ISO721MDRG4 [TI]

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS; 3.3 V / 5 V高速数字隔离器
ISO721MDRG4
型号: ISO721MDRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
3.3 V / 5 V高速数字隔离器

驱动程序和接口 接口集成电路 光电二极管
文件: 总22页 (文件大小:1372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS  
FEATURES  
Drop-In Replacement for Most Opto and  
Magnetic Isolators  
4000-V(peak) Isolation  
– UL 1577, IEC 60747-5-2 (VDE 0884, Rev. 2)  
IEC 61010-1 and CSA Approved  
APPLICATIONS  
Industrial Fieldbus  
– 50 kV/µs Transient Immunity Typical  
Signaling Rate 0 Mbps to 150 Mbps  
– Low-Propagation Delay  
– Modbus  
– Profibus  
– DeviceNet™ Data Buses  
– Smart Distributed Systems (SDS™)  
Computer Peripheral Interface  
Servo Control Interface  
Data Acquisition  
– Low-Pulse Skew (Pulse-Width Distortion)  
Low-Power Sleep Mode  
High-Electromagnetic Immunity  
Low-Input Current Requirement  
Failsafe Output  
DESCRIPTION  
The ISO721, ISO721M, ISO722, and ISO722M are digital isolators with a logic input and output buffer separated  
by a silicon oxide (SiO2) insulation barrier. This barrier provides galvanic isolation of up to 4000 V. Used in  
conjunction with isolated power supplies, these devices prevent noise currents on a data bus or other circuits  
from entering the local ground, and interfering with or damaging sensitive circuitry.  
A binary input signal is conditioned, translated to a balanced signal, then differentiated by the capacitive isolation  
barrier. Across the isolation barrier, a differential comparator receives the logic transition information, then sets  
or resets a flip-flop and the output circuit accordingly. A periodic update pulse is sent across the barrier to  
ensure the proper dc level of the output. If this dc-refresh pulse is not received for more than 4 µs, the input is  
assumed to be unpowered or not being actively driven, and the failsafe circuit drives the output to a logic high  
state.  
FUNCTION DIAGRAM  
Isolation Barrier  
DC Channel  
+
_
Filter  
OSC  
+
Pulse Width  
Demodulation  
V
ref  
_
PWM  
+
Carrier Detect  
POR  
BIAS  
POR  
ISO722  
Only  
+
Data MUX  
AC Detect  
3-State  
_
EN  
Input  
+
IN  
V
ref  
_
Filter  
OUT  
Output Buffer  
+
AC Channel  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
SDS is a trademark of Honeywell.  
DeviceNet is a trademark of Open Devicenet Vendors Association, Inc.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006, Texas Instruments Incorporated  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
The symmetry of the dielectric and capacitor within the integrated circuitry provides for close capacitive  
matching, and allows fast transient voltage changes between the input and output grounds without corrupting the  
output. The small capacitance and resulting time constant provide for fast operation with signaling rates(1) from 0  
Mbps (dc) to 100 Mbps for the ISO721/ISO722, and 0 Mbps to 150 Mbps with the ISO721M/ISO722M.  
These devices require two supply voltages of 3.3-V, 5-V, or any combination. All inputs are 5-V tolerant when  
supplied from a 3.3-V supply and all outputs are 4-mA CMOS.  
The ISO722 and ISO722M devices includes an active-low output enable that when driven to a high-logic level,  
places the output in a high-impedance state, and turns off internal bias circuitry to conserve power.  
Both the ISO721 and ISO722 have TTL input thresholds and a noise-filter at the input that prevents transient  
pulses of up to 2 ns in duration from being passed to the output of the device.  
The ISO721M and ISO722M have CMOS VCC/2 input thresholds, but do not have the noise-filter and the  
