INA351ABSIDSGR [TI]

Tiny (1.5-mm × 2-mm) low-power (110 µA) instrumentation amplifier with integrated reference buffer | DSG | 8 | -40 to 125;
INA351ABSIDSGR
型号: INA351ABSIDSGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Tiny (1.5-mm × 2-mm) low-power (110 µA) instrumentation amplifier with integrated reference buffer | DSG | 8 | -40 to 125

文件: 总43页 (文件大小:3386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INA351  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
INA351 具有集成基准缓冲器、成本和尺寸经优化的低功1.8V 5.5V 可选增  
益仪表放大器  
1 特性  
3 说明  
• 专为尺寸、成本和功耗敏感型应用而设计  
• 具有集成基准缓冲器的可选增益选项  
G = 10 G = 20 (INA351ABS)  
G = 30 G = 50 (INA351CDS)  
• 节省空间的超小型封装选项  
10 X2QFN (RUG) 3mm2  
8 WSON (DSG) 4mm2  
8 SOT23-THN (DDF) 4.64mm2  
• 针10 14 位系统的优化性能  
INA351 是一款具有集成基准缓冲器的可选增益仪表放  
大器在采用小型封装的 INA351ABS 和  
INA351CDS 型号中提供四种增益选项。INA351ABS  
具有增益选项 10 20INA351CDS 具有增益选项  
30 50。可以通过切换增益选择 (GS) 引脚来选择这  
些增益选项。INA351 是桥式感应以及差分至单端转换  
应用的理想选择。  
INA351 采用精密匹配的集成电阻器构建而成无需使  
用精密或高度匹配的外部电阻器从而节省了 BOM 成  
本、贴片机器处理成本和布板空间。INA351 可直接连  
接到低速 10 位至 14 位模数转换器 (ADC)非常适合  
替换使用商用放大器和分立式电阻器构建的仪表放大器  
的分立式方案。  
CMRR所有增益均95dB典型值)  
– 失调电压所有增益均0.2mV典型值)  
– 增益误差典型值):  
G = 10G = 50 0.015%  
G = 20G = 30 0.020%  
INA351 的设计采用三放大器架构能够提供更好的性  
能。该器件在所有增益选项下可实现 86dB 的最小  
CMRR 0.1% 精度的最大增益误差以及 1.3mV 的  
最大失调电压而仅消耗 135µA 的最大静态电流。  
INA351 有一个集成关断选项可在空闲时关闭放大  
从而在电池供电应用中进一步节省电能。  
• 带宽G = 10 100kHz典型值)  
• 驱500pF过冲小20%典型值)  
• 优化的静态电流110µA典型值)  
• 适用于功耗敏感型应用的关断选项  
• 电源电压范围1.8V (±0.9V) 5.5V (±2.75V)  
• 额定温度范围40°C 125°C  
封装信息  
封装(1)  
2 应用  
封装尺寸标称值)  
器件型号  
• 桥接网络传感  
• 差分至单端转换  
称重计  
DSGWSON82.00mm × 2.00mm  
DDFSOT-2381.60mm × 2.90mm  
(2)  
INA351ABS  
模拟输入模块  
流量变送器  
RUGX2QFN,  
10)  
1.50mm × 2.00mm  
可穿戴健身和活动监测仪  
血糖监控  
• 压力和温度传感  
DSGWSON82.00mm × 2.00mm  
DDFSOT-2381.60mm × 2.90mm  
(2)  
INA351CDS  
V+  
7
RUGX2QFN,  
1.50mm × 2.00mm  
10)  
IN  
60 k  
2
1
+
60 k  
(1) 如需了解所有可用封装请参阅数据表末尾的封装选项附录。  
(2) 此封装为仅预发布状态。  
+
90 k / 145 k  
90 k / 145 k  
RG  
GS  
6
5
OUT  
REF  
+
+
60 k  
60 k  
+IN  
3
8
4
_____  
SHDN  
V
注意INA351ABS 90kΩINA351CDS 145kΩ  
简化版内部原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SBOSAD5  
 
