ISO1044BD [TI]

采用小型封装的隔离式 CAN FD 收发器 | D | 8 | -40 to 125;
ISO1044BD
型号: ISO1044BD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

采用小型封装的隔离式 CAN FD 收发器 | D | 8 | -40 to 125

电信 光电二极管 电信集成电路
文件: 总38页 (文件大小:2469K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO1044
ZHCSL04A MARCH 2020 REVISED JULY 2020  
ISO1044 隔离式 CAN FD 收发器(采用小型封装)  
1 特性  
3 说明  
符合 ISO 11898-2:2016 物理层标准  
ISO1044B 器件是一款符合 ISO11898-2 (2016) 标准规  
格的电隔离控制器局域网 (CAN) 收发器。ISO1044B  
器件提供 ±58V 直流总线故障保护电压和 ±12V 共模电  
压范围。该器件在 CAN FD 模式下最高支持 5Mbps 数  
据速率与经典 CAN 相比可实现更为快速的载荷传  
输。该器件采用二氧化硅 (SiO2) 绝缘隔栅可承受  
3000VRMS 的电压和 450VRMS 的工作电压。电磁兼容  
性得到了显著增强可实现系统级 ESDEFT 和浪涌  
并符合辐射标准。与隔离式电源一起使用此器件可抵  
御高电压冲击并防止总线的噪声电流进入本地接地。  
ISO1044B 器件支持 –40°C +125°C 的宽环境温度  
范围。该器件可采用小型 SOIC-8 (D) 封装与使用光  
耦合器隔离 CAN 收发器的传统方法相比能显著降低  
解决方案尺寸。  
支持高达 1Mbps 的经典 CAN 和高达 5Mbps FD  
灵活数据速率)  
保护特性  
– 直流总线故障保护电压±58V  
– 总线引脚的 IEC ESD 容差±8kV  
– 总线引脚的 HBM ESD 容差±10kV  
– 驱动器显性超时 (TXD DTO)  
VCC1 VCC2 欠压保护  
共模电压范围±12V  
未上电时的理想无源、高阻抗总线终端  
CMTI85kV/µs最小值)  
VCC1 电压范围1.71V 5.5V  
– 支持连接到 CAN 控制器的 1.8V2.5V3.3V  
5.0V 逻辑接口  
器件信息  
器件型号(1)  
ISO1044B  
封装尺寸标称值)  
封装  
VCC2 电压范围4.5V 5.5V  
SOIC (8)  
4.90mm × 3.91mm  
优异的电磁兼容性 (EMC)  
– 系统级 ESDEFT 和浪涌抗扰性  
– 低辐射  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
环境温度范围40°C +125°C  
VCC2  
8
VCC1  
1
VCC1  
VCC2  
8-SOIC 封装  
VDD  
6
5
安全相关认证:  
– 所有计划认证  
2
3
CANH  
CANL  
TXD  
MCU  
RXD  
TXD  
RXD  
ISO1044  
Galvanic  
CAN Bus  
– 符合 DIN VDE V 0884-11:2017-01 标准的 VDE  
增强型绝缘  
DGND  
4
GND2  
7
GND1  
UL 1577 组件认证计划  
IEC 60950-1IEC 62368-1IEC 61010-1 和  
GB 4943.1-2011 认证  
Digital  
Ground  
ISO  
Ground  
Isolation Barrier  
Copyright © 2017, Texas Instruments Incorporated  
2 应用  
应用图表  
交流和伺服驱动器  
光伏逆变器  
PLC DCS 通信模块  
升降机和自动扶梯  
工业电源  
电池充电和管理  
本文档旨在为方便起见提供有关 TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFB0  
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
Table of Contents  
8.1 Overview...................................................................18  
8.2 Functional Block Diagram.........................................18  
8.3 Feature Description...................................................18  
8.4 Device Functional Modes..........................................22  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................25  
11 Layout...........................................................................26  
11.1 Layout Guidelines................................................... 26  
11.2 Layout Example...................................................... 26  
12 Device and Documentation Support..........................28  
12.1 Documentation Support.......................................... 28  
12.2 Receiving Notification of Documentation Updates..28  
12.3 Support Resources................................................. 28  
12.4 Trademarks.............................................................28  
12.5 Electrostatic Discharge Caution..............................28  
12.6 Glossary..................................................................28  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions8 Pins.......................................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Power Ratings.............................................................5  
6.6 Insulation Specifications............................................. 6  
6.7 Safety-Related Certifications...................................... 7  
6.8 Safety Limiting Values.................................................7  
6.9 Electrical Characteristics - DC Specification...............8  
6.10 Switching Characteristics........................................11  
6.11 Insulation Characteristics Curves............................12  
6.12 Typical Characteristics............................................12  
7 Parametric Measurement Information.........................15  
8 Detailed Description......................................................18  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO1044  
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
5 Pin Configuration and Functions  
VCC1  
TXD  
1
2
3
4
8
7
6
5
VCC2  
GND2  
CANH  
CANL  
RXD  
GND1  
Not to scale  
5-1. D Package 8-Pin SOIC Top View  
Pin Functions8 Pins  
PIN  
NAME  
VCC1  
I/O  
DESCRIPTION  
1
2
3
4
5
6
7
8
Digital-side supply voltage, Side 1  
I
TXD  
CAN transmit data input (LOW for dominant and HIGH for recessive bus states)  
CAN receive data output (LOW for dominant and HIGH for recessive bus states)  
Digital-side ground connection, Side 1  
RXD  
O
GND1  
CANL  
CANH  
GND2  
VCC2  
I/O  
I/O  
Low-level CAN bus line  
High-level CAN bus line  
Transceiver-side ground connection, Side 2  
Transceiver-side supply voltage, Side 2  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO1044  
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
-0.5  
-0.5  
MAX  
UNIT  
V
VCC1  
VCC2  
Supply voltage, side 1  
Supply voltage, side 2  
6
6
V
Logic input and output voltage range (TXD and  
RXD)  
VIO  
-0.5  
VCC1+0.5(3)  
V
IO  
Output current on RXD pin  
-15  
-58  
-45  
-40  
-65  
15  
58  
mA  
V
VBUS  
VBUS_DIFF  
TJ  
Voltage on bus pins (CANH, CANL)  
Differential voltage on bus pins (CANH-CANL)  
Junction temperature  
45  
V
150  
150  
TSTG  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V  
6.2 ESD Ratings  
VALUE  
UNIT  
Electrostatic discharge  
All pins(1)  
±4000  
V
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001  
CANH and CANL to GND2(1)  
±10000  
V(ESD)  
Electrostatic discharge  
Charged device model (CDM), per  
JEDEC specification JESD22-C101  
V
All pins(2)  
±750  
Powered, CANH, CANL to bus side  
ground (GND2)  
±8000  
V
V
IEC 61000-4-2 System Level Electrostatic  
discharge (tested directly on device pins  
with no external components on PCB) (3)  
V(IEC_ESD)  
Unpowered, CANH, CANL to bus side  
ground (GND2)  
±12000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) External components on bus pins may lead to different results  
6.3 Recommended Operating Conditions  
MIN  
MAX  
1.89  
5.5  
UNIT  
Supply Voltage, Side 1, 1.8 V operation  
Supply Voltage, Side 1, 2.5 V, 3.3 V and 5.5 V operation  
Supply Voltage, Side 2  
1.71  
2.25  
4.5  
-4  
V
VCC1  
VCC2  
V
5.5  
V
High-Level Output current, VCC1 = 5 V  
High-Level Output current, VCC1 = 3.3 V  
High-Level Output current, VCC1 = 2.5 V, 1.8 V  
Low-level output current, VCC1 = 5 V  
Low-level output current, VCC1 = 3.3 V  
Low-level output current, VCC1 = 2.5 V, 1.8 V  
Operating ambient temperature  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
IOH(RXD)  
-2  
-1  
4
2
IOL(RXD)  
1
TA  
-40  
125  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
 
