ISO7041QDBQRQ1 [TI]

汽车类 120µA 超低功耗四通道数字隔离器 | DBQ | 16 | -40 to 125;
ISO7041QDBQRQ1
型号: ISO7041QDBQRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 120µA 超低功耗四通道数字隔离器 | DBQ | 16 | -40 to 125

文件: 总32页 (文件大小:1752K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
ISO7041-Q1 汽车类超低功耗四通道数字隔离器  
1 特性  
3 说明  
• 具有符AEC-Q100 标准的下列特性  
ISO7041-Q1 件是一款可用于隔离 CMOS 或  
LVCMOS 数字 I/O 的超低功耗多通道数字隔离器。每  
条隔离通道的逻辑输入和输出缓冲器均由双电容二氧化  
(SiO2) 绝缘栅相隔离。基于边缘的创新架构与开关  
键控调制方案相结合使这些隔离器具有非常低的功  
同时符合 UL1577 规定的 3000VRMS 隔离额定  
值。ISO7041-Q1 器件在 3.3V 时的每通道动态电流消  
耗低于 120μA/Mbps 通道静态电流消耗为  
3.5μA因此可用于对功耗和热性能有要求的系统设  
计中。  
– 器件温度等140°C +125°C 环境工作  
温度范围  
提供功能安全  
– 可提供用于功能安全系统设计的文档:  
ISO7041-Q1  
• 满VDA320 隔离要求  
• 超低功耗  
– 每通道静态电流3.5μA (3.3V)  
100kbps 时的每通道电流15μA (3.3V)  
1Mbps 时的每通道电流116μA (3.3V)  
• 稳健可靠的隔离栅  
该器件可在低至 3.0V 和高达 5.5V 的电压下工作并  
可在隔离层的每一侧采用不同电源电压的情况下完全正  
常运行。四通道隔离器采16-QSOP 封装具有三个  
正向通道和一个反向通道。该器件具有默认输出高电平  
和低电平选项。如果输入功率或信号出现损失则不具  
F 后缀的 ISO7041-Q1 器件默认输出高电平具有  
F 后缀的 ISO7041F-Q1 器件默认输出低电平。请参阅  
器件功能模部分以了解详情。  
– 预计寿命超100 年  
– 隔离额定值3000VRMS  
CMTI 典型值±100kV/μs  
• 宽电源电压范围3.0V 5.5V  
• 宽温度范围40°C 125°C  
• 小16-QSOP (16-DBQ)  
• 信令速率4Mbps  
• 默认输出高电(ISO7041-Q1) 低电平  
(ISO7041F-Q1) 选项  
• 优异的电磁兼容(EMC)  
器件信息  
器件型号(1)  
ISO7041-Q1  
封装尺寸标称值)  
封装  
QSOP (16)  
4.90mm × 3.90mm  
– 系统ESDEFT 和浪涌抗扰性  
– 在整个隔离栅具±8kV IEC 61000-4-2 接触放  
电保护  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
FUSE  
Relay  
– 超低干(EMI)  
IN  
12 V  
Fuse/relay sense  
• 安全相关认证计划):  
PMIC  
OUT  
VCC  
BAT  
CVDD  
VCC1  
VCC2  
DIN V VDE 0884-11:2017-01  
UL 1577 组件认证计划  
GPIOx  
ISO7041-Q1  
BQ75614-Q1  
Battery  
IEC 60950-1IEC 62368-1IEC 61010-1、  
IEC60601-1 GB 4943.1-2011 认证  
MCU  
UART  
GND1  
GND2  
Current sense  
2 应用  
Rs  
混合动力、电动和动力总成系(EV/HEV)  
简化版应用原理图  
电池管理系(BMS)  
车载充电器  
牵引逆变器  
直流/直流转换器  
逆变器和电机控制  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFN3  
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
Table of Contents  
8 Detailed Description......................................................15  
8.1 Overview...................................................................15  
8.2 Functional Block Diagram.........................................15  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................17  
9 Application and Implementation..................................19  
9.1 Application Information............................................. 19  
9.2 Typical Application.................................................... 20  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 Documentation Support.......................................... 26  
12.2 Receiving Notification of Documentation Updates..26  
12.3 支持资源..................................................................26  
12.4 Trademarks.............................................................26  
12.5 Electrostatic Discharge Caution..............................26  
12.6 术语表..................................................................... 26  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 绝对最大额定值...........................................................4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Power Ratings.............................................................6  
