INA281B2IDBVT [TI]

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier;
INA281B2IDBVT
型号: INA281B2IDBVT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier

文件: 总28页 (文件大小:1478K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
INA281  
SBOSA29 JUNE 2020  
INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier  
1 Features  
3 Description  
The INA281 is  
a high-precision current sense  
1
Wide common-mode voltage:  
amplifier that can measure voltage drops across  
shunt resistors over a wide common-mode range  
from –4 V to 110 V. The negative common-mode  
voltage allows the device to operate below ground,  
thus accommodating precise measurement of  
recirculating currents in half-bridge applications. The  
combination of a low offset voltage, small gain error  
and high DC CMRR enables highly accurate current  
measurement. The INA281 is not only designed for  
DC current measurement, but also for high-speed  
applications (like fast overcurrent protection, for  
example) with a high bandwidth of 1.3 MHz and an  
65-dB AC CMRR (at 50 kHz).  
Operational voltage: 4 V to +110 V  
Survival voltage: 20 V to +120 V  
Excellent CMRR:  
120-dB DC CMRR  
65-dB AC CMRR at 50 kHz  
Accuracy:  
Gain:  
Gain error: ±0.5% (maximum)  
Gain drift: ±20 ppm/°C (maximum)  
Offset:  
The INA281 operates from a single 2.7-V to 20-V  
supply, drawing 1.5 mA of supply current. The  
INA281 is available with five gain options: 20 V/V, 50  
V/V, 100 V/V, 200 V/V, and 500 V/V. These gain  
options address wide dynamic range for current-  
sensing applications.  
Offset voltage: ±55 µV (typical)  
Offset drift: ±0.1 µV/°C (typical)  
Available gains:  
INA281A1, INA281B1 : 20 V/V  
INA281A2, INA281B2 : 50 V/V  
INA281A3, INA281B3 : 100 V/V  
INA281A4, INA281B4 : 200 V/V  
INA281A5, INA281B5 : 500 V/V  
The INA281 is specified over an operating  
temperature range of 40 °C to +125 °C and is  
offered in a space-saving SOT-23 package with two  
pin-out variants.  
High bandwidth: 1.3 MHz  
Slew rate: 2.5V/µs  
Device Information(1)  
PART NUMBER  
INA281  
PACKAGE  
BODY SIZE (NOM)  
Quiescent current: 1.5 mA  
SOT-23 (5)  
2.90 mm × 1.60 mm  
2 Applications  
(1) For all available packages, see the package option addendum  
at the end of the data sheet.  
Active antenna system mMIMO (AAS)  
Macro remote radio unit (RRU)  
48-V rack server  
Functional Block Diagram  
VS  
VCM  
48-V merchant network & server power supply  
(PSU)  
ISENSE  
Solenoid control  
Valve control  
R1  
IN+  
+
Current  
RSENSE  
Bias  
Feedback  
R1  
Telecom equipment  
Power supplies  
OUT  
-
INœ  
Buffer  
Load  
RL  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
8.1 Application Information............................................ 14  
8.2 Typical Application .................................................. 16  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
Features.................................................................. 1  
8
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Typical Characteristics.............................................. 6  
Detailed Description ............................................ 11  
7.1 Overview ................................................................. 11  
7.2 Functional Block Diagram ....................................... 11  
7.3 Feature Description................................................. 11  
9
10 Layout................................................................... 18  
10.1 Layout Guidelines ................................................. 18  
10.2 Layout Example .................................................... 18  
11 Device and Documentation Support ................. 19  
11.1 Documentation Support ........................................ 19  
11.2 Receiving Notification of Documentation Updates 19  
11.3 Support Resources ............................................... 19  
11.4 Trademarks........................................................... 19  
11.5 Electrostatic Discharge Caution............................ 19  
11.6 Glossary................................................................ 19  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 19  
4 Revision History  
DATE  
REVISION  
NOTES  
June 2020  
*
Initial release  
2
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
 
