAS5717/9 is a slave-only device receiving all  
clocks from external sources. The TAS5717/TAS5719  
operates with a PWM carrier between a 384-kHz  
0.125-dB Fine Volume Support  
General Features  
Serial Control Interface Operational Without  
MCLK  
switching rate and  
a 352-KHz switching rate,  
depending on the input sample rate. Oversampling  
combined with a fourth-order noise shaper provides a  
flat noise floor and excellent dynamic range from  
20 Hz to 20 kHz.  
Factory-Trimmed Internal Oscillator for  
Automatic Rate Detection  
Surface Mount, 48-Pin, 7-mm × 7-mm  
HTQFP Package  
AD, BD, and Ternary PWM-Mode Support  
Thermal and Short-Circuit Protection  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
FilterPro is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
© 20102011, Texas Instruments Incorporated  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
SIMPLIFIED APPLICATION DIAGRAM  
3.3 V  
4.5 V–26 V  
PVDD  
AVDD/DVDD/  
HP_VDD  
OUT_A  
LRCLK  
SCLK  
MCLK  
SDIN  
Digital  
Audio  
Source  
BST_A  
BST_B  
LCBTL  
OUT_B  
OUT_C  
I2C  
Control  
SDA  
SCL  
BST_C  
BST_D  
LCBTL  
RESET  
PDN  
Control  
Inputs  
OUT_D  
PLL_FLTP  
PLL_FLTM  
Loop  
Filter(1)  
HPL_OUT  
HPR_OUT  
HPL_IN  
Headphone IN  
(Single-Ended)  
HPL_OUT  
HP_SD  
B0264-13  
(1)See the TAS5717/9 User's Guide for loop-filter values.  
2
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
FUNCTIONAL VIEW  
OUT_A  
2´ HB  
FET Out  
4th  
Order  
Noise  
R
Serial  
Audio  
Port  
OUT_B  
SDIN  
S
Digital Audio Processor  
(DAP)  
Shaper  
and  
PWM  
C
OUT_C  
OUT_D  
2´ HB  
FET Out  
Protection  
Logic  
Click and Pop  
Control  
MCLK  
SCLK  
Sample Rate  
Autodetect  
and PLL  
LRCLK  
Microcontroller  
Based  
System  
SDA  
SCL  
Serial  
Control  
Control  
Terminal Control  
HPL_IN  
HPR_IN  
HPL_OUT  
HPR_OUT  
Charge Pump  
Headphone Amp/Line Driver  
B0262-08  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
DAP PROCESS STRUCTURE  
4
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
PIN ASSIGNMENT AND DESCRIPTIONS  
PHP Package  
(Top View)  
48 47 46 45 44 43 42 41 40 39 38 37  
HPL_IN  
HPL_OUT  
HPR_OUT  
HPR_IN  
BST_D  
PVDD_CD  
GVDD_OUT  
HP_SD  
SSTIMER  
VREG  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
4
HPVSS  
CPN  
5
6
TAS5717  
(TAS5719)  
CPP  
7
AGND  
HPVDD  
AVSS  
8
GND  
9
DVSS  
PLL_FLTM  
10  
11  
12  
DVDD  
PLL_FLTP  
VR_ANA  
STEST  
RESET  
13 14 15 16 17 18 19 20 21 22 23 24  
P0075-11  
PIN FUNCTIONS  
PIN  
NAME  
AGND  
5-V  
TOLERANT  
TYPE(1)  
TERMINATION(2)  
DESCRIPTION  
NO.  
30  
P
Analog ground for power stage  
A_SEL  
14  
DIO  
This pin is monitored on the rising edge of RESET. A value of 0  
makes the I2C dev address 0x54, and a value of 1 makes it 0x56.  
AVDD  
AVSS  
BST_A  
BST_B  
BST_C  
BST_D  
CPN  
13  
9
P
P
3.3-V analog power supply  
Analog 3.3-V supply ground  
45  
41  
40  
36  
6
P
High-side bootstrap supply for half-bridge A  
High-side bootstrap supply for half-bridge B  
High-side bootstrap supply for half-bridge C  
High-side bootstrap supply for half-bridge D  
Charge-pump flying-capacitor negative connection  
Charge-pump flying-capacitor positive connection  
3.3-V digital power supply  
P
P
P
IO  
IO  
P
CPP  
7
DVDD  
DVSS  
DVSSO  
GND  
27  
28  
17  
29  
P
Digital ground  
P
Oscillator ground  
P
Analog ground for power stage  
(1) TYPE: A = analog; D = 3.3-V digital; P = power/ground/decoupling; I = input; O = output  
(2) All pullups are weak pullups and all pulldowns are weak pulldowns. The pullups and pulldowns are included to assure proper input logic  
levels if the pins are left unconnected (pullups logic 1 input; pulldowns logic 0 input).  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
PIN FUNCTIONS (continued)  
PIN  
NAME  
5-V  
TOLERANT  
TYPE(1)  
TERMINATION(2)  
DESCRIPTION  
NO.  
34  
1
GVDD_OUT  
HPL_IN  
HPL_OUT  
HP_PWML  
HP_PWMR  
HPR_IN  
HPR_OUT  
HP_SD  
P
AI  
AO  
DO  
DO  
AI  
AO  
AI  
P
Gate drive internal regulator output  
Headphone left IN (single-ended, analog IN)  
Headphone left OUT (single-ended, analog OUT)  
PWM left-channel headphone out  
PWM right-channel headphone out  
Headphone right IN (single-ended, analog IN)  
Headphone right OUT (single-ended, analog OUT)  
Headphone shutdown (active-low)  
Headphone supply  
2
48  
47  
4
3
33  
8
HPVDD  
HPVSS  
5
P
Headphone ground  
LRCLK  
20  
15  
16  
44  
42  
39  
37  
19  
DI  
DI  
AO  
O
5-V  
5-V  
Pulldown  
Pulldown  
Input serial audio data left/right clock (sample rate clock)  
Master clock input  
MCLK  
OSC_RES  
OUT_A  
Oscillator trim resistor. Connect an 18-k1% resistor to DVSSO.  
Output, half-bridge A  
OUT_B  
O
Output, half-bridge B  
OUT_C  
O
Output, half-bridge C  
OUT_D  
O
Output, half-bridge D  
PDN  
DI  
5-V  
Pullup  
Power down, active-low. PDN prepares the device for loss of power  
supplies by shutting down the noise shaper and initiating the PWM  
stop sequence.  
PGND_AB  
PGND_CD  
PLL_FLTM  
PLL_FLTP  
PVDD_AB  
PVDD_CD  
RESET  
43  
38  
10  
11  
46  
35  
25  
P
P
Power ground for half-bridges A and B  
Power ground for half-bridges C and D  
PLL negative loop-filter terminal  
AO  
AO  
P
PLL positive loop-filter terminal  
Power-supply input for half-bridge output A  
Power-supply input for half-bridge output C  
P
DI  
5-V  
Pullup  
Reset, active-low. A system reset is generated by applying a logic low  
to this pin. RESET is an asynchronous control signal that restores the  
DAP to its default conditions, and places the PWM in the hard-mute  
(high-impedance) state.  
SCL  
24  
21  
DI  
DI  
5-V  
5-V  
I2C serial control clock input  
SCLK  
Pulldown  
Pulldown  
Serial audio data clock (shift clock). SCLK is the serial audio port input  
data bit clock.  
I2C serial control data interface input/output  
SDA  
23  
22  
DIO  
DI  
5-V  
5-V  
SDIN  
Serial audio data input. SDIN supports three discrete (stereo) data  
formats.  
SSTIMER  
32  
AI  
Controls ramp time of OUT_X to minimize pop. Leave this pin floating  
for BD mode. Requires capacitor of 2.2 nF to GND in AD mode. The  
capacitor determines the ramp time.  
STEST  
26  
12  
DI  
P
Factory test pin. Connect directly to DVSS.  
VR_ANA  
Internally regulated 1.8-V analog supply voltage. This pin must not be  
used to power external devices.  
VR_DIG  
VREG  
18  
31  
P
P
Internally regulated 1.8-V digital supply voltage. This pin must not be  
used to power external devices.  
Digital regulator output. Not to be used for powering external circuitry.  
6
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)(1)  
VALUE  
0.3 to 3.6  
0.3 to 30  
0.3 to 4.2  
0.5 to DVDD + 0.5  
0.5 to DVDD + 2.5(3)  
0.5 to AVDD + 2.5(3)  
22(4)  
UNIT  
V
DVDD, AVDD, HPVDD  
Supply voltage  
PVDD_X  
V
HPL_IN, HPR_IN  
V
3.3-V digital input  
Input voltage  
V
5-V tolerant(2) digital input (except MCLK)  
V
5-V tolerant MCLK input  
OUT_x to PGND_x  
V
V
BST_x to PGND_x  
32(4)  
V
Input clamp current, IIK  
±20  
mA  
mA  
°C  
°C  
°C  
Output clamp current, IOK  
±20  
Operating free-air temperature  
Operating junction temperature range  
Storage temperature range, Tstg  
0 to 85  
0 to 150  
40 to 125  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions are not implied. Exposure to absolute-maximum conditions for extended periods may affect device reliability.  
(2) 5-V tolerant inputs are PDN, RESET, SCLK, LRCLK, MCLK, SDIN, SDA, and SCL.  
(3) Maximum pin voltage should not exceed 6 V.  
(4) DC voltage + peak ac waveform measured at the pin should be below the allowed limit for all conditions.  
THERMAL INFORMATION  
TAS5717  
THERMAL METRIC(1)  
PHP  
48 PINS  
35.2  
UNIT  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-board thermal resistance(3)  
Junction-to-case (bottom) thermal resistance(4)  
Junction-to-case (top) thermal resistance(5)  
Junction-to-top characterization parameter(6)  
Junction-to-board characterization parameter(7)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJB  
10.9  
θJC(bottom)  
θJC(top)  
ψJT  
1.6  
19.7  
3.4  
ψJB  
10.1  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(4) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(5) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific  
JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(6) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX  
UNIT  
V
Digital/analog supply voltage  
Half-bridge supply voltage  
High-level input voltage  
DVDD, AVDD  
3
4.5  
2
3.3  
3.6  
PVDD_X  
V
VIH  
VIL  
TA  
5-V tolerant  
5-V tolerant  
V
Low-level input voltage  
0.8  
85  
V
Operating ambient temperature range  
Operating junction temperature range  
Load impedance  
0
0
°C  
°C  
(1)  
TJ  
125  
RL (BTL)  
Output filter: L = 15 μH, C = 680 nF  
4
8
Minimum output inductance under  
short-circuit condition  
4.7  
LO (BTL)  
Output-filter inductance  
μH  
(1) Continuous operation above the recommended junction temperature may result in reduced reliability and/or lifetime of the device.  
RECOMMENDED OPERATING CONDITIONS FOR HEADPHONE/LINE DRIVER  
MIN NOM  
MAX  
UNIT  
Digital/analog supply voltage  
HPVDD  
3
3.3  
3.6  
V
Headphone-mode load imedance  
(HPL/HPR)  
16  
R_hp_L  
R_ln_L  
32  
Line-diver-mode load impedance  
(HPL/HPR)  
0.6  
10  
kΩ  
PWM OPERATION AT RECOMMENDED OPERATING CONDITIONS  
PARAMETER  
TEST CONDITIONS  
11.025/22.05/44.1-kHz data rate ±2%  
48/24/12/8/16/32-kHz data rate ±2%  
VALUE  
352.8  
384  
UNIT  
kHz  
Output sample rate  
PLL INPUT PARAMETERS AND EXTERNAL FILTER COMPONENTS  
PARAMETER  
TEST CONDITIONS  
MIN  
2.8224  
40%  
TYP  
MAX  
24.576  
60%  
UNIT  
fMCLKI  
MCLK Frequency  
MHz  
MCLK duty cycle  
50%  
tr /  
tf(MCLK)  
Rise/fall time for MCLK  
5
4
ns  
LRCLK allowable drift before LRCLK reset  
External PLL filter capacitor C1  
External PLL filter capacitor C2  
External PLL filter resistor R  
MCLKs  
nF  
SMD 0603 Y5V  
47  
4.7  
SMD 0603 Y5V  
nF  
SMD 0603, metal film  
470  
Fcp  
Charge Pump Switching Frequency  
500  
700  
KHz  
8
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
ELECTRICAL CHARACTERISTICS  
DC Characteristics  
TA = 25°, PVCC_X = 13 V, DVDD = AVDD = 3.3 V, RL= 8 , BTL AD Mode, fS = 48 KHz (unless otherwise noted)  
PARAMETER  
High-level output voltage  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
VOH  
VOL  
FAULTZ and SDA  
FAULTZ and SDA  
IOH = 4 mA  
DVDD = 3 V  
2.4  
V
Low-level output voltage  
IOL = 4 mA  
DVDD = 3 V  
0.5  
75  
75  
V
VI < VIL ; DVDD = AVDD  
= 3.6V  
IIL  
Low-level input current  
High-level input current  
μA  
μA  
VI > VIH ; DVDD =  
AVDD = 3.6V  
IIH  
Normal mode  
48  
21  
70  
32  
3.3 V supply voltage (DVDD,  
AVDD)  
IDD  
3.3 V supply current  
mA  
mA  
mΩ  
Reset (RESET = low,  
PDN = high)  
Normal mode  
20  
5
34  
13  
IPVDD  
Half-bridge supply current  
No load (PVDD_X)  
Reset (RESET = low,  
PDN = high)  
Drain-to-source resistance, LS TJ = 25°C, includes metallization resistance  
200  
200  
(1)  
rDS(on)  
Drain-to-source resistance,  
HS  
TJ = 25°C, includes metallization resistance  
I/O Protection  
Vuvp  
Undervoltage protection limit  
PVDD falling  
PVDD rising  
3.5  
4.5  
V
V
Vuvp,hyst  
OTE(2)  
Undervoltage protection limit  
Overtemperature error  
150  
°C  
Extra temperature drop  
required to recover from error  
(2)  
OTEHYST  
30  
°C  
IOC  
Overcurrent limit protection  
Overcurrent response time  
Internal pulldown resistor at  
4.5  
A
IOCT  
150  
ns  
Connected when drivers are tristated to provide bootstrap  
RPD  
3
kΩ  
the output of each half-bridge capacitor charge.  
(1) This does not include bond-wire or pin resistance.  
(2) Specified by design  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
AC Characteristics (BTL)  
PVDD_X = 12 V, BTL AD mode, fS = 48 KHz, RL = 8 , audio frequency = 1 kHz, (unless otherwise noted). All performance  
is in accordance with recommended operating conditions, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
10  
MAX UNIT  
PVDD = 13 V, 10% THD, 1-kHz input  
signal  
PO  
Power output per channel  
PVDD = 8 V, 10% THD, 1-kHz input signal  
4.1  
W
PVDD = 18 V, 10% THD, 1-kHz input  
signal  
15(1)  
PVDD = 13 V; PO = 1 W  
PVDD = 8 V; PO = 1 W  
0.13%  
0.2%  
56  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise (rms)  
Crosstalk  
A-weighted  
μV  
PO = 0.25 W, f = 1 kHz (BD mode)  
PO = 0.25 W, f = 1 kHz (AD mode)  
82  
dB  
69  
A-weighted, f = 1 kHz, maximum power at  
THD < 1%  
(2)  
SNR  
Signal-to-noise ratio  
105  
dB  
(1) 15 W is supported only in the TAS5719.  
(2) SNR is calculated relative to 0-dBFS input level.  
AC Characteristics (Headphone/Line Driver)  
PVDD_X = 12 V, BTL AD mode, fS = 48 KHz, RL = 8 , audio frequency = 1 kHz, (unless otherwise noted). All performance  
is in accordance with recommended operating conditions, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
HP_VDD = 3.3 V (Rhp = 32 ; THD 1%)  
Adjustable via Rin and Rfb  
Rhp = 32 Ω  
MIN  
TYP  
MAX UNIT  
Po(hp)  
Headphone power output per channel  
25  
mW  
HP_gain Headphone gain  
SNR_hp Sgnal-to-noise ratio (headphone mode)  
101  
105  
dB  
dB  
SNR_ln  
Sgnal-to-noise ratio (line driver mode)  
2-V rms output  
10  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
SERIAL AUDIO PORTS SLAVE MODE  
over recommended operating conditions (unless otherwise noted)  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
fSCLKIN  
tsu1  
Frequency, SCLK 32 × fS, 48 × fS, 64 × fS  
Setup time, LRCLK to SCLK rising edge  
Hold time, LRCLK from SCLK rising edge  
Setup time, SDIN to SCLK rising edge  
Hold time, SDIN from SCLK rising edge  
LRCLK frequency  
CL = 30 pF  
1.024  
10  
12.288  
MHz  
ns  
th1  
10  
ns  
tsu2  
10  
ns  
th2  
10  
ns  
8
48  
50%  
50%  
48  
60%  
60%  
kHz  
SCLK duty cycle  
40%  
40%  
LRCLK duty cycle  
SCLK  
edges  
SCLK rising edges between LRCLK rising edges  
LRCLK clock edge with respect to the falling edge of SCLK  
Rise/fall time for SCLK/LRCLK  
32  
64  
1/4  
8
t(edge)  
SCLK  
period  
1/4  
tr /  
ns  
tf(SCLK/LRCLK)  
tr  
tf  
SCLK  
(Input)  
t(edge)  
th1  
tsu1  
LRCLK  
(Input)  
th2  
tsu2  
SDIN  
T0026-04  
Figure 1. Slave Mode Serial Data Interface Timing  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
I2C SERIAL CONTROL PORT OPERATION  
Timing characteristics for I2C Interface signals over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
No wait states  
MIN  
MAX  
UNIT  
kHz  
μs  
fSCL  
tw(H)  
tw(L)  
tr  
Frequency, SCL  
400  
Pulse duration, SCL high  
0.6  
1.3  
Pulse duration, SCL low  
μs  
Rise time, SCL and SDA  
300  
300  
ns  
tf  
Fall time, SCL and SDA  
ns  
tsu1  
th1  
Setup time, SDA to SCL  
100  
0
ns  
Hold time, SCL to SDA  
ns  
t(buf)  
tsu2  
th2  
Bus free time between stop and start condition  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
Load capacitance for each bus line  
1.3  
0.6  
0.6  
0.6  
μs  
μs  
μs  
tsu3  
CL  
μs  
400  
pF  
tw(H)  
tw(L)  
tr  
tf  
SCL  
tsu1  
th1  
SDA  
T0027-01  
Figure 2. SCL and SDA Timing  
SCL  
t(buf)  
th2  
tsu2  
tsu3  
SDA  
Start  
Condition  
Stop  
Condition  
T0028-01  
Figure 3. Start and Stop Conditions Timing  
12  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
RESET TIMING (RESET)  
Control signal parameters over recommended operating conditions (unless otherwise noted). Please refer to Recommended  
Use Model section on usage of all terminals.  
PARAMETER  
Pulse duration, RESET active  
Time to enable I2C  
MIN  
TYP  
MAX  
UNIT  
μs  
tw(RESET)  
100  
td(I2C_ready)  
12  
ms  
RESET  
tw(RESET)  
I2C Active  
I2C Active  
td(I2C_ready)  
System Initialization.  
Enable via I2C.  
T0421-01  
NOTES: 1. On power up, it is recommended that the TAS5717/9 RESET be held LOW for at least 100 μs after DVDD has  
reached 3 V.  
2. If RESET is asserted LOW while PDN is LOW, then the RESET must continue to be held LOW for at least 100 μs  
after PDN is deasserted (HIGH).  
Figure 4. Reset Timing  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
TYPICAL CHARACTERISTICS, BTL CONFIGURATION, 8Ω  
SPACER  
SPACER  
SPACER  
SPACER  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
1
10  
1
PVDD = 8V  
RL = 8  
TA = 25°C  
PVDD = 12V  
RL = 8  
TA = 25°C  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
PO = 1W  
PO = 2.5W  
PO = 5W  
PO = 1W  
PO = 2.5W  
PO = 5W  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 5.  
Figure 6.  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
1
10  
1
PVDD = 18V  
RL = 8  
TA = 25°C  
PVDD = 24V  
RL = 8  
TA = 25°C  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
PO = 1W  
PO = 2.5W  
PO = 5W  
PO = 1W  
PO = 2.5W  
PO = 5W  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 7.  
Figure 8.  
14  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
TYPICAL CHARACTERISTICS, BTL CONFIGURATION, 8Ω (continued)  
SPACER  
SPACER  
SPACER  
SPACER  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
OUTPUT POWER  
OUTPUT POWER  
10  
1
10  
1
PVDD = 8V  
RL = 8  
TA = 25°C  
PVDD = 12V  
RL = 8  
TA = 25°C  
0.1  
0.1  
0.01  
0.01  
f = 20Hz  
f = 1kHz  
f = 20Hz  
f = 1kHz  
0.001  
0.001  
0.01  
0.1  
1
10 40  
0.01  
0.1  
1
10 40  
Output Power (W)  
Output Power (W)  
Figure 9.  
Figure 10.  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
OUTPUT POWER  
OUTPUT POWER  
10  
1
10  
1
PVDD = 18V  
RL = 8  
TA = 25°C  
PVDD = 24V  
RL = 8  
TA = 25°C  
0.1  
0.1  
0.01  
0.01  
f = 20Hz  
f = 1kHz  
f = 10kHz  
f = 20Hz  
f = 1kHz  
0.001  
0.001  
0.01  
0.1  
1
10 40  
0.01  
0.1  
1
10 40  
Output Power (W)  
Output Power (W)  
Figure 11.  
Figure 12.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
TYPICAL CHARACTERISTICS, BTL CONFIGURATION, 8Ω (continued)  
SPACER  
SPACER  
TAS5717  
TAS5717  
OUTPUT POWER  
vs  
EFFICIENCY  
vs  
SUPPLY VOLTAGE  
OUTPUT POWER  
40  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
RL = 8  
TA = 25°C  
PVDD = 8V  
PVDD = 12V  
PVDD = 18V  
PVDD = 24V  
RL = 8  
TA = 25°C  
THD+N = 1%  
THD+N = 10%  
0
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Total Output Power (W)  
NOTE: Dashed lines represent thermally limited region.  
NOTE: Dashed lines represent thermally limited region.  
Figure 13.  
Figure 14.  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
SPACER  
TAS5719  
TAS5719  
OUTPUT POWER  
EFFICIENCY  
vs  
vs  
SUPPLY VOLTAGE  
OUTPUT POWER  
40  
100  
90  
80  
70  
60  
50  
40  
30  
RL = 8  
TA = 25°C  
35  
30  
25  
20  
15  
10  
5
20  
10  
0
PVDD = 8V  
PVDD = 12V  
PVDD = 18V  
PVDD = 24V  
RL = 8  
TA = 25°C  
THD+N = 1%  
THD+N = 10%  
0
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
0
5
10  
15  
20  
25  
30  
35  
Supply Voltage (V)  
Total Output Power (W)  
NOTE: Dashed lines represent thermally limited region.  
NOTE: Dashed lines represent thermally limited region.  
Figure 15.  
Figure 16.  
16  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
TYPICAL CHARACTERISTICS, BTL CONFIGURATION, 8Ω (continued)  
SPACER  
SPACER  
SPACER  
SPACER  
CROSSTALK  
vs  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
0
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
PO = 1W  
PVDD = 8V  
RL = 8  
PO = 1W  
PVDD = 12V  
RL = 8  
Right to Left  
Left to Right  
Right to Left  
Left to Right  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
TA = 25°C  
TA = 25°C  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 17.  
Figure 18.  
SPACER  
SPACER  
SPACER  
SPACER  
CROSSTALK  
vs  
SPACER  
SPACER  
SPACER  
SPACER  
CROSSTALK  
vs  
FREQUENCY  
FREQUENCY  
0
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
0
−10  
PO = 1W  
PVDD = 18V  
RL = 8  
PO = 1W  
PVDD = 24V  
RL = 8  
Right to Left  
Left to Right  
Right to Left  
Left to Right  
−20  
TA = 25°C  
TA = 25°C  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
−110  
−120  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 19.  
Figure 20.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
TYPICAL CHARACTERISTICS, HEADPHONE TESTS, SE CONFIGURATION, 32Ω  
SPACER  
SPACER  
ANALOG IN  
PWM IN  
TOTAL HARMONIC DISTORTION + NOISE  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
FREQUENCY  
FREQUENCY  
10  
1
10  
1
HPVDD = 3.3V  
RL = 32  
TA = 25°C  
HPVDD = 3.3V  
RL = 32  
TA = 25°C  
0.1  
0.1  
0.01  
0.001  
0.01  
0.001  
PO = 10mW  
PO = 10mW  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Frequency (Hz)  
Figure 21.  
Figure 22.  
18  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
TYPICAL CHARACTERISTICS, LINE DRIVER TESTS, SE CONFIGURATION, 5kΩ  
SPACER  
SPACER  
ANALOG IN  
