ISO1211DR [TI]

用于数字输入模块的单通道隔离式 24V 至 60V 数字输入接收器 | D | 8 | -40 to 125;
ISO1211DR
型号: ISO1211DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于数字输入模块的单通道隔离式 24V 至 60V 数字输入接收器 | D | 8 | -40 to 125

文件: 总46页 (文件大小:1963K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
用于数字输入模块的 ISO121x 隔离式 24V 60V 数字输入接收器  
1 特性  
3 说明  
1
符合 IEC 61131-2 针对 24V 隔离式数字输入的 1、  
23 类特性标准  
ISO1211 ISO1212 器件是隔离式 24V 60V 数字  
输入接收器,符合 IEC 61131-2 1 类、2 类和 3 类特  
性标准。这些器件可以在可编程逻辑控制器 (PLC)、电  
机控制、电网基础设施和其他工业应用中实现 9V 至  
300V 直流和交流数字输入 模块。不同于具有分立式、  
不精确电流限制电路的传统光耦合器解决方  
支持 9V 300V 直流和交流数字输入设计(使用  
外部电阻器)  
通过精确电流限制实现低功耗:  
对于 3 类,电流为 2.2mA 2.47mA  
可调电流,最高为 6.5mA  
案,ISO121x 器件提供具有精确电流限制的简单低功  
耗解决方案,可实现紧凑型和高密度 I/O 模块的设计。  
这些器件不需要现场侧电源,可配置为拉电流或灌电流  
输入。  
消除了对现场侧电源的需求  
具有反极性保护功能的宽输入电压范围:±60V  
断线检测(请参阅 TIDA-01509)  
可配置为拉电流或灌电流输入  
高数据速率:最高 4Mbps  
ISO121x 器件的工作电压范围为 2.25V 5.5V,支持  
2.5V3.3V 5V 控制器。具有反极性保护的 ±60V  
输入容差有助于确保输入引脚在可忽略的反向电流发生  
故障时受到保护。这些器件支持高达 4Mbps 的数据速  
率,可通过 150ns 的最小脉冲宽度,从而实现高速运  
行。ISO1211 器件适用于需要通道间隔离功能的设  
计,而 ISO1212 器件适用于多通道空间受限的设计。  
多路复用器输出信号使能引脚  
高瞬态抗扰性:±70kV/µs CMTI  
宽电源电压范围 (VCC1)2.25V 5.5V  
环境温度范围:–40°C +125°C  
紧凑型封装选项:  
单通道 ISO1211SOIC-8  
双通道 ISO1212SSOP-16  
与传统解决方案相比,ISO121x 器件减少了组件数  
量,简化了系统设计,提高了性能,降低了电路板温  
度。有关详细信息,请参阅《如何简化隔离式 24V  
PLC 数字输入模块设计》TI 技术手册《如何提高电  
机驱动中的隔离式数字输入的速度和可靠性》TI 技术  
手册以及《如何设计用于 ±48V110V 240V 直流  
和交流检测的隔离式比较器》TI 技术手册。  
安全相关认证:  
符合 DIN V VDE V 0884-10 标准的基本绝缘  
UL 1577 认证,2500VRMS 绝缘  
可提供 CSACQCTUV 认证  
2 应用  
可编程逻辑控制器 (PLC)  
器件信息(1)  
数字输入模块  
器件型号  
ISO1211  
ISO1212  
封装  
SOIC (8)  
SSOP (16)  
封装尺寸(标称值)  
4.90mm × 3.91mm  
4.90mm × 3.90mm  
混合 I/O 模块  
电机驱动 I/O 和位置反馈  
CNC 控制  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
变电站自动化  
数据采集  
二进制输入模块  
ISO121x 器件与传统解决方案相比可降低电路板温度  
应用图表  
TA = 25°C  
TA = 25°C  
Field  
PLC Digital Input Module  
ISO1211  
RTHR  
VCC1  
OUT  
SENSE  
IN  
Host  
Controller  
RSENSE  
Sensor/  
Switch  
24 V  
FGND  
GND1  
a) 8-Ch With ISO1212 b) 8-Ch Traditional Solution Without Current Limit  
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEY7  
 
 
 
 
 
