INA210CQDCKRQ1 [TI]

AEC-Q100、26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125;
INA210CQDCKRQ1
型号: INA210CQDCKRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

AEC-Q100、26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125

放大器 光电二极管
文件: 总32页 (文件大小:1328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
INA21x-Q1 汽车级电压输出、低侧或高侧测量、双向、零漂移系列电流分  
流监视器  
1 特性  
3 说明  
1
符合面向汽车应用的 AEC-Q100 标准:  
温度等级 1–40°C +125°CTA  
提供功能安全  
可帮助进行功能安全系统设计的文档  
INA21x-Q1 系列器件是电压输出、电流分流监控器  
(也称为电流感应放大器),可在独立于电源电压的  
–0.3V 26V 范围内的共模电压中感应分流器上的压  
降。提供了五种固定增益:50V/V75V/V100V/V、  
200V/V500V/V 1000V/V。该系列器件通常用于过  
流检测、电压反馈控制环路或用作功率监控器。零漂移  
架构的低偏移使得该器件能够在分流器上的最大压降低  
10mV(满量程)的情况下进行电流感应。  
宽共模范围:–0.3V 26V  
失调电压:±100µV(最大值)  
(支持 10mV 满标度分流压降)  
精度:  
增益误差:  
这些器件由 2.7V 26V 的单个电源供电,消耗的最  
大电源电流为 100µA。这些器件具有 –40°C 至  
+125°C 的工作温度范围,并且采用 6 引脚 SC70 封  
装。  
±1%(整个温度范围内的最大值,AB 版  
本)  
±0.5%C 版本)  
温漂:0.5µV/°C(最大值)  
目前提供的内容中  
器件信息(1)  
增益漂移:10ppm/°C(最大值)  
增益选择:  
INA210-Q1200V/V  
器件型号  
INA210-Q1  
封装  
SC70 (6)  
封装尺寸(标称值)  
2.00mm × 1.25mm  
2.00mm × 1.25mm  
2.00mm × 1.25mm  
2.00mm × 1.25mm  
2.00mm × 1.25mm  
2.00mm × 1.25mm  
INA211-Q1500V/V  
INA212-Q11000V/V  
INA213-Q150V/V  
INA214-Q1100V/V  
INA215-Q175V/V  
INA211-Q1  
INA212-Q1  
INA213-Q1  
INA214-Q1  
INA215-Q1  
SC70 (6)  
SC70 (6)  
SC70 (6)  
SC70 (6)  
SC70 (6)  
静态电流:100µA(最大值)  
封装:6 引脚 SC70  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的封装选项附  
录。  
2 应用  
简化原理图  
车身控制模块  
RSHUNT  
Supply  
Load  
Reference  
Voltage  
阀门控制  
电机控制  
INA21x-Q1  
Output  
OUT  
REF  
电子稳定控制  
无线充电发送器  
R1  
R3  
IN-  
GND  
PRODUCT  
GAIN  
R3 and R4  
R1 and R2  
2.7 V to 26 V  
IN+  
V+  
INA210-Q1  
INA211-Q1  
INA212-Q1  
INA213-Q1  
INA214-Q1  
INA215-Q1  
200  
500  
1000  
50  
5 kW  
2 kW  
1 kW  
1 MW  
1 MW  
1 MW  
1 MW  
1 MW  
1 MW  
R2  
R4  
CBYPASS  
0.01 mF  
to  
SC70  
20 kW  
10 kW  
13.3 kW  
100  
75  
0.1 mF  
VOUT = (ILOAD ´ RSHUNT) Gain + VREF  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SBOS475  
 
 
 
 
 