TOTAL HARMONIC DISTORTION + NOISE  
PWM IN  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
vs  
FREQUENCY  
OUTPUT VOLTAGE  
10  
1
10  
1
HPVDD = 3.3V  
RL = 5k  
TA = 25°C  
PVDD =3.3V  
RL = 5k  
TA = 25°C  
0.1  
0.1  
0.01  
0.001  
0.01  
VO = 1Vrms  
f = 1kHz  
0.001  
20  
100  
1k  
10k 20k  
10m  
100m  
1
4
Frequency (Hz)  
Output Voltage (V)  
Figure 23.  
Figure 24.  
SPACER  
SPACER  
SPACER  
ANALOG IN  
CROSSTALK  
vs  
FREQUENCY  
0
VO = 1Vrms  
PVDD = 3.3V  
RL = 5k  
Right to Left  
Left to Right  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
TA = 25°C  
20  
100  
1k  
10k 20k  
Frequency (Hz)  
Figure 25.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
DETAILED DESCRIPTION  
POWER SUPPLY  
To facilitate system design, the TAS5717/9 needs only a 3.3-V supply in addition to the (typical) 13-V  
power-stage supply. An internal voltage regulator provides suitable voltage levels for the gate drive circuitry.  
Additionally, all circuitry requiring a floating voltage supply, e.g., the high-side gate drive, is accommodated by  
built-in bootstrap circuitry requiring only a few external capacitors.  
In order to provide good electrical and acoustical characteristics, the PWM signal path for the output stage is  
designed as identical, independent half-bridges. For this reason, each half-bridge has separate bootstrap pins  
(BST_X) and power-stage supply pins (PVDD_X). The gate drive voltages (GVDD_AB and GVDD_CD) are  
derived from the PVDD voltage. Special attention should be paid to placing all decoupling capacitors as close to  
their associated pins as possible. In general, inductance between the power-supply pins and decoupling  
capacitors must be avoided.  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor is  
charged through an internal diode connected between the gate-drive regulator output pin (GVDD_X) and the  
bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output  
potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM  
switching frequencies in the range from 352 kHz to 384 kHz, it is recommended to use 33-nF ceramic capacitors,  
size 0603 or 0805, for the bootstrap supply. These 33-nF capacitors ensure sufficient energy storage, even  
during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during the  
remaining part of the PWM cycle.  
Special attention should be paid to the power-stage power supply; this includes component selection, PCB  
placement, and routing. As indicated, each half-bridge has independent power-stage supply pins (PVDD_X). For  
optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X pin is  
decoupled with a 100-nF ceramic capacitor placed as close as possible to each supply pin.  
The TAS5717/9 is fully protected against erroneous power-stage turnon due to parasitic gate charging.  
I2C CHIP SELECT/HP_SHUTDOWN  
A_SEL/HP_SD is an input pin during power up. It can be pulled high or low. HIGH indicates an I2C subaddress  
of 0x56, and LOW a subaddress of 0x54.  
DEVICE PROTECTION SYSTEM  
Overcurrent (OC) Protection With Current Limiting  
The device has independent, fast-reacting current detectors on all high-side and low-side power-stage FETs. The  
detector outputs are closely monitored a protection system. If the high-current condition situation persists, i.e.,  
the power stage is being overloaded, a protection system triggers a latching shutdown, resulting in the power  
stage being set in the high-impedance (Hi-Z) state. The device returns to normal operation once the fault  
condition (i.e., a short circuit on the output) is removed. Current limiting and overcurrent protection are not  
independent for half-bridges. That is, if the bridge-tied load between half-bridges A and B causes an overcurrent  
fault, half-bridges A, B, C, and D are shut down.  
Overtemperature Protection  
The TAS5717/9 has an overtemperature-protection system. If the device junction temperature exceeds 150°C  
(nominal), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the  
high-impedance (Hi-Z) state and FAULT being asserted low. The TAS5717/9 recovers automatically once the  
temperature drops approximately 30°.  
20  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Undervoltage Protection (UVP) and Power-On Reset (POR)  
The UVP and POR circuits of the TAS5717/9 fully protect the device in any power-up/down and brownout  
situation. While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are  
fully operational when the PVDD and AVDD supply voltages reach 4.5 V and 2.7 V, respectively. Although PVDD  
and AVDD are independently monitored, a supply voltage drop below the UVP threshold on AVDD or on either  
PVDD pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state and FAULT  
being asserted low.  
CLOCK, AUTO DETECTION, AND PLL  
The TAS5717/9 is a slave device. It accepts MCLK, SCLK, and LRCLK. The digital audio processor (DAP)  
supports all the sample rates and MCLK rates that are defined in the clock control register  
.
The TAS5717/9 checks to verify that SCLK is a specific value of 32 fS, 48 fS, or 64 fS. The DAP only supports a 1  
× fS LRCLK. The timing relationship of these clocks to SDIN is shown in subsequent sections. The clock section  
uses MCLK or the internal oscillator clock (when MCLK is unstable, out of range, or absent) to produce the  
internal clock (DCLK) running at 512 times the PWM switching frequency.  
The DAP can autodetect and set the internal clock-control logic to the appropriate settings for all supported clock  
rates as defined in the clock control register.  
TAS5717/9 has robust clock error handling that uses the bulit-in trimmed oscillator clock to quickly detect  
changes/errors. Once the system detects a clock change/error, it mutes the audio (through a single-step mute)  
and then forces PLL to limp using the internal oscillator as a reference clock. Once the clocks are stable, the  
system autodetects the new rate and reverts to normal operation. During this process, the default volume is  
restored in a single step (also called hard unmute). The ramp process can be programmed to ramp back slowly  
(also called soft unmute) as defined in volume register (0x0E).  
SERIAL DATA INTERFACE  
Serial data is input on SDIN. The PWM outputs are derived from SDIN. The TAS5717/9 DAP accepts serial data  
in 16-, 20-, or 24-bit left-justified, right-justified, or I2S serial data format.  
PWM Section  
The TAS5717/9 DAP device uses noise-shaping and sophisticated nonlinear correction algorithms to achieve  
high power efficiency and high-performance digital audio reproduction. The DAP uses a fourth-order noise  
shaper to increase dynamic range and SNR in the audio band. The PWM section accepts 24-bit PCM data from  
the DAP and outputs two BTL PWM audio output channels.  
The PWM section has individual-channel dc-blocking filters that can be enabled and disabled. The filter cutoff  
frequency is less than 1 Hz. Individual-channel de-emphasis filters for 44.1- and 48-kHz are included and can be  
enabled and disabled.  
Finally, the PWM section has an adjustable maximum modulation limit of 93.8% to 99.2%.  
For detailed description of using audio processing features like DRC and EQ, see the User's Guide and  
TAS570X GDE software development tool documentation. Also see the GDE software development tool for the  
device data path.  
I2C COMPATIBLE SERIAL CONTROL INTERFACE  
The TAS5717/9 DAP has an I2C serial control slave interface to receive commands from a system controller. The  
serial control interface supports both normal-speed (100-kHz) and high-speed (400-kHz) operations without wait  
states. As an added feature, this interface operates even if MCLK is absent.  
The serial control interface supports both single-byte and multiple-byte read and write operations for status  
registers and the general control registers associated with the PWM.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
SERIAL INTERFACE CONTROL AND TIMING  
I2S Timing  
I2S timing uses LRCLK to define when the data being transmitted is for the left channel and when it is for the  
right channel. LRCLK is low for the left channel and high for the right channel. A bit clock running at 32, 48, or  
64 × fS is used to clock in the data. There is a delay of one bit clock from the time the LRCLK signal changes  
state to the first bit of data on the data lines. The data is written MSB-first and is valid on the rising edge of bit  
clock. The DAP masks unused trailing data-bit positions.  
2-Channel I2S (Philips Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK (Note Reversed Phase)  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
MSB  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
1
0
23 22  
19 18  
15 14  
9
5
1
8
4
0
5
1
4
0
1
0
20-Bit Mode  
19 18  
0
16-Bit Mode  
15 14  
T0034-01  
NOTE: All data presented in 2s-complement form with MSB first.  
Figure 26. I2S 64-fS Format  
22  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
2-Channel I2S (Philips Format) Stereo Input/Output (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
1
MSB  
LSB  
24-Bit Mode  
23 22  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
3
2
0
23 22  
19 18  
15 14  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
3
2
1
20-Bit Mode  
19 18  
16-Bit Mode  
15 14  
9
8
9
8
T0092-01  
NOTE: All data presented in 2s-complement form with MSB first.  
Figure 27. I2S 48-fS Format  
2-Channel I2S (Philips Format) Stereo Input  
16 Clks  
16 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB  
1
MSB  
LSB  
16-Bit Mode  
15 14 13 12 11 10  
9
8
5
4
3
2
0
15 14 13 12 11 10  
9
8
5
4
3
2
1
T0266-01  
NOTE: All data presented in 2s-complement form with MSB first.  
Figure 28. I2S 32-fS Format  
Left-Justified  
Left-justified (LJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when it  
is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at 32,  
48, or 64 × fS is used to clock in the data. The first bit of data appears on the data lines at the same time LRCLK  
toggles. The data is written MSB-first and is valid on the rising edge of the bit clock. The DAP masks unused  
trailing data-bit positions.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
2-Channel Left-Justified Stereo Input  
32 Clks  
32 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
23 22  
LSB  
24-Bit Mode  
23 22  
9
5
1
8
4
0
5
1
4
0
1
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18  
19 18  
15 14  
16-Bit Mode  
15 14  
T0034-02  
NOTE: All data presented in 2s-complement form with MSB first.  
Figure 29. Left-Justified 64-fS Format  
2-Channel Left-Justified Stereo Input (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22 21  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
1
23 22 21  
17 16  
13 12  
9
5
1
8
4
0
5
1
4
0
1
0
0
20-Bit Mode  
19 18 17  
19 18 17  
16-Bit Mode  
15 14 13  
9
8
15 14 13  
9
8
T0092-02  
NOTE: All data presented in 2s-complement form with MSB first.  
Figure 30. Left-Justified 48-fS Format  
24  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
2-Channel Left-Justified Stereo Input  
16 Clks  
16 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
16-Bit Mode  
15 14 13 12 11 10  
9
8
5
4
3
2
1
0
15 14 13 12 11 10  
9
8
5
4
3
2
1
0
T0266-02  
NOTE: All data presented in 2s-complement form with MSB first.  
Figure 31. Left-Justified 32-fS Format  
Right-Justified  
Right-justified (RJ) timing uses LRCLK to define when the data being transmitted is for the left channel and when  
it is for the right channel. LRCLK is high for the left channel and low for the right channel. A bit clock running at  
32, 48, or 64 × fS is used to clock in the data. The first bit of data appears on the data 8 bit-clock periods (for  
24-bit data) after LRCLK toggles. In RJ mode the LSB of data is always clocked by the last bit clock before  
LRCLK transitions. The data is written MSB-first and is valid on the rising edge of bit clock. The DAP masks  
unused leading data-bit positions.  
2-Channel Right-Justified (Sony Format) Stereo Input  
32 Clks  
32 Clks  
LRCLK  
SCLK  
Right Channel  
Left Channel  
SCLK  
MSB  
LSB MSB  
LSB  
0
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
1
1
1
20-Bit Mode  
16-Bit Mode  
0
0
0
0
T0034-03  
Figure 32. Right-Justified 64-fS Format  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
2-Channel Right-Justified Stereo Input (24-Bit Transfer Word Size)  
24 Clks  
24 Clks  
LRCLK  
Right Channel  
Left Channel  
SCLK  
SCLK  
MSB  
LSB MSB  
LSB  
24-Bit Mode  
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
6
6
6
5
5
5
2
2
2
1
1
1
0
0
0
23 22  
19 18  
19 18  
15 14  
15 14  
15 14  
6
6
6
5
5
5
2
2
2
1
1
1
0
0
20-Bit Mode  
16-Bit Mode  
0
T0092-03  
Figure 33. Right-Justified 48-fS Format  
Figure 34. Right-Justified 32-fS Format  
26  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
I2C SERIAL CONTROL INTERFACE  
The TAS5717/9 DAP has a bidirectional I2C interface that is compatible with the Inter IC (I2C) bus protocol and  
supports both 100-kHz and 400-kHz data transfer rates for single- and multiple-yte write and read operations.  
This is a slave-only device that does not support a multimaster bus environment or wait-state insertion. The  
control interface is used to program the registers of the device and to read device status.  
The DAP supports the standard-mode I2C bus operation (100 kHz maximum) and the fast I2C bus operation  
(400 kHz maximum). The DAP performs all I2C operations without I2C wait cycles.  
General I2C Operation  
The I2C bus employs two signals; SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data can be transferred in byte  
(8-bit) format, with the most significant bit (MSB) transferred first. In addition, each byte transferred on the bus is  
acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the master  
device driving a start condition on the bus and ends with the master device driving a stop condition on the bus.  
The bus uses transitions on the data pin (SDA) while the clock is high to indicate start and stop conditions. A  
high-to-low transition on SDA indicates a start and a low-to-high transition indicates a stop. Normal data-bit  
transitions must occur within the low time of the clock period. These conditions are shown in Figure 35. The  
master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The TAS5717/9 holds SDA low during the acknowledge  
clock period to indicate an acknowledgment. When this occurs, the master transmits the next byte of the  
sequence. Each device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible  
devices share the same signals via a bidirectional bus using a wired-AND connection. An external pullup resistor  
must be used for the SDA and SCL signals to set the high level for the bus.  
8-Bit Register Data For  
Address (N)  
8-Bit Register Data For  
Address (N)  
R/  
W
8-Bit Register Address (N)  
7-Bit Slave Address  
A
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
T0035-01  
Figure 35. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. A generic data transfer sequence is  
shown in Figure 35.  
The 7-bit address for TAS5717/9 is 0101 010 (0x54) or 0101 011 (0x56) defined by A_SEL (external pulldown for  
0x54 and pullup for 0x56).Stero device with Headphone should use 0x54 as its device address.  
Single- and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for subaddresses  
0x00 to 0x1F. However, for the subaddresses 0x20 to 0xFF, the serial control interface supports only  
multiple-byte read/write operations (in multiples of 4 bytes).  
During multiple-byte read operations, the DAP responds with data, a byte at a time, starting at the subaddress  
assigned, as long as the master device continues to respond with acknowledges. If a particular subaddress does  
not contain 32 bits, the unused bits are read as logic 0.  
During multiple-byte write operations, the DAP compares the number of bytes transmitted to the number of bytes  
that are required for each specific subaddress. For example, if a write command is received for a biquad  
subaddress, the DAP expects to receive five 32-bit words. If fewer than five 32-bit data words have been  
received when a stop command (or another start command) is received, the data received is discarded.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Supplying a subaddress for each subaddress transaction is referred to as random I2C addressing. The  
TAS5717/9 also supports sequential I2C addressing. For write transactions, if a subaddress is issued followed by  
data for that subaddress and the 15 subaddresses that follow, a sequential I2C write transaction has taken place,  
and the data for all 16 subaddresses is successfully received by the TAS5717/9. For I2C sequential write  
transactions, the subaddress then serves as the start address, and the amount of data subsequently transmitted,  
before a stop or start is transmitted, determines how many subaddresses are written. As was true for random  
addressing, sequential addressing requires that a complete set of data be transmitted. If only a partial set of data  
is written to the last subaddress, the data for the last subaddress is discarded. However, all other data written is  
accepted; only the incomplete data is discarded.  
Single-Byte Write  
As shown in Figure 36, a single-byte data-write transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. The read/write bit determines the direction of  
the data transfer. For a data-write transfer, the read/write bit is 0. After receiving the correct I2C device address  
and the read/write bit, the DAP responds with an acknowledge bit. Next, the master transmits the address byte or  
bytes corresponding to the TAS5717/9 internal memory address being accessed. After receiving the address  
byte, the TAS5717/9 again responds with an acknowledge bit. Next, the master device transmits the data byte to  
be written to the memory address being accessed. After receiving the data byte, the TAS5717/9 again responds  
with an acknowledge bit. Finally, the master device transmits a stop condition to complete the single-byte  
data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
Data Byte  
Stop  
Condition  
T0036-01  
Figure 36. Single-Byte Write Transfer  
Multiple-Byte Write  
A multiple-byte data-write transfer is identical to a single-byte data write transfer except that multiple data bytes  
are transmitted by the master device to the DAP as shown in Figure 37. After receiving each data byte, the  
TAS5717/9 responds with an acknowledge bit.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK D7  
Acknowledge  
D0 ACK  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4 A3  
A1 A0 ACK D7  
I2C Device Address and  
Read/Write Bit  
Subaddress  
First Data Byte  
Last Data Byte  
Stop  
Condition  
Other Data Bytes  
T0036-02  
Figure 37. Multiple-Byte Write Transfer  
28  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Single-Byte Read  
As shown in Figure 38, a single-byte data-read transfer begins with the master device transmitting a start  
condition followed by the I2C device address and the read/write bit. For the data-read transfer, both a write  
followed by a read are actually done. Initially, a write is done to transfer the address byte or bytes of the internal  
memory address to be read. As a result, the read/write bit becomes a 0. After receiving the TAS5717/9 address  
and the read/write bit, TAS5717/9 responds with an acknowledge bit. In addition, after sending the internal  
memory address byte or bytes, the master device transmits another start condition followed by the TAS5717/9  
address and the read/write bit again. This time the read/write bit becomes a 1, indicating a read transfer. After  
receiving the address and the read/write bit, the TAS5717/9 again responds with an acknowledge bit. Next, the  
TAS5717/9 transmits the data byte from the memory address being read. After receiving the data byte, the  
master device transmits a not-acknowledge followed by a stop condition to complete the single-byte data-read  
transfer.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and  
Read/Write Bit  
Data Byte  
Stop  
Condition  
T0036-03  
Figure 38. Single-Byte Read Transfer  
Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS5717/9 to the master device as shown in Figure 39. Except for the last data byte, the  
master device responds with an acknowledge bit after receiving each data byte.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
T0036-04  
Figure 39. Multiple-Byte Read Transfer  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Link(s): TAS5717 TAS5719  
 
