ISO722QDRQ1 [TI]

具有使能功能的汽车类单通道 100Mbps 数字隔离器 | D | 8 | -40 to 125;
ISO722QDRQ1
型号: ISO722QDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有使能功能的汽车类单通道 100Mbps 数字隔离器 | D | 8 | -40 to 125

文件: 总28页 (文件大小:1115K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
3.3-V AND/OR 5-V HIGH-SPEED DIGITAL ISOLATORS  
Check for Samples: ISO721-Q1, ISO722-Q1  
1
FEATURES  
Qualified for Automotive Applications  
Low-Power Sleep Mode  
AEC-Q100 Qualified With the Following  
Results:  
High Electromagnetic Immunity  
Low Input Current Requirement  
Failsafe Output  
Device Temperature Grade 1: –40ºC to  
125ºC Ambient Operating Temperature  
Range  
Drop-In Replacement for Most Optical and  
Magnetic Isolators  
Device HBM ESD Classification Level H2  
Device CDM ESD Classification Level C5  
4000-V(peak) Isolation  
UL 1577, IEC 60747-5-2 (VDE 0884, Rev 2),  
IEC 61010-1  
50-kV/s Transient Immunity (Typ)  
Signaling Rate 0 Mbps to 100 Mbps  
Low Propagation Delay  
Low Pulse Skew  
(Pulse-Width Distortion)  
DESCRIPTION  
The ISO72x-Q1 is a digital isolator with a logic input and output buffer separated by a silicon oxide (SiO2)  
insulation barrier. This barrier provides galvanic isolation of up to 4000 V. Used in conjunction with isolated  
power supplies, this device prevents noise currents on a data bus or other circuits from entering the local ground  
and interfering with or damaging sensitive circuitry.  
The capacitive isolation barrier conditions, translates to a balanced signal, then differentiates a binary input  
signal. Across the isolation barrier, a differential comparator receives the logic-transition information, then sets or  
resets a flip-flop and the output circuit accordingly. A periodic update pulse sent across the barrier ensures the  
proper dc level of the output. On failure to receive this dc refresh pulse for more than 4 μs, the response of the  
device is as if the input is or not actively driven, and the failsafe circuit drives the output to a logic-high state.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
 
 
 
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
FUNCTION DIAGRAM  
Isolation Barrier  
DC Channel  
+
_
Filter  
Pulse Width  
Demodulation  
OSC  
+
PWM  
V
ref  
_
+
Carrier Detect  
POR  
POR  
BIAS  
+
_
Data MUX  
AC Detect  
3-State  
Input  
+
Filter  
IN  
V
ref  
_
+
OUT  
Output Buffer  
AC Channel  
2
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
DESCRIPTION (CONTINUED)  
The symmetry of the dielectric and capacitor within the integrated circuitry provides for close capacitive matching  
and allows fast transient voltage changes between the input and output grounds without corrupting the output.  
The small capacitance and resulting time constant provide for fast operation with signaling rates(1) from 0 Mbps  
(dc) to 100 Mbps.  
The device requires two supply voltages of 3.3 V, 5 V, or any combination. All inputs are 5-V tolerant when  
supplied from a 3.3-V supply, and all outputs are 4-mA CMOS. The device has a TTL input threshold and a noise  
filter at the input that prevents transient pulses of up to 2 ns in duration from being passed to the output of the  
device.  
The ISO722-Q1 device includes an active-low output enable that, when driven to a high logic level, places the  
output in a high-impedance state and turns off internal bias circuitry to conserve power.  
The ISO72x-Q1 is characterized for operation over the ambient temperature range of –40°C to 125°C.  
(1) The signaling rate of a line is the number of voltage transitions that occur per second, expressed in the  
units bps (bits per second).  
ISO721-Q1  
D PACKAGE  
(TOP VIEW)  
VCC1  
VCC2  
8
7
6
5
1
2
3
4
IN  
VCC1  
GND2  
OUT  
GND1  
GND2  
ISO722-Q1  
D PACKAGE  
(TOP VIEW)  
VCC1  
VCC2  
8
7
6
5
1
2
3
4
IN  
VCC1  
EN  
OUT  
GND2  
GND1  
ORDERING AND PACKAGING INFORMATION  
For the most-current package and ordering information, see the Package Option Addendum at the end of this  
document, or see the TI Web site at www.ti.com.  