 
 
 
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6.4 Thermal Information  
ISO1044B  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
119.5  
44.8  
UNIT  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
56.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
28.7  
ΨJT  
55.3  
ΨJB  
RΘJC(bot)  
-
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, RL =  
60 , TXD with 5V, 5Mbps 50% duty  
square wave  
PD  
Maximum power dissipation (both sides)  
146  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, RL =  
60 , TXD with 5V, 5Mbps 50% duty  
square wave  
PD1  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
15  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, RL =  
60 , TXD with 5V, 5Mbps 50% duty  
square wave  
PD2  
131  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO1044  
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6.6 Insulation Specifications  
PARAMETER  
SPECIFIC  
ATIONS  
TEST CONDITIONS  
UNIT  
D-8  
IEC 60664-1  
CLR  
CPG  
DTI  
External clearance(1)  
Side 1 to side 2 distance through air  
> 4  
mm  
mm  
µm  
V
External Creepage(1)  
Side 1 to side 2 distance across package surface > 4  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
>17  
>600  
I
CTI  
According to IEC 60664-1  
I-IV  
I-III  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Overvoltage category  
DIN VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
637  
450  
637  
4242  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent dielectric  
breakdown (TDDB) test;  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
1.2 × VIOTM, t = 1 s (100% production)  
=
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.6 × VIOSM = 8 kVPK  
(qualification)  
VIOSM  
5000  
5  
5  
5  
VPK  
Method a: After I/O safety test subgroup 2/3, Vini  
= VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10  
s
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM , tm = 10 s  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test), Vini = VIOTM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM , tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
~1  
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
> 1012  
> 1011  
> 109  
2
VIO = 500 V, 100°C TA 150°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
40/125/  
21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST = 1.2  
× VISO , t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
(2) ISO1044B is suitable for safe electrical insulation within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
Plan to certify according to UL  
1577 Component Recognition  
Program  
Plan to certify according to DIN V Plan to certify according to IEC  
Plan to certify according to  
GB4943.1-2011  
VDE V 0884-11:2017- 01  
60950-1, IEC 62368-1  
Maximum transient isolation  
voltage,  
400 VRMS basic insulation  
working voltage per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed., for pollution  
degree 2, material group I  
4242 VPK  
;
Basic Insulation, Altitude 5000  
m, Tropical Climate, 400 VRMS  
maximum working voltage  
Maximum repetitive peak  
isolation voltage,  
Single protection,  
3000 VRMS  
637 VPK  
;
Maximum surge isolation voltage,  
5000 VPK  
Certificate planned  
Certificate planned  
Certificate planned  
Certificate planned  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SOIC-8 PACKAGE  
R
θJA = 119.5 °C/W, VI = 5.5 V, TJ =  
190  
290  
380  
553  
mA  
mA  
mA  
mA  
150°C, TA = 25°C, see Figure 6-1  
θJA = 119.5 °C/W, VI = 3.6 V, TJ =  
150°C, TA = 25°C, see Figure 6-1  
θJA = 119.5 °C/W, VI = 2.75 V, TJ =  
150°C, TA = 25°C, see Figure 6-1  
θJA = 119.5 °C/W, VI = 1.89 V, TJ =  
150°C, TA = 25°C, see Figure 6-1  
θJA = 119.5 °C/W, TJ = 150°C, TA =  
25°C, see Figure 6-2  
R
IS  
Safety input, output, or supply current  
R
R
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1044  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO1044  
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6.9 Electrical Characteristics - DC Specification  
Typical specifications are at VCC1 = 3.3 V, VCC2 = 5 V, Min/Max are over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CHARACTERISTICS  
VCC1 =1.71 V to 1.89 V, TXD = 0 V, bus  
dominant  
2.3  
2.4  
1.2  
1.3  
1.8  
1.8  
3.5  
3.5  
2.1  
2.1  
2.7  
2.7  
mA  
mA  
mA  
mA  
mA  
mA  
VCC1 = 2.25 V to 5.5 V, TXD = 0 V, bus  
dominant  
VCC1 = 1.71 V to 1.89 V, TXD = VCC1, bus  
recessive  
ICC1  
Supply current Side 1  
VCC1 = 2.25 V to 5.5 V, TXD = VCC1, bus  
recessive  
VCC1=4.5 to 5.5V, TXD= 1Mbps 50% duty  
square wave  
VCC1=4.5 to 5.5V, TXD= 5Mbps 50% duty  
square wave  
52  
70  
9
mA  
mA  
TXD = 0 V, bus dominant, RL = 60 Ω  
TXD = VCC1, bus recessive, RL = 60 Ω  
5.9  
VCC2=4.5 to 5.5V, TXD= 1Mbps 50% duty  
square wave, RL= 60 ohm  
ICC2  
Supply current Side 2  
29.5  
29.5  
38  
39  
mA  
mA  
V
VCC2=4.5 to 5.5V, TXD= 5Mbps 50% duty  
square wave, RL= 60 ohm  
Rising under voltage detection, Side  
1
UVVCC1+  
UVVCC1-  
VHYS(UVCC1)  
UVVCC2+  
1.7  
Falling under voltage detection, Side  
1
1.0  
V
Hysterisis voltage on VCC1  
undervoltage lock-out  
80.0  
125  
4.2  
4.0  
mV  
V
Rising under voltage detection, side 2  
4.45  
4.25  
Falling under voltage detection, side  
2
UVVCC2-  
3.8  
V
Hysterisis voltage on  
VCC2 undervoltage lock-out  
VHYS(UVCC2)  
200  
mV  
TXD TERMINAL  
VIH  
VIL  
IIH  
High level input voltage  
0.7×VCC1  
V
V
Low level input voltage  
0.3×VCC1  
1
High level input leakage current  
Low level input leakage current  
TXD = VCC1  
TXD = 0V  
µA  
µA  
IIL  
-20  
VIN = 0.4 x sin(2 x π x 1E+6 x t) + 1.65  
V, VCC1 = 3.3 V  