additional propagation delay. These features of the ISO721M also provide for reduced jitter operation.  
The ISO721, ISO721M, ISO722, and ISO722M are characterized for operation over the ambient temperature  
range of –40°C to 125°C.  
(1) The signaling rate of a line is the number of voltage transitions that are made per second expressed in  
the units bps (bits per second).  
PACKAGE PIN ASSIGMENTS  
PACKAGE PIN ASSIGMENTS  
ISO721D, ISO721MD  
ISO722D, ISO722MD  
(TOP VIEW)  
(TOP VIEW)  
V
CC1  
V
CC2  
1
2
3
4
8
7
6
5
V
CC1  
V
CC2  
1
2
3
4
8
7
6
5
GND2  
OUT  
IN  
EN  
IN  
V
CC1  
V
CC1  
OUT  
GND2  
GND1  
GND2  
GND1  
AVAILABLE OPTIONS  
OUTPUT  
ENABLED  
INPUT  
THRESHOLDS  
NOISE  
MARKED  
AS  
PRODUCT  
PACKAGE(1)  
FILTER  
ORDERING NUMBER  
GREEN  
ISO721D (rail)  
ISO721DR (reel)  
ISO721MD (rail)  
ISO721MDR (reel)  
ISO722D (rail)  
ISO721  
NO  
NO  
TTL  
YES  
NO  
SOIC-8  
SOIC-8  
SOIC-8  
SOIC-8  
ISO721  
IS721M  
ISO722  
IS722M  
ISO721M  
ISO722  
CMOS  
TTL  
Pb Free  
Sb/Br Free  
YES  
YES  
YES  
NO  
ISO722DR (reel)  
ISO722MD (rail)  
ISO722MDR (reel)  
ISO722M  
CMOS  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
Web site at www.ti.com.  
REGULATORY INFORMATION  
VDE  
CSA  
UL  
Approved under CSA Component  
Acceptance Notice: CA-5A  
Recognized under 1577  
Certified according to IEC 60747-5-2  
File Number: 40014131  
Component Recognition Program(1)  
File Number: 1698195  
File Number: E181974  
(1) Production tested 3000 VRMS for 1 second in accordance with UL 1577.  
2
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
ABSOLUTE MAXIMUM RATINGS(1)  
UNIT  
VCC  
VI  
Supply voltage(2), VCC1, VCC2  
Voltage at IN, OUT, or EN terminal  
Output Current  
–0.5 V to 6 V  
–0.5 V to 6 V  
±15 mA  
IO  
Human Body Model  
Charged Device Model  
JEDEC Standard 22, Test Method A114-C.01  
±2 kV  
±1 kV  
170°C  
Electrostatic  
discharge  
ESD  
TJ  
All pins  
JEDEC Standard 22, Test Method C101  
Maximum junction temperature  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values. Vrms  
values are not listed in this publication.  
RECOMMENDED OPERATING CONDITIONS  
MIN TYP  
MAX  
5.5  
3.6  
4
UNIT  
4.5  
3
VCC  
Supply voltage, VCC1, VCC2  
Output current  
V
IOH  
IOL  
mA  
ns  
V
-4  
10  
ISO72x  
tui  
Input pulse width  
ISO72xM  
6.67  
2
VIH  
VIL  
VIH  
VIL  
TJ  
High-level input voltage (IN, EN)  
Low-level input voltage (IN, EN)  
High-level input voltage (IN, EN)  
Low-level input voltage (IN, EN)  
Junction temperature  
VCC  
0.8  
ISO72x  
0
0.7 VCC  
VCC  
IOS72xM  
V
0
0.3 VCC  
150  
See the Thermal Characteristics table  
°C  
External magnetic field intensity per IEC 61000-4-8 and IEC 61000-4-9  
certification  
H
1000  
A/m  
IEC 60747-5-2 INSULATION CHARACTERISTICS(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SPECIFICATIONS  
UNIT  
VIORM  
Maximum working insulation voltage  
560  
V
After Input/Output Safety Test Subgroup 2/3  
VPR = VIORM × 1.2, t = 10 s,  
Partial discharge < 5 pC  
672  
896  
V
V
V
Method a, VPR = VIORM × 1.6,  
Type and sample test with t = 10 s,  
Partial discharge < 5 pC  
VPR  
Input to output test voltage  
Method b1, VPR = VIORM × 1.875,  
100 % Production test with t = 1 s,  
Partial discharge < 5 pC  
1050  
VIOTM  
RS  
Transient overvoltage  
Insulation resistance  
Pollution degree  
t = 60 s  
4000  
>109  
2
V
VIO = 500 V at TS  
(1) Climatic Classification 40/125/21  
3
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 5-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Quiescent  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
0.5  