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Dynamic Range Control (DRC)  
The DRC scheme has a single threshold, offset, and slope (all programmable). There is one ganged DRC for the  
high-band left/right channels and one DRC for the low-band left/right channels.  
The DRC input/output diagram is shown in Figure 40.  
See the GDE software tool for more description on the T, K, and O parameters.  
K
1:1 Transfer Function  
Implemented Transfer Function  
T
Input Level (dB)  
M0091-03  
Professional-quality dynamic range compression automatically adjusts volume to flatten volume level.  
Each DRC has adjustable threshold levels.  
Programmable energy, attack, and decay time constants  
Transparent compression: compressors can attack fast enough to avoid apparent clipping before engaging,  
and decay times can be set slow enough to avoid pumping.  
Figure 40. Dynamic Range Control  
Attack  
and  
Decay  
Filters  
Energy  
Filter  
Threshold  
Detect  
Audio Input  
DRC Coefficient  
a, w  
T
aa, wa / ad, wd  
0x3C  
DRC1  
DRC2  
0x3B  
0x3E  
0x40  
0x43  
0x3F  
Alpha Filter Structure  
S
a
Z–1  
w
B0265-04  
T = 9.23 format, all other DRC coefficients are 3.23 format  
Figure 41. DRC Structure  
30  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
PWM LEVEL METER  
The structure in Figure 42 shows the PWM level meter that can be used to study the power profile.  
Post-DAP Processing  
1 – a  
Z–1  
32-Bit Level  
rms  
a
a
Ch1  
Ch2  
ABS  
ABS  
ADDR = 0x6B  
I2C Registers  
(PWM Level Meter)  
1 – a  
Z–1  
32-Bit Level  
rms  
ADDR = 0x6C  
B0396-01  
Figure 42. PWM Level Meter Structure  
26-Bit 3.23 Number Format  
All mixer gain coefficients are 26-bit coefficients using a 3.23 number format. Numbers formatted as 3.23  
numbers means that there are 3 bits to the left of the binary point and 23 bits to the right of the binary point. This  
is shown in Figure 43 .  
2–23 Bit  
2–5 Bit  
2–1 Bit  
20 Bit  
21 Bit  
Sign Bit  
S_xx.xxxx_xxxx_xxxx_xxxx_xxxx_xxx  
M0125-01  
Figure 43. 3.23 Format  
The decimal value of a 3.23 format number can be found by following the weighting shown in Figure 43. If the  
most significant bit is logic 0, the number is a positive number, and the weighting shown yields the correct  
number. If the most significant bit is a logic 1, then the number is a negative number. In this case every bit must  
be inverted, a 1 added to the result, and then the weighting shown in Figure 44 applied to obtain the magnitude  
of the negative number.  
21 Bit  
20 Bit  
2–1 Bit  
2–4 Bit  
2–23 Bit  
(1 or 0) ´ 21 + (1 or 0) ´ 20 + (1 or 0) ´ 2–1 + ....... (1 or 0) ´ 2–4 + ....... (1 or 0) ´ 2–23  
M0126-01  
Figure 44. Conversion Weighting Factors3.23 Format to Floating Point  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Link(s): TAS5717 TAS5719  
 