CI  
Input capacitance  
2
pF  
RXD TERMINAL  
See Figure 7-4, IO = -4 mA for 4.5 V ≤  
-0.4  
-0.2  
-0.1  
-0.1  
-0.2  
-0.06  
-0.04  
-0.04  
V
V
V
V
V
CC1 5.5 V  
See Figure 7-4, IO = -2 mA for 3.0 V ≤  
CC1 3.6 V  
See Figure 7-4, IO = -1 mA for 2.25 V ≤  
CC1 2.75 V  
See Figure 7-4, IO = -1 mA for 1.71 V ≤  
CC1 1.89 V  
V
VOH - VCC1  
High level output voltage  
V
V
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO1044  
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
Typical specifications are at VCC1 = 3.3 V, VCC2 = 5 V, Min/Max are over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See Figure 7-4, IO = 4 mA for 4.5 V ≤  
0.2  
0.4  
V
V
CC1 5.5 V  
See Figure 7-4, IO = 2 mA for 3.0 V ≤  
CC1 3.6 V  
See Figure 7-4, IO = 1 mA for 2.25 V ≤  
CC1 2.75 V  
See Figure 7-4, IO = 1 mA for 1.71 V ≤  
CC1 1.89 V  
0.07  
0.035  
0.04  
0.2  
0.1  
0.1  
V
V
V
V
VOL  
Low level output voltage  
V
V
DRIVER ELECTRICAL CHARACTERISTICS  
See Figure 7-1 and Figure 7-2 , TXD = 0  
V, 50 Ω ≤ RL 65 Ω, and CL = open  
Bus output voltage(Dominant), CANH  
VO(DOM)  
2.75  
0.5  
4.5  
2.25  
3.0  
V
V
See Figure 7-1 and Figure 7-2 ,TXD = 0  
V, 50 Ω ≤ RL 65 Ω, and CL = open  
Bus output voltage(Dominant), CANL  
Bus output voltage(recessive), CANH See Figure 7-1 and Figure 7-2 ,TXD =  
0.5 x  
VCC2  
VO(REC)  
2.0  
V
and CANL  
VCC1 and RL = open  
See Figure 7-1 and Figure 7-2 ,TXD = 0  
V, 45 Ω ≤ RL 70 Ω, and CL = open  
Differential output voltage(dominant)  
1.4  
3.3  
V
See Figure 7-1 and Figure 7-2 ,TXD = 0  
V, 50 Ω ≤ RL 65 Ω, and CL = open  
VOD(DOM)  
Differential output voltage(dominant)  
Differential output voltage(dominant)  
Differential output voltage(recessive)  
Differential output voltage(recessive)  
1.5  
3.0  
V
See Figure 7-1 and Figure 7-2 ,TXD = 0  
V, RL = 2240 Ω, and CL = open  
1.5  
5.0  
V
See Figure 7-1 and Figure 7-2 ,TXD =  
VCC1, RL = 60 Ω, and CL = open  
-120.0  
-50.0  
-400.0  
-115.0  
12.0  
50.0  
400.0  
mV  
mV  
mV  
mA  
mA  
mA  
VOD(REC)  
See Figure 7-1 and Figure 7-2 ,TXD =  
VCC1, RL = open, and CL = open  
See Figure 7-1 and Figure 7-2 ,RL = 60  
Ω and CL = open  
Output symmetry (VCC2 - VO(CANH)  
VO(CANL)  
-
VSYM_DC  
)
See Figure 7-8 , -15 V < CANH < 40 V,  
CANL = open, and TXD = 0V  
Short circuit current steady state  
output current, dominant  
IOS(SS_DOM)  
See Figure 7-8 , -15 V < CANL < 40 V,  
CANH = open, and TXD = 0V  
115.0  
5.0  
Short circuit current steady state  
output current, recessive  
See Figure 7-8 , -27 V < VBUS < 32 V,  
VBUS = CANH = CANL, and TXD = VCC1  
IOS(SS_REC)  
-5.0  
RECEIVER ELECTRICAL CHARACTERISTICS  
See Figure 7-4 and Table 7-1 , -12 V ≤  
VIT  
Differential input threshold voltage  
500.0  
900.0  
mV  
mV  
V
V
CM 12 V  
See Figure 7-4 and Table 7-1 , -12 V ≤  
CM 12 V  
See Figure 7-4 and Table 7-1 , -12 V ≤  
CM 12 V  
See Figure 7-4 and Table 7-1 , -12 V ≤  
CM 12 V  
Hysteresis voltage for differential  
input threshold  
VHYS  
100  
V
Dominant state differential input  
voltage range  
VDIFF(DOM)  
0.9  
9
V
Recessive state differential input  
voltage range  
VDIFF(REC)  
VCM  
-4  
0.5  
12  
5
V
V
V
Input common mode range  
See Figure 7-4 and Table 7-1  
-12  
CANH = CANL = 5V, VCC to GND via 0Ω  
and 47kΩ resistor  
IOFF(LKG)  
power-off bus input leakage current  
µA  
Input capacitance to ground (CANH  
or CANL)  
CI  
TXD = VCC1  
TXD = VCC1  
20  
10  
90  
pF  
pF  
CID  
RID  
Differential input capacitance  
TXD = VCC1 ; -12 V VCM +12 V ;  
RID = RCAN_H + RCAN_L  
Differential input resistance  
40  
kΩ  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO1044  
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
Typical specifications are at VCC1 = 3.3 V, VCC2 = 5 V, Min/Max are over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TXD = VCC1 ; -12 V VCM +12 V ;  
RCAN_H or RCAN_L = Δ V / Δ I  
RIN  
Input resistance (CANH or CANL)  
20  
45  
kΩ  
Input resistance matching: (1 -  
RIN(CANH)/RIN(CANL)) x 100%  
RIN(M)  
VCANH = VCANL = 5 V  
-1  
1
%
THERMAL SHUTDOWN  
TTSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
190  
8
TTSD_HYST  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO1044  
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6.10 Switching Characteristics  
Typical specifications are at VCC1 = 3.3 V, VCC2 = 5 V, Min/Max are over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DEVICE SWITCHING CHARACTERISTICS  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; 1.71 V ≤  
150  
203  
ns  
V
CC1 1.89 V  
Total loop delay, driver input TXD to  
tPROP(LOOP1)  
receiver RXD, recessive to dominant  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
150  
175  
175  
199  
219  
ns  
ns  
ns  
to 90%) on TXD =1 ns; 2.25 V VCC1  
5.5 V  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; 1.71 V VCC1  
1.89 V  
Total loop delay, driver input TXD to  
tPROP(LOOP2)  
receiver RXD, dominant to recessive  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; 2.25 V VCC1  
212  
5.5 V  
Time for device to return to normal  
operation from VCC1 or VCC2 under  
voltage event  
Re-enable time after Undervoltage  
event  
tUV_RE_ENABLE  
300.0  
µs  
TXD=VCC1 or GND1, VCM  
1200VPK , See Figure 7-9  
=
CMTI  
Common mode transient immunity  
85  
kV/µs  
DRIVER SWITCHING CHARACTERISTICS  
Propagation delay time, Low-to-High  
TXD edge to driver recessive  
tpHR  
85  
70  
105  
105  
Propagation delay time, High-to-Low  
TXD edge to driver dominant  
tpLD  
See Figure 7-3 , RL = 60 Ω and CL = 100  
pF; input rise/fall time (10% to 90%) on  
TXD =1 ns  
ns  
tsk(p)  
tR  
pulse skew (|tpHR - tpLD|)  
12.5  
27  