2
1
ICC1  
VCC1 supply current  
VCC2 supply current  
VI = VCC or 0 V, No load  
mA  
4
25 Mbps  
ISO722/722M  
Sleep Mode  
EN at VCC  
200  
µA  
VI = VCC or 0 V,  
No load  
ICC2  
EN at 0 V or  
Quiescent  
25 Mbps  
8
12  
14  
ISO721/721M  
mA  
VI = VCC or 0 V, No load  
IOH = -4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
10  
VCC – 0.8  
4.6  
5
VOH  
High-level output voltage  
Low-level output voltage  
V
VCC – 0.1  
0.2  
0
0.4  
0.1  
VOL  
V
VI(HYS) Input voltage hysteresis  
150  
mV  
µA  
IIH  
IIL  
High-level input current  
Low-level input current  
EN, IN at 2 V  
10  
1
EN, IN at 0.8 V  
–10  
25  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
50  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 and VCC2 5-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
13  
TYP  
17  
17  
0.5  
10  
10  
0.5  
0
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
24  
ISO72x  
13  
24  
2
ns  
Pulse skew |tPHL– tPLH  
|
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
8
8
16  
16  
1
ISO72xM  
Pulse skew |tPHL– tPLH  
|
(1)  
Part-to-part skew  
3
ns  
ns  
Output signal rise time  
Output signal fall time  
1
EN at 0 V,  
See Figure 1  
tf  
1
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
6
3.5  
5.5  
4
8
4
8
5
15  
8
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
15  
8
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
4
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Quiescent  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
0.5  
2
1
ICC1  
VCC1 supply current  
VCC2 supply current  
VI = VCC or 0 V, No load  
mA  
4
25 Mbps  
ISO722/722M  
Sleep Mode  
EN at VCC  
150  
µA  
VI = VCC or 0 V,  
No load  
ICC2  
EN at 0 V or  
ISO721/721M  
Quiescent  
25 Mbps  
4
5
6.5  
7.5  
mA  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
VCC – 0.4  
3
3.3  
0.2  
0
VOH  
High-level output voltage  
Low-level output voltage  
V
VCC – 0.1  
0.4  
0.1  
VOL  
V
VI(HYS) Input voltage hysteresis  
150  
mV  
µA  
IIH  
IIL  
High-level input current  
Low-level input current  
EN, IN at 2 V  
10  
1
EN, IN at 0.8 V  
–10  
25  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
40  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
15  
TYP  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
19  
19  
0.5  
12  
12  
0.5  
0
30  
ISO72x  
15  
30  
3
ns  
Pulse skew |tPHL– tPLH  
|
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
10  
10  
20  
20  
1
ISO72xM  
Pulse skew |tPHL– tPLH  
|
(1)  
Part-to-part skew  
5
ns  
ns  
Output signal rise time  
Output signal fall time  
2
EN at 0 V,  
See Figure 1  
tf  
2
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
7
4.5  
7
11  
6
25  
8
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
13  
6
25  
8
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
4.5  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
5
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: VCC1 at 3.3-V, VCC2 at 5-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Quiescent  
TEST CONDITIONS  
MIN TYP  
MAX UNIT  
0.3  
1
0.5  
mA  
2
ICC1  
VCC1 supply current  
VCC2 supply current  
VI = VCC or 0 V, No load  
25 Mbps  
ISO722/722M  
Sleep Mode  
EN at VCC  
200  
µA  
VI = VCC or 0 V,  
No load  
ICC2  
EN at 0 V or  
Quiescent  
25 Mbps  
8
12  
14  
ISO721/721M  
mA  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
10  
VCC – 0.8  
VCC – 0.1  
4.6  
5
VOH  
High-level output voltage  
Low-level output voltage  
V
0.2  
0
0.4  
0.1  
VOL  
V
VI(HYS) Input voltage hysteresis  
150  
mV  
µA  
IIH  
IIL  
High-level input current  
Low-level input current  