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
6.1 Absolute Maximum Ratings ...................................... 6  
6.2 ESD Ratings.............................................................. 6  
6.3 Recommended Operating Conditions....................... 6  
6.4 Thermal Information.................................................. 7  
6.5 Electrical Characteristics........................................... 7  
6.6 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 13  
7.1 Overview ................................................................. 13  
7.2 Functional Block Diagram ....................................... 13  
7.3 Feature Description................................................. 14  
7.4 Device Functional Modes........................................ 15  
8
9
Application and Implementation ........................ 21  
8.1 Application Information............................................ 21  
8.2 Typical Applications ............................................... 21  
Power Supply Recommendations...................... 24  
10 Layout................................................................... 24  
10.1 Layout Guidelines ................................................. 24  
10.2 Layout Example .................................................... 24  
11 器件和文档支持 ..................................................... 25  
11.1 文档支持................................................................ 25  
11.2 相关链接................................................................ 25  
11.3 接收文档更新通知 ................................................. 25  
11.4 社区资源................................................................ 25  
11.5 ....................................................................... 25  
11.6 静电放电警告......................................................... 25  
11.7 Glossary................................................................ 25  
12 机械、封装和可订购信息....................................... 25  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision I (August 2019) to Revision J  
Page  
添加了提供功能安全...................................................................................................................................................... 1  
Changes from Revision H (September 2017) to Revision I  
Page  
Changed VS and VIN maximum values from 26 V to 28 V in Absolute Maximum Ratings table............................................ 6  
Changed differential VIN minimum value from –26 V to –28 V in Absolute Maximum Ratings table ..................................... 6  
Added new Note 3 with caution regarding operation between 26 V and 28 V....................................................................... 6  
Changes from Revision G (May 2016) to Revision H  
Page  
Deleted Device Options table ................................................................................................................................................ 5  
Added VDIF to analog input parameter in Absolute Maximum Ratings table ......................................................................... 6  
Added VS table note in Absolute Maximum Ratings table ..................................................................................................... 6  
Changed formatting of Thermal Information table note ......................................................................................................... 7  
Deleted first table note in Electrical Characteristics table ..................................................................................................... 7  
Added version C to input test conditions in Electrical Characteristics table .......................................................................... 7  
Added version C test conditions to gain error parameter in Electrical Characteristics table ................................................ 8  
已更改 7, 10 , 15, 17, 18, 19, 20 , 21 and 22 to match commercial data sheet .......................... 9  
已添加 test conditions to 8, 9, 10, and 11 and 12 from INA21x commercial data sheet ............................... 9  
已更改 x-axis unit in 17 from "ms" to "µs"........................................................................................................................ 10  
Changes from Revision F (April 2016) to Revision G  
Page  
INA210-Q1INA211-Q1 INA215-Q1 已投入生产 ............................................................................................................. 1  
删除了器件信息 表中的第二个脚注......................................................................................................................................... 1  
2
版权 © 2009–2020, Texas Instruments Incorporated  
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
Changes from Revision E (December 2014) to Revision F  
Page  
更改了增益选择 特性项目符号:添加了 INA210-Q1INA211-Q1 INA215-Q1 子项目符号,删除了 INA213-Q1  
中的 A ..................................................................................................................................................................................... 1  
更改了器件信息 表:添加了 INA210-Q1INA211-Q1INA215-Q1 行,删除了 INA213A-Q1 中的 A,将封装术语从  
SOT 更改为 SC70 .................................................................................................................................................................. 1  
更改了第一个 特性项目符号 ................................................................................................................................................ 1  
更改了 说明部分的第一段.................................................................................................................................................... 1  
更改了简化原理图:更改了数字.......................................................................................................................................... 1  
Deleted footnote 1 from Pin Functions table ......................................................................................................................... 5  
Changed Absolute Maximum Ratings operating temperature from –55°C to 150°C to –40°C to 125°C .............................. 6  
Changed Changed ESD Ratings table: changed title, made CDM values all one row because corner pins and all  
other pins tested the same, added separation of specs for versions A and B, and moved the storage temperature to  
Absolute Maximum Ratings table; added version B devices ................................................................................................ 6  
Changed Electrical Characteristics table: changed conditions and changed all INA213A-Q1 to INA213-Q1 ....................... 7  
Changed Input, VCM parameter in Electrical Characteristics table ........................................................................................ 7  
Changed Input, CMRR and VOS parameters in Electrical Characteristics table .................................................................... 7  
Changed Output, Gain parameter in Electrical Characteristics table .................................................................................... 8  
Deleted test conditions from Output, Nonlinearity error parameter in Electrical Characteristics table .................................. 8  
Changed Frequency Response, BW parameter in Electrical Characteristics table ............................................................... 8  
Changed conditions of Typical Characteristics section ......................................................................................................... 9  
Changed Figure 7................................................................................................................................................................... 9  
Changed Figure 15 .............................................................................................................................................................. 10  
Changed first sentence of Overview section ....................................................................................................................... 13  
Changed first sentence of Basic Connections section ........................................................................................................ 14  
Changed last paragraph of Selecting RS section ................................................................................................................ 14  
Changed Table 1 and Table 2 ............................................................................................................................................. 16  
Changed Figure 25 .............................................................................................................................................................. 17  
Changed Improving Transient Robustness section: changed first paragraph, added caution and last paragraph.............. 20  