Differential output signal rise time  
Differential output signal fall time  
tF  
42  
See Figure 7-3 and Figure 9-3 ,  
RTERM =60 Ω, CL =open, CSPLIT= 4.7nF,  
TXD= Dominant or receissive or toggling  
at 250 kHz, 1 MHz  
Driver symmetry (VO(CANH)  
VO(CANL))/VCC  
+
VSYM  
0.9  
1.2  
1.1  
3.8  
V/V  
ms  
See Figure 7-7 , RL = 60 Ω and CL =  
open  
tTXD_DTO  
Dominant time out  
RECEIVER SWITCHING CHARACTERISTICS  
Propagation delay time, bus  
tpRH  
dominant-to-recessive input edge to  
RXD high output  
90  
71  
130  
110  
ns  
ns  
Propogation delay time, bus  
recessive-to-dominant input edge to  
RXD low output  
See Figure 7-5 , CL(RXD) = 15 pF,  
tpDL  
tR  
tF  
Output signal rise time(RXD)  
Output signal fall time(RXD)  
1
1
ns  
ns  
FD TIMING PARAMETERS  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on CAN bus output pins with  
tBIT(TXD) = 500 ns  
435.0  
155.0  
530.0  
210.0  
ns  
ns  
tBIT(BUS)  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on CAN bus output pins with  
tBIT(TXD) = 200 ns  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO1044  
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
Typical specifications are at VCC1 = 3.3 V, VCC2 = 5 V, Min/Max are over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on RXD output pin with  
tBIT(TXD) = 500 ns  
400  
550.0  
ns  
tBIT(RXD)  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns  
Bit time on RXD output pin with  
tBIT(TXD) = 200 ns  
120.0  
-65.0  
220.0  
40.0  
ns  
ns  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; ΔtREC = tBIT(RXD)  
- tBIT(BUS)  
Receiver timing symmetry with  
tBIT(TXD) = 500 ns  
tREC  
See Figure 7-6 , RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF; input rise/fall time (10%  
to 90%) on TXD =1 ns; ΔtREC =  
tBIT(RXD) - tBIT(BUS)  
Receiver timing symmetry with  
tBIT(TXD) = 200 ns  
-45.0  
15.0  
ns  
6.11 Insulation Characteristics Curves  
600  
1200  
VCC = 5.5 V  
VCC = 3.6 V  
VCC = 2.75 V  
VCC = 1.89 V  
1000  
800  
600  
400  
200  
0
500  
400  
300  
200  
100  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D002  
D001  
6-2. Thermal Derating Curve for Limiting Power  
6-1. Thermal Derating Curve for Limiting Current  
per VDE for 8-D Package  
per VDE for 8-D Package  
6.12 Typical Characteristics  
2.3  
40  
ICC2 (VCC2 = 4.5V)  
ICC2 (VCC2 = 5V)  
ICC2 (VCC2 = 5.5V)  
38  
2.2  
2.1  
2
ICC1 (VCC1 = 1.8V)  
ICC1 (VCC1 = 2.5V)  
ICC1 (VCC1 = 3.3V)  
ICC1 (VCC1 = 5V)  
36  
34  
32  
30  
28  
26  
24  
22  
20  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
0
0.5  
1
1.5  
2
Data Rate (Mbps)  
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
Data Rate (Mbps)  
2.5  
3
3.5  
4
4.5  
5
D001  
D002  
6-3. Side 1 Supply Current vs Datarate  
6-4. Side 2 Supply Current vs Datarate  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6.12 Typical Characteristics (continued)  
3
40  
36  
32  
28  
24  
20  
16  
12  
8
Recessive  
250 kbps  
500 kbps  
1 Mbps  
2 Mbps  
5 Mbps  
2.75  
2.5  
2.25  
2
Recessive  
250 kbps  
500 kbps  
1 Mbps  
2 Mbps  
5 Mbps  
1.75  
1.5  
1.25  
1
4
0
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
Temperature (èC)  
D003  
D004  
6-5. Side 1 Supply Current vs Ambient Temperature  
6-6. Side 2 Supply Current vs Ambient Temperature  
170  
165  
160  
2.4  
2.3  
2.2  
2.1  
2
155  
tPROP(LOOP1)  
tPROP(LOOP2)  
150  
145  
140  
135  
130  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D005  
D006  
6-7. Loop Delay vs Ambient Temperature  
6-8. Dominant state differential output voltage vs Ambient  
Temperature  
3
2.8  
2.6  
2.4  
2.2  
2
1
0.9  
0.8  
0.7  
0.6  
0.5  
VIT(falling)  
VIT(rising)  
VHYS  
1.8  
1.6  
1.4  
1.2  
1
0.4  
0.3  
0.2  
0.1  
0
4.5 4.6 4.7 4.8 4.9  
5
VCC2 (V)  
5.1 5.2 5.3 5.4 5.5  
-40  
-20  
0
20  
40 60  
Temperature (°C)  
80  
100 120 140  
D007  
D008  
6-9. Dominant state differential output voltage vs Side2  
6-10. Receiver differential threshold voltage vs Ambient  
supply voltage  
Temperature  
2.5  
2.45  
2.4  
2.35  
2.3  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
Ambient Temperature (èC)  
D009  
6-11. Dominant timeout vs Ambient Temperature  
6-12. Glitch Free Power Up on VCC1 CAN Bus Remains  
Recessive  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO1044  
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
6.12 Typical Characteristics (continued)  
6-13. Glitch Free Power Up on VCC2 CAN Bus Remains  
6-14. Typical TXD, RXD, CANH and CANL Waveforms at 2  
Mbps  
Recessive  
6-15. Typical TXD, RXD, CANH and CANL Waveforms at 500 kbps  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO1044  
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
7 Parametric Measurement Information  
IO(CANH)  
CANH  
II  
0 or  
Vcc1  
VOD  
RL  
VO(CANH)  
V
O(CANL)  
+
2
TXD  
CANL  
IO(CANL)  
GND1  
GND2  
VI  
VOC  
VO(CANH)  
VO(CANL )  
GND1  
GND2  
7-1. Driver Voltage, Current and Test Definitions  
Dominant  
V
O
(CANH)  
» 3.5 V  
Recessive  
2.5 V  
»
V
1.5 V  
O (CANL)  
»
7-2. Bus Logic State Voltage Definitions  
Vcc  
0 V  
CANH  
CANL  
V
Vcc/2  
Vcc/2  
I
TXD  
RL  
VO  
CL  
t
t
PLH  
PHL  
V
O(D)  
90%  
10%  
0.9V  
VI  
V
O
0.5V  
(SEE NOTE A)  
V
t
t
f
O(R)  
r
A. The input pulse is supplied by a generator having the following characteristics: PRR 125 kHz, 50% duty  
cycle, tr 6 ns, tf 6 ns, ZO = 50 Ω.  
7-3. Driver Test Circuit and Voltage Waveforms  
CANH  
IO  
VI(CANH) VI(CANL)  
RXD  
+
VIC  
VID  
CANL  
=
2
VI(CANH)  
VO  
VI(CANL)  
GND2  
GND1  
7-4. Receiver Voltage and Current Definitions  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO1044  
 