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
Table 1. REGULATORY INFORMATION  
VDE  
CSA  
UL  
Approved under CSA Component  
Acceptance Notice: CA-5A  
Recognized under 1577  
Certified according to IEC 60747-5-2  
File Number: 40016131  
Component Recognition Program(1)  
File Number: 1698195  
File Number: E181974  
(1) Production tested 3000 VRMS for 1 second in accordance with UL 1577.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ISO721-Q1 ISO722-Q1  
 
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)  
VCC  
Supply voltage(2), VCC1, VCC2  
Voltage at IN or OUT terminal  
Output current  
–0.5 V to 6 V  
VI  
–0.5 V to 6 V  
±15 mA  
170°C  
IO  
TJ  
Maximum virtual-junction temperature  
Human-Body Model(3)  
Charged-Device Model(4)  
±2 kV  
ESD  
Electrostatic discharge rating  
±1 kV  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values. Vrms  
values are not listed in this publication.  
(3) JEDEC Standard 22, Test Method A114-C.01  
(4) JEDEC Standard 22, Test Method C101  
RECOMMENDED OPERATING CONDITIONS  
MIN  
MAX UNIT  
VCC  
IOH  
IOL  
tui  
Supply voltage(1), VCC1, VCC2  
High-level output current  
3
5.5  
4
V
mA  
mA  
ns  
V
Low-level output current  
–4  
10  
2
Input pulse duration  
VIH  
VIL  
TA  
TJ  
High-level input voltage (IN)  
Low-level input voltage (IN)  
Operating free-air temperature  
Operating virtual-junction temperature  
VCC  
0.8  
0
V
–40  
125  
150  
°C  
°C  
See the Thermal Characteristics table  
H
External magnetic field intensity per IEC 61000-4-8 and IEC 61000-4-9 certification  
1000 A/m  
(1) For 5-V operation, VCC1 or VCC2 specification is from 4.5 V to 5.5 V. For 3.3-V operation, VCC1 or VCC2 specification is from 3 V to 3.6 V.  
IEC 60747-5-2 INSULATION CHARACTERISTICS(1)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
SPECIFICATIONS  
UNIT  
VIORM  
Maximum working insulation voltage  
560  
V
After Input/Output Safety Test Subgroup 2/3  
VPR = VIORM × 1.2, t = 10 s,  
Partial discharge < 5 pC  
672  
896  
V
V
V
Method a, VPR = VIORM × 1.6,  
Type and sample test with t = 10 s,  
Partial discharge < 5 pC  
VPR  
Input-to-output test voltage  
Method b1, VPR = VIORM × 1.875,  
100 % Production test with t = 1 s,  
Partial discharge < 5 pC  
1050  
VIOTM  
RS  
Transient overvoltage  
Insulation resistance  
Pollution degree  
t = 60 s  
4000  
>109  
2
V
VIO = 500 V at TS  
(1) Climatic Classification 40/125/21  
4
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 5-V(1) OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
Quiescent  
25 Mbps  
0.5  
2
1
4
ICC1  
VCC1 supply current  
VI = VCC or 0 V, No load  
mA  
ISO722-Q1 Sleep  
Mode  
EN at VCC  
200  
μA  
VI = VCC or 0 V, No load  
ICC2  
VCC2 supply current  
EN at 0 V or  
ISO721-Q1  
Quiescent  
25 Mbps  
8
10  
12  
14  
mA  
V
VI = VCC or 0 V, No load  
IOH = -4 mA, See Figure 1  
VCC  
0.8  
4.6  
VOH  
High-level output voltage  
VCC  
0.1  
IOH = –20 μA, See Figure 1  
5
IOL = 4 mA, See Figure 1  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
IOL = 20 μA, See Figure 1  
VI(HYS)  
IIH  
Input voltage hysteresis  
High-level input current  
Low-level input current  
150  
mV  
μA  
IN at 2 V  
10  
1
IIL  
IN at 0.8 V  
–10  
15  
High-impedance  
output current  
IOZ  
ISO722-Q1  
EN, IN at VCC  
μA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
50  
kV/μs  
(1) For 5-V operation, VCC1 or VCC2 specification is from 4.5 V to 5.5 V. For 3.3-V operation, VCC1 or VCC2 specification is from 3 V to 3.6 V.  