Changes from Revision D (October 2013) to Revision E  
Page  
Added Handling Rating table, Feature Description section, Device Functional Modes, Application and  
Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation  
Support section, and Mechanical, Packaging, and Orderable Information section ............................................................... 6  
Deleted θJA thermal resistance parameter from Electrical Characteristics............................................................................. 8  
Changes from Revision C (August 2013) to Revision D  
Page  
已更改 将整个文档中的 INA213-Q1 器件更改为 INA213A-Q1 ....................................................................................... 1  
Deleted TA, Operating Temperature from ABSOLUTE MAXIMUM RATINGS table.............................................................. 6  
版权 © 2009–2020, Texas Instruments Incorporated  
3
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
Changes from Revision B (June 2010) to Revision C  
Page  
将整个文档中的器件名更改为 -Q1.......................................................................................................................................... 1  
特性中添加了“INA212-Q11000V/V” ............................................................................................................................. 1  
应用项目符号均更改为特定于汽车的内....................................................................................................................... 1  
说明添加了“INA212-Q1 提供固定增益 1000V/V”............................................................................................................. 1  
在图像中添加了 INA212-Q1................................................................................................................................................ 1  
Deleted Ordering Information table ........................................................................................................................................ 6  
Changed HBM to 2000 V, removed MM. ............................................................................................................................... 6  
Changed TA to -40 to 125°C................................................................................................................................................... 6  
Added INA212-Q1 values to CMRR VOS and Gain in Electrical Characteristics table........................................................... 7  
Changed Bandwidth parameter in the ELECTRICAL CHARACTERISTICS to differentiate between devices...................... 8  
已更改 GAIN vs FREQUENCY graph to show difference between devices .......................................................................... 9  
Added INA212-Q1 device name in App Information. ........................................................................................................... 14  
Added INA212-Q1 to image. ................................................................................................................................................ 17  
4
Copyright © 2009–2020, Texas Instruments Incorporated  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
5 Pin Configuration and Functions  
DCK Package  
6-Pin SC70  
Top View  
REF  
1
2
3
6
5
4
OUT  
IN-  
GND  
V+  
IN+  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND  
IN–  
NO.  
2
I
Ground  
5
Connect to load side of shunt resistor.  
Connect to supply side of shunt resistor  
Output voltage  
IN+  
4
I
OUT  
REF  
V+  
6
O
I
1
Reference voltage, 0 V to V+  
Power supply, 2.7 V to 26 V  
3
Copyright © 2009–2020, Texas Instruments Incorporated  
5
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
(2)(3)  
Supply voltage, VS  
28  
V
Differential: VDIF = (VIN+) – (VIN–  
)
–28  
GND – 0.3  
GND – 0.1  
GND – 0.3  
GND – 0.3  
28  
28  
V
(3)(4)  
Analog inputs, VIN+ , VIN–  
Common-mode (Version A)  
Common-mode (Versions B and C)  
28  
V
V
REF input  
Output(5)  
Input current into any pin(5)  
Operating temperature  
Junction temperature  
(VS) + 0.3  
(VS) + 0.3  
5
V
mA  
°C  
°C  
°C  
–40  
125  
150  
Storage temperature, Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VS refers to the voltage at the V+ pin.  
(3) Sustained operation between 26 V and 28 V for more than a few minutes may cause permanent damage to the device.  
(4) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
(5) Input voltage at any pin can exceed the voltage shown if the current at that pin is limited to 5 mA.  
6.2 ESD Ratings  
VALUE  
UNIT  
INA21x-Q1 (VERSION A)  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±2000  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD classification level C6  
INA21x-Q1 (VERSIONS B AND C)  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD classification level 2  
±3500  
±1000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD classification level C6  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VCM  
VS  
Common-mode input voltage  
Supply voltage  
12  
2.7  
26  
V
TJ  
Junction temperature  
–40  
125  
°C  
6
Copyright © 2009–2020, Texas Instruments Incorporated  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
6.4 Thermal Information  
INA21x-Q1  
THERMAL METRIC(1)  
DCK (SC70)  
6 PINS  
227.3  
79.5  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
72.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
3.6  
ψJB  
70.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at TA = 25°C and VSENSE = VIN+ – VIN–  
.
INA210-Q1, INA213-Q1, INA214-Q1, and INA215-Q1: VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
INA211-Q1 and INA212-Q1: VS = 12 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Version A  
TA = –40°C to 125°C  
–0.3  
–0.1  
26  
26  
Common-mode  
input  
VCM  
V
Versions B and C  
TA = –40°C to 125°C  
INA210-Q1  
INA211-Q1  
INA212-Q1  
INA214-Q1  
INA215-Q1  
VIN+ = 0 V to 26 V  
VSENSE = 0 mV  
TA = –40°C to 125°C  
105  
100  
140  
Common-mode  
rejection ratio  
CMRR  
dB  
µV  
INA213-Q1  
120  
INA210-Q1  
INA211-Q1  
INA212-Q1  
±0.55  
±35  
Offset voltage,  
RTI(1)  
VSENSE = 0 mV  
TA = 25°C  
VOS  
INA213-Q1  
±5  
±1  
±100  
±60  
INA214-Q1  
INA215-Q1  
Offset voltage vs  
temperature(2)  
dVOS/dT  
PSR  
TA = –40°C to 125°C  
0.1  
0.5  
±10  
35  
µV/°C  
µV/V  
VS = 2.7 V to 18 V  
VIN+ = 18 V  
VSENSE = 0 mV  
TA = 25°C  
Offset voltage vs  
power supply  
±0.1  
VSENSE = 0 mV  
TA = 25°C  
IB  
Input bias current  
Input offset current  
15  
28  
µA  
µA  
VSENSE = 0 mV  
TA = 25°C  
IOS  
±0.02  
(1) RTI = referred to input.  
(2) Not production tested.  
Copyright © 2009–2020, Texas Instruments Incorporated  
7
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
at TA = 25°C and VSENSE = VIN+ – VIN–  
.
INA210-Q1, INA213-Q1, INA214-Q1, and INA215-Q1: VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
INA211-Q1 and INA212-Q1: VS = 12 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
INA210-Q1  
INA211-Q1  
INA212-Q1  
INA213-Q1  
INA214-Q1  
INA215-Q1  
200  
500  
1000  
50  
Gain  
V/V  
100  
75  
VSENSE = –5 mV to 5 mV (Versions A and B)  
TA = –40°C to 125°C  
±0.02%  
±0.02%  
3
±1%  
±0.5%  
10  
Gain error  
VSENSE = –5 mV to 5 mV (Version C)  
TA = –40°C to 125°C  
Gain error vs  
temperature(2)  
TA = –40°C to 125°C  
ppm/°C  
nF  
Nonlinearity error  
±0.01%  
1
TA = 25°C  
Maximum capacitive No sustained oscillation  
load  
VOLTAGE OUTPUT  
Output voltage  
TA = 25°C  
RL = 10 kΩ to GND  
TA = –40°C to 125°C  
swing to V+ power-  
(V+) – 0.05  
(V+) – 0.2  
V
V
supply rail(3)  
Output voltage  
swing to GND  
TA = –40°C to 125°C  
(VGND) + 0.005 (VGND) + 0.05  
FREQUENCY RESPONSE  
CLOAD = 10 pF  
INA210-Q1  
14  
7
CLOAD = 10 pF  
INA211-Q1  
CLOAD = 10 pF  
INA212-Q1  
4
BW  
SR  
Bandwidth  
TA = 25°C  
kHz  
CLOAD = 10 pF  
INA213-Q1  
80  
30  
CLOAD = 10 pF  
INA214-Q1  
CLOAD = 10 pF  
INA215-Q1  
40  
Slew rate  
TA = 25°C  
0.4  
V/µs  
NOISE, RTI  
Voltage noise  
density  
RTI(1)  
TA = 25°C  
25  
nV/Hz  
POWER SUPPLY  
TA = 25°C  
65  
100  
115  
IQ Quiescent current  
VSENSE = 0 mV  
µA  
TA = –40°C to  
125°C  
(3) See 10 in the Typical Characteristics section.  
8
版权 © 2009–2020, Texas Instruments Incorporated  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
6.6 Typical Characteristics  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
100  
80  
60  
40  
20  
0
-20  
-40  
-60  
-80  
-100  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Offset Voltage (mV)  
Temperature (°C)  
1. Input Offset Voltage Production Distribution  
2. Offset Voltage vs Temperature  
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Common-Mode Rejection Ratio (mV/V)  
Temperature (°C)  
3. Common-Mode Rejection Production Distribution  
4. Common-Mode Rejection Ratio vs Temperature  
1.0  