EN, IN at 2 V  
10  
1
EN, IN at 0.8 V  
–10  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
25  
40  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 at 3.3-V, VCC2 at 5-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
15  
TYP  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
17  
17  
0.5  
12  
12  
0.5  
0
30  
ISO72x  
15  
30  
2
ns  
Pulse skew |tPHL– tPLH  
|
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
10  
10  
21  
21  
1
ISO72xM  
Pulse skew |tPHL– tPLH  
|
(1)  
Part-to-part skew  
5
ns  
ns  
Output signal rise time  
Output signal fall time  
1
EN at 0 V,  
See Figure 1  
tf  
1
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
7
4.5  
7
9
5
9
5
15  
8
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
15  
8
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
4.5  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
6
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Quiescent  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
0.3  
1
0.5  
2
ICC1  
VCC1 supply current  
VCC2 supply current  
VI = VCC or 0 V, No load  
mA  
25 Mbps  
ISO722/722M  
Sleep Mode  
EN at VCC  
150  
µA  
VI = VCC or 0 V,  
No load  
ICC2  
EN at 0 V or  
Quiescent  
25 Mbps  
4
6.5  
7.5  
ISO721/721M  
mA  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 µA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 µA, See Figure 1  
5
3
VCC – 0.4  
VCC – 0.1  
VOH  
High-level output voltage  
Low-level output voltage  
V
3.3  
0.2  
0
0.4  
0.1  
VOL  
V
VI(HYS) Input voltage hysteresis  
150  
mV  
µA  
IIH  
IIL  
High-level input current  
Low-level input current  
EN, IN at 2 V  
10  
1
EN, IN at 0.8 V  
–10  
25  
High-impedance output  
current  
IOZ  
ISO722, ISO722M  
EN, IN at VCC  
µA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
40  
kV/µs  
SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 3.3-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH  
tPHL  
tsk(p)  
tPLH  
tPHL  
tsk(p)  
tsk(pp)  
tr  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
17  
17  
20  
20  
0.5  
12  
12  
0.5  
0
34  
ISO72x  
34  
3
ns  
Pulse skew |tPHL– tPLH  
|
EN at 0 V,  
See Figure 1  
Propagation delay, low-to-high-level output  
Propagation delay, high-to-low-level output  
10  
10  
25  
25  
1
ISO72xM  
Pulse skew |tPHL– tPLH  
|
(1)  
Part-to-part skew  
5
ns  
ns  
Output signal rise time  
Output signal fall time  
2
EN at 0 V,  
See Figure 1  
tf  
2
Sleep-mode propagation delay,  
high-level-to-high-mpedance output  
tpHZ  
tpZH  
tpLZ  
7
5
7
5
13  
6
25  
8
ns  
µs  
ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
ISO722  
ISO722M  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
13  
6
25  
8
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
µs  
µs  
Failsafe output delay time from input power loss  
3
2
100 Mbps NRZ data input, See Figure 6  
ISO72x  
Peak-to-peak eye-pattern jitter  
ISO72xM  
100 Mbps unrestricted bit run length data  
input, See Figure 6  
3
1
2
tjit(PP)  
ns  
150 Mbps NRZ data input, See Figure 6  
150 Mbps unrestricted bit run length data  
input, See Figure 6  
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
7
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
PARAMETER MEASUREMENT INFORMATION  
V
CC1  
V
CC1  
/2  
V
CC1  
/2  
I
O
OUT  
V
I
IN  
0 V  
t
t
+
Input  
PHL  
PLH  
+
V
C
Generator  
OH  
V
O
L
V
I
ISO722  
and  
ISO722M  
90%  
50 W  
50%  
50%  
Note B  
V
-
EN  
-
O
NOTE A  
10%  
V
OL  
t
t
f
r
Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms  
V
V
O
CC2  
IN  
V
OUT  
I
V
/2  
3 V  
V
/2  
CC2  
CC2  
0 V  
EN  
t
R
= 1 kW ±1 %  
C
PZH  
L