 
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
目录  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 17  
8.4 Device Functional Modes........................................ 18  
Application and Implementation ........................ 19  
9.1 Application Information............................................ 19  
9.2 Typical Application .................................................. 19  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 6  
6.5 Power Ratings........................................................... 6  
6.6 Insulation Specifications............................................ 7  
6.7 Safety-Related Certifications..................................... 8  
6.8 Safety Limiting Values .............................................. 9  
6.9 Electrical Characteristics—DC Specification........... 10  
6.10 Switching Characteristics—AC Specification........ 11  
6.11 Insulation Characteristics Curves ......................... 12  
6.12 Typical Characteristics.......................................... 13  
Parameter Measurement Information ................ 14  
7.1 Test Circuits ............................................................ 14  
Detailed Description ............................................ 17  
9
10 Power Supply Recommendations ..................... 30  
11 Layout................................................................... 31  
11.1 Layout Guidelines ................................................. 31  
11.2 Layout Example .................................................... 31  
12 器件和文档支持 ..................................................... 33  
12.1 器件支持................................................................ 33  
12.2 文档支持................................................................ 33  
12.3 相关链接................................................................ 33  
12.4 接收文档更新通知 ................................................. 33  
12.5 社区资源................................................................ 33  
12.6 ....................................................................... 33  
12.7 静电放电警告......................................................... 33  
12.8 术语表 ................................................................... 34  
13 机械、封装和可订购信息....................................... 34  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision D (March 2018) to Revision E  
Page  
已更改 VIH and VIH to VIL and VIH in the RTHR resistor description in the Setting Current Limit and Voltage Thresholds  
section .................................................................................................................................................................................. 21  
Changes from Revision C (February 2018) to Revision D  
Page  
更新了特性 应用 部分。在说明 相关文档 部分中添加了新的 TI 技术手册参考。............................................................ 1  
Changed the unit for CPG from µm to mm in the Insulation Specifications table.................................................................. 7  
已更改 the Functional Block Diagram................................................................................................................................... 17  
已更改 VIL from min to typ in the VIL equation ...................................................................................................................... 22  
已添加 the Designing for Input Voltages Greater Than 60 V section................................................................................... 24  
已添加 the bidirectional implementation example to the Sourcing and Sinking Inputs section............................................ 30  
Changes from Revision B (September 2017) to Revision C  
Page  
已添加 将断线检测添加到特性 部分........................................................................................................................................ 1  
已添加 将多路复用器输出信号使能引脚添加到了特性 部分中,更改了所有需要为 DW D 封装完成的认证 ...................... 1  
已更改 RTHR = 5 kΩ to 4 kΩ in the High-Level Voltage Transition Threshold vs Ambient Temperature graph.................... 13  
已更改 the Type 1 RTH value from 3 kΩ to 2.5 kΩ in the Surge, IEC ESD and EFT table................................................... 25  
Changes from Revision A (September 2017) to Revision B  
Page  
已更改 将状态从预告信息改为生产数据.................................................................................................................................. 1  
2
Copyright © 2017–2018, Texas Instruments Incorporated  
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
5 Pin Configuration and Functions  
ISO1211 D Package  
8-Pin SOIC  
Top View  
VCC1  
SENSE  
1
2
3
4
8
7
6
5
EN  
IN  
FGND  
SUB  
OUT  
GND1  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
NO.  
1
VCC1  
Power supply, side 1  
Output enable. The output pin on side 1 is enabled when the EN pin is high or open. The output pin on  
side 1 is in the high-impedance state when the EN pin is low. In noisy applications, tie the EN pin to  
2
EN  
I
VCC1  
.
3
4
5
6
7
8
OUT  
GND1  
SUB  
O
I
Channel output  
Ground connection for VCC1  
Internal connection to input chip substrate. Leave this pin unconnected on the board.  
FGND  
IN  
Field-side ground  
Field-side current input  
Field-side voltage sense  
SENSE  
I
Copyright © 2017–2018, Texas Instruments Incorporated  
3
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
ISO1212 DBQ Package  
16-Pin SSOP  
Top View  
GND1  
1
2
3
4
5
6
7
8
16 SENSE1  
VCC1  
EN  
15  
IN1  
14 FGND1  
13 SUB1  
OUT1  
OUT2  
NC  
Functional Isolation  
12 SUB2  
11 SENSE2  
NC  
10  
9
IN2  
GND1  
FGND2  
Pin Functions  
PIN  
NAME  
I/O  
Description  
NO.  
1
GND1  
VCC1  
Ground connection for VCC1  
Power supply, side 1  
2
Output enable. The output pins on side 1 are enabled when the EN pin is high or open. The output  
pins on side 1 are in the high-impedance state when the EN pin is low. In noisy applications, tie the EN  
3
EN  
I
pin to VCC1  
.
4
OUT1  
OUT2  
O
O
Channel 1 output  
Channel 2 output  
5
6
NC  
Not connected  
7
8
GND1  
FGND2  
IN2  
I
Ground connection for VCC1  
9
Field-side ground, channel 2  
10  
11  
12  
13  
14  
15  
16  
Field-side current input, channel 2  
SENSE2  
SUB2  
I
Field-side voltage sense, channel 2  
I
Internal connection to input chip 2 substrate. Leave this pin unconnected on the board.  
Internal connection to input chip 1 substrate. Leave this pin unconnected on the board.  
Field-side ground, channel 1  
SUB1  
FGND1  
IN1  
Field-side current input, channel 1  
SENSE1  
I
Field-side voltage sense, channel 1  
4
Copyright © 2017–2018, Texas Instruments Incorporated  
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCC1  
Supply voltage, control side  
Voltage on OUTx pins and EN pin  
Output current on OUTx pins  
–0.5  
6
V
VOUTx  
VEN  
,
–0.5  
VCC1 + 0.5(2)  
V
IO  
–15  
–60  
–60  
–40  
–65  
15  
60  
mA  
V
VINx, VSENSEx Voltage on IN and SENSE pins  
V(ISO,FUNC)  
Functional isolation between channels in ISO1212 on the field side  
60  
V
TJ  
Junction temperature  
Storage temperature  
150  
150  
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±2000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
MAX  
UNIT  
VCC1  
VINx  
VSENSEx  
Supply voltage input side  
2.25  
5.5  
V
,
Voltage on INx and SENSEx pins(1)  
–60  
60  
V
VCC1 = 5 V  
–4  
–3  
–2  
IOH  
High-level output current from OUTx pin  
Low-level output current into OUTx pin  
VCC1 = 3.3 V  
VCC1 = 2.5 V  
VCC1 = 5 V  
mA  
mA  
4
3
2
IOL  
VCC1 = 3.3 V  
VCC1 = 2.5 V  
tUI  
TA  
Minimum pulse width at SENSEx pins  
Ambient temperature  
150  
–40  
ns  
°C  
125  
(1) See the Thermal Considerations section.  
Copyright © 2017–2018, Texas Instruments Incorporated  
5
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
6.4 Thermal Information  
ISO1211  
D (SOIC)  
8 PINS  
146.1  
63.1  
ISO1212  
DBQ (SSOP)  
16 PINS  
116.9  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
56.5  
80  
64.7  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
9.6  
27.9  
ΨJB  
79  
64.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO1211  
VSENSE = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω,  
RTHR = 0 Ω, TJ = 150°C  
PD Maximum power dissipation, both sides  
450  
20  
mW  
mW  
mW  
Maximum power dissipation, output side VCC1 = 5.5 V, CL = 15 pF, Input 2-MHz 50% duty-  
PD1  
PD2  
(side 1)  
cycle square wave at SENSE pin, TJ = 150°C  
Maximum power dissipation, field input VSENSE = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω,  
430  
side  
RTHR = 0 Ω, TJ = 150°C  
ISO1212  
VSENSEx = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω,  
RTHR = 0 Ω, TJ = 150°C  
PD Maximum power dissipation, both sides  
900  
40  
mW  
mW  
mW  
Maximum power dissipation, output side VCC1 = 5.5 V, CL = 15 pF, Input 2-MHz 50% duty-  
PD1  
PD2  
(side 1)  
Maximum power dissipation, field input VSENSEx = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω,  
side RTHR = 0 Ω, TJ = 150°C  
cycle square wave at SENSEx pins, TJ = 150°C  
860  
6
Copyright © 2017–2018, Texas Instruments Incorporated  
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
6.6 Insulation Specifications  
SPECIFICATION  
UNIT  
PARAMETER  
TEST CONDITIONS  
D-8  
DBQ-16  
CLR  
CPG  
External clearance(1)  
External Creepage(1)  
Shortest terminal-to-terminal distance through air  
4
3.7  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
4
3.7  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
10.5  
> 600  
I
10.5  
> 600  
I
µm  
V
Rated mains voltage 150 VRMS  
I-IV  
I-III  
I-IV  
I-III  
Overvoltage category  
Rated mains voltage 300 VRMS  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
AC voltage (bipolar)  
566  
566  
VPK  
AC voltage (sine wave); time-dependent dielectric  
breakdown (TDDB) test  
400  
566  
400  
566  
VRMS  
VDC  
VPK  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM, t = 60 s (qualification),  
VTEST = VIOTM, t= 1 s (100% production)  
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
3600  
3600  
Test method per IEC 60065-1, 1.2/50 µs  
waveform,  
VTEST = 1.3 × VIOSM = 5200 VPK (qualification)  
VIOSM  
4000  
< 5  
4000  
< 5  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM = 680 VPK, tm = 10 s  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.3 × VIORM = 736 VPK, tm = 10 s  
< 5  
< 5  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test),  
Vini = VIOTM, tini = 1 s;  
< 5  
< 5  
Vpd(m) = 1.5 × VIORM = 849 VPK, tm = 10 s  
CIO  
RIO  
Barrier capacitance, input to output(5) VIO = 0.4 × sin (2 πft), f = 1 MHz  
440  
> 1012  
> 1011  
> 109  
560  
> 1012  
> 1011  
> 109  
fF  
VIO = 500 V, TA = 25°C  
Insulation resistance, input to  
VIO = 500 V, 100°C TA 125 °C  
output(5)  
Ω
VIO = 500 V at TS = 150 °C  
Pollution degree  
Climatic category  
2
2
40/125/21  
40/125/21  
UL 1577  
VTEST = VISO = 2500 VRMS, t = 60 s (qualification);  
VISO  
Withstand isolation voltage  
2500  
2500  
VRMS  
VTEST = 1.2 × VISO = 3000 VRMS, t = 1 s (100%  
production)  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall  
be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device  
Copyright © 2017–2018, Texas Instruments Incorporated  
7
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to  
DIN V VDE V 0884-10  
(VDE V 0884-10):2006-  
12 and DIN EN 61010-1  
(VDE 0411-1):2011-07  
Certified according to EN  
61010-1:2010 (3rd Ed) and  
EN 60950-  
1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013  
Recognized under UL  
1577 Component  
Recognition Program  
Certified according to IEC  
60950-1 and IEC 62368-1  
Certified according to  
GB4943.1-2011  
Basic insulation per EN  
61010-1:2010 (3rd Ed) up  
to working voltage of 300  
Basic Insulation,  
Maximum Transient  
Isolation Voltage, 3600  
370 VRMS (ISO1212) and  
400 VRMS (ISO1211) Basic  
Insulation working voltage  
per CSA 60950-1-07+A1 +  
A2 and IEC 60950-1 2nd  
Ed. + A1 + A2  
300 VRMS Basic Insulation  
working voltage per CSA  
62368-1-14 and IEC 62368-  
1 2nd Ed.  
VRMS  
,
VPK  
,
Basic Insulation, Altitude ≤  
5000m, Tropical Climate,  
400 VRMS maximum  
working voltage  
Basic insulation per EN  
60950-  
Single protection, 2500  
VRMS  
Maximum Repetitive  
Peak Isolation Voltage,  
1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013 up to  
working voltage of 370  
VRMS (ISO1212) and 400  
VRMS (ISO1211)  
566 VPK  
,
Maximum Surge  
Isolation Voltage, 4000  
VPK  
ISO1211 Certificate  
number:  
CQC15001121656,  
ISO1212 Certification  
Planned  
Certificate number:  
40016131  
Master contract number:  
220991  
File number: E181974  
Client ID number: 77311  
8
Copyright © 2017–2018, Texas Instruments Incorporated  
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
6.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO1211  
R
θJA = 146.1°C/W, VI = 2.75 V, TJ = 150°C,  
310  
237  
155  
35  
TA = 25°C, see 1  
θJA = 146.1°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 146.1°C/W, VI = 5.5 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 146.1°C/W, VI = 24 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 146.1°C/W, VI = 36 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 146.1°C/W, VI = 60 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 146.1°C/W, TJ = 150°C, TA = 25°C,  
see 2  
Safety input, output, or supply  
current - side 1  
R
IS  
mA  
R
R
R
IS  
Safety input current - field side  
23  
mA  
R
14  
Safety input, output, or total  
power  
R
PS  
855  
150  
mW  
°C  
TS  
Maximum safety temperature  
ISO1212  
R
θJA = 116.9°C/W, VI = 2.75 V, TJ = 150°C,  
389  
297  
194  
44  
TA = 25°C, see 3  
Safety input, output, or supply  
current - side 1  
RθJA= 116.9°C/W, VI = 3.6 V, TJ = 150°C,  
IS  
mA  
mA  
TA = 25°C, see 3  
RθJA = 116.9°C/W, VI = 5.5 V, TJ = 150°C,  
TA = 25°C, see 3  
RθJA = 116.9°C/W, VI = 24 V, TJ = 150°C,  
TA = 25°C, see 3  
R
θJA= 116.9°C/W, VI = 36 V, TJ = 150°C,  
IS  
Safety input current - field side  
29  
TA = 25°C, see 3  
R
θJA = 116.9°C/W, VI = 60 V, TJ = 150°C,  
17  
TA = 25°C, see 3  
Safety input, output, or total  
power  
R
θJA = 116.9°C/W, TJ = 150°C, TA = 25°C,  
PS  
TS  
1070  
150  
mW  
°C  
see 4  
Maximum safety temperature  
(1) The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air  
thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air  
thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount  
packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient  
temperature plus the power times the junction-to-air thermal resistance.  
Copyright © 2017–2018, Texas Instruments Incorporated  
9
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
MAX UNIT  
6.9 Electrical Characteristics—DC Specification  
(Over recommended operating conditions unless otherwise noted).  
PARAMETER  
VCC1 VOLTAGE SUPPLY  
Positive-going UVLO threshold voltage  
(VCC1  
VIT– (UVLO1) Negative-going UVLO threshold (VCC1  
VHYS (UVLO1) UVLO threshold hysteresis (VCC1  
TEST CONDITIONS  
MIN  
TYP  
VIT+ (UVLO1)  
2.25  
V
)
)
1.7  
V
V
)
0.2  
0.6  
1.2  
ISO1211  
ISO1212  
1
VCC1 supply  
quiescent current  
ICC1  
EN = VCC1  
mA  
1.9  
LOGIC I/O  
Positive-going input logic threshold  
voltage for EN pin  
0.7 ×  
VCC1  
VIT+ (EN)  
V
V
Negative-going input logic threshold  
voltage for EN pin  
0.3 ×  
VCC1  
VIT– (EN)  
0.1 ×  
VCC1  
VHYS(EN)  
IIH  
VOH  
Input hysteresis voltage for EN pin  
Low-level input leakage at EN pin  
V
EN = GND1  
–10  
μA  
VCC1 = 4.5 V; IOH = –4 mA  
VCC1 = 3 V; IOH = –3 mA  
VCC1= 2.25 V; IOH = –2 mA, see 10  
VCC1  
– 0.4  
High-level output voltage on OUTx  
Low-level output voltage on OUTx  
V
V
VCC1 = 4.5 V; IOH = 4 mA  
VCC1 = 3 V; IOH = 3 mA  
VOL  
0.4  
VCC1= 2.25 V ; IOH = 2 mA, see 10  
CURRENT LIMIT  
I(INx+SENSEx), Typical sum of current drawn from IN  
RTHR = 0 Ω, RSENSE = 562 Ω, VSENSE = 24 V,  
–40°C < TA < 125°C, see 11  
2.2  
2.47 mA  
µA  
and SENSE pins across temperature  
TYP  
RTHR = 0 Ω, RSENSE = 562 Ω ± 1%;  
–60 V < VSENSE < 0 V, see 11  
–0.1  
RTHR = 0 Ω, RSENSE = 562 Ω ± 1%;  
5 V < VSENSE < VIL, see 11  
1.9  
2.05  
2.1  
2.5  
RTHR = 0 Ω, RSENSE = 562 Ω ± 1%;  
VIL < VSENSE < 30 V, see 11  
2.75  
mA  
RTHR = 0 Ω, RSENSE = 562 Ω ± 1%;  
30 V < VSENSE < 36 V, see 11  
2.83  
Sum of current drawn from IN and  
RTHR = 0 Ω, RSENSE = 562 Ω ± 1%;  
36 V < VSENSE < 60 V(1), see 11  
I(INx+SENSEx)  
SENSE pins  
2.1  
3.1  
µA  
6.8  
RTHR = 0 Ω, RSENSE = 200 Ω ± 1%;  
–60 V < VSENSE < 0 V, see 11  
–0.1  
RTHR = 0 Ω, RSENSE = 200 Ω ± 1%;  
5 V < VSENSE < VIL, see 11  
5.3  
5.5  
5.5  
RTHR = 0 Ω, RSENSE = 200 Ω ± 1%;  
VIL < VSENSE < 36 V(1), see 11  
7
mA  
RTHR = 0 Ω, RSENSE = 200 Ω ± 1%;  
36 V < VSENSE < 60 V(1), see 11  
7.3  
(1) See the Thermal Considerations section.  
10  
Copyright © 2017–2018, Texas Instruments Incorporated  
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
Electrical Characteristics—DC Specification (continued)  
(Over recommended operating conditions unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOLTAGE TRANSITION THRESHOLD ON FIELD SIDE  
RSENSE = 562 Ω, RTHR = 0 Ω, see 11  
RSENSE = 562 Ω, RTHR = 1 kΩ, see 11  
RSENSE = 562 Ω, RTHR = 4 kΩ, see 11  
RSENSE = 562 Ω, RTHR = 0 Ω, see 11  
RSENSE = 562 Ω, RTHR = 1 kΩ, see 11  
RSENSE = 562 Ω, RTHR = 4 kΩ, see 11  
RSENSE = 562 Ω, RTHR = 0 Ω, see 11  
RSENSE = 562 Ω, RTHR = 1 kΩ, see 11  
RSENSE = 562 Ω, RTHR = 4 kΩ, see 11  
6.5  
8.7  
7
9.2  
Low level threshold voltage at module  
input (including RTHR) for output high  
VIL  
V
15.2  
15.8  
8.2  
8.55  
High level threshold voltage at module  
input (including RTHR) for output low  
VIH  
10.4 10.95  
V
V
17 18.25  
1
1
1
1.2  
1.2  
1.2  
Threshold voltage hysteresis at module  
VHYS  
input  
6.10 Switching Characteristics—AC Specification  
(Over recommended operating conditions unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output signal rise and fall time,  
OUTx pins  
tr, tf  
tPLH  
tPHL  
Input rise and fall times = 10 ns, see 10  
Input rise and fall times = 10 ns, see 10  
Input rise and fall times = 10 ns, see 10  
3
ns  
Propagation delay time for low to  
high transition  
110  
140  
ns  
ns  
Propagation delay time for high  
to low transition  
10  
15  
tsk(p)  
tUI  
Pulse skew |tPHL - tPLH  
|
Input rise and fall times = 10 ns, see 10  
Input rise and fall times = 125 ns, see 10  
102  
130  
ns  
ns  
Minimum pulse width  
150  
Disable propagation delay, high-  
to-high impedance output  
tPHZ  
tPLZ  
tPZH  
tPZL  
See 13  
See 12  
See 13  
See 12  
See 14  
17  
17  
3
40  
40  
ns  
ns  
Disable propagation delay, low-  
to-high impedance output  
Enable propagation delay, high  
impedance-to-high output  
8.5  
40  
µs  
Enable propagation delay, high  
impedance-to-low output  
17  
70  
ns  
Common mode transient  
immunity  
CMTI  
25  
kV/µs  
版权 © 2017–2018, Texas Instruments Incorporated  
11  
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
6.11 Insulation Characteristics Curves  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
350  
VCC1 = 2.75 V  
VCC1 = 3.6 V  
VCC1 = 5.5 V  
VINx = 24 V  
VINx = 36 V  
VINx = 60 V  
300  
250  
200  
150  
100  
50  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D002  
D001  
2. Thermal Derating Curve for Safety Limiting Power per  
1. Thermal Derating Curve for Safety Limiting Current per  
VDE for D-8 Package  
VDE for D-8 Package  
450  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = 2.75 V  
400  
350  
300  
250  
200  
150  
100  
50  
VCC1 = 3.6 V  
VCC1 = 5.5 V  
VINx = 24 V  
VINx = 36 V  
VINx = 60 V  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D004  
D003  
4. Thermal Derating Curve for Safety Limiting Power per  
3. Thermal Derating Curve for Safety Limiting Current per  
VDE for DBQ-16 Package  
VDE for DBQ-16 Package  
12  
版权 © 2017–2018, Texas Instruments Incorporated  
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
6.12 Typical Characteristics  
2.75  
2.5  
2.25  
2
3
2.75  
2.5  
-40èC  
25èC  
85èC  
105èC  
115èC  
125èC  
1.75  
1.5  
1.25  
1
œ40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
0.75  
0.5  
0.25  
0
2.25  
2
0
5
10  
15  
20  
25  
30  
30  
35  
40  
45  
50  
55  
60  
Input Voltage (V)  
Input Voltage (V)  
D006  
RSENSE = 562 Ω  
RTHR = 0 Ω  
RSENSE = 562 Ω  
RTHR = 0 Ω  
5. Input Current vs Input Voltage  
6. Input Current vs Input Voltage  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
RTHR = 0 kW  
RTHR = 1 kW  
RTHR = 2 kW  
RTHR = 3 kW  
RTHR = 4 kW  
8
7
6
RTHR = 0 kW  
RTHR = 1 kW  
RTHR = 2 kW  
RTHR = 3 kW  
RTHR = 4 kW  
8
5
7
4
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
-50  
-30  
-10  
10  
30  
50  
70  
90  
110 130  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
RSENSE = 562 Ω  
RSENSE = 562 Ω  
7. High-Level Voltage Transition Threshold vs Ambient  
8. Low-Level Voltage Transition Threshold vs Ambient  
Temperature  
Temperature  
7
6
5
4
3
2
1
0
-40èC  
25èC  
85èC  
105èC  
115èC  
125èC  
0
10  
20  
30  
40  
50  
60  
70  
Input Voltage (V)  
D009  
RSENSE = 200 Ω  
RTHR = 0 Ω  
9. Input Current vs Input Voltage  
版权 © 2017–2018, Texas Instruments Incorporated  
13  
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
7 Parameter Measurement Information  
7.1 Test Circuits  
SENSE  
18 V  
V
50%  
I
50%  
0 V  
RSENSE  
Capacitive  
Isolation  
IN  
VCC1  
Signal  
t
t
PHL  
PLH  
VI  
Generator  
100 nF  
V
V
OH  
OL  
90%  
10%  
50%  
50%  
V
O
t
r
t
f
FGND  
OUT  
CL  
15 pF  
VO  
GND1  
10. Switching Characteristics Test Circuit and Voltage Waveforms  
RTHR  
SENSE  
I(Inx+SENSEx)  
RSENSE  
Capacitive  
Isolation  
IN  
VCC1  
100 nF  
Signal  
VI  
Generator  
FGND  
OUT  
CL  
15 pF  
VO  
GND1  
11. Input Current and Voltage Threshold Test Circuit  
14  
版权 © 2017–2018, Texas Instruments Incorporated  
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
Test Circuits (接下页)  
SENSE  
0 V  
RSENSE  
V
CC1  
0 V  
Capacitive  
Isolation  
IN  
VCC1  
V
/ 2  
CC1  
V
/ 2  
CC1  
V
I
RL  
t
t
PLZ  
PZL  
1 k  
V
OH  
0.5 V  
V
V
O
VO  
50%  
FGND  
OUT  
OL  
CL  
EN1  
15 pF  
GND1  
Signal  
50 ꢀ  
VI  
Generator  
12. Enable and Disable Propagation Delay Time Test Circuit and Waveform—Logic Low State  
版权 © 2017–2018, Texas Instruments Incorporated  
15  
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
Test Circuits (接下页)  
SENSE  
24 V  
V
CC1  
RSENSE  
Capacitive  
Isolation  
IN  
V
/ 2  
CC1  
VCC1  
V
/ 2  
CC1  
V
I
0 V  
t
PZH  
V
OH  
50%  
0.5 V  
V
O
VO  
FGND  
OUT  
0 V  
t
PHZ  
CL  
15 pF  
RL  
1 k  
EN1  
GND1  
Signal  
Generator  
50 ꢀ  
VI  
13. Enable and Disable Propagation Delay Time Test Circuit and Waveform—Logic High State  
S1  
SENSE  
+
24 V  
œ
RSENSE  
Capacitive  
Isolation  
IN  
VCC1  
100 nF  
FGND  
OUT  
CL  
15 pF  
VOH or VOL  
GND1  
FGND  
GND1  
+ VCM  
œ
(1) Pass Criterion: The output must remain stable.  
14. Common-Mode Transient Immunity Test Circuit  
16  
版权 © 2017–2018, Texas Instruments Incorporated  
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
8 Detailed Description  
8.1 Overview  
The ISO1211 and ISO1212 devices are fully-integrated, isolated digital-input receivers with IEC 61131-2 Type 1,  
2, and 3 characteristics. The devices receive 24-V to 60-V digital-input signals and provide isolated digital  
outputs. No field-side power supply is required. An external resistor, RSENSE, on the input-signal path precisely  
sets the limit for the current drawn from the field input based on an internal feedback loop. The voltage transition  
thresholds are compliant with Type 1, 2, and 3 and can be increased further using an external resistor, RTHR. For  
more information on selecting the RSENSE and RTHR resistor values, see the Detailed Design Procedure section.  
The ISO121x devices use an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a  
silicon-dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to  
represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the  
signal after advanced signal conditioning and produces the output through a buffer stage. The conceptual block  
diagram of the ISO121x device is shown in the Functional Block Diagram section.  
8.2 Functional Block Diagram  
RTHR  
SENSE  
IN  
INPUT  
RSENSE  
CURRENT  
LIMIT  
OUT  
REF  
FGND  
8.3 Feature Description  
The ISO121x devices receive 24-V to 60-V digital input signals and provide isolated digital outputs. An external  
resistor, RSENSE, connected between the INx and SENSEx pins, sets the limit for the current drawn from the field  
input. Internal voltage comparators connected to the SENSEx pins determine the input-voltage transition  
thresholds.  
The output buffers on the control side are capable of providing enough current to drive status LEDs. The EN pin  
is used to enable the output buffers. A low state on the EN pin puts the output buffers in a high-impedance state.  
The ISO121x devices are capable of operating up to 4 Mbps. Both devices support an isolation withstand voltage  
of 2500 VRMS between side 1 and side 2. 1 provides an overview of the device features.  
1. Device Features  
PART NUMBER  
CHANNELS  
MAXIMUM DATA RATE  
PACKAGE  
RATED ISOLATION  
2500 VRMS  
3600 VPK  
,
ISO1211  
1
4 Mbps  
8-pin SOIC (D)  
2500 VRMS  
3600 VPK  
,
ISO1212  
2
4 Mbps  
16-pin SSOP (DBQ)  
版权 © 2017–2018, Texas Instruments Incorporated  
17  
 