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Gain Error (%)  
20 typical units shown  
6. Gain Error vs Temperature  
5. Gain Error Production Distribution  
版权 © 2009–2020, Texas Instruments Incorporated  
9
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
INA210-Q1  
INA212-Q1  
INA214-Q1  
INA211-Q1  
INA213-Q1  
INA215-Q1  
60  
40  
20  
-10  
0
10  
100  
1k  
10k  
100k  
1M  
10M  
1
10  
100  
1k  
10k  
100k  
Frequency (Hz)  
Frequency (Hz)  
VCM = 0 V  
VDIF = 15-mVPP sine  
VS = 5 V + 250-mV sine disturbance  
VREF = 2.5 V VDIF = shorted  
VCM = 0 V  
7. Gain vs Frequency  
8. Power-Supply Rejection Ratio vs Frequency  
V+  
160  
140  
120  
100  
80  
(V+) - 0.5  
(V+) - 1  
VS = 5 V to 26 V  
(V+) - 1.5  
(V+) - 2  
VS = 2.7 V  
to 26 V  
(V+) - 2.5  
(V+) - 3  
VS = 2.7 V  
GND + 3  
GND + 2.5  
GND + 2  
GND + 1.5  
GND + 1  
GND + 0.5  
GND  
60  
40  
TA = –40°C  
TA = +25°C  
VS = 2.7 V to 26 V  
20  
TA = +125°C  
0
1
0
5
10  
15  
20  
25  
30  
35  
40  
10  
100  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Output Current (mA)  
VS = 5 V  
VCM = 1 V sine  
VREF = 2.5 V  
VDIF = shorted  
9. Common-Mode Rejection Ratio vs Frequency  
10. Output Voltage Swing vs Output Current  
50  
30  
25  
20  
15  
10  
5
40  
30  
20  
10  
0
IB+7 IB-7 VREF = 0 V  
IB+7 VREF = 2.5 V  
IB+7 IB-7 VREF = 2.5 V  
IB+7 IB-7 VREF = 0 V and  
IB-7 VREF = 25 V  
0
0V  
2.5V  
0V  
2.5V  
œ10  
-5  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
11. Input Bias Current vs Common-Mode Voltage With  
12. Input Bias Current vs Common-Mode Voltage With  
Supply Voltage = 5 V  
Supply Voltage = 0 V (Shutdown)  
10  
版权 © 2009–2020, Texas Instruments Incorporated  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
35  
30  
25  
20  
15  
10  
5
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Temperature (°C)  
Temperature (°C)  
13. Input Bias Current vs Temperature  
14. Quiescent Current vs Temperature  
100  
10  
INA210-Q1  
INA212-Q1  
INA214-Q1  
INA211-Q1  
INA213-Q1  
INA215-Q1  
1
Time (1 s/div)  
10  
100  
1k  
Frequency (Hz)  
VREF = 0 V  
10k  
100k  
VS = ±2.5 V  
VREF = 0 V  
VDIF = 0 V  
VCM = 0 V  
VS = ±2.5 V  
VIN–, VIN+ = 0 V  
16. 0.1-Hz To 10-Hz Voltage Noise (Referred-To-Input)  
15. Input-Referred Voltage Noise vs Frequency  
2VPP Output  
10mVPP Input  
Output Voltage  
Common Voltage  
0V  
0V  
Time (50μs/div)  
Time (100µs/div)  
18. Common-Mode Voltage Transient Response  
17. Step Response (10-mVPP Input Step)  
版权 © 2009–2020, Texas Instruments Incorporated  
11  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
Typical Characteristics (接下页)  
at TA = 25°C, VS = 5 V, VIN+ = 12 V, and VREF = VS / 2, (unless otherwise noted)  
Inverting Input  
Output  
Noninverting Input  
Output  
0V  
0V  
Time (250μs/div)  
Time (250μs/div)  
VS = 5 V  
VREF = 2.5 V  
VCM = 12 V  
VS = 5 V  
VREF = 2.5 V  
VCM = 12 V  
19. Inverting Differential Input Overload  
20. Noninverting Differential Input Overload  
Supply Voltage  
Output Voltage  
Supply Voltage  
Output Voltage  
0V  
0V  
Time (100μs/div)  
Time (100μs/div)  
1-kHz step with VDIF  
= 0 V  
1-kHz step with VDIF  
= 0 V  
VS = 5 V  
VREF = 2.5 V  
VS = 5 V  
VREF = 2.5 V  
22. Brownout Recovery  
21. Start-Up Response  
12  
版权 © 2009–2020, Texas Instruments Incorporated  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
7 Detailed Description  
7.1 Overview  
The INA210-Q1 to INA215-Q1 are 26-V, common-mode, zero-drift topology, current-sensing amplifiers that can  
be used in both low-side and high-side configurations. These specially-designed, current-sensing amplifiers are  
able to accurately measure voltages developed across current-sensing resistors on common-mode voltages that  
far exceed the supply voltage powering the device. Current can be measured on input voltage rails as high as  
26 V and the device can be powered from supply voltages as low as 2.7 V.  
The zero-drift topology enables high-precision measurements with maximum input offset voltages as low as  
35 µV with a maximum temperature contribution of 0.5 µV/°C over the full temperature range of –40°C to 125°C.  
7.2 Functional Block Diagram  
V+  
IN-  
œ
OUT  
REF  
IN+  
+
GND  
Copyright © 2017, Texas Instruments Incorporated  
版权 © 2009–2020, Texas Instruments Incorporated  
13  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Basic Connections  
23 shows the basic connections of the INA210-Q1 to INA215-Q1. Connect the input pins (IN+ and IN–) as  
closely as possible to the shunt resistor to minimize any resistance in series with the shunt resistor.  
RSHUNT  
Load  
Power Supply  
5-V Supply  
CBYPASS  
0.1 µF  
V+  
IN-  
-
OUT  
ADC  
Microcontroller  
+
IN+  
REF  
GND  
Copyright © 2017, Texas Instruments Incorporated  
23. Typical Application  
Power-supply bypass capacitors are required for stability. Applications with noisy or high-impedance power  
supplies can require additional decoupling capacitors to reject power-supply noise. Connect bypass capacitors  
close to the device pins.  
7.3.2 Selecting RS  
The zero-drift offset performance of the INA21x-Q1 family of devices offers several benefits. In general, the  
primary advantage of the low offset characteristic enables lower full-scale drops across the shunt. For example,  
non-zero-drift current-shunt monitors typically require a full-scale range of 100 mV.  
The INA21x-Q1 family of devices provides equivalent accuracy at a full-scale range on the order of 10 mV. This  
accuracy reduces shunt dissipation by an order of magnitude with many additional benefits.  
Alternatively, some applications must measure current over a wide dynamic range and can take advantage of the  
low offset on the low end of the measurement. Most often, these applications can use the lower-gain INA213-Q1,  
INA214-Q1, or INA215-Q1 to accommodate larger shunt drops on the upper end of the scale. For instance, an  
INA213-Q1 device operating on a 3.3-V supply can easily support a full-scale shunt drop of 60 mV, with only  
100 µV of offset.  
14  
版权 © 2009–2020, Texas Instruments Incorporated  
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
7.4 Device Functional Modes  
7.4.1 Input Filtering  
An obvious and straightforward location for filtering is at the output of the INA21x-Q1 family of devices. However,  
this location negates the advantage of the low output impedance of the internal buffer. The only other filtering  
option is at the input pins of the INA21x-Q1 family of devices. This location, however, requires consideration of  
the ±30% tolerance of the internal resistances. 24 shows a filter placed at the input pins.  
V+  
VCM  
RS < 10 W  
RINT  
VOUT  
RSHUNT  
Bias  
CF  
RS < 10 W  
VREF  
RINT  
Load  
24. Filter at Input Pins  
The addition of external series resistance, however, creates an additional error in the measurement so the value  
of these series resistors must be kept to 10 Ω (or less, if possible) to reduce impact to accuracy. The internal  
bias network shown in 24 that is present at the input pins creates a mismatch in input bias currents when a  
differential voltage is applied between the input pins. If additional external series filter resistors are added to the  
circuit, the mismatch in bias currents results in a mismatch of voltage drops across the filter resistors. This  
mismatch creates a differential error voltage that subtracts from the voltage developed at the shunt resistor. This  
error results in a voltage at the device input pins that is different than the voltage developed across the shunt  
resistor. Without the additional series resistance, the mismatch in input bias currents has little effect on device  
operation. The amount of error these external filter resistors add to the measurement can be calculated using 公  
2 where the gain error factor is calculated using 公式 1.  
The amount of variance in the differential voltage present at the device input relative to the voltage developed at  
the shunt resistor is based both on the external series resistance value as well as the internal input resistors, R3  
and R4 (or RINT as shown in 24). The reduction of the shunt voltage reaching the device input pins appears as  
a gain error when comparing the output voltage relative to the voltage across the shunt resistor. A factor can be  
calculated to determine the amount of gain error that is introduced by the addition of external series resistance.  
Use 公式 1 to calculate the expected deviation from the shunt voltage to what is measured at the device input  
pins.  
(1250 ´ RINT  
)
Gain Error Factor =  
(1250 ´ RS) + (1250 ´ RINT) + (RS ´ RINT  
)
where:  
RINT is the internal input resistor (R3 and R4), and  
RS is the external series resistance.  
(1)  
版权 © 2009–2020, Texas Instruments Incorporated  
15  
 