 
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
CANH  
I
O
3.5 V  
RXD  
V
2.4 V  
I
2 V  
CANL  
1.5 V  
pHL  
t
t
pLH  
0.7 Vcc 1  
V
V
OH  
O
V
I
CL(RXD)  
90 %  
10 %  
(SEE NOTE A)  
1 .5 V  
0.3 Vcc 1  
V
O
V
t
t
f
OL  
r
GND 1  
GND 2  
A. The input pulse is supplied by a generator having the following characteristics: PRR 125 kHz, 50% duty cycle,  
tr 6 ns, tf 6 ns, ZO = 50 .  
7-5. Receiver Test Circuit and Voltage Waveforms  
7-1. Receiver Differential Input Voltage Threshold Test  
INPUT  
OUTPUT  
VCANH  
-11.5 V  
12.5 V  
-8.55 V  
9.45 V  
-8.75 V  
9.25 V  
-11.8 V  
12.2 V  
Open  
VCANL  
-12.5 V  
11.5 V  
-9.45 V  
8.55 V  
-9.25 V  
8.75 V  
-12.2 V  
11.8 V  
Open  
|VID|  
1000 mV  
1000 mV  
900 mV  
900 mV  
500 mV  
500 mV  
400 mV  
400 mV  
X
RXD  
L
L
VOL  
L
L
H
H
H
H
H
VOH  
VI  
70%  
TXD  
CANH  
30%  
30%  
0V  
tBIT(TXD)  
TXD  
5 x tBIT  
VI  
CL  
RL  
CANL  
tBIT(BUS)  
900 mV  
VDIFF  
RXD  
500 mV  
CL(RXD)  
GND1  
VO  
VOH  
70%  
RXD  
30%  
tBIT(RXD)  
VOL  
7-6. tLOOP and CAN FD Timing Parameter Measurement  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
Vcc  
V
I
CANH  
CANL  
TXD  
0 V  
R
V
C
OD  
L
L
V
OD(D)  
(see Note A )  
900 mV  
V
I
V
OD  
500 mV  
tTXD_DTO  
0 V  
GND 1  
A. The input pulse is supplied by a generator having the following characteristics: tr 6 ns, tf 6 ns, ZO = 50 .  
7-7. Dominant Time-out Test Circuit and Voltage Waveforms  
IOS  
200 s  
IOS  
CANH  
TXD  
VBUS  
IOS  
+
VBUS  
CANL  
VBUS  
0V  
0V  
œ
GND2  
or  
VBUS  
VBUS  
7-8. Driver Short-Circuit Current Test Circuit and Waveforms  
C = 0.1 F  
m
1%  
V
V
CC 1  
CC2  
V
CC 1  
±
CANH  
60 W  
C = 0.1 F ±1%  
m
+
GND1  
TXD  
GND  
2
V
V
OL  
OH  
or  
S1  
CANL  
0 V  
RXD  
V
V
OL  
OH  
or  
GND 1  
GND 2  
C
L
= 15 pF  
(includes probe and  
jig capacitance )  
V
CM  
7-9. Common-Mode Transient Immunity Test Circuit  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO1044  
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
8 Detailed Description  
8.1 Overview  
The ISO1044B device is a digitally isolated CAN transceiver that offers ±58-V DC bus fault protection and ±12-V  
common-mode voltage range. The device supports up to 5-Mbps data rate in CAN FD mode allowing much  
faster transfer of payload compared to classic CAN. The ISO1044B device has an isolation withstand voltage of  
3000 VRMS with a surge isolation voltage of 5kVPK. The device can operate from 1.8-V, 2.5-V, 3.3-V, and 5-V  
supplies on side 1 and a 5-V supply on side 2. This supply range is of particular advantage for applications  
operating in harsh industrial environments because the low voltage on side 1 enables the connection to low-  
voltage microcontrollers for power conservation, whereas the 5 V on side 2 maintains a high signal-to-noise ratio  
of the bus signals.  
8.2 Functional Block Diagram  
VCC1  
VCC2  
CANH  
CANL  
+
RXD  
œ
TXD  
GND1  
GND2  
Copyright © 2017, Texas Instruments Incorporated  
8.3 Feature Description  
8.3.1 CAN Bus States  
The CAN bus has two states during operation: dominant and recessive. A dominant bus state, equivalent to logic  
low, is when the bus is driven differentially by a driver. A recessive bus state is when the bus is biased to a  
common mode of VCC / 2 through the high-resistance internal input resistors of the receiver, equivalent to a logic  
high. The host microprocessor of the CAN node uses the TXD pin to drive the bus and receives data from the  
bus on the RXD pin. See 8-1 and 8-2.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
4
3
2
1
CANH  
Vdiff(D)  
Vdiff(R)  
CANL  
Time (t)  
Recessive  
Logic H  
Dominant  
Logic L  
Recessive  
Logic H  
8-1. Bus States (Physical Bit Representation)  
CANH  
RXD  
VCC / 2  
CANL  
8-2. Simplified Recessive Common Mode Bias and Receiver  
8.3.2 Digital Inputs and Outputs: TXD (Input) and RXD (Output)  
The VCC1 supply for the isolated digital input and output side of the device can be supplied by 1.8-V, 2.5-V, 3.3-V,  
and 5-V supplies and therefore the digital inputs and outputs are 1.8-V, 2.5-V, 3.3-V, and 5-V compatible.  
8.3.3 Protection Features  
8.3.3.1 TXD Dominant Timeout (DTO)  
The TXD DTO circuit prevents the transceiver from blocking network communication in the event of a hardware  
or software failure where the TXD pin is held dominant longer than the timeout period, tTXD_DTO. The DTO circuit  
timer starts on a falling edge on the TXD pin. The DTO circuit disables the CAN bus driver if no rising edge  
occurs before the timeout period expires, which frees the bus for communication between other nodes on the  
network. The CAN driver is activated again when a recessive signal occurs on the TXD pin, clearing the TXD  
DTO condition. The receiver and RXD pin still reflect activity on the CAN bus, and the bus terminals are biased  
to the recessive level during a TXD dominant timeout.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO1044  
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
TXD fault stuck dominant  
Example: PCB failure or bad software  
Fault is repaired and transmission  
capability is restored  
TXD  
(driver)  
tTXD_DTO  
Driver disabled freeing bus for other nodes  
Bus would be stuck dominant, blocking communication for the  
whole network but TXD DTO prevents this and frees the bus for  
communication after the tTXD_DTO time.  
Normal CAN  
communication  
CAN  
Bus  
Signal  
tTXD_DTO  
Communication from  
other bus nodes  
Communication from  
repaired nodes  
RXD  
(receiver)  
Communication from  
local node  
Communication from  
other bus nodes  
Communication from  
repaired nodes  
8-3. Example Timing Diagram for TXD DTO  
Note  
The minimum dominant TXD time (tTXD_DTO) allowed by the TXD DTO circuit limits the minimum  
possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven  
successive dominant bits (on TXD) for the worst case, where five successive dominant bits are  
followed immediately by an error frame. This, along with the tTXD_DTO minimum, limits the minimum  
data rate. Calculate the minimum transmitted data rate with 方程式 1.  
Minimum Data Rate = 11 / tTXD_DTO  
(1)  
8.3.3.2 Thermal Shutdown (TSD)  
If the junction temperature of the device exceeds the thermal shutdown threshold (TTSD), the device turns off the  
CAN driver circuits, blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the  
recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown  
condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature  
(TTSD_HYST) below the thermal shutdown temperature (TTSD) of the device.  
8.3.3.3 Undervoltage Lockout and Default State  
The supply pins have undervoltage detection that places the device in protected or default mode which protects  
the bus during an undervoltage event on the VCC1 or VCC2 supply pins. If the bus-side power supply, VCC2, is  
less than about 4 V, the power shutdown circuits in the ISO1044B device disable the transceiver to prevent false  
transmissions because of an unstable supply. If the VCC1 supply is still active when this occurs, the receiver  
output (RXD) goes to a default HIGH (recessive) value. 8-1 summarizes the undervoltage lockout and fail-  
safe behavior.  
8-1. Undervoltage Lockout and Default State  
VCC1  
VCC2  
DEVICE STATE  
BUS OUTPUT  
Per Device State and TXD  
Recessive  
RXD  
> UVVCC1  
<UVVCC1  
>UVVCC1  
> UVVCC2  
> UVVCC2  
< UVVCC2  
Functional  
Mirrors Bus  
Protected  
Undetermined  
Protected  
High Impedance  
Recessive (Default High)  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
Note  
After an undervoltage condition is cleared and the supplies have returned to valid levels, the device  
typically resumes normal operation in 300 µs.  
8.3.3.4 Floating Pins  
The ISO1044B has internal pull-ups on critical pins which places the device into known states if the pin floats.  
This internal bias should not be relied upon by design though, especially in noisy environments, but instead  
should be considered a failsafe protection feature.  
When a CAN controller supporting open drain outputs is used, an adequate external pull-up resistor must be  
used to ensure that the TXD output of the CAN controller maintains adequate bit timing to the input of the CAN  
transceiver.  
8.3.3.5 Unpowered Device  
The device is designed to be ideal passive or no load to the CAN bus if it is unpowered. The bus pins (CANH,  
CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the bus which  
is critical if some nodes of the network are unpowered while the rest of the of network remains in operation.  
8.3.3.6 CAN Bus Short Circuit Current Limiting  
The device has two protection features that limit the short circuit current when a CAN bus line has a short-circuit  
fault condition. The first protection feature is driver current limiting (both dominant and recessive states) and the  
second feature is TXD dominant state time out to prevent permanent higher short circuit current of the dominant  
state during a system fault. During CAN communication the bus switches between dominant and recessive  
states, therefore the short circuit current may be viewed either as the instantaneous current during each bus  
state or as an average current of the two states. For system current (power supply) and power considerations in  
the termination resistors and common-mode choke ratings, use the average short circuit current. Determine the  
ratio of dominant and recessive bits by the data in the CAN frame plus the following factors of the protocol and  
PHY that force either recessive or dominant at certain times:  
Control fields with set bits  
Bit stuffing  
Interframe space  
TXD dominant time out (fault case limiting)  
These factors ensure a minimum recessive amount of time on the bus even if the data field contains a high  
percentage of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant  
bits and their respective short circuit currents. Use Equation 2 to calculate the average short circuit current.  
IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive ×  
IOS(SS)_REC  
(2)  
]
where  
IOS(AVG) is the average short circuit current  
%Transmit is the percentage the node is transmitting CAN messages  
%Receive is the percentage the node is receiving CAN messages  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current  
Note  
Consider the short circuit current and possible fault cases of the network when sizing the power  
ratings of the termination resistance and other network components.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO1044  
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
8.4 Device Functional Modes  
8-2 and 8-3 list the driver and receiver functions. 8-4 lists the functional modes for the ISO1044B  
device.  
8-2. Driver Function Table  
INPUT  
TXD(1)  
L
OUTPUTS  
DRIVEN BUS STATE  
CANH(1)  
CANL(1)  
H
Z
L
Z
Dominant  
Recessive  
H
(1) H = high level, L = low level, Z = common mode (recessive) bias to VCC / 2. See 8-1 and 8-2  
for bus state and common mode bias information.  
8-3. Receiver Function Table  
CAN DIFFERENTIAL INPUTS  
DEVICE MODE  
Normal  
BUS STATE  
RXD PIN(1)  
(3)  
VID = VCANH VCANL  
ID VIT(MAX)  
VIT(MIN) < VID < VIT(MAX)  
ID VIT(MIN)  
Dominant  
Undefined  
Recessive  
Open  
L
V
Undefined  
H
H
V
Open (VID 0 V)  
(1) H = high level, L = low level  
8-4. Function Table  
DRIVER(1)  
OUTPUTS  
RECEIVER  
INPUTS  
TXD  
L(2)  
DIFFERENTIAL INPUTS  
VID = CANHCANL(3)  
OUTPUT  
RXD  
BUS STATE  
BUS STATE  
CANH  
CANL  
H
Z
Z
L
Z
Z
DOMINANT  
RECESSIVE  
RECESSIVE  
L
Undefined  
H
DOMINANT  
Undefined  
V
ID VIT(MAX)  
VIT(MIN) < VID < VIT(MAX)  
ID VIT(MIN)  
H
Open  
RECESSIVE  
V
X if VCC1 supply  
< UVVCC1  
Z
Z
RECESSIVE  
H
RECESSIVE  
Open (VID 0 V)  
(1) H = high level; L = low level; X = irrelevant; Z = high impedance  
(2) Logic low pulses to prevent dominant time-out.  
(3) See Receiver Electrical Characteristics section for input thresholds.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
 