 
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
Table of Contents  
8.4 Device Functional Modes..........................................26  
9 Application and Implementation..................................27  
9.1 Application Information............................................. 27  
9.2 Typical Applications.................................................. 29  
9.3 Power Supply Recommendations.............................31  
9.4 Layout....................................................................... 32  
10 Device and Documentation Support..........................34  
10.1 Device Support....................................................... 34  
10.2 Documentation Support.......................................... 34  
10.3 接收文档更新通知................................................... 34  
10.4 支持资源..................................................................34  
10.5 Trademarks.............................................................34  
10.6 静电放电警告.......................................................... 34  
10.7 术语表..................................................................... 34  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................3  
6 Pin Configuration and Functions...................................3  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings .............................................................. 5  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................6  
7.6 Typical Characteristics................................................8  
8 Detailed Description......................................................21  
8.1 Overview...................................................................21  
8.2 Functional Block Diagram.........................................21  
8.3 Feature Description...................................................22  
Information.................................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision B (February 2023) to Revision C (May 2023)  
Page  
• 删除了封装信息 INA351 RUG RTM 的预发布标签........................................................................................ 1  
Deleted the preview tag from Device Comparison Table for INA351 RUG RTM................................................3  
Deleted preview footnote from Thermal Information table for INA351 X2QFN (RUG) RTM...............................5  
Changes from Revision A (December 2022) to Revision B (February 2023)  
Page  
• 删除了封装信息 INA351CDSIDSGR RTM 的预发布标签.............................................................................. 1  
Deleted the preview tag from Device Comparison Table for INA351CDSIDSGR RTM......................................3  
Deleted preview footnote from Electrical Characteristics and Thermal Information table for  
INA351CDSIDSGR RTM....................................................................................................................................5  
Changes from Revision * (December 2022) to Revision A (December 2022)  
Page  
Added footnote for Reference gain error specification in Electrical Characteristics table.................................. 5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
2
Submit Document Feedback  
Product Folder Links: INA351  
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
5 Device Comparison Table  
PACKAGE LEADS  
NO. OF  
CHANNELS  
DEVICE  
SOT-23-8  
DDF(1)  
WSON  
DSG  
X2QFN  
RUG  
INA351ABS  
INA351CDS  
1
1
8
8
8
8
8
8
(1) Package is preview only.  
6 Pin Configuration and Functions  
GS  
IN–  
IN+  
V–  
1
2
3
4
8
7
6
5
SHDN  
GS  
IN–  
IN+  
V–  
1
2
3
4
8
7
6
5
SHDN  
V+  
V+  
Thermal  
Pad  
OUT  
REF  
OUT  
REF  
Not to scale  
Not to scale  
6-1. DDF Package,  
8-Pin SOT-23  
Note: Connect Thermal Pad to (V)  
6-2. DSG Package,  
8-Pin WSON With Exposed Thermal Pad  
(Top View)  
(Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
NO.  
DESCRIPTION  
NAME  
IN–  
IN+  
2
3
6
I
Negative (inverting) input  
Positive (non-inverting) input  
Output  
O
OUT  
Reference input. This pin internally connects to a reference buffer amplifier in G = 1, unity  
gain follower configuration.  
REF  
GS  
5
Gain select logic low (G = 10 for INA351ABS and G = 30 for INA351CDS)  
Gain select logic high (G = 20 for INA351ABS and G = 50 for INA351CDS)  
Gain select no connect (G = 20 for INA351ABS and G = 50 for INA351CDS)  
1
I
Shutdown logic high (device enabled)  
Shutdown logic low (device disabled)  
Shutdown no connect (device enabled)  
SHDN  
8
I
4
7
Negative supply  
Positive supply  
V–  
V+  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
GS  
IN–  
IN+  
V–  
1
2
3
4
9
8
7
6
SHDN  
V+  
OUT  
REF  
Not to scale  
6-3. RUG Package,  
10-Pin X2QFN  
(Top View)  
6-2. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
IN–  
IN+  
NO.  
2
I
Negative (inverting) input  
Positive (noninverting) input  
Output  
3
O
OUT  
7
Reference input. This pin internally connects to a reference buffer amplifier in G = 1, unity  
gain follower configuration.  
REF  
GS  
6
1
Gain select logic low (G = 10 for INA351ABS and G = 30 for INA351CDS)  
Gain select logic high (G = 20 for INA351ABS and G = 50 for INA351CDS)  
Gain select no connect (G = 20 for INA351ABS and G = 50 for INA351CDS)  
I
Shutdown logic high (device enabled)  
Shutdown logic low (device disabled)  
Shutdown no connect (device enabled)  
SHDN  
9
I
4
8
Negative supply  
Positive supply  
No connect  
V–  
V+  
NC  
5, 10  
(1) I = input, O = output  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0
MAX  
6
UNIT  
V
Supply voltage, VS = (V+) (V)  
Common mode voltage(2)  
(V+) + 0.5  
VS + 0.2  
10  
V
(V) 0.5  
Signal input pins  
Differential voltage(3)  
Current(2)  
V
mA  
10  
Output short-circuit(4)  
Continuous  
Operating Temperature, TA  
Junction Temperature, TJ  
Storage Temperature, Tstg  
150  
150  
150  
55  
65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) Input pins are diode-clamped to the power-supply rails. Input signals that may swing more than 0.5 V beyond the supply rails must be  
current limited to 10 mA or less  
(3) Differential input voltages greater than 0.5 V applied continuously can result in a shift to the input offset voltage above the maximum  
specification of this parameter. The magnitude of this effect increases as the ambient operating temperature rises.  
(4) Short-circuit to VS / 2.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.8  
MAX  
5.5  
UNIT  
Single-supply  
Dual-supply  
V
Supply voltage VS = (V+) (V)  
±0.9  
(V)  
40  
±2.75  
(V+)  
125  
Input Voltage Range  
Specified temperature  
V
Specified temperature  
°C  
7.4 Thermal Information  
INA351ABS, INA351CDS  
THERMAL METRIC(1)  
DDF (SOT-23-THN)(2) DSG (WSON) RUG (X2QFN)  
UNIT  
8 PINS  
172.1  
90.1  
88.2  
7.3  
8 PINS  
80.3  
100.4  
46.4  
5.3  
10 PINS  
174.7  
63.2  
99.6  
1.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
88.0  
n/a  
46.4  
21.9  
99.2  
n/a  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The package is for preview only.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.5 Electrical Characteristics  
For VS = (V+) (V) = 1.8 V to 5.5 V (±0.9 V to ±2.75 V) at TA = 25°C, VREF = VS/2, G = 10, RL = 10 kΩconnected to VS /  
2, VCM = [(VIN+) + (VIN)] / 2 = VS / 2, VIN = (VIN+) (VIN) = 0 V and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INPUT  
Offset Voltage, RTI(1)  
VS = 5.5 V, G = 10, 20, 30, 50  
TA = 25°C  
±0.2  
±1.3  
±1.4  
mV  
mV  
Offset Voltage over T,  
RTI(1)  
VS = 5.5 V, G = 10, 20, 30, 50  
VS = 5.5 V, G = 10, 20, 30, 50  
G = 10, 20, 30, 50  
VOSI  
TA = 40°C to 125°C  
TA = 40°C to 125°C  
TA = 25°C  
Offset temp drift, RTI(2)  
±0.65  
20  
µV/°C  
µV/V  
Power-supply rejection  
ratio  
PSRR  
ZIN-DM  
ZIN-CM  
75  
Differential Impedance  
100 || 5  
100 || 9  
GΩ|| pF  
GΩ|| pF  
Common Mode  
Impedance  
Input Stage Common  
Mode Range(3)  
VCM  
(V+)  
V
(V)  
G = 10, 20, 30, 50, VCM = (V) +  
0.1 V to (V+) 1 V, High CMRR  
Region  
VS = 5.5 V, VREF = VS/2  
86  
95  
CMRR  
DC  
Common-mode rejection G = 10, 20, 30, 50, VCM = (V) +  
dB  
ratio, RTI  
VS = 3.3 V, VREF = VS/2  
VS = 5.5 V, VREF = VS/2  
94  
75  
0.1 V to (V+) 1 V, High CMRR  
Region  
G = 10, 20, 30, 50, VCM = (V) +  
0.1 V to (V+) 0.1 V  
62  
BIAS CURRENT  
IB  
Input bias current  
Input offset current  
VCM = VS / 2  
VCM = VS / 2  
±0.65  
±0.25  
pA  
pA  
IOS  
NOISE VOLTAGE  
G = 10, 20, 30, 50  
G = 10, 20, 30, 50  
f = 1 kHz  
36  
35  
Input referred voltage  
eNI  
ENI  
nV/Hz  
noise density(5)  
f = 10 kHz  
Input referred voltage  
noise(5)  
G = 10, fB = 0.1 Hz to 10 Hz  
f = 1 kHz  
3.2  
22  
µVPP  
in  
Input current noise  
f = 1 kHz  
fA/Hz  
GAIN  
G = 10, VREF = VS/2  
G = 20, VREF = VS/2  
G = 30, VREF = VS/2  
G = 50, VREF = VS/2  
±0.015  
±0.020  
±0.020  
±0.015  
±0.10  
±0.10  
±0.10  
±0.10  
Gain error(4)  
Gain error(4)  
VO = (V) + 0.1 V to  
(V+) 0.1V  
GE  
%
OUTPUT  
VOH  
Positive rail headroom  
Negative rail headroom  
15  
15  
30  
30  
mV  
mV  
pF  
RL = 10 kto VS/2  
VOL  
RL = 10 kto VS/2  
CL Drive Load capacitance drive  
VO = 100 mV step, Overshoot < 20%  
500  
Closed-loop output  
impedance  
ZO  
f = 10 kHz  
VS = 5.5 V  
51  
ISC  
Short-circuit current  
±20  
mA  
FREQUENCY RESPONSE  
G = 10  
G = 20  
G = 30  
G = 50  
100  
50  
Bandwidth, 3 dB  
BW  
VIN = 10 mVpk-pk  
kHz  
%
40  
Bandwidth, 3 dB  
25  
Total harmonic distortion + VS = 5.5 V, VCM = 2.75 V, VO = 1 VRMS, G = 10, RL = 100 kΩ  
THD + N  
0.035  
noise  
ƒ= 1 kHz, 80-kHz measurement BW  
Electro-magnetic  
interference rejection ratio  
EMIRR  
SR  
f = 1 GHz, VIN_EMIRR = 100 mV  
96  
dB  
Slew rate  
VS = 5 V, VO = 2 V step, G = 10, 20, 30, 50  
0.20  
V/µs  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
6
Submit Document Feedback  
Product Folder Links: INA351  
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.5 Electrical Characteristics (continued)  
For VS = (V+) (V) = 1.8 V to 5.5 V (±0.9 V to ±2.75 V) at TA = 25°C, VREF = VS/2, G = 10, RL = 10 kΩconnected to VS /  
2, VCM = [(VIN+) + (VIN)] / 2 = VS / 2, VIN = (VIN+) (VIN) = 0 V and VOUT = VS / 2 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
14  
24  
20  
30  
30  
40  
45  
55  
8
MAX  
UNIT  
G = 10, To 0.1%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
G = 10, To 0.01%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
G = 20, To 0.1%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
G = 20, To 0.01%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
G = 30, To 0.1%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
G = 30, To 0.01%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
G = 50, To 0.1%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
G = 50, To 0.01%, VS = 5.5 V, VSTEP = 2 V, CL = 10 pF  
VIN = 1 V, G = 10  
Settling time  
tS  
µs  
Settling time  
Overload recovery  
µs  
REFERENCE BUFFER  
REF -  
VIN  
Linear input voltage range VS = 5.5 V  
V
V/V  
%
(V) + 0.1  
(V+) 0.1  
REF - G Reference gain to output  
1
REF -  
Reference gain error(4)  
GE  
VS = 5.5 V  
VS = 5.5 V  
VS = 5.5 V  
±0.015  
±0.10  
REF -  
Input impedance  
ZIN  
100 || 5  
±0.65  
GΩ|| pF  
Reference pin bias  
REF - IB  
current  
pA  
POWER SUPPLY  
Single-supply  
Dual-supply  
1.7  
5.5  
±2.75  
135  
VS  
Power-supply voltage  
Quiescent current  
V
±0.85  
VIN = 0 V  
110  
IQ  
µA  
147  
TA = 40°C to 125°C  
Quiescent current per  
amplifier  
IQSD  
VIL  
VIH  
tON  
0.85  
1.5  
µA  
V
All amplifiers disabled, SHDN = V–  
Logic low threshold  
voltage (Gain Select)  
(V) + 0.2  
G = 10 for INA351ABS, G = 30 for INA351CDS  
G = 20 for INA351ABS, G = 50 for INA351CDS  
V
Logic high threshold  
voltage (Gain Select)  
V
(V) + 1 V  
G = 10, VCM = VS / 2, VO = 0.9 × VS / 2,  
RL connected to V–  
Amplifier enable time (full  
shutdown) (6)  
100  
5
µs  
µs  
nA  
nA  
G = 10, VCM = VS / 2, VO = 0.1 × VS / 2,  
RL connected to V–  
tOFF  
Amplifier disable time (6)  
SHDN pin input bias  
current (per pin)  
10  
(V+) SHDN (V) + 1 V  
(V) SHDN (V) + 0.2 V  
SHDN pin input bias  
current (per pin)  
175  
(1) Total offset, referred-to-input (RTI): VOS = (VOSI) + (VOSO / G).  
(2) Offset drifts are uncorrelated. Input-referred offset drift is calculated using: ΔVOS(RTI) = [ΔVOSI 2 + (ΔVOSO / G)2]  
(3) Input common mode voltage range of the just the input stage of the instrumentation amplifier. The entire INA351 input range depends  
on the combination input common-mode voltage, differential voltage, gain, reference voltage and power supply voltage. Typical  
Characteristic curves will be added with more information.  
(4) Min and Max values are specified by characterization.  
(5) Total RTI voltage noise is equal to: eN(RTI) = [eNI 2 + (eNO / G)2]  
(6) Disable time (tOFF) and enable time (tON) are defined as the time interval between the 50% point of the signal applied to the SHDN pin  
and the point at which the output voltage reaches the 10% (disable) or 90% (enable) level.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
 