 
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
Device Functional Modes (接下页)  
With the adjustment factor from 公式 1 including the device internal input resistance, this factor varies with each  
gain version, as shown in 1. 2 lists each individual device gain-error factor.  
1. Input Resistance  
PRODUCT  
INA210-Q1  
INA211-Q1  
INA212-Q1  
INA213-Q1  
INA214-Q1  
INA215-Q1  
GAIN  
200  
500  
1000  
50  
RINT (kΩ)  
5
2
1
20  
10  
13.3  
100  
75  
2. Device Gain Error Factor  
PRODUCT  
SIMPLIFIED GAIN ERROR FACTOR  
1000  
INA210-Q1  
RS + 1000  
10,000  
INA211-Q1  
INA212-Q1  
INA213-Q1  
INA214-Q1  
INA215-Q1  
(13 ´ RS) + 10,000  
5000  
(9 ´ RS) + 5000  
20,000  
(17 ´ RS) + 20,000  
10,000  
(9 ´ RS) + 10,000  
8,000  
x
(7 RS) + 8,000  
Use 公式 2 to calculate the gain error that can be expected from the addition of the external series resistors.  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(2)  
For example, using an INA212-Q1 device and the corresponding gain error equation from 2, a series  
resistance of 10 Ω results in a gain error factor of 0.982. The corresponding gain error is then calculated using 公  
2, resulting in a gain error of approximately 1.77% solely because of the external 10-Ω series resistors. Using  
an INA213-Q1 with the same 10-Ω series resistor results in a gain error factor of 0.991 and a gain error of 0.84%  
again solely because of these external resistors.  
16  
版权 © 2009–2020, Texas Instruments Incorporated  
 