L
V
OH  
NOTE B  
+
50%  
Input  
0.5 V  
V
O
Generator  
NOTE A  
V
I
50 W  
0 V  
t
PHZ  
-
Figure 2. ISO722 Sleep-Mode High-Level Output Test Circuit and Voltage Waveforms  
V
CC2  
R
= 1 kW ±1%  
L
V
CC2  
V
I
V
/2  
V
/2  
CC2  
CC2  
IN  
OUT  
V
O
0 V  
0 V  
t
t
PZL  
PLZ  
V
CC2  
EN  
0.5 V  
V
C
O
L
50%  
NOTE B  
+
V
Input  
Generator  
NOTE A  
OL  
50 W  
V
I
-
Figure 3. ISO722 Sleep-Mode Low-Level Output Test Circuit and Voltage Waveforms  
NOTE:  
A: The input pulse is supplied by a generator having the following characteristics:  
PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO = 50 .  
B: CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
8
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
I
V
CC1  
V
CC1  
V
I
2.7 V  
IN  
0 V  
OUT  
V
O
0 V  
t
fs  
V
OH  
50%  
V
O
C
EN  
ISO722  
and  
L
V
OL  
15 pF  
±20%  
ISO722M  
NOTE: VI transition time is 100 ns  
Figure 4. Failsafe Delay Time Test Circuit and Voltage Waveforms  
V
V
CC1  
CC2  
OUT  
IN  
C
V
L
CC  
or  
0 V  
V
O
15 pF  
±20%  
C = 0.1 mF,  
I
GND1  
GND2  
±1%  
V
CM  
NOTE: Pass/Fail criteria is no change in VO.  
Figure 5. Common-Mode Transient Immunity Test Circuit and Voltage Waveform  
9
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
PARAMETER MEASUREMENT INFORMATION (continued)  
Tektronix  
HFS9009  
Tektronix  
784D  
PATTERN  
GENERATOR  
V
CC1  
In p u t  
0 V  
O u tp u t  
V
CC2/2  
J itte r  
NOTE: Bit pattern run length is 216 - 1. Transition Time is 800 ps. NRZ data input has no more than five consecutive  
1s or 0s.  
Figure 6. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform  
10  
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
DEVICE INFORMATION  
PACKAGE CHARACTERISTICS  
PARAMETER  
L(101) Minimum air gap (Clearance)  
TEST CONDITIONS  
MIN  
4.8  
TYP  
MAX UNIT  
(1)  
Shortest terminal to terminal distance through air  
mm  
Shortest terminal to terminal distance across the  
package surface  
L(102) Minimum external tracking (Creepage)  
4.3  
mm  
Tracking resistance (comparative tracking  
index)  
CTI  
DIN IEC 60112/VDE 0303 Part 1  
Distance through insulation  
175  
V
Minimum internal gap (internal clearance)  
0.008  
mm  
Input to output, VIO = 500 V, all pins on each side  
of the barrier tied together creating a two-terminal  
device  
RIO  
Isolation resistance  
>1012  
Barrier capacitance  
Input-to-output  
CIO  
CI  
VI = 0.4 sin (4E6πt)  
VI = 0.4 sin (4E6πt)  
1
1
pF  
pF  
Input capacitance to ground  
(1) Creepage and clearance requirements are applied according to the specific equipment isolation standards of an application. Care should  
be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the  
printed circuit board do not reduce this distance.  
Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation  
Glossary. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
IEC 60664-1 RATINGS TABLE  
PARAMETER  
Basic isolation group  
TEST CONDITIONS  
SPECIFICATION  
Material group  
IIIa  
I-IV  
I-III  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Installation classification  
DEVICE I/O SCHEMATIC  
Equivalent Input and Output Schematic Diagrams  
Enable  
Input  
Output  
V
CC2  
V
V
V
CC2  
V
CC1  
CC1  
V
CC2  
CC1  
8 W  
1 MW  
OUT  
500 W  
500 W  
EN  
IN  
13 W  
1 MW  
11  
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
IEC SAFETY LIMITING VALUES  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry.  
A failure of the IO can allow low resistance to ground or the supply, and without current limiting, dissipate  
sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system  