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
5 Pin Configuration and Functions  
INA281A: DBV Package  
5-Pin SOT-23  
INA281B: DBV Package  
5-Pin SOT-23  
Top View  
Top View  
OUT  
GND  
IN+  
1
2
3
5
Vs  
OUT  
GND  
Vs  
1
2
3
5
INœ  
4
INœ  
4
IN+  
Not to scale  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
GND  
IN–  
INA281A  
INA281B  
2
4
3
1
5
2
5
4
1
3
Ground  
Input  
Ground  
Shunt resistor negative sense input  
Shunt resistor positive sense input  
Output voltage  
IN+  
Input  
OUT  
Vs  
Output  
Power  
Power supply  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
Supply Voltage  
(VS)  
–0.3  
22  
V
Differential (VIN+) – (VIN–), INA281A5, INA281B5  
Analog Inputs,  
VIN+, VIN–  
–6  
–12  
6
Differential (VIN+) – (VIN–), All others  
12  
V
(2)  
Common-mode  
–20  
120  
VS + 0.3  
150  
Output  
GND – 0.3  
–55  
V
TA  
Operating temperature  
Junction temperature  
Storage temperature  
°C  
°C  
°C  
TJ  
150  
Tstg  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) VIN+ and VIN– are the voltages at the IN+ and IN– pins, respectively.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per  
±2000  
ANSI/ESDA/JEDEC JS-001, all pins(1)  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC  
specification JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: INA281  
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–4  
NOM  
48  
MAX  
110  
UNIT  
V
VCM  
VS  
Common-mode input range  
Operating supply range  
Differential sense input range  
Ambient temperature  
2.7  
0
5
20  
V
VSENSE  
TA  
VS / G  
125  
V
–40  
°C  
6.4 Thermal Information  
INA281  
THERMAL METRIC(1)  
DBV (SOT-23)  
5 PINS  
184.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
105.6  
47.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
21.5  
ΨJB  
46.9  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
VCM  
Common-mode input range(1)  
TA = –40 °C to +125 °C  
–4  
110  
V
–4 V VCM 110 V, TA = –40 °C to  
+125 °C  
120  
140  
dB  
dB  
Common-mode rejection ratio, input  
referred  
CMRR  
f = 50 kHz  
65  
±100  
±55  
INA281x1  
±500  
±300  
±250  
±200  
±150  
±1  
INA281x2  
Vos  
Offset voltage, input referred  
INA281x3  
±30  
µV  
INA281x4  
±30  
INA281x5  
±15  
dVos/dT Offset voltage drift  
TA = –40 to +125 ℃  
±0.1  
µV/℃  
2.7 V VS 20 V,  
TA = –40 °C to +125 °C  
Power supply rejection ratio, input  
referred  
PSRR  
IB  
±1.5  
±10  
µV/V  
IB+, VSENSE = 0 V  
IB–, VSENSE = 0 V  
10  
10  
20  
20  
30  
30  
uA  
uA  
Input bias current  
(1) Common-mode voltage at both VIN+ and VIN- must not exceed the specified common-mode input range.  
4
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
Electrical Characteristics (continued)  
at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OUTPUT  
INA281x1  
INA281x2  
INA281x3  
INA281x4  
INA281x5  
20  
50  
V/V  
V/V  
V/V  
V/V  
V/V  
%
G
Gain  
100  
200  
500  
±0.07  
±2  
GND + 50 mV VOUT VS – 200 mV  
±0.5  
GERR  
Gain error  
TA = –40 °C to +125 °C  
±20 ppm/°C  
%
NLERR  
Nonlinearity error  
0.01  
No sustained oscillations, no isolation  
resistor  
Maximum capacitive load  
500  
pF  
VOLTAGE OUTPUT  
Swing to Vs (Power supply rail)  
VS  
0.07  
VS  
0.15  
RLOAD = 10 kΩ, TA = –40 °C to +125 °C  
V
V
RLOAD = 10 kΩ, VSENSE = 0 V,  
TA = –40 °C to +125 °C  
Swing to ground  
0.005  
0.02  
FREQUENCY RESPONSE  
INA281x1, CLOAD = 5 pF,  
VSENSE = 200 mV  
1300  
1300  
1000  
900  
INA281x2, CLOAD = 5 pF,  
VSENSE = 80 mV  
INA281x3, CLOAD = 5 pF,  
VSENSE = 40 mV  
BW  
SR  
Bandwidth  
kHz  
INA281x4, CLOAD = 5 pF,  
VSENSE = 20 mV  
INA281x5, CLOAD = 5 pF,  
VSENSE = 8 mV  
900  
2.5  
10  
Slew rate  
Rising edge  
V/µs  
µs  
VOUT = 4 V ± 0.1 V step, Output settles  
to 0.5%  
VOUT = 4 V ± 0.1 V step, Output settles  
to 1%  
Settling time  
5
1
VOUT = 4 V ± 0.1 V step, Output settles  
to 5%  
NOISE  
Ven  
Voltage noise density  
50  
nV/Hz  
POWER SUPPLY  
Vs  
Supply voltage  
TA = –40 °C to +125 °C  
TA = –40 °C to +125 °C  
2.7  
20  
2
V
1.5  
mA  
mA  
IQ  
Quiescent current  
2.25  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: INA281  
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
6.6 Typical Characteristics  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V, unless otherwise noted.  
200  
100  
0
160  
140  
120  
100  
80  
60  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
40  
-100  
-200  
20  
0
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Figure 2. Common-Mode Rejection Ratio vs Frequency  
0.250  
G = 20  
Figure 1. Common-Mode Rejection Ratio vs Temperature  
60  
G = 50  
50  
40  
30  
20  
G = 100  
G = 200  
G = 500  
0.125  
0.000  
G = 20  
G = 50  
G = 100  
G = 200  
G = 500  
10  
0
-0.125  
-10  
-0.250  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Figure 3. Gain vs Frequency  
Figure 4. Gain Error vs Temperature  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
VS = 2.7 to 20V, VCM = 48V  
VS = 2.7 to 20V, VCM = 120V  
VS = 2.7 to 20V, VCM = -4V  
VS = 0V, VCM = 120V  
VS = 5V  
VS = 20V  
VS = 2.7V  
VS = 0V  
VS = 0V, VCM = -4V  
0
0
VS = 0V and 20V, VCM = -20V  
-5  
-5  
-10  
-10  
-20  
0
20  
40  
Common-Mode Voltage (V)  
60  
80  
100  
120  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
VSENSE = 0 V  
Figure 5. Input Bias Current vs Common-Mode Voltage  
Figure 6. Input Bias Current vs Temperature  
6
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V, unless otherwise noted.  
240  
200  
160  
120  
80  
140  
120  
100  
80  
IB+  
IB-  
IB+  
IB-  
IB+, VS = 0V  
IB-, VS = 0V  
IB+, VS = 0V  
IB-, VS = 0V  
60  
40  
40  
20  
0
0
-40  
-80  
-120  
-160  
-20  
-40  
-60  
-80  
0
200  
400  
VSENSE (mV)  
600  
800  
1000  
0
100  
200  
VSENSE (mV)  
300  
400  
Figure 7. INA281x1 Input Bias Current vs VSENSE  
Figure 8. INA281x2, INA281x3 Input Bias Current vs VSENSE  
100  
80  
60  
40  
20  
0
VS  
IB+, G=200  
IB+, G=500  
IB-  
IB+, VS = 0V  
IB-, VS = 0V  
25èC  
125èC  
-40èC  
VS - 1  
VS - 2  
GND + 2  
GND + 1  
GND  
-20  
0
20  
40  
60  
80  
100  
0
5
10  
15  
20  
25  
Output Current (mA)  
30  
35  
40  
VSENSE (mV)  
VS = 2.7 V  
Figure 10. Output Voltage vs Output Current  
Figure 9. INA281x4, INA281x5 Input Bias Current vs VSENSE  
VS  
VS  
VS - 1  
VS - 2  
VS - 3  
25èC  
125èC  
-40èC  
25èC  
125èC  
-40èC  
VS - 1  
VS - 2  
VS - 3  
GND + 3  
GND + 2  
GND + 1  
GND  
GND + 3  
GND + 2  
GND + 1  
GND  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
35  
40  
VS = 5 V  
Figure 11. Output Voltage vs Output Current  
VS = 20 V  
Figure 12. Output Voltage vs Output Current  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: INA281  
 