 
 
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Gain coefficients, entered via the I2C bus, must be entered as 32-bit binary numbers. The format of the 32-bit  
number (4-byte or 8-digit hexadecimal number) is shown in Figure 45  
Fraction  
Digit 6  
Sign  
Bit  
Fraction  
Digit 1  
Fraction  
Digit 2  
Fraction  
Digit 3  
Fraction  
Digit 4  
Fraction  
Digit 5  
Integer  
Digit 1  
u
u
u
u
u
u
x
x.  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x x x x  
0
S
Coefficient  
Digit 8  
Coefficient  
Digit 7  
Coefficient  
Digit 6  
Coefficient  
Digit 5  
Coefficient  
Digit 4  
Coefficient  
Digit 3  
Coefficient  
Digit 2  
Coefficient  
Digit 1  
u = unused or don’t care bits  
Digit = hexadecimal digit  
M0127-01  
Figure 45. Alignment of 3.23 Coefficient in 32-Bit I2C Word  
Table 1. Sample Calculation for 3.23 Format  
db  
0
Linear  
1
Decimal  
8,388,608  
14,917,288  
4,717,260  
Hex (3.23 Format)  
80 0000  
5
1.77  
00E3 9EA8  
5  
X
0.56  
L = 10(X/20)  
0047 FACC  
D = 8388608 × L H = dec2hex (D, 8)  
Table 2. Sample Calculation for 9.17 Format  
db  
0
Linear  
1
Decimal  
131,072  
Hex (9.17 Format)  
20 000  
5
1.77  
231,997  
38 A3D  
5  
X
0.56  
L = 10(X/20)  
73,400  
11 EB8  
D = 131,072 × L  
H = dec2hex (D, 8)  
32  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Table 3. Serial Control Interface Register Summary  
NO. OF  
BYTES  
INITIALIZATION  
VALUE  
SUBADDRESS  
REGISTER NAME  
CONTENTS  
A u indicates unused bits.  
0x00  
0x01  
Clock control register  
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
4
4
4
4
20  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(1)  
0x6C  
0xC1  
Device ID register  
Error status register  
System control register 1  
Serial data interface register  
System control register 2  
Soft mute register  
Master volume  
0x02  
0x00  
0x03  
0xA0  
0x04  
0x05  
0x05  
0x40  
0x06  
0x00  
0x07  
0x03FF (mute)  
0x00C0 (0 dB)  
0x00C0 (0 dB)  
0x00C0 (0 dB)  
0x08  
Channel 1 vol  
0x09  
Channel 2 vol  
0x0A  
Channel 3 vol  
0x0B0x0D  
0x0E  
Volume configuration register  
Description shown in subsequent section  
Reserved(1)  
0xF0  
0x0F  
0x10  
Modulation limit register  
IC delay channel 1  
IC delay channel 2  
IC delay channel 3  
IC delay channel 4  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(1)  
0x01  
0xAC  
0x54  
0xAC  
0x54  
0x11  
0x12  
0x13  
0x14  
0x150x19  
0x1A  
Start/stop period register  
Oscillator trim register  
BKND_ERR register  
0x68  
0x82  
0x57  
0x1B  
0x1C  
0x1D0x1F  
0x20  
Reserved(1)  
Input MUX register  
Description shown in subsequent section  
Description shown in subsequent section  
Reserved(1)  
0x0001 7772  
0x0000 4303  
0x21  
Ch 4 source select register  
0x220x24  
0x25  
PWM MUX register  
ch1_bq[0]  
Description shown in subsequent section  
u[31:26], b0[25:0]  
0x0102 1345  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x26  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x27  
0x28  
ch1_bq[1]  
ch1_bq[2]  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
(1) Reserved registers should not be accessed.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Link(s): TAS5717 TAS5719  
 