failures.  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
100  
153  
150  
UNIT  
θJA = 263°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C  
θJA = 263°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C  
IS  
Safety input, output, or supply current  
Maximum case temperature  
mA  
TS  
°C  
The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum  
ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The junction-to-air thermal resistance in the Thermal  
Characteristics table is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity Test  
Board for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum input  
voltage times the current. The junction temperature is then the ambient temperature plus the power times the  
junction-to-air thermal resistance.  
THERMAL CHARACTERISTICS  
(over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Low-K Thermal Resistance(1)  
High-K Thermal Resistance(1)  
MIN  
TYP  
263  
125  
MAX  
UNIT  
°C/W  
°C/W  
θJA  
Junction-to-Air  
Junction-to-Board Thermal  
Resistance  
θJB  
θJC  
44  
75  
°C/W  
°C/W  
Junction-to-Case Thermal  
Resistance  
VCC1 = VCC2 = 5.5 V, TJ = 150°C,  
CL = 15 pF, Input a 100 Mbps 50% duty  
cycle square wave  
ISO72x  
159  
195  
PD  
Device Power Dissipation  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C,  
ISO72xM CL = 15 pF, Input a 150 Mbps 50% duty  
cycle square wave  
(1) Tested in accordance with the Low-K or High-K thermal metric definition of EIA/JESD51-3 for leaded surface mount packages.  
200  
175  
V
= 3.6 V,  
CC1  
V
= 3.6 V  
CC2  
150  
V
= 5.5 V,  
CC1  
125  
100  
75  
50  
25  
0
V
= 5.5 V  
CC2  
0
50  
100  
Case Temperature  
150  
200  
o
C
Figure 7. θJC THERMAL DERATING CURVE per IEC 60747-5-2  
12  
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
FUNCTION TABLE  
ISO721(1)  
VCC1  
VCC2  
INPUT  
(IN)  
OUTPUT  
(OUT)  
H
L
H
L
PU  
PD  
PU  
PU  
Open  
X
H
H
(1) PU = Powered Up (VCC 3 V); PD = Powered Down (VCC 2.5 V); X = Irrelevant; H = High Level;  
L = Low Level  
ISO722(1)  
VCC1  
VCC2  
INPUT  
(IN)  
ISO722/ISO722M  
OUTPUT ENABLE (EN)  
OUTPUT  
(OUT)  
H
L
L or Open  
L or Open  
H
H
L
PU  
PU  
X
Z
H
H
Z
Open  
X
L or Open  
L or Open  
H
PD  
PD  
PU  
PU  
X
(1) PU = Powered Up (VCC 3 V); PD = Powered Down (VCC 2.5 V); X = Irrelevant; Z = High Impedance; H = High Level; L = Low Level  
13  
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
TYPICAL CHARACTERISTICS  
RMS SUPPLY CURRENT vs SIGNALING RATE  
RMS SUPPLY CURRENT vs SIGNALING RATE  
10  
15  
14  
13  
12  
V
V
T
= 3.3 V,  
V
V
T
= 5 V,  
CC1  
CC1  
9
= 3.3 V,  
= 5 V,  
CC2  
CC2  
o
= 25 C,  
o
= 25 C,  
A
8
7
6
5
A
I
CC2  
C
= 15 pF  
C
= 15 pF  
L
L
11  
10  
9
8
7
6
I
CC2  
I
4
3
2
CC1  
5
4
3
2
1
0
I
CC1  
1
0
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Signaling Rate (Mbps)  
Signaling Rate (Mbps)  
Figure 8.  
Figure 9.  
PROPAGATION DELAY vs FREE-AIR TEMPERATURE  
PROPAGATION DELAY vs FREE-AIR TEMPERATURE  
30  
20  
t
PLH  
18  
t
PLH  
25  
ISO72x  
16  
t
PHL  
t
ISO72x  
PHL  
14  
12  
10  
20  
t
PLH  
t
PLH  
t
15  
PHL  
t
PHL  
ISO72xM  
ISO72xM  
8
6
4
10  
V
= 3.3 V,  
= 3.3 V,  
CC1  
V
= 5 V,  
CC1  
V
CC2  
V
= 5 V,  
CC2  
5
C
= 15 pF,  
L
C
= 15 pF,  
L
Air Flow at 7 cf/m  
2
Air Flow at 7 cf/m  
0
0
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
o
C
o
Free-Air Temperature C  
T
A
Free-Air Temperature −  
T
A
Figure 10.  
Figure 11.  
ISO72x INPUT THRESHOLD VOLTAGE vs  
FREE-AIR TEMPERATURE  
ISO72xM INPUT THRESHOLD VOLTAGE vs  
FREE-AIR TEMPERATURE  
1.4  
1.35  
1.3  
2.5  
5-V (V  
)
IT+  
2.4  
5-V (V  
)
IT+  
2.3  
2.2  
5-V (V  