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
32  
28  
24  
20  
16  
12  
8
28  
24  
20  
16  
12  
8
4
4
0
0
H05_  
H06_  
Input Offset Voltage (µV)  
Input Offset Voltage Drift (µV/°C)  
G = 10, 20, 30, 50  
N = 36  
μ= 23 μV σ= 0.180 mV  
μ= 0.23  
σ= 0.36  
μV/°C  
G = 10, 20, 30, 50 N = 36  
μV/°C  
7-1. Typical Distribution of Input Referred Offset Voltage  
7-2. Typical Distribution of Input Referred Offset Drift  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
0
H13_  
H15_  
Input Bias Current (pA)  
Input Offset Current (pA)  
TA = 25°C  
N = 72  
μ= 0.33 pA σ= 0.43 pA  
μ= 0.40  
TA = 25°C  
N = 36  
σ= 0.47 pA  
pA  
7-3. Typical Distribution of Input Bias Current  
7-4. Typical Distribution of Input Offset Current  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
70  
60  
50  
40  
30  
20  
10  
0
0
H14_  
H16_  
Input Bias Current (pA)  
Input Offset Current (pA)  
TA = 85°C  
N = 72  
TA = 85°C  
N = 36  
μ= 3.3 pA  
σ= 0.53 pA  
μ= 0.05 pA σ= 0.30 pA  
7-5. Typical Distribution of Input Bias Current  
7-6. Typical Distribution of Input Offset Current  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
24  
21  
18  
15  
12  
9
28  
24  
20  
16  
12  
8
6
4
3
0
0
H17_  
H18_  
Input Common-Mode Rejection Ratio (uV/V)  
Input Common-Mode Rejection Ratio (uV/V)  
μ= -0.30  
σ= 7.10  
μV/V  
μ= -0.27  
σ= 7.20  
μV/V  
G = 10  
N = 36  
G = 20  
N = 36  
μV/V  
μV/V  
7-7. Typical Distribution of CMRR  
7-8. Typical Distribution of CMRR  
24  
21  
18  
15  
12  
9
21  
18  
15  
12  
9
6
6
3
3
0
0
H19_  
H20_  
Input Common-Mode Rejection Ratio (µV/V)  
Input Common-Mode Rejection Ratio (uV/V)  
μ= 1.23  
μV/V  
σ= 7.52  
μV/V  
σ= 7.62  
μV/V  
G = 30  
N = 36  
G = 50  
N = 36  
μ= 1.16 μV/V  
7-9. Typical Distribution of CMRR  
7-10. Typical Distribution of CMRR  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
0
0
H21_  
H22_  
Gain Error (%)  
N = 36  
Gain Error (%)  
N = 36  
G = 20  
μ= -0.02 %  
σ= 0.02 %  
G = 10  
μ= 0.002 %  
σ= 0.02 %  
7-12. Typical Distribution of Gain Error  
7-11. Typical Distribution of Gain Error  
32  
28  
24  
20  
16  
12  
8
40  
36  
32  
28  
24  
20  
16  
12  
8
4
4
0
0
H21_  
H22_  
Gain Error (%)  
Gain Error (%)  
G = 30  
N = 36  
G = 50  
N = 36  
μ= 0.0067 % σ= 0.011 %  
μ= 0.0035 % σ= 0.012 %  
7-13. Typical Distribution of Gain Error  
7-14. Typical Distribution of Gain Error  
1250  
1000  
750  
0.4  
0.3  
0.2  
0.1  
0
IB-  
IB+  
500  
250  
0
-250  
-500  
-750  
-1000  
-1250  
-0.1  
-0.2  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
T01_  
T05_  
G = 10, 20, 30, 50  
7-16. Input Bias Current vs Temperature  
7-15. Input Referred Offset Voltage vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
10  
Submit Document Feedback  
Product Folder Links: INA351  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
55  
45  
35  
25  
15  
5
110  
105  
100  
95  
Vs = 1.8 V  
Vs = 3.3 V  
Vs = 5.5 V  
-5  
90  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
T06_  
T07_  
7-17. Input Offset Current vs Temperature  
7-18. Quiescent Current vs Temperature  
1700  
1500  
1300  
1100  
900  
60  
40  
Vs = 1.8 V  
Vs = 3.3 V  
Vs = 5.5 V  
ISC (-), VS = 3.3 V  
ISC (-), VS = 5.5 V  
ISC (+), VS = 3.3 V  
ISC (+), VS = 5.5 V  
20  
0
700  
-20  
-40  
-60  
500  
300  
100  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
T13_  
T08_  
7-20. Short Circuit Current vs Temperature  
7-19. Shutdown Quiescent Current vs Temperature  
0.1  
130  
110  
90  
G=10  
G=20  
G=30  
G=50  
0.05  
0
70  
-0.05  
G=10  
G=20  
G=30  
G=50  
50  
-0.1  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
T12_  
T10_  
7-22. CMRR vs Temperature  
7-21. Gain Error vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
2000  
1500  
1000  
500  
2000  
1500  
1000  
500  
0
0
-500  
-1000  
-1500  
-2000  
-500  
-1000  
-1500  
-2000  
-2.75  
-2  
-1.25  
-0.5  
0.25  
1
Input Common-Mode Voltage (V)  
1.75  
2.5  
-1.65  
-1.15  
-0.65  
-0.15  
0.35  
Input Common-Mode Voltage (V)  
0.85  
1.35 1.65  
C01_  
C02_  
V+ = 2.75 V and V= 2.75 V  
V+ = 1.65 V and V= 1.65 V  
7-23. Input Referred Offset Voltage vs Input Common-Mode  
7-24. Input Referred Offset Voltage vs Input Common-Mode  
Voltage  
Voltage  
10  
5
2
1.75  
1.5  
1.25  
1
0.75  
0.5  
0.25  
0
0
-0.25  
-0.5  
-0.75  
-1  
-1.25  
-1.5  
-1.75  
-2  
-5  
-10  
IB-  
IB+  
-15  
-2.75  
-2  
-1.25  
-0.5  
0.25  
1
Input Common-Mode Voltage (V)  
1.75  
2.5  
-2.75  
-2  
-1.25  
-0.5  
0.25  
1
Input Common-Mode Voltage (V)  
1.75  
2.5  
C04_  
C05_  
V+ = 2.75 V and V= 2.75 V  
V+ = 2.75 V and V= 2.75 V  
7-25. Input Bias Current vs Input Common-Mode Voltage  
7-26. Input Offset Current vs Input Common-Mode Voltage  
170  
1200  
900  
600  
160  
150  
140  
130  
120  
110  
100  
300  
0
-300  
-600  
-900  
-1200  
-2.75  
-2  
-1.25  
Input Common-Mode Voltage (V)  
-0.5  
0.25  
1
1.75  
2.5  
1.75  
2.25  
2.75  
3.25  
Supply Voltage (V)  
3.75  
4.25  
4.75  
5.25  
C03_  
C06_  
G = 10  
V+ = 2.75 V and V= 2.75 V  
7-28. Input Referred Offset Voltage vs Supply Voltage  
7-27. Quiescent Current vs Input Common-Mode Voltage  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
12  
Submit Document Feedback  
Product Folder Links: INA351  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
3
2.5  
2
120  
110  
100  
90  
Vs = 1.8 V  
Vs = 5.5 V  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-3.5  
-4  
80  
1.6  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
2
2.4 2.8 3.2 3.6 4  
Supply Voltage (V)  
4.4 4.8 5.2 5.6  
C10_  
C07_  
7-30. Output Voltage vs Output Current (Sourcing)  
7-29. Quiescent Current vs Supply Voltage  
4
48  
G = 10  
G = 20  
3.5  
3
42  
G = 30  
G = 50  
36  
30  
2.5  
2
1.5  
1
24  
18  
12  
6
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
Vs = 1.8 V  
Vs = 5.5 V  
-2.5  
-3  
-6  
-12  
10  
0
5
10  
15  
Output Current (mA)  
20  
25  
30  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
C11_  
A01_  
7-31. Output Voltage vs Output Current (Sinking)  
7-32. Closed-Loop Gain vs Frequency  
150  
150  
G = 10  
G = 20  
G = 30  
G = 50  
G = 10  
135  
120  
105  
90  
135  
120  
105  
90  
G = 20  
G = 30  
G = 50  
75  
75  
60  
60  
45  
45  
30  
30  
15  
15  
0
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