SWITCHING CHARACTERISTICS: VCC1 and VCC2 5-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See Figure 1  
MIN  
TYP MAX UNIT  
tPLH  
tPHL  
tsk(p)  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
17  
17  
24 ns  
24 ns  
See Figure 1  
See Figure 1  
Pulse skew |tPHL – tPLH  
|
0.5  
2
ns  
tsk(pp)  
Part-to-part skew  
0
3
ns  
(1)  
tr  
tf  
Output-signal rise time  
Output-signal fall time  
See Figure 1  
See Figure 1  
1
1
ns  
ns  
Sleep-mode propagation delay,  
high-level-to-high-impedance output  
tpHZ  
tpZH  
tpLZ  
6
3.5  
5.5  
4
8
4
8
15 ns  
μs  
15 ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
8
ISO722-Q1  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
5
3
2
8
μs  
μs  
Failsafe output delay time from input power loss  
100-Mbps NRZ data input,  
See Figure 6  
tjit(PP)  
Peak-to-peak eye-pattern jitter  
ns  
100-Mbps unrestricted bit run  
length data input, See Figure 6  
3
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V(1) OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
Quiescent  
25 Mbps  
0.5  
2
1
4
ICC1  
VCC1 supply current  
VI = VCC or 0 V, No load  
mA  
μA  
ISO722-Q1  
Quiescent  
25 Mbps  
EN at VCC  
150  
6.5  
7.5  
ICC2  
VCC2 supply current  
VI = VCC or 0 V, No load  
4
5
EN at 0 V or  
ISO721-Q1  
mA  
IOH = –4 mA, See Figure 1  
IOH = –20 μA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 μA, See Figure 1  
VCC – 0.4  
VCC – 0.1  
3
VOH  
High-level output voltage  
Low-level output voltage  
V
V
3.3  
0.2  
0
0.4  
0.1  
VOL  
VI(HYS)  
IIH  
Input voltage hysteresis  
High-level input current  
Low-level input current  
150  
mV  
μA  
μA  
IN at 2 V  
10  
1
IIL  
IN at 0.8 V  
–10  
15  
High-impedance output  
current  
IOZ  
ISO722-Q1  
EN, IN at VCC  
μA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
40  
kV/μs  
(1) For 5-V operation, VCC1 or VCC2 specification is from 4.5 V to 5.5 V. For 3.3-V operation, VCC1 or VCC2 specification is from 3 V to 3.6 V.  
SWITCHING CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See Figure 1  
MIN TYP MAX UNIT  
tPLH  
tPHL  
tsk(p)  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
19  
19  
30 ns  
30 ns  
See Figure 1  
See Figure 1  
Pulse skew |tPHL – tPLH  
|
0.5  
3
ns  
tsk(pp)  
Part-to-part skew  
0
5
ns  
(1)  
tr  
tf  
Output signal rise time  
Output signal fall time  
See Figure 1  
See Figure 1  
2
2
ns  
ns  
Sleep-mode propagation delay,  
high-level-to-high-impedance output  
tpHZ  
tpZH  
tpLZ  
7
5
7
5
13  
6
25 ns  
μs  
25 ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
8
ISO722-Q1  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
13  
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
6
3
2
8
μs  
μs  
Failsafe output delay time from input power loss  
100-Mbps NRZ data input,  
See Figure 6  
tjit(PP)  
Peak-to-peak eye-pattern jitter  
ns  
100-Mbps unrestricted bit run length  
data input, See Figure 6  
3
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
6
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
ELECTRICAL CHARACTERISTICS: VCC1 at 3.3-V, VCC2 at 5-V(1) OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Quiescent  
25 Mbps  
0.3  
1
0.5  
2
ICC1  
VCC1 supply current  
VI = VCC or 0 V, No load  
mA  
ISO722-Q1  
Sleep Mode  
EN at VCC  
200  
μA  
VI = VCC or 0 V, No load  
ICC2  
VCC2 supply current  
EN at 0 V or ISO721-  
Q1  
Quiescent  
25 Mbps  
8
12  
14  
mA  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 μA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 μA, See Figure 1  
10  
4.6  
5
VCC – 0.8  
VCC – 0.1  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
0.2  
0
0.4  
0.1  
VOL  
VI(HYS)  
IIH  
Input voltage hysteresis  
High-level input current  
Low-level input current  
150  
mV  
μA  
μA  
IN at 2 V  
10  
1
IIL  
IN at 0.8 V  
–10  
15  
High-impedance output  
current  
IOZ  
ISO722-Q1  
EN, IN at VCC  
μA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
40  
kV/μs  
(1) For 5-V operation, VCC1 or VCC2 specification is from 4.5 V to 5.5 V. For 3.3-V operation, VCC1 or VCC2 specification is from 3 V to 3.6 V.  