 
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V, unless otherwise noted.  
1000  
500  
0.00  
-0.10  
-0.20  
-0.30  
-0.40  
-0.50  
200  
100  
50  
20  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
VS = 5V  
VS = 20V  
VS = 2.7V  
0.02  
0.01  
10  
100  
1k  
10k  
Frequency (Hz)  
100k  
1M  
10M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Figure 13. Output Impedance vs Frequency  
Figure 14. Swing to Supply vs Temperature  
0.020  
0.015  
0.010  
0.005  
0.000  
100  
VS = 5V  
VS = 20V  
VS = 2.7V  
G = 20  
G = 500  
80  
70  
60  
50  
40  
30  
20  
10  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Figure 16. Input Referred Noise vs Frequency  
Figure 15. Swing to GND vs Temperature  
2
1.8  
1.6  
1.4  
1.2  
1
VS = 20V  
VS = 5V  
G = 20 to 50  
VS = 2.7V  
G = 100 to 500  
0.8  
0
2.5  
5
7.5  
10  
12.5  
Output Voltage (V)  
15  
17.5  
20  
Time (1 s/div)  
Figure 17. Input Referred Noise  
Figure 18. Quiescent Current vs Output Voltage  
8
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V, unless otherwise noted.  
2
1.8  
1.6  
1.4  
1.2  
1
50  
40  
30  
20  
10  
0
VS = 5V  
VS = 20V  
VS = 2.7V  
VS = 5V, Sourcing  
VS = 5V, Sinking  
VS = 20V, Sourcing  
VS = 20V, Sinking  
VS = 2.7V, Sourcing  
VS = 2.7V, Sinking  
0.8  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
-75 -50 -25  
0
25  
50  
75 100 125 150 175  
Temperature (èC)  
Temperature (èC)  
Figure 19. Quiescent Current vs Temperature  
Figure 20. Short-Circuit Current vs Temperature  
2
2
1.8  
1.6  
1.4  
1.2  
1
VS = 5V  
VS = 20V  
VS = 2.7V  
1.8  
1.6  
1.4  
1.2  
1
25èC  
125èC  
-40èC  
0.8  
0.8  
0
2
4
6
8
Supply Voltage (V)  
10  
12  
14  
16  
18  
20  
-20  
0
20  
40  
Common-Mode Voltage (V)  
60  
80  
100  
120  
Figure 21. Quiescent Current vs Supply Voltage  
Figure 22. Quiescent Current vs Common-Mode Voltage  
VCM  
VOUT  
0V  
0V  
0V  
0V  
Time (10 ms/div)  
Time (12.5ms/div)  
Figure 24. INA281x3 Step Response  
Figure 23. Common-Mode Voltage Fast Transient Pulse  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: INA281  
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
Typical Characteristics (continued)  
All specifications at TA = 25 °C, VS = 5 V, VSENSE = VIN+ – VIN– = 0.5 V / Gain, VCM = VIN– = 48 V, unless otherwise noted.  
Supply Voltage  
Output Voltage  
Supply Voltage  
Output Voltage  
0V  
0V  
Time (5 ms/div)  
Figure 25. Start-Up Response  
Time (50 ms/div)  
Figure 26. Supply Transient Response  
10  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
7 Detailed Description  
7.1 Overview  
The INA281 is a high- or low-side current-sense amplifier that offers a wide common-mode range, precision zero-  
drift topology, excellent common-mode rejection ratio (CMRR), high bandwidth, and fast slew rate. Different gain  
versions are available to optimize the output dynamic range based on the application. The INA281 is designed  
using a transconductance architecture with a current-feedback amplifier that enables low bias currents of 20 µA  
with a common-mode voltage of 110 V.  
7.2 Functional Block Diagram  
VS  
Load  
Supply  
ISENSE  
R1  
IN+  
+
Current  
RSENSE  
Bias  
Feedback  
R1  
OUT  
-
INœ  
Buffer  
Load  
RL  
GND  
7.3 Feature Description  
7.3.1 Amplifier Input Common-Mode Signal  
The INA281 supports large input common-mode voltages from –4 V to +110 V. Because of the internal topology,  
the common-mode range is not restricted by the power-supply voltage (VS). This allows for the INA281 to be  
used for both low- and high-side current-sensing applications.  
7.3.1.1 Input-Signal Bandwidth  
The INA281 –3-dB bandwidth is gain-dependent, with several gain options of 20 V/V, 50 V/V, 100 V/V, 200 V/V,  
and 500 V/V. The unique multistage design enables the amplifier to achieve high bandwidth at all gains. This  
high bandwidth provides the throughput and fast response that is required for the rapid detection and processing  
of overcurrent events.  
The bandwidth of the device also depends on the applied VSENSE voltage. Figure 27 shows the bandwidth  
performance profile of the device over frequency as output voltage increases for each gain variation. As shown in  
Figure 27, the device exhibits the highest bandwidth with higher VSENSE voltages, and the bandwidth is higher  
with lower device gain options. Individual requirements determine the acceptable limits of error for high-  
frequency, current-sensing applications. Testing and evaluation in the end application or circuit is required to  
determine the acceptance criteria and validate whether or not the performance levels meet the system  
specifications.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: INA281  
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
Feature Description (continued)  
1400  
1200  
1000  
800  
600  
INA281A1  
INA281A2  
INA281A3  
INA281A4  
INA281A5  
400  
200  
0
1
2
3
Output Voltage (V)  
Figure 27. Bandwidth vs Output Voltage  
7.3.1.2 Low Input Bias Current  
The INA281 inputs draw a 20-µA (typical) bias current at a common-mode voltage as high as 110 V, which  
enables precision current sensing on applications that require lower current leakage.  
7.3.1.3 Low VSENSE Operation  
The INA281 operates with high performance across the entire valid VSENSE range. The zero-drift input  
architecture of the INA281 provides the low offset voltage and low offset drift needed to measure low VSENSE  
levels accurately across the wide operating temperature of –40 °C to +125 °C. Low VSENSE operation is  
particularly beneficial when using low ohmic shunts for low current measurements, as power losses across the  
shunt are significantly reduced.  
7.3.1.4 Wide Fixed Gain Output  
The INA281 gain error is < 0.5% at room temperature, with a maximum drift of 20 ppm/°C over the full  
temperature range of –40 °C to +125 °C. The INA281 is available in multiple gain options of 20 V/V, 50 V/V, 100  
V/V, 200 V/V, and 500 V/V, which the system designer should select based on their desired signal-to-noise ratio  
and other system requirements.  
The INA281 closed-loop gain is set by a precision, low-drift internal resistor network. The ratio of these resistors  
are excellently matched, while the absolute values may vary significantly. TI does not recommend adding  
additional resistance around the INA281 to change the effective gain because of this variation, however. The  
typical values of the gain resistors are described in Table 1.  
Table 1. Fixed Gain Resistor  
GAIN  
R1  
RL  
20 (V/V)  
50 (V/V)  
100 (V/V)  
200 (V/V)  
500 (V/V)  
25 kΩ  
10 kΩ  
10 kΩ  
5 kΩ  
500 kΩ  
500 kΩ  
1000 kΩ  
1000 kΩ  
1000 kΩ  
2 kΩ  
7.3.1.5 Wide Supply Range  
The INA281 operates with a wide supply range from 2.7 V to 20 V. The output stage supports a wide output  
range, while the INA281x1 (gain of 20 V/V) at a supply voltage of 20 V allows a maximum acceptable differential  
input of 1 V. When paired with the small input offset voltage of the INA281, systems with very wide dynamic  
ranges of current measurement can be supported.  
12  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
 