A02_  
A04_  
7-33. CMRR (Referred to Input) vs Frequency  
7-34. PSRR+ (Referred to Input) vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
150  
135  
120  
105  
90  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
G = 10  
G = 20  
G = 30  
G = 50  
G = 10  
G = 20  
G = 30  
G = 50  
75  
60  
45  
30  
15  
0
10  
100  
1k 10k  
Frequency (Hz)  
100k  
1M  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
A05_  
A06_  
7-35. PSRR(Referred to Input) Vs Frequency  
7-36. Input Referred Voltage Noise Spectral Density  
3
2000  
G = 10  
1000  
2.4  
500  
1.8  
1.2  
0.6  
0
200  
100  
50  
-0.6  
-1.2  
-1.8  
-2.4  
-3  
20  
10  
5
2
1
100  
1k  
10k  
Frequency (Hz)  
100k  
Time (1s/div)  
A10_  
A12_  
7-37. 0.1 Hz to 10 Hz Voltage Noise in Time Domain  
7-38. Closed-Loop Output Impedance vs Frequency  
6
-38  
Vs = 5.5 V  
Vs = 3.3 V  
G = 10  
5.4  
-42  
-46  
-50  
-54  
-58  
-62  
-66  
-70  
-74  
G = 20  
G = 30  
G = 50  
4.8  
4.2  
3.6  
3
2.4  
1.8  
1.2  
0.6  
0
1
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
1M  
10  
100  
1k  
Frequency (Hz)  
10k  
A13_  
A15_  
7-39. Maximum Output Voltage vs Frequency  
VS = 5.5 V  
BW = 80 kHz  
VCM = 2.75 V  
VOUT = 0.5 VRMS  
RL = 10 kΩ  
7-40. THD + N Frequency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
14  
Submit Document Feedback  
Product Folder Links: INA351  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
-34  
-40  
-46  
-52  
-58  
-64  
-70  
-76  
-82  
110  
100  
90  
G = 10  
G = 20  
G = 30  
G = 50  
G = 10  
G = 20  
G = 30  
G = 50  
80  
70  
60  
50  
10  
100  
1k  
Frequency (Hz)  
10k  
1M  
10M  
100M  
Frequency (Hz)  
1G  
A16_  
A14_  
7-42. Electromagnetic Interference Rejection Ratio Referred  
VS = 5.5 V  
BW = 80 kHz  
VCM = 2.75 V  
to Noninverting Input (EMIRR+) vs Frequency  
VOUT = 1 VRMS  
RL = 100 kΩ  
7-41. THD + N Frequency  
20  
15  
10  
5
4
RISO = 0 W, Overshoot (+)  
RISO = 0 W, Overshoot (-)  
RISO = 50 W, Overshoot (+)  
RISO = 50 W, Overshoot (-)  
RISO = 0 W, Overshoot (+)  
RISO = 0 W, Overshoot (-)  
RISO = 50 W, Overshoot (+)  
RISO = 50 W, Overshoot (-)  
3
2
1
0
0
0
150  
300  
450 600  
Capacitive Load (pF)  
750  
900  
1050  
0
150  
300  
450 600  
Capacitive Load (pF)  
750  
900  
1050  
TR01  
TR02  
VS = 5.5 V  
G = 10  
VOUT = 100 mVPP  
VS = 5.5 V  
G = 20  
VOUT = 100 mVPP  
7-43. Small-Signal Overshoot vs Capacitive Load  
7-44. Small-Signal Overshoot vs Capacitive Load  
2
0.8  
RISO = 0 W, Overshoot (+)  
RISO = 0 W, Overshoot (-)  
RISO = 50 W, Overshoot (+)  
RISO = 0 W, Overshoot (+)  
RISO = 0 W, Overshoot (-)  
RISO = 50 W, Overshoot (+)  
RISO = 50 W, Overshoot (-)  
RISO = 50 W, Overshoot (-)  
1.5  
1
0.7  
0.6  
0.5  
0.4  
0.5  
0
0
150  
300  
450 600  
Capacitive Load (pF)  
750  
900  
1050  
0
150  
300  
450 600  
Capacitive Load (pF)  
750  
900  
1050  
TR03  
TR04  
VS = 5.5 V  
G = 30  
VOUT = 100 mVPP  
VS = 5.5 V  
G = 50  
VOUT = 100 mVPP  
7-45. Small-Signal Overshoot vs Capacitive Load  
7-46. Small-Signal Overshoot vs Capacitive Load  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
1.5  
VIN  
VOUT  
1
0.5  
0
-0.5  
-1  
-1.5  
Time (200 µs/div)  
Time (5µs/div)  
TR05  
TR14  
V= 2.75  
V= 2.75  
V+ = 2.75 V  
G = 10  
VOUT = 2 VPP  
V+ = 2.75 V  
G = 10  
VOUT = 2 VPP  
V
V
7-47. Large Signal Step Response  
7-48. Large Signal Settling Time (Falling Edge)  
1.5  
VIN  
VOUT  
1
0.5  
0
-0.5  
-1  
-1.5  
0
200  
400 600  
Time (200 µs/div)  
800  
1000  
Time (5µs/div)  
TR06  
TR13  
V= 2.75  
V= 2.75  
V+ = 2.75 V  
G = 50  
VOUT = 2 VPP  
V+ = 2.75 V  
G = 10  
VOUT = 2 VPP  
V
V
7-50. Large Signal Step Response  
7-49. Large Signal Settling Time (Rising Edge)  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
0.075  
0.075  
VIN  
VOUT  
VIN  
VOUT  
0.05  
0.05  
0.025  
0
0.025  
0
-0.025  
-0.05  
-0.075  
-0.025  
-0.05  
-0.075  
Time (200 µs/div)  
Time (200 µs/div)  
TR07  
TR10  
V= 2.75  
V= 2.75  
V+ = 2.75 V  
G = 10  
VOUT = 0.1 VPP  
V+ = 2.75 V  
G = 50  
VOUT = 0.1 VPP  
V
V
7-51. Small-Signal Step Response  
7-52. Small-Signal Step Response  
4.5  
3
4.5  
3
1.5  
0
1.5  
0
-1.5  
-3  
-1.5  
-3  
VIN  
VOUT  
VIN  
VOUT  
Time (10 µs/div)  
Time (10 µs/div)  
TR11  
TR11  
V= 2.75  
V= 2.75  
V+ = 2.75 V  
G = 10  
VIN = 1 VPP  
V+ = 2.75 V  
G = 10  
VIN = 1 VPP  
V
V
7-53. Over-Load Recovery (Rising Edge)  
7-54. Over-Load Recovery (Falling Edge)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
3
1.5  
0
3
2.5  
2
VIN  
VOUT  
Shutdown Voltage  
Output Voltage  
1.5  
1
0.5  
0
-0.5  
-1  
-1.5  
-3  
-1.5  
-2  
-2.5  
-3  
Time (500 µs/div)  
Time (100 µs/div)  
TR12  
TR15  
V+ = +2.75 V  
7-56. Enable Response  
G = 10  
V= 2.75  
V= 2.75 V  
V+ = 2.75 V  
G = 10  
VIN = 0.6 VPP  
V
7-55. No Phase Reversal  
3
2.5  
2
3.6  
Shutdown Voltage  
Output Voltage  
VS = 3.3 V  
3.2  
2.8  
2.4  
2
1.5  
1
0.5  
0
1.6  
1.2  
0.8  
0.4  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-3  
-0.4  
Time (100 µs/div)  
-0.4  
0
0.4 0.8 1.2 1.6 2  
Output Voltage (V)  
2.4 2.8 3.2 3.6  
TR16  
D01_  
V+ = +2.75 V  
G = 10  
V= 2.75 V  
VS = 3.3 V  
G = 10, 20, 30, 50  
VREF = VS / 2  
7-57. Disable Response  
7-58. Input Common-Mode Voltage vs Output Voltage (High  
CMRR Region)  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
6
5.4  
4.8  
4.2  
3.6  
3
3.6  
3.2  
2.8  
2.4  
2
VS = 5.5 V  
VS = 3.3 V  
1.6  
1.2  
0.8  
0.4  
0
2.4  
1.8  
1.2  
0.6  
0
-0.6  
-0.4  
-0.6  
0
0.6 1.2 1.8 2.4  
3
Output Voltage (V)  
3.6 4.2 4.8 5.4  
6
-0.4  
0
0.4 0.8 1.2 1.6 2  
Output Voltage (V)  
2.4 2.8 3.2 3.6  
D01_  
D09_  
VS = 5.5 V  
G = 10, 20, 30, 50  
VREF = VS / 2  
VS = 3.3 V  
G = 10, 20, 30, 50  
VREF = 0 V  
7-59. Input Common-Mode Voltage vs Output Voltage (High  
7-60. Input Common-Mode Voltage vs Output Voltage (High  
CMRR Region)  
CMRR Region)  
6
3.6  
VS = 5.5 V  
VS = 3.3 V  
5.4  
3.2  
4.8  
4.2  
3.6  
3
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
2.4  
1.8  
1.2  
0.6  
0
-0.4  
-0.6  
-0.4  
0
0.4 0.8 1.2 1.6 2  
Output Voltage (V)  
2.4 2.8 3.2 3.6  
-0.6  
0
0.6 1.2 1.8 2.4  
3
Output Voltage (V)  
3.6 4.2 4.8 5.4  
6
D05_  
D09_  
VS = 3.3 V  
G = 10, 20, 30, 50  
VREF = VS / 2  
VS = 5.5 V  
G = 10, 20, 30, 50  
VREF = 0 V  
7-62. Input Common-Mode Voltage vs Output Voltage  