 
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
7.4.2 Shutting Down the INA21x-Q1 Series  
While the INA21x-Q1 family of devices does not have a shutdown pin, the low-power consumption of the device  
allows the output of a logic gate or transistor switch to power the device. This gate or switch turns on and turns  
off the INA21x-Q1 power-supply quiescent current.  
However, in current-shunt monitoring applications, the amount of current drained from the shunt circuit in  
shutdown conditions must be considered. Evaluating this current drain involves considering the simplified  
schematic of the INA21x-Q1 family of devices in shutdown mode shown in 25.  
RSHUNT  
Supply  
Load  
Reference  
Voltage  
INA21x-Q1  
Output  
OUT  
REF  
R3  
1 MW  
IN-  
GND  
Shutdown  
Control  
IN+  
V+  
PRODUCT  
R3 and R4  
R4  
1 MW  
INA210-Q1  
INA211-Q1  
INA212-Q1  
INA213-Q1  
INA214-Q1  
INA215-Q1  
5 kW  
2 kW  
1 kW  
CBYPASS  
20 kW  
10 kW  
13.3 kW  
Copyright © 2017, Texas Instruments Incorporated  
NOTE: 1-MΩ paths from shunt inputs to reference and INA21x-Q1 outputs.  
25. Basic Circuit for Shutting Down INA21x-Q1 With a Grounded Reference  
Slightly more than a 1-Mimpedance (from the combination of 1-Mfeedback and 5-kinput resistors) exists  
from each input of the INA21x-Q1 family of devices to the OUT pin and to the REF pin. The amount of current  
flowing through these pins depends on the respective ultimate connection. For example, if the REF pin is  
grounded, the calculation of the effect of the 1-Mimpedance from the shunt to ground is straightforward.  
However, if the reference or operational amplifier (op amp) is powered when the INA21x-Q1 family of devices is  
shut down, the calculation is direct. Instead of assuming 1 Mto ground, however, assume 1 Mto the  
reference voltage. If the reference or op amp is also shut down, some knowledge of the reference or op amp  
output impedance under shutdown conditions is required. For instance, if the reference source behaves as an  
open circuit when not powered, little or no current flows through the 1-Mpath.  
Regarding the 1-Mpath to the output pin, the output stage of a disabled INA21x-Q1 device does constitute a  
good path to ground; consequently, this current is directly proportional to a shunt common-mode voltage present  
across a 1-Mresistor.  
When the device is powered up, an additional, nearly constant and well-matched 25-µA  
current flows in each of the inputs as long as the shunt common-mode voltage is 3 V or  
higher. Below 2-V common-mode, the only current effects are the result of the 1-MΩ  
resistors.  
版权 © 2009–2020, Texas Instruments Incorporated  
17  
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
7.4.3 REF Input Impedance Effects  
As with any difference amplifier, the INA21x-Q1 common-mode rejection ratio is affected by any impedance  
present at the REF input. This concern is not a problem when the REF pin is connected directly to most  
references or power supplies. When using resistive dividers from the power supply or a reference voltage, buffer  
the REF pin by an op amp.  
In systems where the INA21x-Q1 output can be sensed differentially, such as by a differential input analog-to-  
digital converter (ADC) or by using two separate ADC inputs, the effects of external impedance on the REF input  
can be cancelled. 26 shows a method of taking the output from the INA21x-Q1 family of devices by using the  
REF pin as a reference.  
RSHUNT  
Load  
Supply  
ADC  
INA21x-Q1  
Output  
OUT  
REF  
R1  
R3  
IN-  
GND  
2.7 V to 26 V  
IN+  
V+  
R2  
R4  
CBYPASS  
0.01 µF  
to  
0.1 µF  
Copyright © 2017, Texas Instruments Incorporated  
26. Sensing INA21x-Q1 to Cancel Effects of Impedance on the REF Input  
7.4.4 Using the INA21x-Q1 with Common-Mode Transients Above 26 V  
With a small amount of additional circuitry, the INA21x-Q1 family of devices can be used in circuits subject to  
transients higher than 26 V, such as automotive applications. Use only Zener diode or Zener-type transient  
absorbers (sometimes referred to as transzorbs)—any other type of transient absorber has an unacceptable time  
delay. Begin by adding a pair of resistors as a working impedance for the Zener diode, as shown in 27.  
Keeping these resistors as small as possible is preferable, typically around 10 . Larger values can be used with  
an effect on gain that is discussed in the Input Filtering section. Because this circuit limits only short-term  
transients, many applications are satisfied with a 10-resistor along with conventional Zener diodes of the  
lowest power rating that can be found. This combination uses the least amount of board space. These diodes  
can be found in packages as small as SOT-523 or SOD-523.  
18  
版权 © 2009–2020, Texas Instruments Incorporated  
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
RSHUNT  
Supply  
Load  
RPROTECT  
10 Ω  
RPROTECT  
10 Ω  
Reference  
Voltage  
Output  
INA21x-Q1  
OUT  
REF  
R3  
1 MΩ  
1 MΩ  
IN-  
GND  
V+  
IN+  
Shutdown  
Control  
R4  
CBYPASS  
Copyright © 2017, Texas Instruments Incorporated  
27. INA21x-Q1 Transient Protection Using Dual Zener Diodes  
In the event that low-power Zener diodes do not have sufficient transient absorption capability and a higher  
power transzorb must be used, the most package-efficient solution then involves using a single transzorb and  
back-to-back diodes between the device inputs. The most space-efficient solutions are dual series-connected  
diodes in a single SOT-523 or SOD-523 package. 28 shows this method. In either of these examples, the total  
board area required by the INA21x-Q1 family of devices with all protective components is less than that of an  
SO-8 package, and only slightly greater than that of an MSOP-8 package.  
RSHUNT  
Supply  
Load  
RPROTECT  
10 Ω  
RPROTECT  
10 Ω  
Reference  
Voltage  
Output  
INA21x-Q1  
OUT  
REF  
R3  
1MΩ  
IN-  
GND  
V+  
IN+  
Shutdown  
Control  
1 MΩ  
R4  
CBYPASS  
Copyright © 2017, Texas Instruments Incorporated  
28. INA21x-Q1 Transient Protection Using a Single Transzorb and Input Clamps  
版权 © 2009–2020, Texas Instruments Incorporated  
19  
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
7.4.5 Improving Transient Robustness  
CAUTION  
Applications involving large input transients with excessive dV/dt above 2 kV per  
microsecond present at the device input pins can cause damage to the internal ESD  
structures on version A devices.  
The potential damage from large input transients is a result of the internal latching of the ESD structure to ground  
when this transient occurs at the input. With significant current available in most current-sensing applications, the  
large current flowing through the input transient-triggered, ground-shorted ESD structure quickly results in  
damage to the silicon. External filtering can be used to attenuate the transient signal prior to reaching the inputs  
to avoid the latching condition. Care must be taken to ensure that external series input resistance does not  
significantly impact gain error accuracy. For accuracy purposes, keep these resistances under 10 Ω if possible.  
Ferrite beads are recommended for this filter because of the inherently low-dc ohmic value. Ferrite beads with  
less than 10 Ω of resistance at dc and over 600 Ω of resistance at 100 MHz to 200 MHz are recommended. The  
recommended capacitor values for this filter are between 0.01 µF and 0.1 µF to ensure adequate attenuation in  
the high-frequency region. 29 illustrates this protection scheme.  
Shunt  
Reference  
Voltage  
Load  
Supply  
Output  
Device  
OUT  
REF  
1 MW  
R3  
R4  
IN-  
GND  
-
MMZ1608B601C  
IN+  
V+  
2.7 V to 26 V  
1 MW  
0.01mF  
to 0.1mF  
0.01mF  
to 0.1mF  
Copyright © 2017, Texas Instruments Incorporated  
29. Transient Protection  
To minimize the cost of adding these external components to protect the device in applications where large  
transient signals may be present, version B and C devices are now available with new ESD structures that are  
not susceptible to this latching condition. Version B and C devices are incapable of sustaining these damage-  
causing latched conditions so they do not have the same sensitivity to the transients that the version A devices  
have, thus making the version B and C devices a better fit for these applications.  
20  
版权 © 2009–2020, Texas Instruments Incorporated  
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA21x-Q1 family of devices measure the voltage developed across a current-sensing resistor when current  
passes through the resistor. The ability to drive the reference pin to adjust the functionality of the output signal  
offers multiple configurations, as discussed throughout the Typical Applications section.  
8.2 Typical Applications  
8.2.1 Unidirectional Operation  
Unidirectional operation allows the INA21x-Q1 family of devices to measure currents through a resistive shunt in  
one direction. The most frequent case of unidirectional operation sets the output at ground by connecting the  
REF pin to ground. In unidirectional applications where the highest possible accuracy is desirable at very low  
inputs, bias the REF pin to a convenient value above 50 mV to get the device output swing into the linear range  
for zero inputs.  
A less frequent case of unipolar output biasing is to bias the output by connecting the REF pin to the supply. In  
this case, the quiescent output for zero input is at quiescent supply. This configuration only responds to negative  
currents (inverted voltage polarity at the device input).  
Bus Supply  
Load  
Power Supply  
CBYPASS  
0.1 µF  
V+  
IN-  
-
Output  
OUT  
+
IN+  
REF  
GND  
Copyright © 2017, Texas Instruments Incorporated  
30. Unidirectional Application Schematic  
8.2.1.1 Design Requirements  
The device can be configured to monitor current flowing in one direction (unidirectional) or in both directions  
(bidirectional) depending on how the REF pin is configured. The most common case is unidirectional where the  
output is set to ground when no current is flowing by connecting the REF pin to ground, as shown in 30. When  
the input signal increases, the output voltage at the OUT pin increases.  
版权 © 2009–2020, Texas Instruments Incorporated  
21  
 