 
 
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO1044B device can be used with other components from Texas Instruments such as a microcontroller, a  
transformer driver, and a linear voltage regulator to form a fully isolated CAN interface.  
9.2 Typical Application  
4
8
1
3
5
4
GND  
D2  
IN  
OUT  
NC  
EN  
SN6505  
3
2
7
6
3.3 V  
TPS76350  
EN  
VCC  
2
GND  
1
5
CLK  
D1  
8
3.3 V  
1
VCC1  
TXD  
VCC2  
100 nF  
100 nF  
VDD  
7
6
GND2  
2
3
TXD  
MCU  
RXD  
ISO  
Ground  
ISO1044  
RXD  
CANH  
CANL  
DGND  
Optional bus  
protection  
circuitry  
4
5
GND1  
Galvanic  
Isolation Barrier  
Digital  
Ground  
CANH  
CANL  
CMC  
Optional bus  
protection  
circuitry  
9-1. Application Circuit With ISO1044 in 8-SOIC Package  
ISO1044B is optimized for small solution size and meets 8 kV contact ESD (Electrostatic discharge) per IEC  
61000-4-2 standalone with no external components on bus. If the application requires the usage of Common  
mode choke (CMC) as shown in 9-1, then use of Transient voltage suppressor (TVS) is a must to achieve  
8kV IEC ESD. Test results with CMC Part number: ACT45B-101-2P-TL003 and TVS Part number: CPDT-12V  
show 8 kV IEC ESD (Level 4) pass.  
9.2.1 Design Requirements  
Unlike an optocoupler-based solution, which requires several external components to improve performance,  
provide bias, or limit current, the ISO1044B device only requires external bypass capacitors to operate.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO1044  
 