7-61. Input Common-Mode Voltage vs Output Voltage (High  
CMRR Region)  
6
3.6  
VS = 5.5 V  
VS = 3.3 V  
5.6  
5.2  
4.8  
4.4  
4
3.6  
3.2  
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
3.2  
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
-0.4  
-0.4  
-0.4  
0.4  
1.2  
2
Output Voltage (V)  
2.8  
3.6  
4.4  
5.2  
6
-0.4  
0
0.4 0.8 1.2 1.6 2  
Output Voltage (V)  
2.4 2.8 3.2 3.6  
D05_  
D13_  
VS = 5.5 V  
G = 10, 20, 30, 50  
VREF = VS / 2  
VS = 3.3 V  
G = 10, 20, 30, 50  
VREF = 0 V  
7-63. Input Common-Mode Voltage vs Output Voltage  
7-64. Input Common-Mode Voltage vs Output Voltage  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
7.6 Typical Characteristics (continued)  
at TA = 25°C, VS = (V+) (V) = 5.5 V, VIN = (VIN+) (VIN) = 0 V, RL = 10 kΩ, CL = 10 pF, VREF = VS / 2, VCM = [(VIN+) +  
(VIN)] / 2 = VS / 2, VOUT = VS / 2 and G = 10 (unless otherwise noted)  
6
VS = 5.5 V  
5.6  
5.2  
4.8  
4.4  
4
3.6  
3.2  
2.8  
2.4  
2
1.6  
1.2  
0.8  
0.4  
0
-0.4  
-0.4  
0.4  
1.2  
2
2.8  
3.6  
Output Voltage (V)  
4.4  
5.2  
6
D13_  
VS = 5.5 V  
G = 10, 20, 30, 50  
VREF = 0 V  
7-65. Input Common-Mode Voltage vs Output Voltage  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
8 Detailed Description  
8.1 Overview  
INA351 is a selectable gain instrumentation amplifier with integrated reference buffer designed to provide an  
integrated, small size, cost-effective solution for applications employing general purpose INAs or discrete  
implementation of INAs using commodity amplifiers and resistors. The device incorporates a three op amp INA  
architecture integrating three operational amplifiers and seven precision matched integrated resistors. INA351 is  
suitable for use in 10-bit to 14-bit systems without any additional effort, but calibrating offset and gain error at a  
system level can further improve system resolution and accuracy, enabling use in precision applications.  
One of the key features of INA351 is that the device does not need any external resistors to set the gain. Often  
these external resistors require tighter tolerance and careful routing, which adds to system complexity and cost.  
INA351 is offered in four gain options across two variants. INA351ABS has two gain options of 10 and 20.  
INA351CDS has two other gain options of 30 and 50. Gains can be selected by connecting the GS pin to logic  
high or logic low. Note that the GS pin can be left floating as well, as the pin is designed with an internal pull up  
to default to the same configuration as GS tied logic high.  
The INA351 is designed for industrial applications leveraging pressure and temperature sensing via bridge-type  
sensor networks and load cells. The device can also be used in space-constrained applications such as patient  
monitoring, sleep diagnostics, electronic hospital beds, and blood glucose monitoring for voltage sensing and  
differential to single-ended conversion. INA351 can enable these applications to reduce their overall size through  
the use of tiny packages, including a 2-mm × 1.5-mm X2QFN package and a 2-mm × 2-mm WSON package.  
8.2 Functional Block Diagram  
V+  
7
IN  
60 k  
2
1
+
60 k  
+
90 k / 145 k  
90 k / 145 k  
RG  
GS  
6
5
OUT  
REF  
+
+
60 k  
60 k  
+IN  
3
8
4
_____  
SHDN  
V
Note: 90 kΩfor INA351ABS and 145 kΩfor INA351CDS  
Simplified Internal Schematic  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
8.3 Feature Description  
8.3.1 Gain-Setting  
The gain equation of INA351ABS can be given by 方程1:  
180 kΩ  
G = 1 +  
(1)  
(2)  
(3)  
(4)  
R
G
The value of the internal gain resistor RG for INA351ABS can then be derived from the gain equation:  
180 kΩ  
R
=
G − 1  
G
Similarly The gain equation of INA351CDS can be given by 方程3:  
290 kΩ  
G = 1 +  
R
G
The value of the internal gain resistor RG for INA351CDS can then be derived from the gain equation:  
290 kΩ  
R
=
G − 1  
G
8-1 provides how to choose different gain options across INA351ABS and INA351CDS. The 60-kΩ, 90-kΩ,  
and 145-kΩresistors mentioned are all typical values of the on-chip resistors.  
8-1. Gain Selection Table  
DEVICE  
GAIN SELECT (GS)  
High or No Connect  
Low  
SELECTED GAIN  
20  
10  
50  
30  
INA351ABS  
High or No Connect  
Low  
INA351CDS  
8.3.1.1 Gain Error and Drift  
Gain error in INA351 is limited by the mismatch of the integrated precision resistors and is specified based on  
characterization results. Gain error of maximum 0.1% can be expected for all gains of 10, 20, 30 and 50. Gain  
drift in INA351 is limited by the slight mismatch of the temperature coefficient of the integrated resistors. Since  
these integrated resistors are precision matched with low temperature coefficient resistors to begin with, the  
overall gain drift is much better in comparison to discrete implementation of the instrumentation amplifiers built  
using external resistors.  
8.3.2 Input Common-Mode Voltage Range  
INA351 has two gain stages, the first stage has a common-mode gain of 1 and a differential gain set by the GS  
pin. The second stage is configured in a difference-amplifier configuration with differential gain of 1 and ideally  
rejects all of the input common mode completely. The second stage also provides a gain of 1 from REF pin to set  
the output common-mode voltage.  
The linear input voltage range of the INA351, even for a rail-to-rail first stage, is dictated by both the signal swing  
at output of the first stage as well as the input common-mode voltage range output swing of the second stage. In  
order to maximize performance, it is critical to keep the INA351 within its linear range for a given combination of  
gain, reference, and input common-mode voltage for a particular input differential. Input common-mode voltage  
(VCM) vs output voltage graphs (VOUT) in this section show a particular reference voltage and gain configuration  
to outline the linear performance region of INA351. A good common-mode rejection can be expected when  
operating with in the limits of the VCM vs VOUT graph. Note that the INA351 linear input voltage cannot be close  
to or extend beyond the supply rails, as the output of the first stage will be driven into saturation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
22  
Submit Document Feedback  
Product Folder Links: INA351  
 