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
8.4 Device Functional Modes  
2 lists the functional modes for the ISO121x devices.  
2. Function Table(1)  
SIDE 1 SUPPLY  
VCC1  
INPUT  
(INx, SENSEx)  
OUTPUT ENABLE  
(EN)  
OUTPUT  
(OUTx)  
COMMENTS  
H
L
H or Open  
H or Open  
H
L
Channel output assumes the logic state of channel  
input.  
When INx and SENSEx are open, the output of the  
corresponding channel goes to Low.  
PU  
PD  
Open  
X
H or Open  
L
L
Z
A low value of output enable causes the outputs to  
be high impedance.  
When VCC1 is unpowered, a channel output is  
undetermined(2). When VCC1 transitions from  
unpowered to powered up; a channel output  
assumes the logic state of the input.  
X
X
Undetermined  
(1) VCC1 = Side 1 power supply; PU = Powered up (VCC1 2.25 V); PD = Powered down (VCC1 1.7 V); X = Irrelevant; H = High level; L =  
Low level; Z = High impedance  
(2) The outputs are in an undetermined state when 1.7 V < VCC1 < 2.25 V.  
18  
版权 © 2017–2018, Texas Instruments Incorporated  
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO1211 and ISO1212 devices are fully-integrated, isolated digital-input receivers with IEC 61131-2 Type 1,  
2, and 3 characteristics. These devices are suitable for high-channel density, digital-input modules for  
programmable logic controllers and motor control digital input modules. The devices receive 24-V to 60-V digital-  
input signals and provide isolated digital outputs. No field side power supply is required. An external resistor,  
RSENSE, on the input signal path precisely sets the limit for the current drawn from the field input. This current limit  
helps minimize power dissipated in the system. The current limit can be set for Type 1, 2, or 3 operation. The  
voltage transition thresholds are compliant with Type 1, 2, and 3 and can be increased further using an external  
resistor, RTHR. For more information on selecting the RSENSE and RTHR resistor values, see the Detailed Design  
Procedure section. The ISO1211 and ISO1212 devices are capable of high speed operation and can pass  
through a minimum pulse width of 150 ns. The ISO1211 device has a single receive channel. The ISO1212  
device has two receive channels that are independent on the field side.  
Type 1  
Type 2  
Type 3  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
ON  
ON  
ON  
OFF  
OFF  
OFF  
0
0
0
œ3  
œ3  
œ3  
0
5
10  
15  
0
5
10  
15  
IIN (mA)  
20  
25  
30  
0
5
10  
15  
IIN (mA)  
IIN (mA)  
15. Switching Characteristics for IEC61131-2 Type 1, 2, and 3 Proximity Switches  
9.2 Typical Application  
9.2.1 Sinking Inputs  
16 shows the design for a typical multichannel, isolated digital-input module with sinking inputs. Push-button  
switches, proximity sensors, and other field inputs connect to the host controller through an isolated interface.  
The design is easily scalable from a few channels, such as 4 or 8, to many channels, such as 256 or more. The  
RSENSE resistor limits the current drawn from the input pins. The RTHR resistor is used to adjust the voltage  
thresholds and limit the peak current during surge events. The CIN capacitor is used to filter noise on the input  
pins. For more information on selecting RSENSE, RTHR, and CIN, see the Detailed Design Procedure section.  
The ISO121x devices derive field-side power from the input pins which eliminates the requirement for a field-  
side, 24-V input power supply to the module. Similarly, an isolated dc-dc converter creating a field-side power  
supply from the controller side back plane supply is also eliminated which improves flexibility of system design  
and reduces system cost.  
For systems requiring channel-to-channel isolation on the field side, use the ISO1211 device as shown in 17.  
版权 © 2017–2018, Texas Instruments Incorporated  
19  
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
Typical Application (接下页)  
PLC Digital Input Module  
Field Side  
PLC  
5 V or 3.3 V or 2.5 V  
Backplane supply  
ISO1212  
SENSE1  
RTHR  
VCC  
VCC1  
CIN  
RSENSE  
OUT1  
IN1  
FGND1  
RTHR  
SENSE2  
CIN  
RSENSE  
OUT2  
GND1  
24 V  
IN2  
Power  
Supply  
0 V  
FGND2  
Host  
Controller  
Sensors and  
Switches  
ISO1212  
RTHR  
SENSE1  
VCC1  
CIN  
RSENSE  
IN1  
OUT1  
FGND1  
RTHR  
SENSE2  
CIN  
RSENSE  
OUT2  
GND1  
IN2  
FGND2  
GND  
Field Ground  
(FGND)  
500 pF/2 kV  
Protection  
Earth (PE)  
Copyright © 2017, Texas Instruments Incorporated  
16. Typical Application Schematic With Sinking Inputs  
20  
版权 © 2017–2018, Texas Instruments Incorporated  
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
Typical Application (接下页)  
5 V or 3.3 V or 2.5 V  
Backplane Supply  
ISO1211  
SENSE  
RTHR  
VCC  
VCC1  
OUT  
CIN  
RSENSE  
+
24 V  
œ
IN  
FGND  
GND1  
Host  
Controller  
ISO1211  
RTHR  
VCC1  
OUT  
SENSE  
IN  
CIN  
RSENSE  
+
24 V  
œ
FGND  
GND  
GND1  
Copyright © 2017, Texas Instruments Incorporated  
17. Single-Channel or Channel-to-Channel Isolated Designs With ISO1211  
9.2.1.1 Design Requirements  
The ISO121x devices require two resistors, RTHR and RSENSE, and a capacitor, CIN, on the field side. For more  
information on selecting RSENSE, RTHR, and CIN, see the Detailed Design Procedure section. A 100-nF decoupling  
capacitor is required on VCC1  
.
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Setting Current Limit and Voltage Thresholds  
The RSENSE resistor limits the current drawn from the field input. A value of 562 Ω for RSENSE is recommended for  
Type 1 and Type 3 operation, and results in a current limit of 2.25 mA (typical). A value of 200 Ω for RSENSE is  
recommended for Type 2 operation, and results in a current limit of 6 mA (typical). In each case, a (slightly) lower  
value of RSENSE can be selected based on the need for a higher current limit or component availability. For more  
information, see the Electrical Characteristics—DC Specification table and Typical Characteristics section. A 1%  
tolerance is recommended on RSENSE but 5% resistors can also be used if higher variation in the current limit  
value is acceptable. The relationship between the RSENSE resistor and the typical current limit (IL) is given by 公式  
1.  
2.25 mA ì 562 W  
IL =  
RSENSE  
(1)  
The RTHR resistor sets the voltage thresholds (VIL and VIH) as well as limits the surge current. A value of 1 kΩ is  
recommended for RTHR in Type 3 systems (maximum threshold voltage required is 11 V). A value of 2.5 kΩ is  
recommended for RTHR in Type 1 systems (maximum threshold voltage required is 15 V) and a value of 330 Ω is  
recommended for RTHR in Type 2 systems. The Electrical Characteristics—DC Specification table lists and the  
Typical Characteristics section describes the voltage thresholds with different values of RTHR. For other values of  
RTHR, derive the values through linear interpolation. Use 公式 2 and 公式 3 to calculate the values for the typical  
VIH values and minimum VIL values, respectively.  
2.25 mA ì 562 W  
V
(typ) = 8.25 V + RTHR ì  
IH  
RSENSE  
(2)  
21  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
Typical Application (接下页)  
2.25 mA ì 562 W  
V
(typ) = 7.1 V + RTHR ì  
IL  
RSENSE  
(3)  
The maximum voltage on the SENSE pins of the ISO121x device is 60 V. However, because the RTHR resistor  
drops additional voltage, the maximum voltage supported at the module inputs is higher and given by 公式 4.  
2.1mA ì 562 W  
V
(max) = 60 V + RTHR ì  
IN  
RSENSE  
(4)  
Use the ISO121x Threshold Calculator for 9V to 300V DC and AC Voltage Detection to estimate the values of  
the voltage transition thresholds, the maximum-allowed module input voltage, and module input current for the  
given values of the RSENSE and RTHR resistors.  
A value of 0 Ω for RTHR also meets Type 1, Type 2 and Type 3 voltage-threshold requirements. The value of  
RTHR should be maximized for best EMC performance while meeting the desired input voltage thresholds.  
Because RTHR is used to limit surge current, 0.25 W MELF resistors must be used.  
18 shows the typical input current characteristics and voltage transition thresholds for 562-Ω RSENSE and 1-kΩ  
RTHR  
.
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
œ40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
0.75  
0.5  
0.25  
0
0
5
10  
15  
20  
25  
30  
Input Voltage (V)  
18. Transition Thresholds  
9.2.1.2.2 Thermal Considerations  
Thermal considerations constrain operation at different input current and voltage levels. The power dissipated  
inside the ISO121x devices is determined by the voltage at the SENSE pin (VSENSE) and the current drawn by the  
device (I(INx+SENSEx)). The internal power dissipated, when taken with the junction-to-air thermal resistance defined  
in the Thermal Information table can be used to determine the junction temperature for a given ambient  
temperature. The junction temperature must not exceed 150°C.  
19 shows the maximum allowed ambient temperature for the ISO1211 device for different current limit and  
input voltage conditions. The ISO1211 device can be used with a VSENSE voltage up to 60 V and an ambient  
temperature of up to 125°C for an RSENSE value of 562 , which corresponds to a typical current limit of 2.25 mA.  
At higher levels of current limit, either the ambient temperature or the maximum value of the VSENSE voltage must  
be derated. In any design, the voltage drop across the external series resistor, RTHR, reduces the maximum  
voltage received by the SENSE pin and helps extend the allowable module input voltage and ambient  
temperature range.  
22  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
 