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
7.4 Device Functional Modes  
7.4.1 Unidirectional Operation  
The INA281 measures the differential voltage developed by current flowing through a resistor that is commonly  
referred to as a current-sensing resistor or a current-shunt resistor. The INA281 operates in unidirectional mode  
only, meaning it only senses current sourced from a power supply to a system load as shown in Figure 28.  
5 V  
48-V  
Supply  
ISENSE  
R1  
IN+  
+
Current  
Feedback  
RSENSE  
Bias  
R1  
OUT  
-
INœ  
Buffer  
RL  
Load  
GND  
Figure 28. Unidirectional Application  
The linear range of the output stage is limited to how close the output voltage can approach ground under zero-  
input conditions. The zero current output voltage of the INA281 is very small, with a maximum of GND + 20 mV.  
Make sure to apply a differential input voltage of (20 mV / Gain) or greater to keep the INA281 output in the  
linear region of operation.  
7.4.2 High Signal Throughput  
With a bandwidth of 1.3 MHz at a gain of 20 V/V and a slew rate of 2.5 V/µs, the INA281 is specifically designed  
for detecting and protecting applications from fast inrush currents. As shown in Table 2, the INA281 responds in  
less than 2 µs for a system measuring a 75-A threshold on a 2-mΩ shunt.  
Table 2. Response Time  
INA281  
PARAMETER  
Gain  
EQUATION  
AT VS = 5 V  
20 V/V  
100 A  
75 A  
G
IMAX  
Maximum current  
IThreshold  
RSENSE  
VOUT_MAX  
VOUT_THR  
SR  
Threshold current  
Current sense resistor value  
Output voltage at maximum current  
Output voltage at threshold current  
Slew rate  
2 mΩ  
VOUT_MAX = IMAX × RSENSE × G  
VOUT_THR = ITHR × RSENSE × G  
4 V  
3 V  
2.5 V/µs  
< 2 µs  
Output response time  
Tresponse= VOUT_THR / SR  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: INA281  
 