)
3.3-V (V  
)
IT+  
IT-  
2.1  
1.25  
2
1.2  
Air Flow at 7 cf/m  
1.9  
Air Flow at 7 cf/m  
1.15  
1.1  
1.05  
1
1.8  
1.7  
1.6  
5-V (V  
)
IT-  
3.3-V (V  
IT+  
)
3.3-V (V  
IT-  
)
3.3-V (V  
)
1.5  
IT-  
1.4  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
o
C
o
Free-Air Temperature C  
T
A
Free-Air Temperature −  
T
A
Figure 12.  
Figure 13.  
14  
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
TYPICAL CHARACTERISTICS (continued)  
VCC1 FAILSAFE THRESHOLD VOLTAGE vs  
FREE-AIR TEMPERATURE  
HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT  
VOLTAGE  
-80  
2.92  
o
= 25 C  
T
A
-70  
-60  
-50  
-40  
-30  
-20  
2.9  
V
= 5 V  
CC  
2.88  
V
fs+  
V
= 5 V or 3.3 V,  
CC  
2.86  
C
= 15 pF,  
L
Air Flow at 7 cf/m  
V
= 3.3 V  
2.84  
CC  
2.82  
V
fs-  
2.8  
-10  
0
2.78  
0
1
2
3
4
5
6
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
o
Free-Air Temperature C  
V
High-Level Output Voltage V  
T
A
OH  
Figure 14.  
Figure 15.  
LOW-LEVEL OUTPUT CURRENT vs  
LOW-LEVEL OUTPUT VOLTAGE  
70  
o
= 25 C  
T
A
60  
V
= 5 V  
CC  
50  
40  
30  
20  
V
= 3.3 V  
CC  
10  
0
0
1
2
3
4
5
V
Low-Level Output Voltage V  
OL  
Figure 16.  
15  
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
APPLICATION INFORMATION  
MANUFACTURER CROSS-REFERENCE DATA  
The ISO72xx isolators have the same functional pin-out as most other vendors, and they are often pin-for-pin  
drop-in replacements. The notable differences in the products are propagation delay, signaling rate, power  
consumption, and transient protection rating. Table 1 is used as a guide for replacing other isolators with the  
ISO72x family of single channel isolators.  
ISO722  
or  
ISO721  
or  
HCPL-xxxx  
IL710  
ISO722M  
ISO721M  
ADuM1100  
V
DD1  
V
DD1  
V
DD2  
V
DD2  
V
DD1  
V
DD2  
1
2
3
4
1
8
7
6
5
8
7
6
5
1
2
3
4
8
7
6
5
V
CC1  
V
CC2  
V
CC1  
V
CC2  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
V
I
V
OE  
2
3
4
NC  
GND2  
V
I
V
I
EN  
GND2  
OUT  
IN  
IN  
V
DD1  
V
O
V
O
V
O
NC  
V
CC1  
V
CC1  
OUT  
GND2  
*
GND1  
GND2  
GND1  
GND1  
GND2  
GND2  
GND1  
GND1  
GND2  
Figure 17. Pin Cross Reference  
Table 1. CROSS REFERENCE  
PIN 7  
ISO721  
OR  
ISO722  
OR  
ISOLATOR  
PIN 1  
PIN 2  
PIN 3  
PIN 4  
PIN 5  
PIN 6  
PIN 8  
ISO721M  
ISO722M  
ISO721(1)(2)  
ADuM1100(1)(2)  
VCC1  
VDD1  
IN  
VI  
VCC1  
VDD1  
GND1  
GND1  
GND2  
GND2  
OUT  
VO  
GND2  
EN  
VCC2  
VDD2  
GND2  
*Leave  
HCPL-xxxx  
IL710  
VDD1  
VDD1  
VI  
VI  
GND1  
GND1  
GND2  
GND2  
VO  
VO  
NC(4)  
VOE  
VDD2  
VDD2  
Open(3)  
NC(5)  
(1) The ISO72xx pin 1 and pin 3 are internally connected together. Either or both may be used as VCC1  
.
(2) The ISO721 and ISO721M pin 5 and pin 7 are internally connected together. Either or both may be used as GND2.  
(3) Pin 3 of the HCPL devices must be left open. This is not a problem when substituting an ISO72xx device since the extra VCC1 on pin 3  
may be left an open circuit as well.  
(4) An HCPL device PIN 7 must be left floating (open) or grounded when an ISO722 or ISO722M device is to be used as a drop-in  
replacement. If pin 7 of the ISO722 or ISO722M device is placed in a high logic state, the output of the device is disabled  
(5) Pin 3 of the IL710 must not be tied to ground on the circuit board since this shorts the ISO72xx's VCC1 to ground. The IL710 pin 3 may  
only be tied to VCC or left open to drop in an ISO72xx.  
V
V
CC1  
CC2  
ISO721  
0.1 mF  
0.001 mF  
or ISO721M  
0.001 mF  
0.1 mF  
1
8
2
7
INPUT  
IN  
6
3
OUTPUT  
OUT  
4
5
GND1  
GND2  
Figure 18. Basic Application Circuit  
16  
Submit Documentation Feedback  
 