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
The common-mode range for the most common operating conditions is outlined as follows. 8-1 shows the  
region of operation where a minimum of 86 dB can be achieved. 8-2 has much wider region of operation with  
a lower minimum CMRR of 62 dB, because the input signal crosses over the transition region of the input pairs  
to achieve rail-to-rail operation. The common-mode range for other operating conditions is best calculated with  
the INA VCM vs VOUT tool located under the Amplifiers and Comparators section of the Analog Engineer's  
Calculator on ti.com. INA351-HCM model can be specifically used for applications requiring high CMRR and  
corresponds to performance shown in 8-1. INA351xxS model can be used for applications where the input  
common mode can be expected to vary rail-to-rail and the model corresponds to performance shown in 8-2  
where CMRR drops to 62-dB minimum.  
6
5.4  
4.8  
4.2  
3.6  
3
6
5.4  
4.8  
4.2  
3.6  
3
2.4  
1.8  
1.2  
0.6  
0
2.4  
1.8  
1.2  
0.6  
0
-0.6  
-0.6  
-0.6  
0
0.6 1.2 1.8 2.4  
3
Output Voltage (V)  
3.6 4.2 4.8 5.4  
6
-0.6  
0
0.6 1.2 1.8 2.4  
3
Output Voltage (V)  
3.6 4.2 4.8 5.4  
6
D01_  
D05_  
VS = 5.5 V  
G = 10, 20, 30, 50  
VREF = VS / 2  
VS = 5.5 V  
G = 10, 20, 30, 50  
VREF = VS / 2  
8-1. Input Common-Mode Voltage vs Output  
8-2. Input Common-Mode Voltage vs Output  
Voltage (High CMRR Region)  
Voltage  
8.3.3 EMI Rejection  
The INA351 uses integrated electromagnetic interference (EMI) filtering to reduce the effects of EMI from  
sources such as wireless communications and densely-populated boards with a mix of analog signal chain and  
digital components. EMI immunity can be improved with circuit design techniques; the INA351 benefits from  
these design improvements. Texas Instruments has developed the ability to accurately measure and quantify the  
immunity of an operational amplifier over a broad frequency spectrum extending from 10 MHz to 6 GHz. 8-3  
shows the results of this testing on the INA351. 8-2 provides the EMIRR IN+ values for the INA351 at  
particular frequencies commonly encountered in real-world applications. The EMI Rejection Ratio of Operational  
Amplifiers application report contains detailed information on the topic of EMIRR performance relating to op  
amps and is available for download from www.ti.com.  
110  
G = 10  
G = 20  
G = 30  
G = 50  
100  
90  
80  
70  
60  
50  
1M  
10M  
100M  
Frequency (Hz)  
1G  
A14_  
8-3. EMIRR Testing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
8-2. INA351 EMIRR IN+ for Frequencies of Interest  
FREQUENCY  
APPLICATION OR ALLOCATION  
EMIRR IN+  
Mobile radio, mobile satellite, space operation, weather, radar, ultra-high frequency (UHF)  
applications  
400 MHz  
92 dB  
Global system for mobile communications (GSM) applications, radio communication, navigation,  
GPS (to 1.6 GHz), GSM, aeronautical mobile, UHF applications  
900 MHz  
1.8 GHz  
2.4 GHz  
3.6 GHz  
5 GHz  
96 dB  
100 dB  
108 dB  
106.5 dB  
105 dB  
GSM applications, mobile personal communications, broadband, satellite, L-band (1 GHz to 2 GHz)  
802.11b, 802.11g, 802.11n, Bluetooth®, mobile personal communications, industrial, scientific and  
medical (ISM) radio band, amateur radio and satellite, S-band (2 GHz to 4 GHz)  
Radiolocation, aero communication and navigation, satellite, mobile, S-band  
802.11a, 802.11n, aero communication and navigation, mobile communication, space and satellite  
operation, C-band (4 GHz to 8 GHz)  
8.3.4 Typical Specifications and Distributions  
Designers often have questions about a typical specification of an amplifier to design a more robust circuit. Due  
to natural variation in process technology and manufacturing procedures, every specification of an amplifier  
exhibits some amount of deviation from the ideal value, like an amplifier's input offset voltage. These deviations  
often follow Gaussian (bell curve), or normal distributions, and circuit designers can leverage this information to  
guard band their system, even when there is not a minimum or maximum specification in the Electrical  
Characteristics table.  
0.00312% 0.13185%  
0.13185% 0.00312%  
0.00002%  
0.00002%  
2.145% 13.59% 34.13% 34.13% 13.59% 2.145%  
1
1 1 1 1 1 1 1 1  
1
1
1
-61 -51 -41 -31 -21 -1  
+1 +21 +31 +41 +51 +61  
8-4. Ideal Gaussian Distribution  
8-4 shows an example distribution, where µ, or mu, is the mean of the distribution, and where σ, or sigma, is  
the standard deviation of a system. For a specification that exhibits this kind of distribution, approximately two-  
thirds (68.26%) of all units can be expected to have a value within one standard deviation, or one sigma, of the  
mean (from µ σto µ + σ).  
Depending on the specification, values listed in the typical column of the Electrical Characteristics table are  
represented in different ways. As a general rule, if a specification naturally has a nonzero mean (for example,  
like gain bandwidth), then the typical value is equal to the mean (µ). However, if a specification naturally has a  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
24  
Submit Document Feedback  
Product Folder Links: INA351  
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
mean near zero (like input offset voltage), then the typical value is equal to the mean plus one standard deviation  
(µ + σ) to most accurately represent the typical value.  
You can use this chart to calculate approximate probability of a specification in a unit; for example, the INA351  
typical input voltage offset is 200 µV, so 68.2% of all INA351 devices are expected to have an offset from 200  
µV to +200 µV. At 4 σ (±800 µV), 99.9937% of the distribution has an offset voltage less than ±800 µV, which  
means 0.0063% of the population is outside of these limits, which corresponds to about 1 in 15,873 units.  
Specifications with a value in the minimum or maximum column are verified by TI, and units outside these limits  
are removed from production material. For example, the INA351 family has a maximum offset voltage of 1.3 mV  
at 25°C, and even though this corresponds to 6 σ (1 in 500 million units), which is extremely unlikely, TI  
verifies that any unit with larger offset than 1.3 mV are removed from production material.  
For specifications with no value in the minimum or maximum column, consider selecting a sigma value of  
sufficient guard band for your application, and design worst-case conditions using this value. As stated earlier,  
the 6-σ value corresponds to about 1 in 500 million units, which is an extremely unlikely chance, and can be an  
option as a wide guard band to design a system around. In this case, the INA351 family does not have a  
maximum or minimum for offset voltage drift, but based on 7-2 and the typical value of 0.65 µV/°C in the  
Electrical Characteristics table, the 6-σ value for offset voltage drift can be calculated to 3.9 µV/°C. When  
designing for worst-case system conditions, this value can be used to estimate the worst possible offset drift  
without having an actual minimum or maximum value.  
However, process variation and adjustments over time can shift typical means and standard deviations, and  
unless there is a value in the minimum or maximum specification column, TI cannot verify the performance of a  
device. This information must be used only to estimate the performance of a device.  
8.3.5 Electrical Overstress  
Designers often ask questions about the capability of an operational amplifier to withstand electrical overstress.  
These questions tend to focus on the device inputs, but can involve the supply voltage pins or even the output  
pin. Each of these different pin functions have electrical stress limits determined by the voltage breakdown  
characteristics of the particular semiconductor fabrication process and specific circuits connected to the pin.  
Additionally, internal electrostatic discharge (ESD) protection is built into these circuits to protect them from  
accidental ESD events both before and during product assembly.  
Having a good understanding of this basic ESD circuitry and the relevance to an electrical overstress event is  
helpful. 8-5 shows the ESD circuits contained in the INA351 devices. The ESD protection circuitry involves  
several current-steering diodes connected from the input and output pins and routed back to the internal power  
supply lines, where these diodes meet at an absorption device internal to the operational amplifier. This  
protection circuitry is intended to remain inactive during normal circuit operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
V+  
Power Supply  
ESD Cell  
+IN  
+
OUT  
– IN  
_____  
SHDN  
GS  
REF  
V–  
8-5. Equivalent Internal ESD Circuitry  
8.4 Device Functional Modes  
The INA351 has a shutdown or disable mode to enable power savings in battery powered applications. The  
shutdown mode has a maximum quiescent current of just 1.25 µA, which is 100 times lower from the quiescent  
current when the amplifier is powered-on or enabled.  