 
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The INA281 amplifies the voltage developed across a current-sensing resistor as current flows through the  
resistor to the load. The wide input common-mode voltage range and high common-mode rejection of the  
INA281 make it usable over a wide range of voltage rails while still maintaining an accurate current  
measurement.  
8.1.1 RSENSE and Device Gain Selection  
The accuracy of any current-sense amplifier is maximized by choosing the current-sense resistor to be as large  
as possible. A large sense resistor maximizes the differential input signal for a given amount of current flow and  
reduces the error contribution of the offset voltage. However, there are practical limits as to how large the  
current-sense resistor can be in a given application because of the resistor size and maximum allowable power  
dissipation. Equation 1 gives the maximum value for the current-sense resistor for a given power dissipation  
budget:  
PDMAX  
RSENSE  
<
2
IMAX  
where:  
PDMAX is the maximum allowable power dissipation in RSENSE  
.
IMAX is the maximum current that will flow through RSENSE  
.
(1)  
An additional limitation on the size of the current-sense resistor and device gain is due to the power-supply  
voltage, VS, and device swing-to-rail limitations. To make sure that the current-sense signal is properly passed to  
the output, both positive and negative output swing limitations must be examined. Equation 2 provides the  
maximum values of RSENSE and GAIN to keep the device from exceeding the positive swing limitation.  
IMAX ª RSENSE ª GAIN < VSP  
where:  
IMAX is the maximum current that will flow through RSENSE  
.
GAIN is the gain of the current-sense amplifier.  
VSP is the positive output swing as specified in the data sheet.  
(2)  
To avoid positive output swing limitations when selecting the value of RSENSE, there is always a trade-off between  
the value of the sense resistor and the gain of the device under consideration. If the sense resistor selected for  
the maximum power dissipation is too large, then it is possible to select a lower-gain device to avoid positive  
swing limitations.  
The negative swing limitation places a limit on how small the sense resistor value can be for a given application.  
Equation 3 provides the limit on the minimum value of the sense resistor.  
IMIN ª RSENSE ª GAIN > VSN  
where:  
IMIN is the minimum current that will flow through RSENSE  
GAIN is the gain of the current-sense amplifier.  
VSN is the negative output swing of the device.  
.
(3)  
Table 3 shows an example of the different results obtained from using five different gain versions of the INA281.  
From the table data, the highest gain device allows a smaller current-shunt resistor and decreased power  
dissipation in the element.  
14  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
 