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
ISOLATION GLOSSARY  
Creepage Distance— The shortest path between two conductive input to output leads measured along the  
surface of the insulation. The shortest distance path is found around the end of the package body.  
Clearance— The shortest distance between two conductive input to output leads measured through air (line of  
sight).  
Input-to Output Barrier Capacitance -- The total capacitance between all input terminals connected together,  
and all output terminals connected together.  
Input-to Output Barrier Resistance -- The total resistance between all input terminals connected together, and  
all output terminals connected together.  
Primary Circuit -- An internal circuit directly connected to an external supply mains or other equivalent source  
which supplies the primary circuit electric power.  
Secondary Circuit -- A circuit with no direct connection to primary power, and derives its power from a separate  
isolated source.  
Comparative Tracking Index (CTI) -- CTI is an index used for electrical insulating materials which is defined as  
the numerical value of the voltage which causes failure by tracking during standard testing. Tracking is the  
process that produces a partially conducting path of localized deterioration on or through the surface of an  
insulating material as a result of the action of electric discharges on or close to an insulation surface -- the  
higher CTI value of the insulating material, the smaller the minimum creepage distance.  
Generally, insulation breakdown occurs either through the material, over its surface, or both. Surface failure may  
arise from flashover or from the progressive degradation of the insulation surface by small localized sparks.  
Such sparks are the result of the breaking of a surface film of conducting contaminant on the insulation. The  
resulting break in the leakage current produces an overvoltage at the site of the discontinuity, and an electric  
spark is generated. These sparks often cause carbonization on insulation material and lead to a carbon track  
between points of different potential. This process is known as tracking.  
17  
Submit Documentation Feedback  
ISO721, ISO721M  
ISO722, ISO722M  
www.ti.com  
SLLS629BJANUARY 2006REVISED MAY 2006  
ISOLATION GLOSSARY (continued)  
Insulation:  
Operational insulation -- Insulation needed for the correct operation of the equipment.  
Basic insulation -- Insulation to provide basic protection against electric shock.  
Supplementary insulation -- Independent insulation applied in addition to basic insulation in order to ensure  
protection against electric shock in the event of a failure of the basic insulation.  
Double insulation -- Insulation comprising both basic and supplementary insulation.  
Reinforced insulation -- A single insulation system which provides a degree of protection against electric shock  
equivalent to double insulation.  
Pollution Degree:  
Pollution Degree 1 -- No pollution, or only dry, nonconductive pollution occurs. The pollution has no influence.  
Pollution Degree 2 -- Normally, only nonconductive pollution occurs. However, a temporary conductivity caused  
by condensation must be expected.  
Pollution Degree 3 -- Conductive pollution occurs or dry nonconductive pollution occurs which becomes  
conductive due to condensation which is to be expected.  
Pollution Degree 4– Continuous conductivity occurs due to conductive dust, rain, or other wet conditions.  
Installation Category:  
Overvoltage Category -- This section is directed at insulation co-ordination by identifying the transient  
overvoltages which may occur, and by assigning 4 different levels as indicated in IEC 60664.  
I: Signal Level -- Special equipment or parts of equipment.  
II: Local Level -- Portable equipment etc.  
III: Distribution Level -- Fixed installation  
IV: Primary Supply Level -- Overhead lines, cable systems  
Each category should be subject to smaller transients than the category above.  
18  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2006  
PACKAGING INFORMATION  
Orderable Device  
ISO721D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO721DG4  
ISO721DR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO721DRG4  
ISO721MD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO721MDG4  
ISO721MDR  
ISO721MDRG4  
ISO722D  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO722DG4  
ISO722DR  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO722DRG4  
ISO722MD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
ISO722MDG4  
ISO722MDR  
ISO722MDRG4  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Jul-2006  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Low Power Wireless www.ti.com/lpw  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2006, Texas Instruments Incorporated  

相关型号:

ISO721MMDREP

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721MMDREPG4

3.3-V/5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721QDRQ1

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721_10

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721_1007

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO721_15

Single Channel High-Speed Digital Isolators
TI

ISO722

3.3-V / 5-V HIGH-SPEED DIGITAL ISOLATORS
TI

ISO722-Q1

具有使能功能的汽车类单通道 100Mbps 数字隔离器
TI

ISO7220A

DUAL DIGITAL ISOLATORS
TI

ISO7220A-Q1

DUAL DIGITAL ISOLATORS
TI

ISO7220AD

DUAL DIGITAL ISOLATORS
TI

ISO7220ADG4

DUAL DIGITAL ISOLATORS
TI