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
Typical Application (接下页)  
130  
125  
120  
115  
110  
105  
100  
95  
90  
85  
RSENSE = 562 W, IL = 2.25 mA  
RSENSE = 400 W, IL = 3.2 mA  
RSENSE = 200 W, IL = 6.3 mA  
80  
75  
70  
0
10  
20  
30  
40  
50  
60  
70  
80  
Voltage at SENSE (V)  
D011  
(1) This figure also applies to the ISO1212 device if only one of the two channels are expected to be active at a given  
time.  
19. Maximum Ambient Temperature Derating Curve for ISO1211 vs VSENSE  
20 shows the maximum allowed ambient temperature for the ISO1212 device for different current limit and  
input voltage conditions. The ISO1212 device can be used with a VSENSE voltage up to 36 V and an ambient  
temperature of up to 125°C for an RSENSE value of 562 , which corresponds to a typical current limit of 2.25 mA.  
At higher current limit levels, either the ambient temperature or the maximum value of the VSENSE voltage must  
be derated. Operation of the ISO1212 device with an RSENSE value of 200 Ω and with both channels active is not  
recommended beyond a VSENSE voltage of 36 V. In any design, the voltage drop across the series resistor, RTHR  
,
reduces the maximum voltage received by the SENSE pin and helps extend the allowable module input voltage  
and ambient temperature range.  
130  
125  
120  
115  
110  
105  
100  
95  
90  
85  
RSENSE = 562 W, IL = 2.25 mA  
RSENSE = 400 W, IL = 3.2 mA  
RSENSE = 200 W, IL = 6.3 mA  
80  
75  
70  
0
10  
20  
30  
40  
50  
60  
70  
80  
Voltage at SENSE (V)  
D012  
(1) This figure only applies if both channels of the ISO1212 device are expected to be on at the same time. If only one  
channel is expected to be on at a given time, refer to 19.  
20. Maximum Ambient Temperature Derating Curve for ISO1212 vs VSENSE  
9.2.1.2.3 Designing for 48-V Systems  
The ISO121x devices are suitable for 48-V digital input receivers. The current limit, voltage transition thresholds,  
and maximum voltage supported at the module input are governed by 公式 1, 公式 2, 公式 3, and 公式 4. For 48-  
V systems, a threshold voltage close to 25 V is desirable. The RTHR resistor can be adjusted to achieve this  
higher threshold. For example, with an RSENSE value of 562 and an RTHR value of 7.5 k , a VIH value of  
approximately 25 V can be achieved. With this setting, the RTHR resistor drops a voltage of approximately 17 V,  
reducing the maximum value of the VSENSE voltage for any given module input voltage. This drop vastly increases  
the allowable module input voltage and ambient temperature range as discussed in Thermal Considerations.  
版权 © 2017–2018, Texas Instruments Incorporated  
23  
 