 
 
 
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
Application Information (continued)  
Table 3. RSENSE Selection and Power Dissipation(1)  
RESULTS AT VS = 5 V  
PARAMETER  
EQUATION  
A1, B1  
A2, B2  
A3, B3  
A4, B4  
A5, B5  
DEVICES  
DEVICES  
50 V/V  
100 mV  
10 mΩ  
1 W  
DEVICES  
DEVICES  
200 V/V  
25 mV  
DEVICES  
G
Gain  
20 V/V  
250 mV  
25 mΩ  
2.5 W  
100 V/V  
50 mV  
5 mΩ  
500 V/V  
10 mV  
1 mΩ  
VDIFF  
RSENSE  
PSENSE  
Ideal differential input voltage  
VDIFF = VOUT / G  
Current sense resistor value  
RSENSE = VDIFF / IMAX  
2.5 mΩ  
0.25 W  
Current-sense resistor power dissipation  
RSENSE × IMAX  
2
0.5W  
0.1 W  
(1) Design example with 10-A full-scale current with maximum output voltage set to 5 V.  
8.1.2 Input Filtering  
NOTE  
Input filters are not required for accurate measurements using the INA281, and use of  
filters in this location is not recommended. If filter components are used on the input of the  
amplifier, follow the guidelines in this section to minimize the effects on performance.  
Based strictly on user design requirements, external filtering of the current signal may be desired. The initial  
location that can be considered for the filter is at the output of the current-sense amplifier. Although placing the  
filter at the output satisfies the filtering requirements, this location changes the low output impedance measured  
by any circuitry connected to the output voltage pin. The other location for filter placement is at the current-sense  
amplifier input pins. This location also satisfies the filtering requirement, but the components must be carefully  
selected to minimally impact device performance. Figure 29 shows a filter placed at the input pins.  
VS  
VCM  
1
f3dB  
=
4ŒRINCIN  
ISENSE  
RIN  
R1  
R1  
IN+  
+
CIN  
Current  
RSENSE  
Bias  
Feedback  
RIN  
OUT  
-
INœ  
Buffer  
Load  
RL  
GND  
Figure 29. Filter at Input Pins  
External series resistance provides a source of additional measurement error, so keep the value of these series  
resistors to 10 Ω or less to reduce loss of accuracy. The internal bias network shown in Figure 29 creates a  
mismatch in input bias currents (see Figure 7, Figure 8, and Figure 9) when a differential voltage is applied  
between the input pins. If additional external series filter resistors are added to the circuit, a mismatch is created  
in the voltage drop across the filter resistors. This voltage is a differential error voltage in the shunt resistor  
voltage. In addition to the absolute resistor value, mismatch resulting from resistor tolerance can significantly  
impact the error because this value is calculated based on the actual measured resistance.  
The measurement error expected from the additional external filter resistors can be calculated using Equation 4,  
and the gain error factor is calculated using Equation 5.  
Gain Error (%) = 100 - (100 ´ Gain Error Factor)  
(4)  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: INA281  
 