Insulation Specifications................................................... 7  
6.6 Safety-Related Certifications...................................... 8  
6.7 Safety Limiting Values.................................................8  
6.8 Electrical Characteristics 5V Supply........................... 9  
6.9 Supply Current Characteristics 5V Supply..................9  
6.10 Electrical Characteristics 3.3V Supply.................... 11  
6.11 Supply Current Characteristics 3.3V Supply........... 11  
6.12 Switching Characteristics........................................12  
6.13 Insulation Characteristics Curves........................... 12  
6.14 Typical Characteristics............................................13  
7 Parameter Measurement Information..........................14  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
June 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
Device Comparison Table  
5-1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
CHANNEL DIRECTION  
PACKAGE  
DBQ-16  
RATED ISOLATION  
3000 VRMS / 4242 VPK  
3000 VRMS / 4242 VPK  
3 Forward,  
1 Reverse  
ISO7041-Q1  
4 Mbps  
4 Mbps  
High  
ISO7041-Q1 with F  
suffix  
3 Forward,  
1 Reverse  
Low  
DBQ-16  
5 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
VCC2  
16  
VCC1  
GND1  
GND2 15  
OUTA 14  
OUTB 13  
OUTC 12  
IND 11  
INA  
INB  
INC  
OUTD  
GND1  
GND1  
GND2 10  
GND2  
9
Not to scale  
5-1. ISO7041-Q1 DBQ Package 16-Pin QSOP Top View  
5-1. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
2
GND1  
7
Ground connection for VCC1  
Ground connection for VCC2  
8
9
GND2  
10  
15  
3
INA  
I
I
Input, channel A. 300-series resistor recommended  
Input, channel B. 300-series resistor recommended  
Input, channel C. 300-series resistor recommended  
Input, channel D. 300-series resistor recommended  
Output, channel A. 300-series resistor recommended  
Output, channel B. 300-series resistor recommended  
Output, channel C. 300-series resistor recommended  
Output, channel D. 300-series resistor recommended  
Power supply, side 1  
INB  
4
INC  
5
I
IND  
11  
14  
13  
12  
6
I
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
O
O
O
O
1
16  
Power supply, side 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO7041-Q1  
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
6 Specifications  
6.1 绝对最大额定值  
在自然通风条件下的工作温度范围内除非另有说明(1) (2) (3)  
最小值  
最大值  
单位  
-0.5  
6
V
V
CC1 GND1  
CC2 GND2  
V
电源电压  
-0.5  
-0.5  
-0.5  
-0.5  
-15  
6
VCCX + 0.5  
VCCX + 0.5  
VCCX + 0.5  
15  
INx GNDx  
OUTx GNDx  
ENx GNDx  
输入通道Ii  
Io  
V
输入/输出电压  
mA  
mA  
°C  
输入电流  
输出电流  
-15  
15  
150  
运行结温TJ  
贮存温度Tstg  
温度  
-65  
150  
°C  
(1) 超出这些列出的绝对最大额定值的压力可能会对器件造成永久损坏。这些仅仅是压力额定值并不表示器件在这些条件下以及在“建议  
运行条件”以外的任何其他条件下能够正常运行。在绝对最大额定值条件下长时间运行可影响器件可靠性。  
(2) 除差I/O 总线电压以外的所有电压值都是以本地接地端子GND1 GND2为基准的峰值电压值。  
(3) 最大电压不得超6V。  
6.2 ESD Ratings  
(1) (2)  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±5000  
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
V(ESD)  
Electrostatic discharge  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2;  
Isolation barrier withstand test(3) (4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
 