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
Typical Application (接下页)  
9.2.1.2.4 Designing for Input Voltages Greater Than 60 V  
The ISO121x devices are rated for 60 V on the SENSE and IN pins with respect to FGND. However, larger  
voltages on the module input can be supported by dropping extra voltage across an external resistor, RTHR  
.
Because the current drawn by the SENSE and IN pins is well controlled by the built-in current limit, the voltage  
drop across RTHR is well controlled as well. However, increasing the RTHR resistance also correspondingly raises  
the voltage transition threshold. An additional resistor, RSHUNT (see 21), provides the flexibility to change the  
voltage transition thresholds independently of the maximum input voltage. The current through the RSHUNT  
resistor is less near the voltage transition threshold, but increases with the input voltage, increasing the voltage  
drop across the RTHR resistor, and preventing the voltage on the ISO121x pins from exceeding 60 V. With the  
correct value selected for the RTHR and RSHUNT resistors, the voltage transition thresholds and the maximum input  
voltage supported can be adjusted independently.  
A 1-nF or greater CIN capacitor is recommended between the SENSE and FGND pins to slow down the  
transitions on the SENSE pin, and to prevent overshoot beyond 60 V during transitions.  
For more information, refer to the How to Design Isolated Comparators for ±48V, 110V and 240V DC and AC  
Detection TI TechNote. Use the ISO121x Threshold Calculator for 9V to 300V DC and AC Voltage Detection to  
estimate the values of voltage transition thresholds, the maximum-allowed module input voltage, and module  
input current for given values of the RSENSE, RTHR, and RSHUNT resistors.  
ISO1211  
RTHR  
SENSE  
VCC1  
RSENSE  
+
VIN  
RSHUNT  
CIN  
OUT  
IN  
œ
FGND  
GND1  
21. Increase ISO121x Input Voltage Range With RSHUNT  
Another way to increase the maximum module input voltage without changing the voltage transition thresholds is  
to use a 60-V Zener diode to limit the voltage on the ISO121x pins to less than 60 V as shown in 22. In this  
case, when the module input is greater than 60 V, the Zener diode must be designed to sink the additional  
current, and the RTHR resistor must be designed to drop a higher voltage.  
For example, with a 2.5-kRTHR and 560-RSENSE, the voltage transition threshold is 15 V, and the ISO121x  
input current is 2.25 mA. If the module voltage reaches 100 V, the voltage drop across the RTHR resistor is 40 V,  
and the current through the Zener diode is approximately 14 mA.  
ISO1211  
RTHR  
SENSE  
VCC1  
RSENSE  
+
VIN  
CIN  
OUT  
IN  
60 V  
œ
FGND  
GND1  
22. Increase ISO121x Input Voltage Range Using a Zener Diode  
9.2.1.2.5 Surge, ESD, and EFT Tests  
Digital input modules are subject to surge (IEC 61000-4-5), electrostatic discharge or ESD (IEC 61000-4-2) and  
electrical fast transient or EFT (IEC 61000-4-4) tests. The surge impulse waveform has the highest energy and  
the widest pulse width, and is therefore the most stringent test of the three.  
16 shows the application diagram for Type 1 and 3 systems. For a 1-kVPP surge test between the input  
terminals and protection earth (PE), a value of 1 kΩ for RTHR and 10 nF for CIN is recommended. 3 lists a  
summary of recommended component values to meet different levels of EMC requirements for Type 1 and 3  
systems.  
24  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
Typical Application (接下页)  
3. Surge, IEC ESD and EFT  
SURGE  
IEC 61131-2  
RSENSE  
562  
RTH  
2.5 kΩ  
1 kΩ  
CIN  
IEC ESD  
IEC EFT  
TYPE  
LINE-TO-PE  
±1 kV  
LINE-TO-LINE  
±1 kV  
LINE-TO-FGND  
±1 kV  
Type 1  
10 nF  
10 nF  
±6 kV  
±6 kV  
±6 kV  
±4 kV  
±4 kV  
±4 kV  
±1 kV  
±1 kV  
±500 V  
Type 3  
562  
330 nF  
±1 kV  
±1 kV  
±1 kV  
23 shows the test setup and application circuit used for surge testing. A noise filtering capacitor of 500 pF is  
recommended between the FGND pin and PE (earth). The total value of effective capacitance between the  
FGND pin and any other ground potential (including PE) must not exceed 500 pF for optimum surge  
performance. For line-to-PE test (common-mode test), the FGND pin is connected to the auxiliary equipment  
(AE) through a decoupling network.  
5 V or 3.3 V or 2.5 V  
Backplane supply  
ISO1212  
RTHR  
20 mH  
IN1  
IN2  
VCC  
SENSE1  
VCC1  
CIN  
RSENSE  
OUT1  
IN1  
FGND1  
RTHR  
20 mH  
SENSE2  
CIN  
RSENSE  
OUT2  
GND1  
IN2  
FGND2  
Host  
Controller  
Decoupling  
Network  
Auxiliary  
Equipment  
(AE)  
ISO1212  
RTHR  
20 mH  
20 mH  
20 mH  
INN-1  
SENSE1  
VCC1  
CIN  
RSENSE  
IN1  
OUT1  
FGND1  
RTHR  
INN  
SENSE2  
CIN  
RSENSE  
OUT2  
GND1  
IN2  
FGND2  
GND  
Field Ground  
(FGND)  
FGND(1)  
PE  
500 pF(2)  
2 kV  
PE  
Protection  
Earth (PE)  
Copyright © 2017, Texas Instruments Incorporated  
(1) For line-to-PE test, FGND is connected to the auxiliary equipment (AE) through a decoupling network.  
(2) A noise filtering capacitor of about 500 pF is recommended between the FGND pin and PE (earth). The total value of  
effective capacitance between the FGND pin and any other ground potential (including PE) must not exceed 500 pF  
for optimum performance.  
23. Setup and Application Circuit Used for Surge Test  
版权 © 2017–2018, Texas Instruments Incorporated  
25  
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
For higher voltage levels of surge tests or for faster systems that cannot use a large value for CIN, TVS diodes or  
varistors can be used to meet EMC requirements. Type 2 systems that use a smaller value for RTHR may also  
require TVS diodes or varistors for surge protection. 24 shows an example usage of TVS diodes for surge  
protection. The recommended components for surge protection are VCAN26A2-03S (TVS, Vishay), EZJ-  
P0V420WM (Varistor, Panasonic), and GSOT36C (TVS, Vishay).  
Use of the RTHR resistor also reduces the peak current requirement for the TVS diodes, making them smaller and  
cost effective. For example, a 2-kV surge through a 1-kΩ RTHR resistor creates only 2-A peak current. Also,  
because of voltage drop across the RTHR resistor in normal operation, the working voltage requirement for the  
varistor or TVS diodes is reduced. For example, for a RTHR value of 1 kΩ and an RSENSE value of 562 Ω, a  
module designed for 30-V inputs only requires 28-V TVS diodes because the RTHR resistor drops more than 2 V.  
5 V or 3.3 V or 2.5 V  
Backplane Supply  
ISO1211  
RTHR  
VCC1  
OUT  
VCC  
SENSE  
IN  
24 V  
0 V  
RSENSE  
Host  
Controller  
TVS  
FGND  
GND  
GND1  
Copyright © 2017, Texas Instruments Incorporated  
24. TVS Diodes Used Instead of a Filtering Capacitor for Surge Protection in Faster Systems  
9.2.1.2.6 Multiplexing the Interface to the Host Controller  
The ISO121x devices provide an output-enable pin on the controller side (EN). Setting the EN pin to 0 causes  
the output buffers to be in the high-impedance state. This feature can be used to multiplex the outputs of multiple  
ISO121x devices on the same host-controller input, reducing the number of pins on the host controller.  
In the example shown in 25, two sets of 8-channel inputs are multiplexed, reducing the number of input pins  
required on the controller from 16 to 10. Similarly, if four sets of 8-channel inputs are multiplexed, the number of  
pins on the controller is reduced from 32 to 12.  
26  
版权 © 2017–2018, Texas Instruments Incorporated  
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
ISO1212  
SENSE1  
ISO1212  
RTHR  
RTHR  
IN1  
IN2  
IN9  
SENSE1  
RSENSE  
RSENSE  
OUT1  
OUT1  
IN1  
IN1  
SENSE2  
IN2  
RTHR  
RTHR  
IN10  
SENSE2  
RSENSE  
RSENSE  
IN2  
OUT2  
EN  
OUT2  
EN  
ISO1212  
ISO1212  
RTHR  
RTHR  
IN7  
IN8  
IN15  
IN16  
SENSE1  
SENSE1  
RSENSE  
RSENSE  
OUT1  
IN1  
OUT1  
IN1  
RTHR  
RTHR  
SENSE2  
SENSE2  
IN2  
RSENSE  
RSENSE  
OUT2  
EN  
IN2  
OUT2  
EN  
Host  
Controller  
Copyright © 2017, Texas Instruments Incorporated  
25. Using the Output Enable Option to Multiplex the Interface to the Host Controller  
9.2.1.2.7 Status LEDs  
The outputs of the ISO121x devices can be used to drive status LEDs on the controller side as shown in 26.  
The output buffers of the ISO121x can provide 4-mA, 3-mA, and 2-mA currents while working at VCC1 values of 5  
V, 3.3 V, and 2.5 V respectively.  
In some cases, placing the LED on the field side is desirable although it is powered from VCC1. In such cases, the  
signal carrying current to the LED can be routed in an inner layer without compromising the isolation of the  
digital-input module. For more information, see the Layout Guidelines section.  
5 V or 3.3 V or 2.5 V  
Backplane Supply  
ISO1211  
RTHR  
VCC  
VCC1  
OUT  
24 V  
0 V  
SENSE  
IN  
RSENSE  
CIN  
Host  
Controller  
Power  
Supply  
FGND  
GND  
GND1  
Status  
LED  
Copyright © 2017, Texas Instruments Incorporated  
26. Using ISO121x Outputs to Drive Status LEDs  
版权 © 2017–2018, Texas Instruments Incorporated  
27  
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
9.2.1.3 Application Curve  
2.75  
2.5  
2.25  
2
1.75  
1.5  
1.25  
1
œ40°C  
25°C  
85°C  
105°C  
115°C  
125°C  
0.75  
0.5  
0.25  
0
0
5
10  
15  
20  
25  
30  
Input Voltage (V)  
RSENSE = 562 Ω  
RTHR = 0 Ω  
27. Input Current vs Input Voltage  
28  
版权 © 2017–2018, Texas Instruments Incorporated  
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
9.2.2 Sourcing Inputs  
The ISO121x devices can be configured as sourcing inputs as shown in 28. In this configuration, all the  
SENSE pins are connected to the common voltage (24 V), and the inputs are connected to the individual FGND  
pins.  
24-V  
Common  
5 V or 3.3 V or 2.5 V  
Backplane supply  
ISO1212  
VCC  
SENSE1  
VCC1  
CIN  
RSENSE  
OUT1  
IN1  
RTHR  
FGND1  
Current Flow  
SENSE2  
CIN  
RSENSE  
OUT2  
GND1  
24 V  
0 V  
IN2  
RTHR  
Power  
Supply  
FGND2  
Host  
Controller  
ISO1212  
SENSE1  
VCC1  
Sensors and  
Switches  
CIN  
RSENSE  
IN1  
OUT1  
RTHR  
FGND1  
Current Flow  
SENSE2  
CIN  
RSENSE  
OUT2  
GND1  
IN2  
RTHR  
FGND2  
GND  
500 pF/2 kV  
PE  
Protection  
Earth (PE)  
Copyright © 2017, Texas Instruments Incorporated  
28. Typical Application Circuit With Sourcing Inputs  
版权 © 2017–2018, Texas Instruments Incorporated  
29  
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
9.2.3 Sourcing and Sinking Inputs (Bidirectional Inputs)  
The ISO1212 device can be used to create a bidirectional input module that can sink and source current as  
shown in 29. In this configuration, channel 1 is active if the COM terminal is connected to ground for sinking  
inputs, and channel 2 is active if the COM terminal is connected to 24 V for sourcing input. The digital input is  
considered high if either the OUT1 or OUT2 pin is high.  
5 V or 3.3 V or 2.5 V  
Backplane supply  
ISO1212  
IN  
RTHR  
VCC  
SENSE1  
VCC1  
CIN  
RSENSE  
OUT1  
IN1  
FGND1  
Host  
Controller  
SENSE2  
±24 V  
RSENSE  
OUT2  
GND1  
IN2  
GND  
FGND2  
COM  
Current for positive polarity  
Current for negative polarity  
Copyright © 2017, Texas Instruments Incorporated  
29. Application Circuit—ISO1212 With Sourcing and Sinking Inputs  
A bidirectional input module can also be built with the ISO121x devices using low-cost Schottky diodes as shown  
in 30.  
IN  
RTHR  
BAT54CLT1G  
ISO1211  
±24 V  
SENSE  
IN  
VCC1  
OUT  
Host  
Controller  
RSENSE  
COM  
CIN  
FGND  
GND1  
30. Bidirectional Implementation With ISO1211 and Bridge Rectifier  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
on the side 1 supply pin (VCC1). The capacitor should be placed as close to the supply pins as possible.  
30  
版权 © 2017–2018, Texas Instruments Incorporated  
 