 
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Table 3. Serial Control Interface Register Summary (continued)  
NO. OF  
BYTES  
INITIALIZATION  
SUBADDRESS  
REGISTER NAME  
ch1_bq[3]  
CONTENTS  
VALUE  
0x29  
20  
20  
20  
20  
20  
20  
20  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
0x30  
0x31  
ch1_bq[4]  
ch1_bq[5]  
ch1_bq[6]  
ch1_bq[7]  
ch1_bq[8]  
ch1_bq[9]  
ch2_bq[0]  
ch2_bq[1]  
34  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Table 3. Serial Control Interface Register Summary (continued)  
NO. OF  
BYTES  
INITIALIZATION  
VALUE  
SUBADDRESS  
REGISTER NAME  
ch2_bq[2]  
CONTENTS  
0x32  
20  
20  
20  
20  
20  
20  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
Reserved(2)  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
ch2_bq[3]  
ch2_bq[4]  
ch2_bq[5]  
ch2_bq[6]  
ch2_bq[7]  
ch2_bq[8]  
ch2_bq[9]  
0x3A  
0x3B  
4
8
DRC1 softening filter alpha  
DRC1 softening filter omega  
DRC1 attack rate  
u[31:26], ae[25:0]  
u[31:26], oe[25:0]  
0x0008 0000  
0x0078 0000  
0x0000 0100  
0xFFFF FF00  
0x3C  
8
DRC1 release rate  
(2) Reserved registers should not be accessed.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Table 3. Serial Control Interface Register Summary (continued)  
NO. OF  
BYTES  
INITIALIZATION  
SUBADDRESS  
REGISTER NAME  
CONTENTS  
VALUE  
0x3D  
0x3E  
8
8
Reserved(3)  
DRC2 softening filter alpha  
DRC2 softening filter omega  
DRC2 attack rate  
u[31:26], ae[25:0]  
u[31:26], oe[25:0]  
u[31:26], at[25:0]  
u[31:26], rt[25:0]  
0x0008 0000  
0xFFF8 0000  
0x0008 0000  
0xFFF8 0000  
0x0800 0000  
0x3F  
8
DRC2 release rate  
0x40  
0x410x42  
0x43  
DRC1 attack threshold  
4
4
4
4
4
4
4
4
8
T1[31:0] (9.23 format)  
Reserved(3)  
DRC2 attack threshold  
DRC control  
T2[31:0] (9.23 format)  
Reserved(3)  
0x0074 0000  
0x0002 0000  
0x440x45  
0x46  
Description shown in subsequent section  
Reserved(3)  
0x470x4E  
0x4F  
PWM switching rate control  
EQ control  
u[31:4], src[3:0]  
0x0000 0008  
0x0F70 8000  
0x0080 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x50  
Description shown in subsequent section  
Ch 1 output mix1[1]  
Ch 1 output mix1[0]  
Ch 2 output mix2[1]  
Ch 2 output mix2[0]  
Reserved(3)  
0x51  
Ch 1 output mixer  
0x52  
Ch 2 output mixer  
8
0x53  
0x54  
0x56  
0x57  
0x58  
16  
16  
4
Reserved(3)  
Output post-scale  
Output pre-scale  
ch1_bq[10]  
u[31:26], post[25:0]  
u[31:26], pre[25:0] (9.17 format)  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
0x0080 0000  
0x0002 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
4
20  
0x59  
0x5A  
0x5B  
ch1_bq[11]  
ch4_bq[0]  
ch4_bq[1]  
20  
20  
20  
(3) Reserved registers should not be accessed.  
36  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Table 3. Serial Control Interface Register Summary (continued)  
NO. OF  
BYTES  
INITIALIZATION  
VALUE  
SUBADDRESS  
REGISTER NAME  
ch2_bq[10]  
CONTENTS  
0x5C  
20  
20  
20  
20  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
u[31:26], b0[25:0]  
u[31:26], b1[25:0]  
u[31:26], b2[25:0]  
u[31:26], a1[25:0]  
u[31:26], a2[25:0]  
Reserved(4)  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x5D  
0x5E  
0x5F  
ch2_bq[11]  
ch3_bq[0]  
ch3_bq[1]  
0x600x61  
0x62  
4
4
IDF post scale  
0x0000 0080  
0x630x6A  
0x6B  
Reserved(4)  
Data[31:0]  
Data[31:0]  
Reserved(4)  
Left channel PWM level meter  
Right channel PWM level meter  
4
4
0x0000 0000  
0x0000 0000  
0x6C  
0x6D0x6F  
0x70  
ch1 inline mixer  
4
4
4
4
4
4
4
4
u[31:26], in_mix1[25:0]  
u[31:26], in_mixdrc_1[25:0]  
u[31:26], right_mix1[25:0]  
u[31:26], left_mix_1[25:0]  
u[31:26], in_mix2[25:0]  
u[31:26], in_mixdrc_2[25:0]  
u[31:26], left_mix1[25:0]  
u[31:26], right_mix_1[25:0]  
Reserved(4)  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x0080 0000  
0x0000 0000  
0x0000 0000  
0x0080 0000  
0x71  
inline_DRC_en_mixer_ch1  
ch1 right_channel mixer  
ch1 left_channel_mixer  
ch2 inline mixer  
0x72  
0x73  
0x74  
0x75  
inline_DRC_en_mixer_ch2  
ch2 left_chanel mixer  
ch2 right_channel_mixer  
0x76  
0x77  
0x780xF7  
0xF8  
Update dev address key  
Update dev address reg  
4
4
4
Dev Id Update Key[31:0] (Key =  
0xF9A5A5A5)  
0x0000 0000  
0x0000 0054  
0xF9  
u[31:8],New Dev Id[7:0] (New Dev Id = 0x38  
for TAS5717/9)  
Reserved(4)  
0xFA0xFF  
(4) Reserved registers should not be accessed.  
All DAP coefficients are 3.23 format unless specified otherwise.  
Registers 0x3B through 0x46 should be altered only during the initialization phase.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
CLOCK CONTROL REGISTER (0x00)  
The clocks and data rates are automatically determined by the TAS5717/9. The clock control register contains  
the autodetected clock status. Bits D7D5 reflect the sample rate. Bits D4D2 reflect the MCLK frequency.  
Table 4. Clock Control Register (0x00)  
D7  
0
0
0
0
1
1
1
1
D6  
0
0
1
1
0
0
1
1
D5  
0
1
0
1
0
1
0
1
D4  
0
0
0
0
1
1
1
1
D3  
0
0
1
1
0
0
1
1
D2  
0
1
0
1
0
1
0
1
D1  
0
D0  
0
FUNCTION  
fS = 32-kHz sample rate  
Reserved  
Reserved  
fS = 44.1/48-kHz sample rate(1)  
fS = 16-kHz sample rate  
fS = 22.05/24-kHz sample rate  
fS = 8-kHz sample rate  
fS = 11.025/12-kHz sample rate  
(2)  
MCLK frequency = 64 × fS  
(2)  
MCLK frequency = 128 × fS  
(3)  
MCLK frequency = 192 × fS  
(1)(4)  
MCLK frequency = 256 × fS  
MCLK frequency = 384 × fS  
MCLK frequency = 512 × fS  
Reserved  
Reserved  
Reserved(1)  
Reserved(1)  
(1) Default values are in bold.  
(2) Only available for 44.1-kHz and 48-kHz rates  
(3) Rate only available for 32/44.1/48-KHz sample rates  
(4) Not available at 8 kHz  
DEVICE ID REGISTER (0x01)  
The device ID register contains the ID code for the firmware revision.  
Table 5. General Status Register (0x01)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
FUNCTION  
Identification code(1)  
(1) Default values are in bold.  
38  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
ERROR STATUS REGISTER (0x02)  
The error bits are sticky and are not cleared by the hardware. This means that the software must clear the  
register (write zeroes) and then read them to determine if they are persistent errors.  
Error definitions:  
MCLK error: MCLK frequency is changing. The number of MCLKs per LRCLK is changing.  
SCLK error: The number of SCLKs per LRCLK is changing.  
LRCLK error: LRCLK frequency is changing.  
Frame slip: LRCLK phase is drifting with respect to internal frame sync.  
Table 6. Error Status Register (0x02)  
D7  
1
D6  
-
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
MCLK error  
1
0
0
PLL autolock error  
SCLK error  
1
1
LRCLK error  
Frame slip  
1
1
Clip indicator  
1
Overcurrent, overtemperature, overvoltage, or undervoltage error  
Reserved  
0
0
0
0
0
0
0
(1)  
0
0
0
0
0
0
0
No errors  
(1) Default values are in bold.  
SYSTEM CONTROL REGISTER 1 (0x03)  
System control register 1 has several functions:  
Bit D7:  
Bit D5:  
If 0, the dc-blocking filter for each channel is disabled.  
If 1, the dc-blocking filter (3 dB cutoff <1 Hz) for each channel is enabled.  
If 0, use soft unmute on recovery from a clock error. This is a slow recovery. Unmute takes the  
same time as the volume ramp defined in register 0x0E.  
If 1, use hard unmute on recovery from clock error. This is a fast recovery, a single-step volume  
ramp.  
Bits D1D0: Select de-emphasis  
Table 7. System Control Register 1 (0x03)  
D7  
0
1
D6  
0
D5  
0
1
D4  
1
D3  
0
D2  
0
D1  
0
0
1
1
D0  
0
1
0
1
FUNCTION  
PWM high-pass (dc blocking) disabled  
(1)  
PWM high-pass (dc blocking) enabled  
Reserved(1)  
Soft unmute on recovery from clock error(1)  
Hard unmute on recovery from clock error  
Reserved(1)  
Reserved(1)  
Reserved(1)  
No de-emphasis(1)  
De-emphasis for fS = 32 kHz  
De-emphasis for fS = 44.1 kHz  
De-emphasis for fS = 48 kHz  
(1) Default values are in bold.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
SERIAL DATA INTERFACE REGISTER (0x04)  
As shown in Table 8, the TAS5717/9 supports nine serial data modes. The default is 24-bit, I2S mode.  
Table 8. Serial Data Interface Control Register (0x04) Format  
RECEIVE SERIAL DATA  
INTERFACE FORMAT  
WORD  
LENGTH  
D7D4  
D3  
D2  
D1  
D0  
Right-justified  
16  
20  
24  
16  
20  
24  
16  
20  
24  
0000  
0000  
0000  
000  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Right-justified  
Right-justified  
I2S  
I2S  
I2S(1)  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
Left-justified  
Left-justified  
Left-justified  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
(1) Default values are in bold.  
40  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
SYSTEM CONTROL REGISTER 2 (0x05)  
When bit D6 is set low, the system exits all-channel shutdown and starts playing audio; otherwise, the outputs  
are shut down (hard mute).  
Table 9. System Control Register 2 (0x05)  
D7 D6 D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
0
0
1
0
Reserved(1)  
Exit all-channel shutdown (normal operation)(2)  
Enter all-channel shutdown (hard mute)(1)  
(1)  
-
-
Reserved  
1
Headphone Mode  
0
Speaker Mode  
1. In speaker mode, a value of 1 means device is in ternary modulation.  
2. In headphone mode, a value of 1 means channel volume in headphone mode =  
0x08/0x09 (same as speaker channel volume).  
1
1. In speaker mode, a value of 0 means device is in not in ternary modulation (AD  
or BD as defined in register 0x25).  
0
2. In headphone mode, 0 means channel volume in headphone mode = 0x0C  
(1)  
(headphone volume register).  
(1)  
0
Reserved  
0
A_SEL/HP_SD configured as input  
A_SEL/HP_SD configured configured as output to use as external HP amplifier  
shutdown signal  
1
0
1
Internal power stage FAULT signal is the source of A_SEL/HP_SD pin  
HPSDZ is the source of A_SEL/HP_SD pin (set this before switching to headphone  
mode)  
(1) Default values are in bold.  
(2) When exiting all-channel shutdown, soft unmute is might not occur unless register 0x03, bit 5 is set to 1.  
SOFT MUTE REGISTER (0x06)  
Writing a 1 to any of the following bits sets the output of the respective channel to 50% duty cycle (soft mute).  
Table 10. Soft Mute Register (0x06)  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
0
0
0
0
0
Reserved(1)  
1
Soft mute channel 3  
Soft unmute channel 3(1)  
Soft mute channel 2  
Soft unmute channel 2(1)  
Soft mute channel 1  
Soft unmute channel 1(1)  
0
1
0
1
0
(1) Default values are in bold.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
VOLUME REGISTERS (0x07, 0x08, 0x09)  
Step size is 0.125 dB and volume registers are 2 bytes.  
Master volume  
0x07 (default is mute)  
0x08 (default is 0 dB)  
0x09 (default is 0 dB)  
0x0B (default is 0 dB)  
Channel-1 volume  
Channel-2 volume  
Headphone volume  
Table 11. Master Volume Table  
Value  
0x0000  
0x0001  
0x0002  
0x0003  
0x0004  
0x0005  
0x0006  
0x0007  
0x0008  
0x0009  
0x000A  
0x000B  
0x000C  
0x000D  
0x000E  
0x000F  
0x0010  
0x0011  
0x0012  
0x0013  
0x0014  
0x0015  
0x0016  
0x0017  
0x0018  
0x0019  
0x001A  
0x001B  
0x001C  
0x001D  
0x001E  
0x001F  
0x0020  
0x0021  
0x0022  
0x0023  
0x0024  
0x0025  
Level  
24.000  
23.875  
23.750  
23.625  
23.500  
23.375  
23.250  
23.125  
23.000  
22.875  
22.750  
22.625  
22.500  
22.375  
22.250  
22.125  
22.000  
21.875  
21.750  
21.625  
21.500  
21.375  
21.250  
21.125  
21.000  
20.875  
20.750  
20.625  
20.500  
20.375  
20.250  
20.125  
20.000  
19.875  
19.750  
19.625  
19.500  
19.375  
Value  
0x0027  
0x0028  
0x0029  
0x002A  
0x002B  
0x002C  
0x002D  
0x002E  
0x002F  
0x0030  
0x0031  
0x0032  
0x0033  
0x0034  
0x0035  
0x0036  
0x0037  
0x0038  
0x0039  
0x003A  
0x003B  
0x003C  
0x003D  
0x003E  
0x003F  
0x0040  
0x0041  
0x0042  
0x0043  
0x0044  
0x0045  
0x0046  
0x0047  
0x0048  
0x0049  
0x004A  
0x004B  
0x004C  
Level  
19.250  
19.000  
18.875  
18.750  
18.625  
18.500  
18.375  
18.250  
18.125  
18.000  
17.875  
17.750  
17.625  
17.500  
17.375  
17.250  
17.125  
17.000  
16.875  
16.750  
16.625  
16.500  
16.375  
16.250  
16.125  
16.000  
15.875  
15.750  
15.625  
15.500  
15.375  
15.250  
15.125  
15.000  
14.875  
14.750  
14.625  
14.500  
Value  
0x004E  
0x004F  
0x0050  
0x0051  
0x0052  
0x0053  
0x0054  
0x0055  
0x0056  
0x0057  
0x0058  
0x0059  
0x005A  
0x005B  
0x005C  
0x005D  
0x005E  
0x005F  
0x0060  
0x0061  
0x0062  
0x0063  
0x0064  
0x0065  
0x0066  
0x0067  
0x0068  
0x0069  
0x006A  
0x006B  
0x006C  
0x006D  
0x006E  
0x006F  
0x0070  
0x0071  
0x0072  
0x0073  
Level  
14.250  
14.125  
14.000  
13.875  
13.750  
13.625  
13.500  
13.375  
13.250  
13.125  
13.000  
12.875  
12.750  
12.625  
12.500  
12.375  
12.250  
12.125  
12.000  
11.875  
11.750  
11.625  
11.500  
11.375  
11.250  
11.125  
11.000  
10.875  
10.750  
10.625  
10.500  
10.375  
10.250  
10.125  
10.000  
9.875  
Value  
0x0075  
0x0076  
0x0077  
0x0078  
0x0079  
0x007A  
0x007B  
0x007C  
0x007D  
0x007E  
0x007F  
0x0080  
0x0081  
0x0082  
0x0083  
0x0084  
0x0085  
0x0086  
0x0087  
0x0088  
0x0089  
0x008A  
0x008B  
0x008C  
0x008D  
0x008E  
0x008F  
0x0090  
0x0091  
0x0092  
0x0093  
0x0094  
0x0095  
0x0096  
0x0097  
0x0098  
0x0099  
0x009A  
Level  
9.375  
9.250  
9.125  
9.000  
8.875  
8.750  
8.625  
8.500  
8.375  
8.250  
8.125  
8.000  
7.875  
7.750  
7.625  
7.500  
7.375  
7.250  
7.125  
7.000  
6.875  
6.750  
6.625  
6.500  
6.375  
6.250  
6.125  
6.000  
5.875  
5.750  
5.625  
5.500  
5.375  
5.250  
5.125  
5.000  
4.875  
4.750  
Value  
0x009C  
0x009D  
0x009E  
0x009F  
0x00A0  
0x00A1  
0x00A2  
0x00A3  
0x00A4  
0x00A5  
0x00A6  
0x00A7  
0x00A8  
0x00A9  
0x00AA  
0x00AB  
0x00AC  
0x00AD  
0x00AE  
0x00AF  
0x00B0  
0x00B1  
0x00B2  
0x00B3  
0x00B4  
0x00B5  
0x00B6  
0x00B7  
0x00B8  
0x00B9  
0x00BA  
0x00BB  
0x00BC  
0x00BD  
0x00BE  
0x00BF  
0x00C0  
0x00C1  
Level  
4.500  
4.375  
4.250  
4.125  
4.000  
3.875  
3.750  
3.625  
3.500  
3.375  
3.250  
3.125  
3.000  
2.875  
2.750  
2.625  
2.500  
2.375  
2.250  
2.125  
2.000  
1.875  
1.750  
1.625  
1.500  
1.375  
1.250  
1.125  
1.000  
0.875  
0.750  
0.625  
0.500  
0.375  
0.250  
0.125  
0.000  
0.125  
Value  
Level  
0.375  
0.500  
0.625  
0.750  
0.875  
1.000  
1.125  
1.250  
1.375  
1.500  
1.625  
1.750  
1.875  
2.000  
2.125  
2.250  
2.375  
2.500  
2.625  
2.750  
2.875  
3.000  
3.125  
3.250  
3.375  
3.500  
3.625  
3.750  
3.875  
4.000  
4.125  
4.250  
4.375  
4.500  
4.625  
4.750  
4.875  
5.000  
0x00C3  
0x00C4  
0x00C5  
0x00C6  
0x00C7  
0x00C8  
0x00C9  
0x00CA  
0x00CB  
0x00CC  
0x00CD  
0x00CE  
0x00CF  
0x00D0  
0x00D1  
0x00D2  
0x00D3  
0x00D4  
0x00D5  
0x00D6  
0x00D7  
0x00D8  
0x00D9  
0x00DA  
0x00DB  
0x00DC  
0x00DD  
0x00DE  
0x00DF  
0x00E0  
0x00E1  
0x00E2  
0x00E3  
0x00E4  
0x00E5  
0x00E6  
0x00E7  
0x00E8  
9.750  
9.625  
42  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Table 11. Master Volume Table (continued)  
Value  
0x0026  
0x00EA  
0x00EB  
0x00EC  
0x00ED  
0x00EE  
0x00EF  
0x00F0  
0x00F1  
0x00F2  
0x00F3  
0x00F4  
0x00F5  
0x00F6  
0x00F7  
0x00F8  
0x00F9  
0x00FA  
0x00FB  
0x00FC  
0x00FD  
0x00FE  
0x00FF  
0x0100  
0x0101  
0x0102  
0x0103  
0x0104  
0x0105  
0x0106  
0x0107  
0x0108  
0x0109  
0x010A  
0x010B  
0x010C  
0x010D  
0x010E  
0x010F  
0x0110  
0x0111  
0x0112  
0x0113  
0x0114  
0x0115  
0x0116  
0x0117  
Level  
19.125  
5.250  
5.375  
5.500  
5.625  
5.750  
5.875  
6.000  
6.125  
6.250  
6.375  
6.500  
6.625  
6.750  
6.875  
7.000  
7.125  
7.250  
7.375  
7.500  
7.625  
7.750  
7.875  
8.000  
8.125  
8.250  
8.375  
8.500  
8.625  
8.750  
8.875  
9.000  
9.125  
9.250  
9.375  
9.500  
9.625  
9.750  
9.875  
10.000  
10.125  
10.250  
10.375  
10.500  
10.625  
10.750  
10.875  
Value  
0x004D  
0x0119  
0x011A  
0x011B  
0x011C  
0x011D  
0x011E  
0x011F  
0x0120  
0x0121  
0x0122  
0x0123  
0x0124  
0x0125  
0x0126  
0x0127  
0x0128  
0x0129  
0x012A  
0x012B  
0x012C  
0x012D  
0x012E  
0x012F  
0x0130  
0x0131  
0x0132  
0x0133  
0x0134  
0x0135  
0x0136  
0x0137  
0x0138  
0x0139  
0x013A  
0x013B  
0x013C  
0x013D  
0x013E  
0x013F  
0x0140  
0x0141  
0x0142  
0x0143  
0x0144  
0x0145  
0x0146  
Level  
Value  
0x0074  
0x0148  
0x0149  
0x014A  
0x014B  
0x014C  
0x014D  
0x014E  
0x014F  
0x0150  
0x0151  
0x0152  
0x0153  
0x0154  
0x0155  
0x0156  
0x0157  
0x0158  
0x0159  
0x015A  
0x015B  
0x015C  
0x015D  
0x015E  
0x015F  
0x0160  
0x0161  
0x0162  
0x0163  
0x0164  
0x0165  
0x0166  
0x0167  
0x0168  
0x0169  
0x016A  
0x016B  
0x016C  
0x016D  
0x016E  
0x016F  
0x0170  
0x0171  
0x0172  
0x0173  
0x0174  
0x0175  
Level  
Value  
0x009B  
0x0177  
0x0178  
0x0179  
0x017A  
0x017B  
0x017C  
0x017D  
0x017E  
0x017F  
0x0180  
0x0181  
0x0182  
0x0183  
0x0184  
0x0185  
0x0186  
0x0187  
0x0188  
0x0189  
0x018A  
0x018B  
0x018C  
0x018D  
0x018E  
0x018F  
0x0190  
0x0191  
0x0192  
0x0193  
0x0194  
0x0195  
0x0196  
0x0197  
0x0198  
0x0199  
0x019A  
0x019B  
0x019C  
0x019D  
0x019E  
0x019F  
0x01A0  
0x01A1  
0x01A2  
0x01A3  
0x01A4  
Level  
Value  
0x00C2  
0x01A6  
0x01A7  
0x01A8  
0x01A9  
0x01AA  
0x01AB  
0x01AC  
0x01AD  
0x01AE  
0x01AF  
0x01B0  
0x01B1  
0x01B2  
0x01B3  
0x01B4  
0x01B5  
0x01B6  
0x01B7  
0x01B8  
0x01B9  
0x01BA  
0x01BB  
0x01BC  
0x01BD  
0x01BE  
0x01BF  
0x01C0  
0x01C1  
0x01C2  
0x01C3  
0x01C4  
0x01C5  
0x01C6  
0x01C7  
0x01C8  
0x01C9  
0x01CA  
0x01CB  
0x01CC  
0x01CD  
0x01CE  
0x01CF  
0x01D0  
0x01D1  
0x01D2  
0x01D3  
Level  
Value  
0x00E9  
0x01D5  
0x01D6  
0x01D7  
0x01D8  
0x01D9  
0x01DA  
0x01DB  
0x01DC  
0x01DD  
0x01DE  
0x01DF  
0x01E0  
0x01E1  
0x01E2  
0x01E3  
0x01E4  
0x01E5  
0x01E6  
0x01E7  
0x01E8  
0x01E9  
0x01EA  
0x01EB  
0x01EC  
0x01ED  
0x01EE  
0x01EF  
0x01F0  
0x01F1  
0x01F2  
0x01F3  
0x01F4  
0x01F5  
0x01F6  
0x01F7  
0x01F8  
0x01F9  
0x01FA  
0x01FB  
0x01FC  
0x01FD  
0x01FE  
0x01FF  
0x0200  
0x0201  
0x0202  
Level  
14.375  
9.500  
4.625  
0.250  
5.125  
11.125  
11.250  
11.375  
11.500  
11.625  
11.750  
11.875  
12.000  
12.125  
12.250  
12.375  
12.500  
12.625  
12.750  
12.875  
13.000  
13.125  
13.250  
13.375  
13.500  
13.625  
13.750  
13.875  
14.000  
14.125  
14.250  
14.375  
14.500  
14.625  
14.750  
14.875  
15.000  
15.125  
15.250  
15.375  
15.500  
15.625  
15.750  
15.875  
16.000  
16.125  
16.250  
16.375  
16.500  
16.625  
16.750  
17.000  
17.125  
17.250  
17.375  
17.500  
17.625  
17.750  
17.875  
18.000  
18.125  
18.250  
18.375  
18.500  
18.625  
18.750  
18.875  
19.000  
19.125  
19.250  
19.375  
19.500  
19.625  
19.750  
20.875  
20.000  
20.125  
20.250  
20.375  
20.500  
20.625  
20.750  
20.875  
21.000  
21.125  
21.250  
21.375  
21.500  
21.625  
21.750  
21.875  
22.000  
22.125  
22.250  
22.375  
22.500  
22.625  
22.875  
23.000  
23.125  
23.250  
23.375  
23.500  
23.625  
23.750  
23.875  
24.000  
24.125  
24.250  
24.375  
24.500  
24.625  
24.750  
24.875  
25.000  
25.125  
25.250  
25.375  
25.500  
25.625  
25.750  
25.875  
26.000  
26.125  
26.250  
26.375  
26.500  
26.625  
26.750  
26.875  
27.000  
27.125  
27.250  
27.375  
27.500  
27.625  
27.750  
27.875  
28.000  
28.125  
28.250  
28.375  
28.500  
28.750  
28.875  
29.000  
29.125  
29.250  
29.375  
29.500  
29.625  
29.750  
29.875  
30.000  
30.125  
30.250  
30.375  
30.500  
30.625  
30.750  
30.875  
31.000  
31.125  
31.250  
31.375  
31.500  
31.625  
31.750  
31.875  
32.000  
32.125  
32.250  
32.375  
32.500  
32.625  
32.750  
32.875  
33.000  
33.125  
33.250  
33.375  
33.500  
33.625  
33.750  
33.875  
34.000  
34.125  
34.250  
34.375  
34.625  
34.750  
34.875  
35.000  
35.125  
35.250  
35.375  
35.500  
35.625  
35.750  
35.875  
36.000  
36.125  
36.250  
36.375  
36.500  
36.625  
36.750  
36.875  
37.000  
37.125  
37.250  
37.375  
37.500  
37.625  
37.750  
37.875  
38.000  
38.125  
38.250  
38.375  
38.500  
38.625  
38.750  
38.875  
39.000  
39.125  
39.250  
39.375  
39.500  
39.625  
39.750  
39.875  
40.000  
40.125  
40.250  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Table 11. Master Volume Table (continued)  
Value  
0x0118  
0x0204  
0x0205  
0x0206  
0x0207  
0x0208  
0x0209  
0x020A  
0x020B  
0x020C  
0x020D  
0x020E  
0x020F  
0x0210  
0x0211  
0x0212  
0x0213  
0x0214  
0x0215  
0x0216  
0x0217  
0x0218  
0x0219  
0x021A  
0x021B  
0x021C  
0x021D  
0x021E  
0x021F  
0x0220  
0x0221  
0x0222  
0x0223  
0x0224  
0x0225  
0x0226  
0x0227  
0x0228  
0x0229  
0x022A  
0x022B  
0x022C  
0x022D  
0x022E  
0x022F  
0x0230  
0x0231  
Level  
Value  
0x0147  
0x0233  
0x0234  
0x0235  
0x0236  
0x0237  
0x0238  
0x0239  
0x023A  
0x023B  
0x023C  
0x023D  
0x023E  
0x023F  
0x0240  
0x0241  
0x0242  
0x0243  
0x0244  
0x0245  
0x0246  
0x0247  
0x0248  
0x0249  
0x024A  
0x024B  
0x024C  
0x024D  
0x024E  
0x024F  
0x0250  
0x0251  
0x0252  
0x0253  
0x0254  
0x0255  
0x0256  
0x0257  
0x0258  
0x0259  
0x025A  
0x025B  
0x025C  
0x025D  
0x025E  
0x025F  
0x0260  
Level  
Value  
0x0176  
0x0262  
0x0263  
0x0264  
0x0265  
0x0266  
0x0267  
0x0268  
0x0269  
0x026A  
0x026B  
0x026C  
0x026D  
0x026E  
0x026F  
0x0270  
0x0271  
0x0272  
0x0273  
0x0274  
0x0275  
0x0276  
0x0277  
0x0278  
0x0279  
0x027A  
0x027B  
0x027C  
0x027D  
0x027E  
0x027F  
0x0280  
0x0281  
0x0282  
0x0283  
0x0284  
0x0285  
0x0286  
0x0287  
0x0288  