 
 
 
 
 
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
(1)  
VCC1  
VCC2  
VIH  
Supply Voltage Side 1  
Supply Voltage Side 2  
High level Input voltage  
Low level Input voltage  
3.0  
5.5  
5.5  
(1)  
3.0  
V
0.7 x VCCI  
VCCI  
V
VIL  
0
-4  
-2  
0.3 x VCCI  
V
(2)  
VCCO  
= 5 V  
mA  
mA  
mA  
mA  
Mbps  
°C  
IOH  
High level output current  
Low level output current  
VCCO = 3.3 V  
VCCO = 5 V  
4
2
IOL  
VCCO = 3.3 V  
DR  
TA  
Data Rate  
0
4
Ambient temperature  
-40  
125  
(1) VCC1 and VCC2 can be set independent of one another  
(2) VCCI = Input-side VCC; VCCO = Output-side VCC  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO7041-Q1  
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
UNIT  
6.4 Thermal Information  
ISO7041-Q1  
DBQ (SOIC)  
16 PINS  
87.0  
THERMAL METRIC(1)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
33.3  
49.1  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.4  
ψJT  
48.5  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
7.82  
4.46  
3.36  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 1-MHz 50% duty cycle square  
wave  
PD1  
PD2  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
Insulation Specifications  
PARAMETER  
SPECIFICATIONS  
QSOP-16  
TEST CONDITIONS  
UNIT  
IEC 60664-1  
CLR  
CPG  
External clearance(1)  
Side 1 to side 2 distance through air  
>3.7  
>3.7  
mm  
mm  
Side 1 to side 2 distance across package  
surface  
External Creepage(1)  
DTI  
CTI  
Distance through the insulation  
Comparative tracking index  
Material Group  
Minimum internal gap (internal clearance)  
IEC 60112; UL 746A  
17  
µm  
V
>600  
I
According to IEC 60664-1  
Overvoltage category per IEC 60664-1  
I-III  
Rated mains voltage 300 VRMS  
DIN V VDE V 0884-11:2017-01(2)  
VIORM Maximum repetitive peak isolation voltage  
AC voltage (bipolar)  
566  
400  
566  
4242  
VPK  
VRMS  
VDC  
AC voltage (sine wave); time-dependent  
dielectric breakdown (TDDB) test; See TBD  
VIOWM  
Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM , t = 60 s (qualification); VTEST  
= 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
VPK  
Test method per IEC 62368-1, 1.2/50 µs  
waveform, VTEST = 1.6 × VIOSM = 6400 VPK  
(qualification)  
VIOSM  
4000  
5  
5  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM  
tm = 10 s  
,
Method a: After environmental tests  
subgroup 1, Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM , tm = 10 s  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production)  
and preconditioning (type test), Vini = VIOTM  
tini = 1 s;  
,
5  
Vpd(m) = 1.875 × VIORM , tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance, input to output(5)  
~1.5  
> 1012  
> 1011  
> 109  
2
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
VIO = 500 V, 100°C TA 150°C  
VIO = 500 V at TS = 150°C  
Ω
Pollution degree  
Climatic category  
55/125/21  
UL 1577  
VTEST = VISO , t = 60 s (qualification); VTEST  
1.2 × VISO , t = 1 s (100% production)  
=
VISO  
Withstand isolation voltage  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-pin device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO7041-Q1  
 
 
 