 
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
11 Layout  
11.1 Layout Guidelines  
The board layout for ISO1211 and ISO1212 can be completed in two layers. On the field side, place RSENSE, CIN,  
and RTHR on the top layer. Use the bottom layer as the field ground (FGND) plane. TI recommends using RSENSE  
and CIN in 0603 footprint for a compact layout, although larger sizes (0805) can also be used. The CIN capacitor  
is a 50-V capacitor and is available in the 0603 footprint. Keep CIN as close to the ISO121x device as possible.  
The SUB pin on the ISO1211 device and the SUB1 and SUB2 pins on the ISO1212 device should be left  
unconnected. For group isolated design, use vias to connect the FGND pins of the ISO121x device to the bottom  
FGND plane. The placement of the RTHR resistor is flexible, although the resistor pin connected to external high  
voltage should not be placed within 4 mm of the ISO121x device pins or the CIN and RSENSE pins to avoid  
flashover during EMC tests.  
Only a decoupling capacitor is required on side 1. Place this capacitor on the top-layer, with the bottom layer for  
GND1.  
If a board with more than two layers is used, placing two ISO121x devices on the top-and bottom layers (back-to-  
back) is possible to achieve a more compact board. The inner layers can be used for FGND.  
31 and 32 show the example layouts.  
In some designs, placing the LED on the field side is desirable although it is powered from VCC1. In such cases,  
the signal carrying current to the LED can be routed in an inner layer without compromising the isolation of the  
digital-input module as shown in 33. The LED must be placed with at least 4-mm spacing between other  
components and connections on side 1 to ensure adequate isolation.  
11.2 Layout Example  
2 mm maximum  
from VCC  
VCC  
RTHR  
0.1 F  
C
R
VCC1  
SENSE  
C
R
High Voltage Input  
EN  
IN  
FGND  
SUB  
MCU  
OUT  
GND1  
GND1  
Plane  
FGND  
Plane  
31. Layout Example With ISO1211  
版权 © 2017–2018, Texas Instruments Incorporated  
31  
 