 
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
The gain error factor, shown in Equation 4, can be calculated to determine the gain error introduced by the  
additional external series resistance. Equation 4 calculates the deviation of the shunt voltage, resulting from the  
attenuation and imbalance created by the added external filter resistance. Table 4 provides the gain error factor  
and gain error for several resistor values.  
RB × R1  
Gain Error Factor =  
(RB × R1) + (RB × RIN) + (2 × RIN × R1)  
Where:  
RIN is the external filter resistance value.  
R1 is the INA281 input resistance value specified in Table 1.  
RB in the internal bias resistance, which is 6600 Ω ± 20%.  
(5)  
Table 4. Example Gain Error Factor and Gain Error for 10-Ω External Filter Input Resistors  
DEVICE (GAIN)  
A1 devices (20)  
A2 devices (50)  
A3 devices (100)  
A4 devices (200)  
A5 devices (500)  
GAIN ERROR FACTOR  
0.99658  
GAIN ERROR (%)  
–0.34185  
0.99598  
–0.40141  
0.99598  
–0.40141  
0.99499  
–0.50051  
0.99203  
–0.79663  
8.2 Typical Application  
The INA281 is a unidirectional, current-sense amplifier capable of measuring currents through a resistive shunt  
with shunt common-mode voltages from –4 V to +110 V.  
24 V  
Solenoid  
RSENSE  
ISENSE  
MCU  
+
œ
ADC  
INA  
5 V  
GND  
Figure 30. Current Sensing in a Solenoid Application  
8.2.1 Design Requirements  
In this example application, the common-mode voltage ranges from 0 V to 24 V. The maximum sense current is  
1.5 A, and a 5-V supply is available for the INA281. Following the design guidelines from RSENSE and Device  
Gain Selection, a RSENSE of 50 mΩ and a gain of 50 V/V are selected to provide good output dynamic range.  
Table 5 lists the design setup for this application.  
Table 5. Design Parameters  
DESIGN PARAMETERS  
Power supply voltage  
Common mode voltage range  
Maximum sense current  
RSENSE resistor  
EXAMPLE VALUE  
5 V  
0 V to 24 V  
1.5 A  
50 mΩ  
Gain option  
50 V/V  
16  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
 
 
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
8.2.2 Detailed Design Procedure  
The INA281 is designed to measure current in a typical solenoid application. The INA281 measures current  
across the 50-mΩ shunt that is placed at the output of the half-bridge. The INA281 measures the differential  
voltage across the shunt resistor, and the signal is internally amplified with a gain of 50 V/V. The output of the  
INA281 is connected to the analog-to-digital converter (ADC) of an MCU to digitize the current measurements.  
Solenoid loads are highly inductive and are often prone to failure. Solenoids are often used for position control,  
precise fluid control, and fluid regulation. Measuring real-time current on the solenoid continuously can indicate  
premature failure of the solenoid which can lead to a faulty control loop in the system. Measuring high-side  
current also indicates if there are any ground faults on the solenoid or the FETs that can be damaged in an  
application. The INA281, with high bandwidth and slew rate, can be used to detect fast overcurrent conditions to  
prevent the solenoid damage from short-to-ground faults.  
8.2.2.1 Overload Recovery With Negative VSENSE  
The INA281 is a unidirectional current-sense amplifier that is meant to operate with a positive differential input  
voltage (VSENSE). If negative VSENSE is applied, the device is placed in an overload condition and requires time to  
recover once VSENSE returns positive. The required overload recovery time increases with more negative VSENSE  
.
8.2.3 Application Curve  
Figure 31 shows the output response of a solenoid.  
6
VCM  
VOUT  
4
2
40  
30  
20  
10  
0
0
Time (50 ms/div)  
Figure 31. Solenoid Control Current Response  
9 Power Supply Recommendations  
The INA281 power supply can be 5 V, whereas the input common-mode voltage can vary between –4 V to 110  
V. The output voltage range of the OUT pin, however, is limited by the voltage on the power-supply pin.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: INA281  
 