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
9.2.2 Detailed Design Procedure  
9.2.2.1 Bus Loading, Length and Number of Nodes  
The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A large number of nodes requires transceivers with high input impedance such as the ISO1044B  
transceiver.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2 Standard. These organizations and standards have made system-level trade-offs for data rate, cable  
length, and parasitic loading of the bus. Examples of some of these specifications are ARINC825, CANopen,  
DeviceNet, and NMEA2000.  
The ISO1044B device is specified to meet the 1.5-V requirement with a 50-load, incorporating the worst case  
including parallel transceivers. The differential input resistance of the ISO1044B device is a minimum of 30 k. If  
100 ISO1044B transceivers are in parallel on a bus, this requirement is equivalent to a 300-differential load  
worst case. That transceiver load of 300 in parallel with the 60 gives an equivalent loading of 50 .  
Therefore, the ISO1044B device theoretically supports up to 100 transceivers on a single bus segment.  
However, for CAN network design margin must be given for signal loss across the system and cabling, parasitic  
loadings, network imbalances, ground offsets and signal integrity, therefore a practical maximum number of  
nodes is typically much lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m  
by careful system design and data-rate tradeoffs. For example, CANopen network design guidelines allow the  
network to be up to 1 km with changes in the termination resistance, cabling, less than 64 nodes, and a  
significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. Using this flexibility requires the  
responsibility of good network design and balancing these tradeoffs.  
9.2.2.2 CAN Termination  
The ISO11898 standard specifies the interconnect to be a single twisted pair cable (shielded or unshielded) with  
120-Ω characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be used  
to terminate both ends of the cable to prevent signal reflections. Unterminated drop-lines (stubs) connecting  
nodes to the bus should be kept as short as possible to minimize signal reflections. The termination may be in a  
node, but if nodes are removed from the bus, the termination must be carefully placed so that it is not removed  
from the bus.  
Node 1  
Node 2  
Node 3  
Node n  
(with termination)  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
RTERM  
9-2. Typical CAN Bus  
Termination may be a single 120-Ω resistor at the end of the bus, either on the cable or in a terminating node. If  
filtering and stabilization of the common-mode voltage of the bus is desired, then split termination can be used.  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO1044  
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
(See 9-3). Split termination improves the electromagnetic emissions behavior of the network by eliminating  
fluctuations in the bus common-mode voltages at the start and end of message transmissions.  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM / 2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM / 2  
CANL  
CANL  
9-3. CAN Bus Termination Concepts  
10 Power Supply Recommendations  
To make sure operation is reliable at all data rates and supply voltages, a 0.1-µF bypass capacitor is  
recommended at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to  
the supply pins as possible. In addition, a bulk capacitance, typically 4.7 μF, can be placed near the VCC2  
supply pin. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as TI's SN6505B. For such  
applications, detailed power supply design, and transformer selection recommendations are available in the  
SN6505 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheet.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO1044  
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 11.2 Figure 11-1). Layer  
stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and  
low-frequency signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
Suggested placement and routing of ISO1044B bypass capacitors and optional TVS diodes is shown in 11-2.  
In particular, place the VCC2 bypass capacitors on the top layer, as close to the device pins as possible, and  
complete the connection to the VCC2 and GND2 pins without using vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over lower-  
cost alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater  
strength and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
11-1. Recommended Layer Stack  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
11-2. 8-D Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO1044  
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, ISO1044 Isolated CAN Transceiver Evaluation Module User's Guide  
Texas Instruments, Isolate your CAN systems without compromising on performance or space TI TechNote  
Texas Instruments, Isolation Glossary  
Texas Instruments, High-voltage reinforced isolation: Definitions and test methodologies  
Texas Instruments, How to Isolate Signal and Power in Isolated CAN Systems TI TechNote  
Texas Instruments, How to Design Isolated CAN Systems With Correct Bus Protection Application Report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: ISO1044  
 