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
Layout Example (接下页)  
2 mm Maximum  
from VCC  
VCC  
INP1  
R
RTHR  
R
C
0.1 F  
C
SENSE1  
IN1  
GND1  
VCC1  
EN  
FGND  
INP2  
FGND  
SUB1  
High Voltage  
Input  
OUT1  
OUT2  
MCU  
RTHR  
R
SUB2  
SENSE1  
IN1  
NC  
NC  
R
C
FGND  
GND1  
GND1  
Plane  
FGND  
Plane  
32. Layout Example With ISO1212  
2 mm maximum  
from VCC  
VCC  
RTHR  
R
0.1 F  
C
VCC1  
SENSE  
C
R
High Voltage Input  
EN  
IN  
FGND  
SUB  
MCU  
OUT  
GND1  
FGND  
Plane  
4 mm minimum  
LED  
R
GND1  
Plane  
33. Layout Example With LED Placed on the Field Side But Driven From VCC1 Power Domain  
32  
版权 © 2017–2018, Texas Instruments Incorporated  
ISO1211, ISO1212  
www.ti.com.cn  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 开发支持  
有关开发支持,请参阅:  
低于 1W 16 通道隔离数字输入模块参考设计  
采用光学开关的断线检测参考设计  
用于在变速驱动器中实现安全转矩关闭的冗余双通道参考设计  
12.2 文档支持  
12.2.1 相关文档  
如需相关文档,请参阅:  
德州仪器 (TI)《如何提高电机驱动中的隔离式数字输入的速度和可靠性》TI 技术手册  
德州仪器 (TI)《如何设计用于 ±48V110V 240V 直流和交流检测的隔离式比较器》TI 技术手册  
德州仪器 (TI)《如何简化隔离式 24V PLC 数字输入模块设计》TI 技术手册  
德州仪器 (TI)《隔离相关术语》  
德州仪器 (TI)《用于 9V 300V 直流和交流电压检测的 ISO121x 阈值计算器》  
德州仪器 (TI)ISO1211 隔离式数字输入接收器评估模块》用户手册  
德州仪器 (TI)ISO1212 隔离式数字输入接收器评估模块》用户手册  
12.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。  
4. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
立即订购  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
ISO1211  
ISO1212  
12.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.6 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.7 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2017–2018, Texas Instruments Incorporated  
33  
ISO1211, ISO1212  
ZHCSGU8E JUNE 2017REVISED AUGUST 2018  
www.ti.com.cn  
12.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
34  
版权 © 2017–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO1211D  
ISO1211DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SSOP  
SSOP  
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
1211  
1211  
1212  
1212  
D
2500 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
ISO1212DBQ  
ISO1212DBQR  
DBQ  
DBQ  
16  
16  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO1211DR  
SOIC  
D
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
ISO1212DBQR  
SSOP  
DBQ  
16  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO1211DR  
SOIC  
D
8
2500  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
ISO1212DBQR  
SSOP  
DBQ  
16  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO1211D  
D
SOIC  
8
75  
75  
505.46  
505.46  
6.76  
6.76  
3810  
3810  
4
4
ISO1212DBQ  
DBQ  
SSOP  
16  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISO1212