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
Typical Applications (接下页)  
8.2.1.2 Detailed Design Procedure  
The linear range of the output stage is limited in how close the output voltage can approach ground under zero  
input conditions. In unidirectional applications where measuring very-low input currents is desirable, bias the REF  
pin to a convenient value above 50 mV to get the output into the linear range of the device. To limit common-  
mode rejection errors, TI recommends buffering the reference voltage connected to the REF pin.  
A less frequently-used output biasing method is to connect the REF pin to the supply voltage, V+. This method  
results in the output voltage saturating at 200 mV below the supply voltage when no differential input signal is  
present. This method is similar to the output-saturated low condition with no input signal when the REF pin is  
connected to ground. The output voltage in this configuration only responds to negative currents that develop  
negative differential input voltage relative to the device IN– pin. Under these conditions, when the differential  
input signal increases negatively, the output voltage moves downward from the saturated supply voltage. The  
voltage applied to the REF pin must not exceed the device supply voltage.  
8.2.1.3 Application Curve  
31 shows an example output response of a unidirectional configuration. With the REF pin connected directly  
to ground, the output voltage is biased to this zero output level. The output rises above the reference voltage for  
positive differential input signals but cannot fall below the reference voltage for negative differential input signals  
because of the grounded reference voltage.  
0 V  
VOUT  
VREF  
Time (500 µs /div)  
31. Unidirectional Application Output Response  
22  
版权 © 2009–2020, Texas Instruments Incorporated  
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
Typical Applications (接下页)  
8.2.2 Bidirectional Operation  
Load  
Bus Supply  
Power Supply  
CBYPASS  
0.1 µF  
V+  
IN-  
Reference  
Voltage  
-
Output  
OUT  
+
+
IN+  
REF  
-
GND  
Copyright © 2017, Texas Instruments Incorporated  
32. Bidirectional Application Schematic  
8.2.2.1 Design Requirements  
The device is a bidirectional, current-sense amplifier capable of measuring currents through a resistive shunt in  
two directions. This bidirectional monitoring is common in applications that include charging and discharging  
operations where the current flow-through resistor can change directions.  
8.2.2.2 Detailed Design Procedure  
The ability to measure this current flowing in both directions is enabled by applying a voltage to the REF pin, as  
shown in 32. The voltage applied to REF (VREF) sets the output state that corresponds to the zero-input level  
state. The output then responds by increasing above the VREF value for positive differential signals (relative to the  
IN– pin) and responds by decreasing below the VREF value for negative differential signals. This reference  
voltage applied to the REF pin can be set anywhere between 0 V to V+. For bidirectional applications, the VREF  
value is typically set at mid-scale for equal signal range in both current directions. In some cases, however, the  
VREF value is set at a voltage other than mid-scale when the bidirectional current and corresponding output signal  
are note required to be symmetrical.  
8.2.2.3 Application Curve  
33 shows an example output response of a bidirectional configuration. With the REF pin connected to a  
reference voltage, 2.5 V in this case, the output voltage is biased upwards by this reference level. The output  
rises above the reference voltage for positive differential input signals and falls below the reference voltage for  
negative differential input signals.  
VOUT  
VREF  
0 V  
Time (500 µs/div)  
33. Bidirectional Application Output Response  
版权 © 2009–2020, Texas Instruments Incorporated  
23  
 