0x0289  
0x028A  
0x028B  
0x028C  
0x028D  
0x028E  
0x028F  
Level  
Value  
0x01A5  
0x0291  
0x0292  
0x0293  
0x0294  
0x0295  
0x0296  
0x0297  
0x0298  
0x0299  
0x029A  
0x029B  
0x029C  
0x029D  
0x029E  
0x029F  
0x02A0  
0x02A1  
0x02A2  
0x02A3  
0x02A4  
0x02A5  
0x02A6  
0x02A7  
0x02A8  
0x02A9  
0x02AA  
0x02AB  
0x02AC  
0x02AD  
0x02AE  
0x02AF  
0x02B0  
0x02B1  
0x02B2  
0x02B3  
0x02B4  
0x02B5  
0x02B6  
0x02B7  
0x02B8  
0x02B9  
0x02BA  
0x02BB  
0x02BC  
0x02BD  
0x02BE  
Level  
Value  
Level  
Value  
0x0203  
0x02EF  
0x02F0  
0x02F1  
0x02F2  
0x02F3  
0x02F4  
0x02F5  
0x02F6  
0x02F7  
0x02F8  
0x02F9  
0x02FA  
0x02FB  
0x02FC  
0x02FD  
0x02FE  
0x02FF  
0x0300  
0x0301  
0x0302  
0x0303  
0x0304  
0x0305  
0x0306  
0x0307  
0x0308  
0x0309  
0x030A  
0x030B  
0x030C  
0x030D  
0x030E  
0x030F  
0x0310  
0x0311  
0x0312  
0x0313  
0x0314  
0x0315  
0x0316  
0x0317  
0x0318  
0x0319  
0x031A  
0x031B  
0x031C  
Level  
11.000  
40.500  
40.625  
40.750  
40.875  
41.000  
41.125  
41.250  
41.375  
41.500  
41.625  
41.750  
41.875  
42.000  
42.125  
42.250  
42.375  
42.500  
42.625  
42.750  
42.875  
43.000  
43.125  
43.250  
43.375  
43.500  
43.625  
43.750  
43.875  
44.000  
44.125  
44.250  
44.375  
44.500  
44.625  
44.750  
44.875  
45.000  
45.125  
45.250  
45.375  
45.500  
45.625  
45.750  
45.875  
46.000  
46.125  
16.875  
46.375  
46.500  
46.625  
46.750  
46.875  
47.000  
47.125  
47.250  
47.375  
47.500  
47.625  
47.750  
47.875  
48.000  
48.125  
48.250  
48.375  
48.500  
48.625  
48.750  
48.875  
49.000  
49.125  
49.250  
49.375  
49.500  
49.625  
49.750  
49.875  
50.000  
50.125  
50.250  
50.375  
50.500  
50.625  
50.750  
50.875  
51.000  
51.125  
51.250  
51.375  
51.500  
51.625  
51.750  
51.875  
52.000  
22.750  
52.250  
52.375  
52.500  
52.625  
52.750  
52.875  
53.000  
53.125  
53.250  
53.375  
53.500  
53.625  
53.750  
53.875  
54.000  
54.125  
54.250  
54.375  
54.500  
54.625  
54.750  
54.875  
55.000  
55.125  
55.250  
55.375  
55.500  
55.625  
55.750  
55.875  
56.000  
56.250  
56.125  
56.375  
56.500  
56.625  
56.750  
56.875  
57.000  
57.125  
57.250  
57.375  
57.500  
57.625  
57.750  
57.875  
28.625  
58.250  
58.125  
58.375  
58.500  
58.625  
58.750  
58.875  
59.000  
59.125  
59.250  
59.375  
59.500  
59.625  
59.750  
59.875  
60.000  
60.125  
60.250  
60.375  
60.500  
60.625  
60.750  
60.875  
61.000  
61.125  
61.250  
61.375  
61.500  
61.625  
61.750  
61.875  
62.000  
62.125  
62.250  
62.375  
62.500  
62.625  
62.750  
62.875  
63.000  
63.125  
63.250  
63.375  
63.500  
63.625  
63.750  
0x01D4  
0x02C0  
0x02C1  
0x02C2  
0x02C3  
0x02C4  
0x02C5  
0x02C6  
0x02C7  
0x02C8  
0x02C9  
0x02CA  
0x02CB  
0x02CC  
0x02CD  
0x02CE  
0x02CF  
0x02D0  
0x02D1  
0x02D2  
0x02D3  
0x02D4  
0x02D5  
0x02D6  
0x02D7  
0x02D8  
0x02D9  
0x02DA  
0x02DB  
0x02DC  
0x02DD  
0x02DE  
0x02DF  
0x02E0  
0x02E1  
0x02E2  
0x02E3  
0x02E4  
0x02E5  
0x02E6  
0x02E7  
0x02E8  
0x02E9  
0x02EA  
0x02EB  
0x02EC  
0x02ED  
34.500  
64.000  
64.125  
64.250  
64.375  
64.500  
64.625  
64.750  
64.875  
65.000  
65.125  
65.250  
65.375  
65.500  
65.625  
65.750  
65.875  
66.000  
66.125  
66.250  
66.375  
66.500  
66.625  
66.750  
66.875  
67.000  
67.125  
67.250  
67.375  
67.500  
67.625  
67.750  
67.875  
68.000  
68.125  
68.250  
68.375  
68.500  
68.625  
68.750  
68.875  
69.000  
69.125  
69.250  
69.375  
69.500  
69.625  
40.375  
69.875  
70.000  
70.125  
70.250  
70.375  
70.500  
70.625  
70.750  
70.875  
71.000  
71.125  
71.250  
71.375  
71.500  
71.625  
71.750  
71.875  
72.000  
72.125  
72.250  
72.375  
72.500  
72.625  
72.750  
72.875  
73.000  
73.125  
73.250  
73.375  
73.500  
73.625  
73.750  
73.875  
74.000  
74.250  
74.125  
74.375  
74.500  
74.625  
74.750  
74.875  
75.000  
75.125  
75.250  
75.375  
75.500  
44  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Table 11. Master Volume Table (continued)  
Value  
0x0232  
0x031E  
0x031F  
0x0320  
0x0321  
0x0322  
0x0323  
0x0324  
0x0325  
0x0326  
0x0327  
0x0328  
0x0329  
0x032A  
0x032B  
0x032C  
0x032D  
0x032E  
0x032F  
0x0330  
0x0331  
0x0332  
0x0333  
0x0334  
0x0335  
0x0336  
0x0337  
0x0338  
0x0339  
0x033A  
0x033B  
0x033C  
0x033D  
0x033E  
0x033F  
0x0340  
0x0341  
0x0341  
0x0343  
Level  
Value  
0x0261  
0x0344  
0x0345  
0x0346  
0x0347  
0x0348  
0x0349  
0x034A  
0x034B  
0x034C  
0x034D  
0x034E  
0x034F  
0x0350  
0x0351  
0x0352  
0x0353  
0x0354  
0x0355  
0x0356  
0x0357  
0x0358  
0x0359  
0x035A  
0x035B  
0x035C  
0x035D  
0x035E  
0x035F  
0x0360  
0x0361  
0x0362  
0x0363  
0x0364  
0x0365  
0x0366  
0x0367  
0x0368  
0x0369  
Level  
Value  
0x0290  
0x036A  
0x036B  
0x036C  
0x036D  
0x036E  
0x036F  
0x0370  
0x0371  
0x0372  
0x0373  
0x0374  
0x0375  
0x0376  
0x0377  
0x0378  
0x0379  
0x037A  
0x037B  
0x037C  
0x037D  
0x037E  
0x037F  
0x0380  
0x0381  
0x0382  
0x0383  
0x0384  
0x0385  
0x0386  
0x0387  
0x0388  
0x0389  
0x038A  
0x038B  
0x038C  
0x038D  
0x038E  
0x038F  
Level  
Value  
0x02BF  
0x0390  
0x0391  
0x0392  
0x0393  
0x0394  
0x0395  
0x0396  
0x0397  
0x0398  
0x0399  
0x039A  
0x039B  
0x039C  
0x039D  
0x039E  
0x039F  
0x03A0  
0x03A1  
0x03A2  
0x03A3  
0x03A4  
0x03A5  
0x03A6  
0x03A7  
0x03A8  
0x03A9  
0x03AA  
0x03AB  
0x03AC  
0x03AD  
0x03AE  
0x03AF  
0x03B0  
0x03B1  
0x03B2  
0x03B3  
0x03B4  
0x03B5  
Level  
Value  
Level  
Value  
Level  
46.250  
75.750  
75.875  
76.000  
76.125  
76.250  
76.375  
76.500  
76.625  
76.750  
76.875  
77.000  
77.125  
77.250  
77.375  
77.500  
77.625  
77.750  
77.875  
78.000  
78.125  
78.250  
78.375  
78.500  
78.625  
78.750  
78.875  
79.000  
79.125  
79.250  
79.375  
79.500  
79.625  
79.750  
79.875  
80.000  
80.250  
80.250  
80.375  
52.125  
80.500  
80.625  
80.750  
80.875  
81.000  
81.125  
81.250  
81.375  
81.500  
81.625  
81.750  
81.875  
82.000  
82.125  
82.250  
82.375  
82.500  
82.625  
82.750  
82.875  
83.000  
83.125  
83.250  
83.375  
83.500  
83.625  
83.750  
83.875  
84.000  
84.125  
84.250  
84.375  
84.500  
84.625  
84.750  
84.875  
85.000  
85.125  
58.000  
85.250  
85.375  
85.500  
85.625  
85.750  
85.875  
86.000  
86.125  
86.250  
86.375  
86.500  
86.625  
86.750  
86.875  
87.000  
87.125  
87.250  
87.375  
87.500  
87.625  
87.750  
87.875  
88.000  
88.125  
88.250  
88.375  
88.500  
88.625  
88.750  
88.875  
89.000  
89.125  
89.250  
89.375  
89.500  
89.625  
89.750  
89.875  
63.875  
90.000  
90.125  
90.250  
90.375  
90.500  
90.625  
90.750  
90.875  
91.000  
91.125  
91.250  
91.375  
91.500  
91.625  
91.750  
91.875  
92.000  
92.125  
92.250  
92.375  
92.500  
92.625  
92.750  
92.875  
93.000  
93.125  
93.250  
93.375  
93.500  
93.625  
93.750  
93.875  
94.000  
94.125  
94.250  
94.375  
94.500  
94.625  
0x02EE  
0x03B6  
0x03B7  
0x03B8  
0x03B9  
0x03BA  
0x03BB  
0x03BC  
0x03BD  
0x03BE  
0x03BF  
0x03C0  
0x03C1  
0x03C2  
0x03C3  
0x03C4  
0x03C5  
0x03C6  
0x03C7  
0x03C8  
0x03C9  
0x03CA  
0x03CB  
0x03CC  
0x03CD  
0x03CE  
0x03CF  
0x03D0  
0x03D1  
0x03D2  
0x03D3  
0x03D4  
0x03D5  
0x03D6  
0x03D7  
0x03D8  
0x03D9  
0x03DA  
0x03DB  
69.750  
94.750  
94.875  
95.000  
95.125  
95.250  
95.375  
95.500  
95.625  
95.750  
95.875  
96.000  
96.125  
96.250  
96.375  
96.500  
96.625  
96.750  
96.875  
97.000  
97.125  
97.250  
97.375  
97.500  
97.625  
97.750  
97.875  
98.000  
98.125  
98.250  
98.375  
98.500  
98.625  
98.750  
98.875  
99.000  
99.125  
99.250  
99.375  
0x031D  
0x03DC  
0x03DD  
0x03DE  
0x03DF  
75.625  
99.500  
99.625  
99.750  
99.875  
0x03E0 100.000  
0x03E1 100.125  
0x03E2 100.250  
0x03E3 100.375  
0x03E4 100.500  
0x03E5 100.625  
0x03E6 100.750  
0x03E7 100.875  
0x03E8 101.000  
0x03E9 101.125  
0x03EA 101.250  
0x03EB 101.375  
0x03EC 101.500  
0x03ED 101.625  
0x03EE 101.750  
0x03EF 101.875  
0x03F0 102.000  
0x03F1 102.125  
0x03F2 102.250  
0x03F3 102.375  
0x03F4 102.500  
0x03F5 102.625  
0x03F6 102.750  
0x03F7 102.875  
0x03F8 103.000  
0x03F9 103.125  
0x03FA 103.250  
0x03FB 103.375  
0x03FC 103.500  
0x03FD 103.625  
0x03FE 103.750  
0x03FF  
Mute  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
VOLUME CONFIGURATION REGISTER (0x0E)  
Bits  
Volume slew rate (used to control volume change and MUTE ramp rates). These bits control the  
D2D0: number of steps in a volume ramp. Volume steps occur at a rate that depends on the sample rate of  
the I2S data as follows:  
Sample rate (kHz)  
8/16/32  
Approximate ramp rate  
125 μs/step  
11.025/22.05/44.1  
12/24/48  
90.7 μs/step  
83.3 μs/step  
Table 12. Volume Configuration Register (0x0E)  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
1
0
0
1
0
Reserved(1)  
0
0
0
Volume slew 512 steps (43 ms volume ramp time at 48 kHz)(1)  
Volume slew 1024 steps (85-ms volume ramp time at 48 kHz)  
Volume slew 2048 steps (171-ms volume ramp time at 48 kHz)  
Volume slew 256 steps (21-ms volume ramp time at 48 kHz)  
Reserved  
0
0
1
0
1
0
0
1
1
1
X
X
(1) Default values are in bold.  
MODULATION LIMIT REGISTER (0x10)  
Table 13. Modulation Limit Register (0x10)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
D1  
D0  
MODULATION LIMIT  
Reserved  
99.2%  
0
0
0
0
0
1
98.4%  
0
1
0
97.7%(1)  
0
1
1
96.9%  
1
0
0
96.1%  
1
0
1
95.3%  
1
1
0
94.5%  
1
1
1
93.8%  
(1) Default values are in bold.  
46  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
INTERCHANNEL DELAY REGISTERS (0x11, 0x12, 0x13, and 0x14)  
Internal PWM channels 1, 2, 1, and 2 are mapped into registers 0x11, 0x12, 0x13, and 0x14.  
Table 14. Channel Interchannel Delay Register Format  
BITS DEFINITION  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
D0  
FUNCTION  
Minimum absolute delay, 0 DCLK cycles  
Maximum positive delay, 31 × 4 DCLK cycles  
Maximum negative delay, 32 × 4 DCLK cycles  
Reserved  
0
1
1
1
1
1
1
0
0
0
0
0
0
0
SUBADDRESS  
0x11  
D7  
1
D6  
0
D5  
1
D4  
0
D3  
1
D2  
1
D1  
D0 Delay = (value) × 4 DCLKs  
Default value for channel 1(1)  
Default value for channel 2(1)  
Default value for channel 1(1)  
Default value for channel 2(1)  
0x12  
0
1
0
1
0
1
0x13  
1
0
1
0
1
1
0x14  
0
1
0
1
0
1
(1) Default values are in bold.  
ICD settings have high impact on audio performance (e.g., dynamic range, THD, crosstalk, etc.) Therefore,  
appropriate ICD settings must be used. By default, the device has ICD settings for the AD mode. If used in BD  
mode, then update these registers before coming out of all-channel shutdown.  
MODE  
0x11  
0x12  
0x13  
0x14  
AD MODE  
BD MODE  
AC  
54  
B8  
60  
A0  
48  
AC  
54  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
PWM SHUTDOWN GROUP REGISTER (0x19)  
Settings of this register determine which PWM channels are active. The value should be 0x30 for BTL mode and  
0x3A for PBTL mode. The default value of this register is 0x30. The functionality of this register is tied to the  
state of bit D5 in the system control register.  
This register defines which channels belong to the shutdown group (SDG). If a 1 is set in the shutdown group  
register, that particular channel is not started following an exit out of all-channel shutdown command (if bit D5 is  
set to 0 in system control register 2, 0x05).  
Table 15. PWM Shutdown Group Register (0x19)  
D7  
0
D6  
0
D5  
1
D4  
1
D3  
0
1
D2  
0
1
D1  
0
1
D0  
0
1
FUNCTION  
Reserved(1)  
Reserved(1)  
Reserved(1)  
Reserved(1)  
PWM channel 4 does not belong to shutdown group.(1)  
PWM channel 4 belongs to shutdown group.  
PWM channel 3 does not belong to shutdown group.(1)  
PWM channel 3 belongs to shutdown group.  
PWM channel 2 does not belong to shutdown group.(1)  
PWM channel 2 belongs to shutdown group.  
PWM channel 1 does not belong to shutdown group.(1)  
PWM channel 1 belongs to shutdown group.  
(1) Default values are in bold.  
48  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
START/STOP PERIOD REGISTER (0x1A)  
This register is used to control the soft-start and soft-stop period following an enter/exit all-channel shutdown  
command or change in the PDN state. This helps reduce pops and clicks at start-up and shutdown. The times  
are only approximate and vary depending on device activity level and I2S clock stability.  
Table 16. Start/Stop Period Register (0x1A)  
D7 D6 D5 D4 D3  
D2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
D0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
FUNCTION  
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
SSTIMER enabled(1)  
SSTIMER disabled  
Reserved(1)  
No 50% duty cycle start/stop period  
16.5-ms 50% duty cycle start/stop period  
23.9-ms 50% duty cycle start/stop period  
31.4-ms 50% duty cycle start/stop period  
40.4-ms 50% duty cycle start/stop period  
53.9-ms 50% duty cycle start/stop period  
70.3-ms 50% duty cycle start/stop period  
94.2-ms 50% duty cycle start/stop period  
125.7-ms 50% duty cycle start/stop period(1)  
164.6-ms 50% duty cycle start/stop period  
239.4-ms 50% duty cycle start/stop period  
314.2-ms 50% duty cycle start/stop period  
403.9-ms 50% duty cycle start/stop period  
538.6-ms 50% duty cycle start/stop period  
703.1-ms 50% duty cycle start/stop period  
942.5-ms 50% duty cycle start/stop period  
1256.6-ms 50% duty cycle start/stop period  
1728.1-ms 50% duty cycle start/stop period  
2513.6-ms 50% duty cycle start/stop period  
3299.1-ms 50% duty cycle start/stop period  
4241.7-ms 50% duty cycle start/stop period  
5655.6-ms 50% duty cycle start/stop period  
7383.7-ms 50% duty cycle start/stop period  
9897.3-ms 50% duty cycle start/stop period  
13,196.4-ms 50% duty cycle start/stop period  
(1) Default values are in bold.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
OSCILLATOR TRIM REGISTER (0x1B)  
The TAS5717/9 PWM processor contains an internal oscillator to support autodetect of I2S clock rates. This  
reduces system cost because an external reference is not required. Currently, TI recommends a reference  
resistor value of 18.2 k(1%). This should be connected between OSC_RES and DVSSO.  
Writing 0x00 to register 0x1B enables the trim that was programmed at the factory.  
Note that trim must always be run following reset of the device.  
Table 17. Oscillator Trim Register (0x1B)  
D7  
1
D6  
D5 D4 D3  
D2  
D1  
D0  
FUNCTION  
0
0
0
Reserved(1)  
0
Oscillator trim not done (read-only)(1)  
Oscillator trim done (read only)  
Reserved(1)  
1
0
0
Select factory trim (Write a 0 to select factory trim; default is 1.)  
Factory trim disabled(1)  
1
0
Reserved(1)  
(1) Default values are in bold.  
BKND_ERR REGISTER (0x1C)  
When a back-end error signal is received from the internal power stage, the power stage is reset, stopping all  
PWM activity. Subsequently, the modulator waits approximately for the time listed in Table 18 before attempting  
to re-start the power stage.  
Table 18. BKND_ERR Register (0x1C)  
D7 D6 D5 D4 D3  
D2  
0
0
1
1
1
1
0
D1  
1
1
0
0
1
1
0
D0  
0
1
0
1
0
1
0
FUNCTION  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
0
0
0
0
0
1
Headphone enable time = 0 ms  
Headphone enable time = 2 ms  
Headphone enable time = 4 ms  
Headphone enable time = 6 ms  
Headphone enable time = 8 ms  
Headphone enable time = 10 ms(1)  
Headphone enable time = 12 ms  
Headphone enable time = 14 ms  
Headphone enable time = 16 ms  
Headphone enable time = 18 ms  
Headphone enable time = 20 ms  
Headphone enable time = 22 ms  
Headphone enable time = 24 ms  
Headphone enable time = 26 ms  
Headphone enable time = 28 ms  
Headphone enable time = 30 ms  
Set back-end reset period to 299 ms(1)  
Set back-end reset period to 449 ms  
Set back-end reset period to 598 ms  
Set back-end reset period to 748 ms  
Set back-end reset period to 898 ms  
Set back-end reset period to 1047 ms  
Set back-end reset period to 1197 ms  
(1) Default values are in bold.  
50 Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
Table 18. BKND_ERR Register (0x1C) (continued)  
D7 D6 D5 D4 D3  
D2  
0
D1  
0
D0  
1
FUNCTION  
1
1
1
Set back-end reset period to 1346 ms  
Set back-end reset period to 1496 ms  
Set back-end reset period to 1496 ms  
0
1
X
1
X
X
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
INPUT MULTIPLEXER REGISTER (0x20)  
This register controls the modulation scheme (AD or BD mode) as well as the routing of I2S audio to the internal  
channels.  
Table 19. Input Multiplexer Register (0x20)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
Channel-1 AD mode(1)  
Channel-1 BD mode  
SDIN-L to channel 1(1)  
SDIN-R to channel 1  
Reserved  
Reserved(1)  
D23  
0
D22  
D21  
D20  
D19  
D18  
D17  
D16  
1
0
0
0
0
0
1
0
1
0
0
1
1
Reserved  
1
0
0
Reserved  
1
0
1
Reserved  
1
1
0
Ground (0) to channel 1  
Reserved  
1
1
1
0
Channel 2 AD mode(1)  
Channel 2 BD mode  
SDIN-L to channel 2  
SDIN-R to channel 2(1)  
Reserved  
1
0
0
0
0
0
1
0
1
0
0
1
1
Reserved  
1
0
0
Reserved  
1
0
1
Reserved  
1
1
0
Ground (0) to channel 2  
Reserved  
1
1
1
D15  
0
D14  
1
D13  
1
D12  
1
D11  
0
D10  
1
D9  
1
D8  
1
FUNCTION  
Reserved(1)  
Reserved(1)  
D7  
0
D6  
1
D5  
1
D4  
1
D3  
0
D2  
0
D1  
1
D0  
0
FUNCTION  
(1) Default values are in bold.  
52  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
CHANNEL 4 SOURCE SELECT REGISTER (0x21)  
This register selects the channel 4 source.  
Table 20. Subchannel Control Register (0x21)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
Reserved(1)  
Reserved(1)  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
D15  
0
D14  
1
D13  
0
D12  
0
D11  
0
D10  
0
D9  
1
D8  
Reserved(1)  
0
(L + R)/2  
1
Left-channel post-BQ(1)  
D7  
0
D6  
0
D5  
0
D4  
0
D3  
0
D2  
0
D1  
1
D0  
1
FUNCTION  
Reserved(1)  
(1) Default values are in bold.  
PWM OUTPUT MUX REGISTER (0x25)  
This DAP output mux selects which internal PWM channel is output to the external pins. Any channel can be  
output to any external output pin.  
Bits D21D20:  
Bits D17D16:  
Bits D13D12:  
Bits D09D08:  
Selects which PWM channel is output to OUT_A  
Selects which PWM channel is output to OUT_B  
Selects which PWM channel is output to OUT_C  
Selects which PWM channel is output to OUT_D  
Note that channels are encoded so that channel 1 = 0x00, channel 2 = 0x01, , channel 4 = 0x03.  
Table 21. PWM Output Mux Register (0x25)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
1
FUNCTION  
Reserved(1)  
D23  
0
D22  
0
D21  
D20  
D19  
D18  
D17  
D16  
FUNCTION  
Reserved(1)  
0
0
Multiplex channel 1 to OUT_A(1)  
Multiplex channel 2 to OUT_A  
Multiplex channel 1 to OUT_A  
Multiplex channel 2 to OUT_A  
Reserved(1)  
0
1
1
0
1
1
0
0
0
0
Multiplex channel 1 to OUT_B  
Multiplex channel 2 to OUT_B  
Multiplex channel 1 to OUT_B(1)  
Multiplex channel 2 to OUT_B  
0
1
1
0
1
1
(1) Default values are in bold.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Table 21. PWM Output Mux Register (0x25) (continued)  
D15  
0
D14  
0
D13  
D12  
D11  
D10  
D9  
D8  
FUNCTION  
Reserved(2)  
0
0
Multiplex channel 1 to OUT_C  
0
1
Multiplex channel 2 to OUT_C(2)  
Multiplex channel 1 to OUT_C  
Multiplex channel 2 to OUT_C  
Reserved(2)  
1
0
1
1
0
0
0
0
Multiplex channel 1 to OUT_D  
Multiplex channel 2 to OUT_D  
Multiplex channel 1 to OUT_D  
Multiplex channel 2 to OUT_D(2)  
0
1
1
0
1
1
D7  
0
D6  
1
D5  
0
D4  
0
D3  
0
D2  
1
D1  
0
D0  
1
FUNCTION  
Reserved(2)  
(2) Default values are in bold.  
DRC CONTROL REGISTER (0x46)  
Table 22. DRC Control Register (0x46)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
Reserved(1)  
Reserved(1)  
Reserved(1)  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
0
D5  
D4  
D3  
D2  
D1  
D0  
Reserved(1)  
0
Reserved  
1
Reserved  
0
Reserved(1)  
0
Reserved(1)  
0
Reserved(1)  
0
DRC2 turned OFF(1)  
DRC2 turned ON  
DRC1 turned OFF(1)  
DRC1 turned ON  
1
0
1
(1) Default values are in bold.  
54  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
PWM SWITCHING RATE CONTROL REGISTER (0x4F)  
PWM switching rate should be selected through the register 0x4F before coming out of all-channnel shutdown.  
Table 23. PWM Switching Rate Control Register (0x4F)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
Reserved(1)  
Reserved(1)  
Reserved(1)  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
D6  
D5  
0
D4  
0
D3  
D2  
D1  
D0  
Reserved(1)  
SRC = 6(1)  
SRC = 7  
0
1
1
0
0
1
1
1
1
0
0
0
SRC = 8  
1
0
0
1
SRC = 9  
1
0
1
0
Reserved  
Reserved  
1
1
(1) Default values are in bold.  
EQ CONTROL (0x50)  
Table 24. EQ Command (0x50)  
D31  
0
D30  
0
D29  
0
D28  
0
D27  
0
D26  
0
D25  
0
D24  
0
FUNCTION  
FUNCTION  
FUNCTION  
FUNCTION  
Reserved(1)  
Reserved(1)  
Reserved(1)  
EQ ON(1)  
D23  
0
D22  
0
D21  
0
D20  
0
D19  
0
D18  
0
D17  
0
D16  
0
D15  
0
D14  
0
D13  
0
D12  
0
D11  
0
D10  
0
D9  
0
D8  
0
D7  
0
D6  
D5  
D4  
D3  
D2  
D1  
D0  
1
0
0
1
EQ OFF (bypass BQ 07 of channels 1 and 2)  
Reserved(1)  
Reserved(1)  
Reserved(1)  
L and R can be written independently.(1)  
0
L and R are ganged for EQ biquads; a write to the left-channel  
biquad is also written to the right-channel biquad. (0x290x2F is  
ganged to 0x300x36. Also, 0x580x5B is ganged to 0x5C0x5F.  
1
0
0
0
0
1
0
0
1
X
0
1
X
X
Reserved(1)  
Reserved(1)  
Reserved(1)  
Reserved  
Reserved  
(1) Default values are in bold.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Link(s): TAS5717 TAS5719  
 