用于数字输入模块的双通道隔离式 24V 至 60V 数字输入接收器
TI

ISO1212DBQ

用于数字输入模块的双通道隔离式 24V 至 60V 数字输入接收器 | DBQ | 16 | -40 to 125
TI

ISO1212DBQR

用于数字输入模块的双通道隔离式 24V 至 60V 数字输入接收器 | DBQ | 16 | -40 to 125
TI

ISO121BG

Precision Low Cost ISOLATION AMPLIFIER
BB

ISO121BG

ISOLATION AMPLIFIER, 3500 V ISOLATION-MIN, 60 kHz BAND WIDTH, CDIP16, 0.600 INCH, HERMETIC SEALED, SIDE BRAZED, MO-038AC, DIP-40/16
ROCHESTER

ISO121BG

±10V 输入、精密电压检测隔离式放大器

| JVD | 16 | -55 to 125
TI

ISO121BG-BI

Isolation Amplifier, 1 Func, 3500V Isolation-Min, 60MHz Band Width, BIPolar, CDIP16,
BB

ISO121G

Precision Low Cost ISOLATION AMPLIFIER
BB

ISO121G

ISOLATION AMPLIFIER, 3500 V ISOLATION-MIN, 60 kHz BAND WIDTH, CDIP16, 0.600 INCH, HERMETIC SEALED, SIDE BRAZED, MO-038AC, DIP-40/16
ROCHESTER

ISO121G

±10V 输入、精密电压检测隔离式放大器

| JVD | 16 | -55 to 125
TI

ISO121G-BI

暂无描述
BB

ISO122

Precision Lowest Cost ISOLATION AMPLIFIER
BB