INA351 enters disable mode when the SHDN pin is tied low. INA351 is enabled when the SHDN pin is tied high.  
A no connection or a floating SHDN pin enables or powers-on the INA as the pin has an internal pull up current  
to default to the same configuration as SHDN pin tied high.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
26  
Submit Document Feedback  
Product Folder Links: INA351  
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Reference Pin  
The output voltage of the INA351 is developed with respect to the voltage on the reference pin (REF). Often in  
dual-supply operation, REF pin connects to the system ground. However, In single-supply operation, offsetting  
the output signal to a precise mid-supply level is useful and required (for example, 2.75-V in a 5.5-V supply  
environment). To accomplish this level shift, a voltage source must be connected to the REF pin to level-shift the  
output so that the INA can drive a single-supply ADC. Traditionally, this is accomplished using an external  
reference buffer as shown in 9-1.  
INA351 has an integrated reference buffer amplifier configured in unity gain, voltage follower configuration  
internal to the amplifier as shown in 8-1. This allows INA351 to be directly connected to a resistive divider  
without any need for an external reference buffer amplifier as shown in 9-2.  
5 V  
+IN  
INA350  
OUT  
–IN  
5 V  
5 V  
100 k  
+
TLV9041  
1
F
100 k  
9-1. INA350 / Traditional INA External Reference Buffer Required  
5 V  
+IN  
INA351  
OUT  
5 V  
–IN  
100 k  
100 k  
1 µF  
9-2. INA351 with Integrated Reference Buffer No External Reference Buffer Required  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
9.1.2 Input Bias Current Return Path  
The input impedance of the INA351 is extremely high, but a path must be provided for the input bias current of  
both inputs. This input bias current is typically a few pico amps but at high temperature this can be a few nano  
amps. High input impedance means that the input bias current changes little with varying input voltage.  
For proper operation, input circuitry must provide a path for this input bias current. 9-3 shows various  
provisions for an input bias current path. Without a bias current path, the inputs float to a potential that exceeds  
the common-mode range of the INA351, and the input amplifiers saturate. If the differential source resistance is  
low, the bias current return path connects to one input (as shown in the thermocouple example in 9-3). With a  
higher source impedance, use two equal resistors to provide a balanced input, with the possible advantages of a  
lower input offset voltage as a result of bias current, and better high-frequency common-mode rejection.  
Microphone,  
Hydrophone,  
and So Forth  
TI Device  
47 kW  
47 kW  
Thermocouple  
TI Device  
10 kW  
TI Device  
Center tap provides  
bias current return.  
Copyright © 2017, Texas Instruments Incorporated  
9-3. Providing an Input Common-Mode Current Path  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
9.2 Typical Applications  
9.2.1 Resistive-Bridge Pressure Sensor  
The INA351 is an integrated instrumentation amplifier that measures small differential voltages while  
simultaneously rejecting larger common-mode voltages. The device offers a low power consumption of 110 µA  
(typical) and has a smaller form factor.  
The device is designed for portable applications where sensors measure physical parameters, such as changes  
in fluid, pressure, temperature, or humidity. An example of a pressure sensor used in the medical sector is in  
portable infusion pumps or dialysis machines.  
The pressure sensor is made of a piezo-resistive element that can be derived as a classical 4-resistor  
Wheatstone bridge.  
Occlusion (infusion of fluids, medication, or nutrients) happens only in one direction, and therefore can only  
cause the resistive element (R) to expand. This expansion causes a change in voltage on one leg of the  
Wheatstone bridge, which induces a differential voltage VDIFF  
.
9-4 shows an example circuit for an occlusion pressure sensor application, as required in infusion pumps.  
When blockage (occlusion) occurs against a set-point value, the tubing depresses, thus causing the piezo-  
resistive element to expand (Node AD: R + ΔR). The signal chain connected to the bridge downstream  
processes the pressure change and can trigger an alarm.  
VS = 5.5 V  
VEXT = 5 V  
1
F
1
F
REF  
A
0.1  
F
D
Pressure  
Occlusion  
Sensor  
B
+
VOUT  
VDIFF  
ADC  
µC  
INA351  
C
R1  
GND  
9-4. Resistive-Bridge Pressure Sensor  
Low-tolerance bridge resistors must be used to minimize the offset and gain errors.  
Given that there is only a positive differential voltage applied, this circuit is laid out in single-ended supply mode.  
The excitation voltage, VEXT, to the bridge must be precise and stable; otherwise, measurement errors can be  
introduced.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
9.2.1.1 Design Requirements  
For this application, the design requirements are as provided in 9-1.  
9-1. Design Requirements  
DESCRIPTION  
VALUE  
Single supply voltage  
VS = 5.5 V  
Excitation voltage  
VEXT = 5.0 V  
Occlusion pressure range  
Occlusion pressure sensitivity  
Occlusion pressure impedance (R)  
Total pressure sampling rate  
Full-scale range of ADC  
P = 1 psi to 12 psi, increments of P = 0.5 psi  
S = 2 ±0.5 (25%) mV/V/psi  
R = 4.99 kΩ±50 Ω(0.1%)  
Sr = 20 Hz  
VADC(fs) = VOUT = 3.0 V  
9.2.1.2 Detailed Design Procedure  
This section provides basic calculations to lay out the instrumentation amplifier with respect to the given design  
requirements.  
One of the key considerations in resistive-bridge sensors is the common-mode voltage, VCM. If the bridge is  
balanced (no pressure, thus no voltage change), VCM(zero) is half of the bridge excitation (VEXT). In this example  
VCM (zero) is 2.5 V. For the maximum pressure of 12 psi, the bridge common-mode voltage, VCM(MAX), is  
calculated by:  
V
DIFF  
2
V
=
+ V  
(5)  
(6)  
(7)  
(8)  
CM MAX  
CM zero  
where  
mV  
V
= S  
× V  
× P = 2.5  
MAX  
× 5 V × 12 psi = 150 mV  
V × psi  
DIFF  
MAX  
EXT  
Thus, the maximum common-mode voltage applied results in:  
150 mV  
V
=
+ 2.5 V = 2.575 V  
CM MAX  
2
Similarly, the minimum common-mode voltage can be calculated as,  
150 mV  
V
=
+ 2.5 V = 2.425 V  
CM MIN  
2
The next step is to calculate the gain required for the given maximum sensor output voltage span, VDIFF, in  
respect to the required VOUT, which is the full-scale range of the ADC.  
The following equation calculates the gain value using the maximum input voltage and the required output  
voltage:  
V
OUT  
3.0 V  
150 mV  
G =  
=
= 20 V/V  
(9)  
V
DIFF MAX  
Considering, INA351 is a selectable gain INA with gain options of 10, 20, 30, 50, the INA351ABS with GS tied  
high enables G = 20 maintaining the maximum output signal swing for the ADC.  
Next, let us make sure that the INA351 can operate within this range checking the Input Common-Mode Voltage  
vs Output Voltage curves in the Typical Characteristics section. The relevant figure is also in this section for  
convenience. Looking at 9-5, we can confirm that a output signal swing of 3 V is supported for the input signal  
swing between 2.425 V and 2.575 V, thus making sure of the linear operation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
30  
Submit Document Feedback  
Product Folder Links: INA351  
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
6
5.4  
4.8  
4.2  
3.6  
3
2.4  
1.8  
1.2  
0.6  
0
-0.6  
-0.6  
0
0.6 1.2 1.8 2.4  
3
Output Voltage (V)  
3.6 4.2 4.8 5.4  
6
D09_  
VS = 5.5 V  
G = 10, 20, 30, 50  
VREF = 0 V  
9-5. Input Common-Mode Voltage vs Output Voltage (High CMRR Region)  
An additional series resistor in the Wheatstone bridge string (R1) may or may not be required, and can be  
decided based on the intended output voltage swing for a particular combination of supply voltage, reference  
voltage and the selected gain for an input common mode voltage range. R1 helps adjust the input common-  
mode voltage range, and thus can help accommodate the intended output voltage swing. In this particular  
example, it is not required and can be shorted out.  
9.2.1.3 Application Curves  
The following typical characteristic curve is for the circuit in 9-4.  
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
0.30  
0.27  
0.24  
0.21  
0.18  
0.15  
0.12  
0.09  
0.06  
0.03  
0
VOUT  
VDIFF  
5000 5200 5400 5600 5800 6000 6200 6400 6600 6800 7000  
Bridge Resistance R + DR (W)  
D100  
9-6. Input Differential Voltage, Output Voltage vs Bridge Resistance  
9.3 Power Supply Recommendations  
The nominal performance of the INA351 is specified with a supply voltage of ±2.75 V and midsupply reference  
voltage. The device also operates using power supplies from ±0.85 V (1.7 V) to ±2.75 V (5.5 V) and non-  
midsupply reference voltages with excellent performance. Parameters can vary significantly with operating  
voltage and reference voltage.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
 