 
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
USING HEADPHONE AMPLIFIER IN TAS5717  
This device has a stereo output which can be used as a line driver or a headphone driver that can output 2-Vrms  
stereo. An audio system can be set up for different applications using this device.  
Case 1 Headphone (HP)/Line Drive With Analog Input:  
The device can be represented as shown in Figure 46: analog inputs (single-ended) as HPL_IN (pin 1) and  
HPR_IN (pin 4) with the outputs HPL_OUT (pin 2) and HPR_OUT (pin 3).  
R2  
R1  
VIN  
VOUT  
HPL_IN  
HPL_OUT  
S0490-01  
Figure 46. Headphone/Line Driver with Analog Input  
HP_SD pin can be used turn ON/OFF the headphone amplifier/line driver.  
Speaker channels are independent of headphone/line driver in this mode.  
Case 2 Headphone With I2S Input:  
Hardware setup: The HP_PWML and HP_PWMR signals should be fed into a low-pass filter (LPF), and the  
output of the LPF is fed to analog inputs (HPL_IN and HPR_IN). The A_SEL pin has a 15-kΩ pulldown to ground  
and should be routed to headphone amplifier enable (HP_SDZ pin 33).  
Software setup: Write to register 0x05 bits D4 = 1, D1 = 1, and D0 = 1 (13 hex). When D4 and D1 are set to 1,  
the A_SEL pin goes high and thus enables the headphone output. When register 0x05 D4 = 1, the device is in  
headphone mode and the speaker outputs are in shutdown.  
NOTE: The speaker and headphone cannot be used at the same time as they both share the same digital  
channel. DAP can be used for headphone volume.  
56  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
APPLICATION INFORMATION  
LINE DRIVER AMPLIFIERS  
Single-supply headphone and line driver amplifiers typically require dc-blocking capacitors. The top drawing in  
Figure 47 illustrates the conventional line driver amplifier connection to the load and output signal.  
DC blocking capacitors for headphone amps are often large in value, and a mute circuit is needed during power  
up to minimize click and pop for both headphone and line driver. The output capacitors and mute circuits  
consume PCB area and increase cost of assembly, and can reduce the fidelity of the audio output signal.  
Conventional Solution  
9–12 V  
VDD  
+
Mute Circuit  
Co  
+
Output  
VDD/2  
+
OPAMP  
GND  
MUTE  
TAS5717 Solution  
3.3 V  
DirectPath  
VDD  
+
Output  
Mute Circuit  
GND  
TAS5717  
VSS  
HP_SD  
S0445-01  
Figure 47. Conventional and DirectPath HP and Line Driver  
The DirectPathamplifier architecture operates from a single supply but makes use of an internal charge pump  
to provide a negative voltage rail.  
Combining the user provided positive rail and the negative rail generated by the IC, the device operates in what  
is effectively a split supply mode.  
The output voltages are now centered at zero volts with the capability to swing to the positive rail or negative rail,  
combining this with the build in click and pop reduction circuit, the DirectPathamplifier requires no output dc  
blocking capacitors.  
The bottom block diagram and waveform of Figure 47 illustrate the ground-referenced headphone and line driver  
architecture. This is the architecture of the TAS5717/9.  
COMPONENT SELECTION  
Charge Pump  
The charge pump flying capacitor serves to transfer charge during the generation of the negative supply voltage.  
The PVSS capacitor must be at least equal to the charge pump capacitor in order to allow maximum charge  
transfer. Low ESR capacitors are an ideal selection, and a value of 1µF is typical. Capacitor values that are  
smaller than 1µF can not be recommended for the HP section as it will limit the negative voltage swing in low  
impedance loads.  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
Decoupling Capacitors  
The TAS5717/9 is a DirectPathamplifier that requires adequate power supply decoupling to ensure that the  
noise and total harmonic distortion (THD) are low. A good low equivalent-series-resistance (ESR) ceramic  
capacitor, typically 1µF, placed as close as possible to the device PVDD leads works best. Placing this  
decoupling capacitor close to the TAS5717/9 is important for the performance of the amplifier. For filtering lower  
frequency noise signals, a 10µF or greater capacitor placed near the audio power amplifier would also help, but it  
is not required in most applications because of the high PSRR of this device.  
Gain Setting Resistors Ranges  
The gain setting resistors, Rin and Rfb, must be chosen so that noise, stability and input capacitor size of the  
TAS5717/9 is kept within acceptable limits. Voltage gain is defined as Rfb divided by Rin. Selecting values that  
are too low demands a large input ac-coupling capacitor, CIN. Selecting values that are too high increases the  
noise of the amplifier. Table 25 lists the recommended resistor values for different gain settings.  
Table 25. Recommended Resistor Values  
INPUT RESISTOR  
VALUE, Rin  
FEEDBACK RESISTOR  
VALUE, Rfb  
DIFFERENTIAL  
INPUT GAIN  
INVERTING INPUT  
GAIN  
NON INVERTING  
INPUT GAIN  
10 kΩ  
10 kΩ  
10 kΩ  
4.7 kΩ  
10 kΩ  
15 kΩ  
20 kΩ  
47 kΩ  
1.0 V/V  
1.5 V/V  
2.0 V/V  
10.0 V/V  
1.0 V/V  
1.5 V/V  
2.0 V/V  
10.0 V/V  
2.0 V/V  
2.5 V/V  
3.0 V/V  
11.0 V/V  
Cin  
Rin  
–In  
Rfb  
+
S0446-01  
Figure 48. Inverting Gain Configuration  
Input-Blocking Capacitors  
DC input-blocking capacitors are required to be added in series with the audio signal into the input pins of the  
TAS5717/9. These capacitors block the DC portion of the audio source and allow the TAS5717/9 inputs to be  
properly biased to provide maximum performance. The input blocking capacitors also limit the DC gain to 1,  
limiting the DC-offset voltage at the output.  
These capacitors form a high-pass filter with the input resistor, Rin. The cutoff frequency is calculated using  
Equation 1. For this calculation, the capacitance used is the input-blocking capacitor and the resistance is the  
input resistor chosen from Table 25, then the frequency and/or capacitance can be determined when one of the  
two values is given.  
1
1
fcin  
=
Cin =  
2p ´ Rin ´ Cin  
2p ´ fcin ´ Rin  
(1)  
Using the TAS5717/9 as a 2nd order filter  
Several audio DACs used today require an external low-pass filter to remove out of band noise. This is possible  
with the TAS5717/9 as it can be used like a standard OPAMP. Several filter topologies can be implemented both  
single ended and differential. In the figure below a Multi Feed Back (MFB), with differential input and single  
ended input is shown.  
An AC-coupling capacitor to remove dc-content from the source is shown, it serves to block any dc content from  
the source and lowers the dc-gain to 1 helping reducing the output dc-offset to minimum.  
58  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
 