INA281  
SBOSA29 JUNE 2020  
www.ti.com  
10 Layout  
10.1 Layout Guidelines  
Attention to good layout practices is always recommended.  
Connect the input pins to the sensing resistor using a Kelvin or 4-wire connection. This connection technique  
makes sure that only the current-sensing resistor impedance is detected between the input pins. Poor routing  
of the current-sensing resistor commonly results in additional resistance present between the input pins.  
Given the very low ohmic value of the current resistor, any additional high-current carrying impedance can  
cause significant measurement errors.  
Place the power-supply bypass capacitor as close as possible to the device power supply and ground pins.  
The recommended value of this bypass capacitor is 0.1 µF. Additional decoupling capacitance can be added  
to compensate for noisy or high-impedance power supplies.  
10.2 Layout Example  
Supply  
Voltage  
OUT  
GND  
IN +  
Vs  
Bypass  
Cap  
Via to GND Plane  
Ground Plane  
IN -  
Figure 32. INA281A Recommended Layout  
OUT  
GND  
Vs  
IN -  
Via to GND Plane  
Supply  
Voltage  
IN +  
Bypass  
Cap  
Ground Plane  
Figure 33. INA281B Recommended Layout  
18  
Submit Documentation Feedback  
Copyright © 2020, Texas Instruments Incorporated  
Product Folder Links: INA281  
INA281  
www.ti.com  
SBOSA29 JUNE 2020  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following: Texas Instruments, INA281EVM user's guide  
11.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.3 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
11.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: INA281  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA281A1IDBVR  
INA281A1IDBVT  
INA281A2IDBVR  
INA281A2IDBVT  
INA281A3IDBVR  
INA281A3IDBVT  
INA281A4IDBVR  
INA281A4IDBVT  
INA281A5IDBVR  
INA281A5IDBVT  
INA281B1IDBVR  
INA281B1IDBVT  
INA281B2IDBVR  
INA281B2IDBVT  
INA281B3IDBVR  
INA281B3IDBVT  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2B3C  
2B3C  
2B4C  
2B4C  
2B5C  
2B5C  
2B6C  
2B6C  
2B7C  
2B7C  
2B8C  
2B8C  
2B9C  
2B9C  
2BAC  
2BAC  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
3000  
250  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Aug-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
3000  
250  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA281B4IDBVR  
INA281B4IDBVT  
INA281B5IDBVR  
INA281B5IDBVT  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
5
5
5
5
Green (RoHS  
& no Sb/Br)  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2BBC  
2BBC  
2BCC  
2BCC  
ACTIVE  
ACTIVE  
ACTIVE  
DBV  
Green (RoHS  
& no Sb/Br)  
NIPDAU  
NIPDAU  
NIPDAU  
DBV  
3000  
250  
Green (RoHS  
& no Sb/Br)  
DBV  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
29-Aug-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA281A1IDBVR  
INA281A1IDBVT  
INA281A2IDBVR  
INA281A2IDBVT  
INA281A3IDBVT  
INA281A4IDBVR  
INA281A4IDBVT  
INA281A5IDBVR  
INA281A5IDBVT  
INA281B1IDBVR  
INA281B1IDBVT  
INA281B2IDBVR  
INA281B2IDBVT  
INA281B3IDBVR  
INA281B3IDBVT  
INA281B4IDBVR  
INA281B5IDBVR  
INA281B5IDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
250  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.23  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
3.17  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
1.37  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3000  
250  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA281A1IDBVR  
INA281A1IDBVT  
INA281A2IDBVR  
INA281A2IDBVT  
INA281A3IDBVT  
INA281A4IDBVR  
INA281A4IDBVT  
INA281A5IDBVR  
INA281A5IDBVT  
INA281B1IDBVR  
INA281B1IDBVT  
INA281B2IDBVR  
INA281B2IDBVT  
INA281B3IDBVR  
INA281B3IDBVT  
INA281B4IDBVR  
INA281B5IDBVR  
INA281B5IDBVT  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
250  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
183.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
20.0  
3000  
250  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
250  
3000  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
2X 0.95  
1.9  
3.05  
2.75  
1.9  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/E 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/E 09/2019  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/E 09/2019  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

INA281B2QDBVRQ1

INA281-Q1 AEC-Q100, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B3IDBVR

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B3IDBVT

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B3QDBVRQ1

INA281-Q1 AEC-Q100, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B4IDBVR

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B4IDBVT

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B4QDBVRQ1

INA281-Q1 AEC-Q100, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B5IDBVR

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B5IDBVT

INA281, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA281B5QDBVRQ1

INA281-Q1 AEC-Q100, –4-V to 110-V, 1.3-MHz Current-Sense Amplifier
TI

INA282

High-Accuracy Wide Common-Mode Range Bi-Directional CURRENT SHUNT MONITOR Zero-Drift Series
TI

INA282-Q1

High-Accuracy, Wide Common-Mode Range, Bi-Directional
TI