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
6.6 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to EN  
61010-1:2010/A1:2019,  
EN 60950- 1:2006/  
A2:2013 and EN  
Certified according to UL  
1577 Component  
Recognition Program  
Certified according to DIN Certified according to IEC  
VDE V 0884-11:2017- 01 60950-1 and IEC 62368-1  
Certified according to  
GB4943.1-2011  
62368-1:2014  
3000 VRMS insulation per  
Maximum transient  
isolation voltage,  
CSA 60950-1-07+A1+A2,  
IEC 60950-1 2nd  
Ed.+A1+A2, CSA  
EN 61010- 1:2010/  
A1:2019, 300 VRMS basic  
isolation  
EN 60950- 1:2006/  
A2:2013 and EN  
62368-1:2014, 400 VRMS  
basic isolation  
Basic insulation, Altitude  
5000 m, Tropical  
Climate,  
400 VRMS maximum  
working voltage  
4242 VPK  
;
Maximum repetitive peak 62368-1- 14 and IEC  
isolation voltage, 566 VPK 62368-1:2014 370 VRMS  
Maximum surge isolation (DBQ-16) maximum  
voltage,  
4000 VPK  
Single protection,  
3000 VRMS  
;
working voltage (pollution  
degree 2, material group I)  
Certification Planned  
Certification Planned  
Certification Planned  
Certification Planned  
Certification Planned  
6.7 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
16-QSOP PACKAGE  
R
θJA = 87°C/W, VI = 5.5 V, TJ = 150°C,  
261  
399  
mA  
mA  
TA = 25°C  
θJA = 87°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C  
θJA = 87°C/W, TJ = 150°C, TA = 25°C  
IS  
Safety input, output, or supply current  
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
R
1435  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
6.8 Electrical Characteristics 5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
V
V
0.3 x VCCI  
VCCO - 0.4  
IOH = -4 mA  
VOL  
IOL = 4 mA  
0.4  
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 x VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
1
µA  
µA  
-1  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
1 MHz, VCC = 5 V  
Input Capacitance (2)  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.9 Supply Current Characteristics 5V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ISO7041-Q1  
ICC1  
ICC2  
ICC1  
6.2  
10.1  
8.2  
14.3  
18.5  
16.7  
µA  
µA  
µA  
Refresh disable  
Refresh enable  
VI = VCCI (1) (ISO7041-Q1);  
VI = 0 V (ISO7041-Q1 with F suffix)  
Supply current - DC  
signal  
ICC2  
ICC1  
ICC2  
10.8  
9.5  
18.5  
19.9  
19.5  
µA  
µA  
µA  
Refresh enable  
VI = 0 V (ISO7041-Q1);  
VI = VCCI (ISO7041-Q1 with F suffix)  
11.3  
ICC1  
6.7  
11.8  
19.7  
20.6  
57.4  
37.7  
436.1  
211.1  
20.8  
20.4  
57.4  
37.7  
436.1  
211.1  
7.4  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Refresh disable  
10 kbps, No Load  
ICC2  
ICC1  
37.1  
25.8  
340.5  
167.0  
10.6  
11.9  
Refresh disable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
1 Mbps, No Load  
ICC2  
Supply current - AC  
signal  
ICC1  
Refresh enable  
10 kbps, No Load  
ICC2  
ICC1  
37.1  
25.8  
338.3  
166.0  
4.1  
Refresh enable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh enable  
1 Mbps, No Load  
ICC2  
DC Signal  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
Total Supply Current  
Per Channel,  
Refresh Disabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
5.9  
10.7  
23.4  
164.5  
17.4  
137.0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO7041-Q1  
 