 
TAS5717  
TAS5719  
www.ti.com  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
The component values can be calculated with the help of the TI FilterProprogram available on the TI website  
at:  
http://focus.ti.com/docs/toolsw/folders/print/filterpro.html  
Inverting Input  
R2  
C3  
R1  
C1  
R3  
–In  
TAS5717  
C2  
+
S0447-01  
Figure 49. Second-Order Active Low-Pass Filter  
The resistor values should have a low value for obtaining low noise, but should also have a high enough value to  
get a small size ac-coupling cap. C2 can be split in two with the midpoint connected to GND, this can increase  
the common-mode attenuation.  
Pop-Free Power Up  
Pop-free power up is ensured by keeping the HP_SD low during power supply ramp up and down. The pin  
should be kept low until the input AC-coupling capacitors are fully charged before asserting the HP_SD pin high,  
this way proper pre-charge of the ac-coupling is performed and pop-less power-up is achieved. Figure 50  
illustrates the preferred sequence.  
Supply  
HP_SD  
Supply Ramp  
Time for AC-Coupling  
Capacitors to Charge  
T0463-01  
Figure 50. Power-Up/Down Sequence  
© 20102011, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Link(s): TAS5717 TAS5719  
 
TAS5717  
TAS5719  
SLOS655A NOVEMBER 2010REVISED FEBRUARY 2011  
www.ti.com  
REVISION HISTORY  
Changes from Original (November 2010) to Revision A  
Page  
Changed the SNR typ value from 70°C to 105°C ............................................................................................................... 10  
Deleted sub section titled 11.12 BANK SWITCHING ......................................................................................................... 31  
Changed Table 3 rows 0x01, 0x03, 0x0E, 0x10, 0x1A, and 0x1C Initialization Values ..................................................... 33  
Changed Table 3 rows 0x07, 0x08, 0x09, and 0x1A No of Bytes and Initialization Values ............................................... 33  
Changed Table 3 row 0x46 and 0x4F Initialization Values ................................................................................................ 36  
Changed Table 3 row 0x50 register name From: Bank switch control To: EQ control ...................................................... 36  
Changed Table 3 row 0xF9 Initialization Value .................................................................................................................. 37  
Changed Section 11.34 BANK SWITCH AND EQ CONTROL (0x50) to EQ CONTROL 90x50) ...................................... 55  
Changed Table 24. Bank Switching Command (0x50) to EQ Command (0x50) ............................................................... 55  
Changed the Function descriptions to: Reserved for D5, D2, D1, and D0 ......................................................................... 55  
60  
Submit Documentation Feedback  
© 20102011, Texas Instruments Incorporated  
Product Folder Link(s): TAS5717 TAS5719  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2013  
PACKAGING INFORMATION  
Orderable Device  
HPA02287PHPR  
TAS5717PHP  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
HTQFP  
PHP  
48  
48  
48  
48  
48  
1000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
TAS5717  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PHP  
PHP  
PHP  
PHP  
250  
1000  
250  
Green (RoHS  
& no Sb/Br)  
0 to 85  
TAS5717  
TAS5717  
TAS5719  
TAS5719  
TAS5717PHPR  
TAS5719PHP  
Green (RoHS  
& no Sb/Br)  
0 to 85  
Green (RoHS  
& no Sb/Br)  
0 to 85  
TAS5719PHPR  
1000  
Green (RoHS  
& no Sb/Br)  
0 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Jun-2013  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jul-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5717PHPR  
TAS5719PHPR  
HTQFP  
HTQFP  
PHP  
PHP  
48  
48  
1000  
1000  
330.0  
330.0  
16.4  
16.4  
9.6  
9.6  
9.6  
9.6  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Jul-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TAS5717PHPR  
TAS5719PHPR  
HTQFP  
HTQFP  
PHP  
PHP  
48  
48  
1000  
1000  
367.0  
367.0  
367.0  
367.0  
38.0  
38.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

HPA100

Very High-Definition Color Display, Horizontal Deflection Output Applications
SANYO

HPA100R

Very High-Definition Color Display, Horizontal Deflection Output Applications
SANYO

HPA100R2

TRANSISTOR | BJT | NPN | 800V V(BR)CEO | 10A I(C) | TO-247VAR
ETC

HPA100R3

TRANSISTOR | BJT | NPN | 800V V(BR)CEO | 10A I(C) | TO-247VAR
ETC

HPA100R4

TRANSISTOR | BJT | NPN | 800V V(BR)CEO | 10A I(C) | TO-247VAR
ETC

HPA10A

PIEZO SOUND GENERATORS
JLWORLD

HPA13D

PIEZO SOUND GENERATORS
JLWORLD

HPA14

14 pin Dual-in-Line
EUROQUARTZ

HPA148

TPS63000EVM-148
TI

HPA14A

PIEZO SOUND GENERATORS
JLWORLD

HPA150

Very High-Definition Color Display, Horizontal Deflection Output Applications
SANYO

HPA150R

Very High-Definition Color Display, Horizontal Deflection Output Applications
SANYO