 
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
www.ti.com.cn  
9 Power Supply Recommendations  
The input circuitry of the INA21x-Q1 family of devices can accurately measure beyond the power-supply voltage,  
V+. For example, the V+ power supply can be 5 V, whereas the load power-supply voltage can be as high as 26  
V. However, the output voltage range of the OUT pin is limited by the voltages on the power-supply pin. The  
INA21x-Q1 family of devices can withstand the full input-signal range up to 26 V at the input pins, regardless of  
whether the device has power applied or not.  
10 Layout  
10.1 Layout Guidelines  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
ensures that only the current-sensing resistor impedance is detected between the input pins. Poor routing of  
the current-sensing resistor commonly results in additional resistance present between the input pins. Given  
the very-low ohmic value of the current resistor, any additional high-current carrying impedance can cause  
significant measurement errors.  
Place the power-supply bypass capacitor as closely as possible to the supply and ground pins. The  
recommended value of this bypass capacitor is 0.1 μF. Additional decoupling capacitance can be added to  
compensate for noisy or high-impedance power supplies.  
10.2 Layout Example  
Output Signal  
Trace  
VIA to Power or  
Ground Plane  
VIA to Ground Plane  
Supply  
Voltage  
Supply Bypass  
Capacitor  
Copyright © 2017, Texas Instruments Incorporated  
34. Recommended Layout  
24  
版权 © 2009–2020, Texas Instruments Incorporated  
INA210-Q1, INA211-Q1, INA212-Q1, INA213-Q1, INA214-Q1, INA215-Q1  
www.ti.com.cn  
ZHCSGQ6J MARCH 2009REVISED APRIL 2020  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
请参阅如下相关文档:  
INA210-215EVM用户指南  
11.2 相关链接  
3 列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
3. 相关链接  
器件  
产品文件夹  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
立即订购  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
技术文档  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
工具和软件  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
支持和社区  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
单击此处  
INA210-Q1  
INA211-Q1  
INA212-Q1  
INA213-Q1  
INA214-Q1  
INA215-Q1  
11.3 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2009–2020, Texas Instruments Incorporated  
25  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA210BQDCKRQ1  
INA210CQDCKRQ1  
INA211BQDCKRQ1  
INA211CQDCKRQ1  
INA212AQDCKRQ1  
INA212BQDCKRQ1  
INA212CQDCKRQ1  
INA213AQDCKRQ1  
INA213BQDCKRQ1  
INA213CQDCKRQ1  
INA214AQDCKRQ1  
INA214BQDCKRQ1  
INA214CQDCKRQ1  
INA215BQDCKRQ1  
INA215CQDCKRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-55 to 125  
-40 to 125  
13F  
17D  
13G  
17E  
SJW  
13H  
17F  
OBX  
13I  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
17G  
OFT  
13J  
17H  
13K  
17I  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA210BQDCKRQ1  
INA210CQDCKRQ1  
INA211BQDCKRQ1  
INA211CQDCKRQ1  
INA212AQDCKRQ1  
INA212BQDCKRQ1  
INA212CQDCKRQ1  
INA213AQDCKRQ1  
INA213AQDCKRQ1  
INA213BQDCKRQ1  
INA213CQDCKRQ1  
INA214AQDCKRQ1  
INA214BQDCKRQ1  
INA214CQDCKRQ1  
INA215BQDCKRQ1  
INA215CQDCKRQ1  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
180.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
9.0  
8.4  
8.4  
9.0  
9.0  
8.4  
9.0  
9.0  
9.0  
9.0  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.47  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.4  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.3  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.25  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
1.2  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA210BQDCKRQ1  
INA210CQDCKRQ1  
INA211BQDCKRQ1  
INA211CQDCKRQ1  
INA212AQDCKRQ1  
INA212BQDCKRQ1  
INA212CQDCKRQ1  
INA213AQDCKRQ1  
INA213AQDCKRQ1  
INA213BQDCKRQ1  
INA213CQDCKRQ1  
INA214AQDCKRQ1  
INA214BQDCKRQ1  
INA214CQDCKRQ1  
INA215BQDCKRQ1  
INA215CQDCKRQ1  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
SC70  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
DCK  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
213.0  
340.0  
180.0  
180.0  
340.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
191.0  
340.0  
180.0  
180.0  
340.0  
180.0  
180.0  
180.0  
180.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
18.0  
35.0  
38.0  
18.0  
18.0  
38.0  
18.0  
18.0  
18.0  
18.0  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

INA210_08

Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series CURRENT SHUNT MONITOR
TI

INA210_15

INA21x Voltage Output, Low- or High-Side Measurement, Bidirectional, Zero-Drift Series, Current-Shunt Monitors
TI

INA211

Voltage Output, High or Low Side Measurement, Bi-Directional Zer┆-Drift Series CURRENT SHUNT MONITOR
TI

INA211-Q1

AEC-Q100、26V、双向、高精度电流感应放大器
TI

INA211A

Voltage Output, High or Low Side Measurement, Bi-Directional Zerø-Drift Series CURRENT-SHUNT MONITOR
TI

INA211AIDCKR

Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series CURRENT SHUNT MONITOR
TI

INA211AIDCKT

Voltage Output, High or Low Side Measurement, Bi-Directional Zero-Drift Series CURRENT SHUNT MONITOR
TI

INA211B

Voltage Output, High or Low Side Measurement, Bi-Directional Zerø-Drift Series CURRENT-SHUNT MONITOR
TI

INA211BIDCKR

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211BIDCKT

26V、双向、高精度电流感应放大器 | DCK | 6 | -40 to 125
TI

INA211BIRSWR

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI

INA211BIRSWT

26V、双向、高精度电流感应放大器 | RSW | 10 | -40 to 125
TI