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
VI = VCCI (ISO7041-Q1);  
VI = 0 V (ISO7041-Q1 with F suffix)  
ICC1(ch) + ICC2(ch)  
4.8  
8.5  
µA  
VI = 0 V (ISO7041-Q1);  
VI = VCCI (ISO7041-Q1 with F suffix)  
Total Supply Current  
Per Channel,  
ICC1(ch) + ICC2(ch)  
5.3  
9.6  
µA  
Refresh Enabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.7  
16.4  
10.4  
22.3  
µA  
µA  
µA  
125.9  
154.0  
(1) VCCI = Input-side VCC  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
6.10 Electrical Characteristics 3.3V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VIT+(IN)  
VIT-(IN)  
VOH  
Rising input switching threshold  
Falling input switching threshold  
High-level output voltage  
Low-level output voltage  
0.7 x VCCI  
V
V
V
V
0.3 x VCCI  
VCCO - 0.3  
IOH = -2mA  
VOL  
IOL = 2mA  
0.3  
Input threshold voltage  
hysteresis  
VI(HYS)  
0.1 x VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI (1) at INx  
VIL = 0 V at INx  
1
µA  
µA  
-1  
Common mode transient  
immunity  
CMTI  
Ci  
VI = VCC or 0 V, VCM = 1200 V  
50  
100  
2
kV/us  
pF  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
1 MHz, VCC = 3.6 V  
Input Capacitance(2)  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
(2) Measured from input pin to same side ground.  
6.11 Supply Current Characteristics 3.3V Supply  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
ISO7041-Q1  
ICC1  
ICC2  
ICC1  
5.1  
8.9  
6.8  
8.8  
14.0  
12.2  
µA  
µA  
µA  
Refresh disable  
Refresh enable  
VI = VCCI (1) (ISO7041-Q1);  
VI = 0 V (ISO7041-Q1 with F suffix)  
Supply current - DC  
signal  
ICC2  
ICC1  
ICC2  
9.6  
8.1  
14.0  
14.8  
15.6  
µA  
µA  
µA  
Refresh enable  
VI = 0 V (ISO7041-Q1);  
VI = VCCI (ISO7041-Q1 with F suffix)  
10.0  
ICC1  
7.9  
10.4  
35.9  
22.7  
316.4  
147.2  
9.8  
13.7  
15.9  
48.3  
31.4  
395.7  
188.2  
16.4  
16.2  
48.3  
31.4  
395.7  
188.2  
5.7  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
Refresh disable  
10 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh disable  
1 Mbps, No Load  
ICC2  
Supply current - AC  
signal  
ICC1  
Refresh enable  
10 kbps, No Load  
ICC2  
10.5  
35.9  
22.7  
315.3  
146.2  
3.5  
ICC1  
Refresh enable  
100 kbps, No Load  
ICC2  
ICC1  
Refresh enable  
1 Mbps, No Load  
ICC2  
DC Signal  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
Total Supply Current  
Per Channel,  
Refresh Disabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
5.2  
8.2  
14.8  
115.7  
19.2  
138.7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO7041-Q1  
 