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
9.4 Layout  
9.4.1 Layout Guidelines  
Attention to good layout practices is always recommended. For best operational performance of the device, use  
the following PCB layout practices:  
Make sure that both input paths are well-matched for source impedance and capacitance to avoid converting  
common-mode signals into differential signals.  
Use bypass capacitors to reduce the coupled noise by providing low-impedance power sources local to the  
analog circuitry.  
Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Route the input traces as far away from the supply or output traces as possible to reduce parasitic coupling. If  
these traces cannot be kept separate, crossing the sensitive trace perpendicular is much better than crossing  
in parallel with the noisy trace.  
Place the external components as close to the device as possible.  
Keep the traces as short as possible.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
32  
Submit Document Feedback  
Product Folder Links: INA351  
 
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
9.4.2 Layout Example  
+V  
C2  
R2  
+IN  
–IN  
INA351ABS  
OUT  
R1  
C1  
Ground plane  
removed at gain  
–V  
resistor to minimize  
parasitic capacitance  
Use ground pours for  
shielding the input  
signal pairs  
+V  
GND  
GND  
_____  
C2  
R1  
1
2
3
4
GS  
SHDN  
VS+  
8
7
6
5
–IN  
+IN  
–IN  
+IN  
VS  
Input traces routed  
adjacent to each other  
OUT  
REF  
OUT  
R2  
Low-impedance  
connection for  
reference terminal  
GND  
C1  
Place bypass  
capacitors as close to  
IC as possible  
V  
9-7. Example Schematic and Associated PCB Layout  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: INA351  
English Data Sheet: SBOSAD5  
INA351  
www.ti.com.cn  
ZHCSR64C DECEMBER 2022 REVISED MAY 2023  
10 Device and Documentation Support  
10.1 Device Support  
10.1.1 Development Support  
SPICE-based analog simulation program TINA-TI software folder  
Analog Engineers Calculator  
10.1.1.1 PSpice® for TI  
PSpice® for TI is a design and simulation environment that helps evaluate performance of analog circuits. Create  
subsystem designs and prototype solutions before committing to layout and fabrication, reducing development  
cost and time to market.  
10.2 Documentation Support  
10.2.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, EMI Rejection Ratio of Operational Amplifiers application report  
10.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth SIG, Inc.  
PSpice® is a registered trademark of Cadence Design Systems, Inc.  
所有商标均为其各自所有者的财产。  
10.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SBOSAD5  
34  
Submit Document Feedback  
Product Folder Links: INA351  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
INA351ABSIDSGR  
INA351CDSIDSGR  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSG  
DSG  
8
8
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
2TMH  
2TNH  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-May-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
INA351ABSIDSGR  
INA351CDSIDSGR  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
3000  
180.0  
180.0  
8.4  
8.4  
2.3  
2.3  
2.3  
2.3  
1.15  
1.15  
4.0  
4.0  
8.0  
8.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
10-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
INA351ABSIDSGR  
INA351CDSIDSGR  
WSON  
WSON  
DSG  
DSG  
8
8
3000  
3000  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
DSG 8  
2 x 2, 0.5 mm pitch  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224783/A  
www.ti.com  
PACKAGE OUTLINE  
DSG0008A  
WSON - 0.8 mm max height  
SCALE 5.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
B
A
0.32  
0.18  
PIN 1 INDEX AREA  
2.1  
1.9  
0.4  
0.2  
ALTERNATIVE TERMINAL SHAPE  
TYPICAL  
0.8  
0.7  
C
SEATING PLANE  
0.05  
0.00  
SIDE WALL  
0.08 C  
METAL THICKNESS  
DIM A  
OPTION 1  
0.1  
OPTION 2  
0.2  
EXPOSED  
THERMAL PAD  
(DIM A) TYP  
0.9 0.1  
5
4
6X 0.5  
2X  
1.5  
9
1.6 0.1  
8
1
0.32  
0.18  
PIN 1 ID  
(45 X 0.25)  
8X  
0.4  
0.2  
8X  
0.1  
C A B  
C
0.05  
4218900/E 08/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(0.9)  
(
0.2) VIA  
8X (0.5)  
TYP  
1
8
8X (0.25)  
(0.55)  
SYMM  
9
(1.6)  
6X (0.5)  
5
4
SYMM  
(1.9)  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218900/E 08/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSG0008A  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
8X (0.5)  
METAL  
8
SYMM  
1
8X (0.25)  
(0.45)  
SYMM  
9
(0.7)  
6X (0.5)  
5
4
(R0.05) TYP  
(0.9)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 9:  
87% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218900/E 08/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

INA351CDSIDSGR

Tiny (1.5-mm × 2-mm) low-power (110 µA) instrumentation amplifier with integrated reference buffer | DSG | 8 | -40 to 125
TI

INA381

具有集成过流比较器的 26V、350kHz 电流检测放大器
TI

INA381-Q1

具有集成过流比较器的 AEC-Q100、26V、350kHz 电流检测放大器
TI

INA381A1IDGSR

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DGS | 10 | -40 to 125
TI

INA381A1IDGST

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DGS | 10 | -40 to 125
TI

INA381A1IDSGR

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DSG | 8 | -40 to 125
TI

INA381A1IDSGT

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DSG | 8 | -40 to 125
TI

INA381A1QDGSRQ1

具有集成过流比较器的 AEC-Q100、26V、350kHz 电流检测放大器 | DGS | 10 | -40 to 125
TI

INA381A2IDGSR

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DGS | 10 | -40 to 125
TI

INA381A2IDGST

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DGS | 10 | -40 to 125
TI

INA381A2IDSGR

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DSG | 8 | -40 to 125
TI

INA381A2IDSGT

具有集成过流比较器的 26V、350kHz 电流检测放大器 | DSG | 8 | -40 to 125
TI