 
 
 
 
 
 
 
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO1044  
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSDE  
METAL  
EXPOSED  
METAL  
.0028 MIN  
[0.07]  
ALL AROUND  
.0028 MAX  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: ISO1044  
ISO1044  
www.ti.com.cn  
ZHCSL04A MARCH 2020 REVISED JULY 2020  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO1044  
重要声明和免责声明  
TI 提供技术和可靠性数据包括数据表、设计资源包括参考设计、应用或其他设计建议、网络工具、安全信息和其他资源不保证没  
有瑕疵且不做出任何明示或暗示的担保包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将独自承担以下全部责任(1) 针对您的应用选择合适的 TI 产品(2) 设计、验  
证并测试您的应用(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更恕不另行通知。TI 授权您仅可  
将这些资源用于开发本资源所述的使用 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三  
方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 () TI.com.cn 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方  
式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020德州仪器 (TI) 公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1044BD  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1044B  
1044B  
ISO1044BDR  
2500 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ISO1044BDR

采用小型封装的隔离式 CAN FD 收发器 | D | 8 | -40 to 125
TI

ISO1050

ISOLATED CAN TRANSCEIVER
TI

ISO1050DUB

ISOLATED CAN TRANSCEIVER
TI

ISO1050DUBR

ISOLATED CAN TRANSCEIVER
TI

ISO1050DW

ISOLATED CAN TRANSCEIVER
TI

ISO1050DWR

ISOLATED CAN TRANSCEIVER
TI

ISO1050_10

ISOLATED CAN TRANSCEIVER
TI

ISO1050_101

ISOLATED CAN TRANSCEIVER
TI

ISO1050_13

ISOLATED CAN TRANSCEIVER
TI

ISO106

SIGNAL ISOLATION BUFFER AMPLIFIERS
BB

ISO106-BI

暂无描述
BB

ISO106B

SIGNAL ISOLATION BUFFER AMPLIFIERS
BB