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SUPPLY CURRENT  
MIN  
TYP  
MAX  
UNIT  
VI = VCCI (ISO7041-Q1);  
VI = 0 V (ISO7041-Q1 with F suffix)  
ICC1(ch) + ICC2(ch)  
4.2  
6.8  
µA  
VI = 0 V (ISO7041-Q1);  
VI = VCCI (ISO7041-Q1 with F suffix)  
Total Supply Current  
Per Channel,  
ICC1(ch) + ICC2(ch)  
4.6  
7.7  
µA  
Refresh Enabled  
10 kbps, No Load  
100 kbps, No Load  
1 Mbps, No Load  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
ICC1(ch) + ICC2(ch)  
5.2  
14.8  
8.2  
19.2  
µA  
µA  
µA  
115.7  
138.7  
(1) VCCI = Input-side VCC  
6.12 Switching Characteristics  
VCC1, VCC2 = 3.0 V to 5.5 V (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tPLH, tPHL  
tP(dft)  
Propagation delay time  
Propagation delay drift  
Minimum pulse width  
Pulse width distortion  
148  
15  
165  
ns  
See 7-1  
ps/℃  
ns  
tUI  
250  
See 7-1  
PWD  
10  
10  
10  
70  
16  
16  
ns  
Same-direction channels  
ns  
tsk(o)  
Channel to channel output skew time  
Opposite-direction channels  
ns  
tsk(p-p)  
Part to part skew time  
Output signal rise time  
Output signal fall time  
ns  
tr  
tf  
ns  
See 7-1  
See 7-1  
ns  
Default output delay time from input  
power loss  
tDO  
400  
10  
750  
5
us  
See 7-2  
tPU  
FR  
Time from UVLO to valid output data  
Refresh rate  
1
5
ms  
kbps  
6.13 Insulation Characteristics Curves  
500  
1600  
VCC = 3.6 V  
VCC = 5.5 V  
400  
300  
200  
100  
0
1200  
800  
400  
0
0
40  
80  
120  
160  
200  
0
20  
40  
60  
80  
100  
120  
140  
160  
Ambient Temperature (èC)  
Ambient Temperature (C)  
SLLS  
6-2. Thermal Derating Curve for Limiting Power  
6-1. Thermal Derating Curve for Limiting Current  
per VDE  
per VDE  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
6.14 Typical Characteristics  
500  
500  
100  
100  
10  
2
10  
2
1
10  
100  
1000  
4000  
0.2  
1
10  
100  
1000  
4000  
Data Rate (kbps)  
Data Rate (kbps)  
TA = 25°C  
CL = 0 pF  
TA = 25°C  
CL = 15 pF  
6-3. ISO7041-Q1 Supply Current vs Data Rate at 6-4. ISO7041-Q1 Supply Current vs Data Rate at  
3.3 V  
3.3 V  
(With No Load)  
(With 15-pF Load)  
500  
100  
500  
100  
10  
2
10  
2
0.2  
1
10  
100  
1000  
4000  
0.2  
1
10  
100  
1000  
4000  
Data Rate (kbps)  
Data Rate (kbps)  
TA = 25°C  
CL = 0 pF  
TA = 25°C  
CL = 15 pF  
6-5. ISO7041-Q1 Supply Current vs Data Rate at 6-6. ISO7041-Q1 Supply Current vs Data Rate at  
5 V  
5 V  
(With No Load)  
(With 15-pF Load)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO7041-Q1  
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3ns, ZO  
= 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
V
CC  
V
CC  
V
I
1.7 V  
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
7-2. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
V
OH  
or V  
OL  
C
L
œ
See Note A  
GNDI  
GNDO  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ISO7041-Q1 device uses edge encoding of data with an ON-OFF keying (OOK) modulation scheme to  
transmit the digital data across a silicon dioxide isolation barrier. The transmitter uses a high frequency carrier  
signal to pass data across the barrier representing a signal edge transition. Using this method achieves very low  
power consumption and high immunity. The receiver demodulates the carrier signal after advanced signal  
conditioning and produces the output through a buffer stage. For low data rates, a refresh logic option is  
available to make sure the output state matches the input state. Advanced circuit techniques are used to  
maximize the CMTI performance and minimize the radiated emissions due to the high frequency carrier and IO  
buffer switching. The conceptual block diagram of a digital capacitive isolator, Conceptual Block Diagram of a  
Digital Capacitive Isolator, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
TX IN  
Edge  
Encoding  
Capacitive  
Isolation  
Barrier  
Refresh  
Logic  
Watch Dog  
Timer  
Oscillator  
8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
8.3 Feature Description  
8.3.1 Refresh  
The ISO7041 uses an edge based encoding scheme to transfer an input signal change across the isolation  
barrier versus sending across the DC state. The built in refresh function consistently validates that the DC output  
state of each isolator channel matches the DC input state. An internal watchdog timer monitors for activity on the  
individual inputs and transmits the logic state when there is no input signal transition for more than 100 µs. This  
ensures that the input and output state of the isolator always match.  
8.3.2 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO70xx  
family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO7041-Q1  
 
 
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
The device has no issue being able to meet either CISPR 22 Class A and CISPR22 Class B standards in an  
unshielded environment.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
8.4 Device Functional Modes  
8-1 shows the functional modes for the device.  
8-1. Function Table  
REFRESH  
ENABLE  
(ENx)  
INPUT  
(INx)  
OUTPUT  
(OUTx)  
(1)  
VCCI  
VCCO  
COMMENTS  
H
L
L
L
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
PU  
The device needs an input signal transition to validate the output  
X
X
H
Undetermined tracks the input state. Without a signal edge transition, the output will  
be in an undetermined state.  
When VCCI is unpowered, a channel output assumes the logic state  
based on the selected default option. Default is High for the device  
without the F suffix and Low for device with the F suffix.  
L
Default  
When VCCI transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
PD  
PU  
When VCCI transitions from powered-up to unpowered, channel  
output assumes the selected default state.  
When VCCI is unpowered, a channel output assumes the logic state  
based on the previous state of the output before VCCI powered down.  
H
L
Undetermined  
When VCCO is unpowered, a channel output is undetermined.(2)  
Undetermined When VCCO transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
X
X
PD  
X
X
X
When VCCO is unpowered, a channel output is undetermined.(2)  
Undetermined When VCCO transitions from unpowered to powered-up, a channel  
output assumes the selected default option.  
H
When ENx is unconnected or open, the device output will be in an  
Undetermined undetermined and unknown state. ENx must be connected high or  
low for the device to behave correctly.  
Open  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 1.54 V); PD = Powered down (VCC 1.54); X = Irrelevant;  
H = High level; L = Low level ; Z = High Impedance.  
(2) A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO7041-Q1  
 
 
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
8.4.1 Device I/O Schematics  
Refresh Enable  
Input  
V
V
V
CCI  
CCI  
CCI  
V
V
V
CCI  
CCI  
CCI  
985  
1970 ꢀ  
INx  
ENx  
Output  
V
CCO  
~20 ꢀ  
OUTx  
8-2. Device I/O Schematics  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO7041-Q1 device is an ultra-low power digital isolator. The device uses single-ended CMOS-logic  
switching technology. The voltage range is from 3.0 V to 5.5 V for both supplies, VCC1 and VCC2, and can be set  
irrespective of one another. When designing with digital isolators, keep in mind that because of the single-ended  
design structure, digital isolators do not conform to any specific interface standard and are only intended for  
isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data  
controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or  
standard. See Isolated power and data interface for low-power applications reference design TI Design for  
detailed information on designing the ISO70xx in low-power applications.  
9.1.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; see 9-1 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm) and a minimum insulation lifetime of 20 years. VDE standard also requires additional safety margin of  
20% for working voltage and 87.5% for insulation lifetime which translates into minimum required life time of 37.5  
years.  
9-2 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of these devices is 400 VRMS with a lifetime of >100 years.  
Other factors, such as package size, pollution degree, material group, and so forth can further limit the working  
voltage of the component. The working voltage of the DBQ-16 package specified up to 400 VRMS. At the lower  
working voltages, the corresponding insulation barrier life time is much longer.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND  
1
GND 2  
V
S
Oven at 150 °C  
9-1. Test Setup for Insulation Lifetime Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO7041-Q1  
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
9-2. Insulation Lifetime Projection Data  
9.2 Typical Application  
Isolated UART for an Automotive Battery Management System shows the isolated UART and GPIO (NFAULT)  
interface.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
CVDD  
CVSS  
N
N
N
1
DVDD  
DVSS  
10 k  
10 k  
TSREF  
GPIO1  
N
1
1
REFHP  
REFHM  
N
N
N
GPIO2  
GPIO3  
AVDD  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO8  
NEG5V  
AVSS  
N
N
LDOIN  
NPNB  
BAT  
200 ꢀ  
100 ꢀ  
MCU  
ISO7041-Q1  
To CVDD  
30 ꢀ  
BQ75614-Q1  
VCC1  
VCC2  
VCC  
100 kꢀ  
100 kꢀ  
100 kꢀ  
10 nF  
INA  
OUTA  
NFAULT  
TX  
INB  
OUTB  
OUTC  
IND  
INT  
100 ꢀ  
INC  
RX  
TX  
VC14  
VC13  
0.47 uF  
100 ꢀ  
RX  
OUTD  
+
CELL 14  
0.47 uF  
GND1  
GND2  
GND  
+
CELL 13  
100 ꢀ  
100 ꢀ  
VC1  
VC0  
0.47 uF  
+
0.47 uF  
CELL 1  
CB14  
CB13  
CELL 14  
100 ꢀ  
0.47 uF  
CELL 13  
100 ꢀ  
SRP  
CB1  
CB0  
CELL 1  
CELL 0  
100 ꢀ  
100 ꢀ  
0.47 uF  
0.47 uF  
Rsense  
SRN  
9-3. Isolated UART for an Automotive Battery Management System  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO7041-Q1  
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
To design with these devices, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETER  
VALUE  
3.0 V to 5.5 V  
0.1 µF  
Supply voltage, VCC1 and VCC2  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the device only require two external bypass capacitors to operate.  
2 mm maximum  
from VCC2  
2 mm maximum  
from VCC1  
VCC2  
VCC1  
1
16  
0.1 µF  
0.1 µF  
GND1  
GND2  
2
3
15  
14  
INA  
INB  
INC  
OUTA  
OUTB  
OUTC  
13  
4
12  
11  
10  
9
5
6
7
8
IND  
OUTD  
GND2  
GND2  
GND1  
GND1  
9-4. Typical ISO7041-Q1 Circuit Hook-up  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
9.2.3 Application Curves  
The following typical eye diagrams of the device indicates wide open eye at the maximum data rate of 4 Mbps.  
9-5. Eye Diagram at 4 Mbps PRBS 216 1, 3.3 V and 25°C  
9-6. Eye Diagram at 4 Mbps PRBS 216 1, 5 V and 25°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO7041-Q1  
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
Put a 0.1-μF bypass capacitor at the input and output supply pins (VCC1 and VCC2) to make sure that operation  
is reliable at data rates and supply voltage. Put the capacitors as near to the supply pins as possible. If only one  
primary-side power supply is available in an application, use a transformer driver to help generate the isolated  
power for the secondary-side. Texas Instruments recommends the SN6501 device or SN6505A device. Refer to  
the SN6501 Transformer Driver for Isolated Power Supplies data sheet or SN6505 Low-Noise 1-A Transformer  
Drivers for Isolated Power Supplies data sheet for detailed power supply design and transformer selection  
recommendations.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 11-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
Refer to the Digital Isolator Design Guide for detailed layout recommendations,.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this space  
FR-4  
free from planes,  
traces, pads, and  
vias  
40 mils  
0r ~ 4.5  
Power plane  
10 mils  
Low-speed traces  
11-1. Recommended Layer Stack  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO7041-Q1  
 
 
 
 
ISO7041-Q1  
ZHCSNP7 JUNE 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments,BQ75614-Q1, 14-S automotive precision battery monitor, balancer and integrated  
protector with ASIL-D compliance  
Texas Instruments, Uniquely Efficient Isolated DC/DC Converter for Ultra-Low Power and Low-Power  
Applications TI Design  
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, SN6505A Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheet  
Texas Instruments, Isolated power and data interface for low-power applications reference design TI Design  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: ISO7041-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7041FQDBQRQ1  
ISO7041QDBQRQ1  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
DBQ  
DBQ  
16  
16  
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
7041F  
7041  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2022  
OTHER QUALIFIED VERSIONS OF ISO7041-Q1 :  
Catalog : ISO7041  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISO7131CC

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7131CCDBQ

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7131CCDBQR

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7140CC

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7140CCDBQ

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7140CCDBQR

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7140FCC

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7140FCCDBQ

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7140FCCDBQR

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7141CC

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7141CCDBQ

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI

ISO7141CCDBQR

4242-VPK Small-Footprint and Low-Power Triple and Quad Channels Digital Isolators
TI