SWITCHING CHARACTERISTICS: VCC1 at 3.3-V, VCC2 at 5-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
TEST CONDITIONS  
See Figure 1  
MIN TYP MAX UNIT  
tPLH  
tPHL  
tsk(p)  
17  
17  
30 ns  
30 ns  
See Figure 1  
See Figure 1  
Pulse skew |tPHL – tPLH  
|
0.5  
3
ns  
tsk(pp)  
Part-to-part skew  
0
5
ns  
(1)  
tr  
tf  
Output signal rise time  
Output signal fall time  
See Figure 1  
See Figure 1  
2
2
ns  
ns  
Sleep-mode propagation delay,  
high-level-to-high-impedance output  
tpHZ  
tpZH  
tpLZ  
7
4.5  
7
9
5
9
15 ns  
μs  
15 ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
8
ISO722-Q1  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
4.5  
5
3
2
8
μs  
μs  
Failsafe output delay time from input power loss  
100-Mbps NRZ data input,  
See Figure 6  
tjit(PP)  
Peak-to-peak eye-pattern jitter  
ns  
100-Mbps unrestricted bit  
run length data input, See  
Figure 6  
3
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3-V(1) OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Quiescent  
25 Mbps  
0.3  
1
0.5  
2
ICC1  
VCC1 supply current  
VI = VCC or 0 V, No load  
mA  
ISO722-Q1  
Sleep Mode  
EN at VCC  
150  
μA  
VI = VCC or 0 V, No load  
ICC2  
VCC2 supply current  
EN at 0 V or ISO721-  
Q1  
Quiescent  
25 Mbps  
4
6.5  
7.5  
mA  
VI = VCC or 0 V, No load  
IOH = –4 mA, See Figure 1  
IOH = –20 μA, See Figure 1  
IOL = 4 mA, See Figure 1  
IOL = 20 μA, See Figure 1  
5
3
VCC – 0.4  
VCC – 0.1  
VOH  
High-level output voltage  
Low-level output voltage  
V
V
3.3  
0.2  
0
0.4  
0.1  
VOL  
VI(HYS)  
IIH  
Input voltage hysteresis  
High-level input current  
Low-level input current  
150  
mV  
μA  
μA  
IN at 2 V  
10  
1
IIL  
IN at 0.8 V  
–10  
15  
High-impedance output  
current  
IOZ  
ISO722-Q1  
EN, IN at VCC  
μA  
CI  
Input capacitance to ground  
IN at VCC, VI = 0.4 sin (4E6πt)  
1
pF  
CMTI  
Common-mode transient immunity  
VI = VCC or 0 V, See Figure 5  
40  
kV/μs  
(1) For 5-V operation, VCC1 or VCC2 specification is from 4.5 V to 5.5 V. For 3.3-V operation, VCC1 or VCC2 specification is from 3 V to 3.6 V.  
SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 3.3-V OPERATION  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See Figure 1  
MIN TYP MAX UNIT  
tPLH  
tPHL  
tsk(p)  
Propagation delay, low-to-high-level output  
Propagation delay , high-to-low-level output  
20  
20  
34 ns  
34 ns  
See Figure 1  
See Figure 1  
Pulse skew |tPHL – tPLH  
|
0.5  
3
ns  
tsk(pp)  
Part-to-part skew  
0
5
ns  
(1)  
tr  
tf  
Output signal rise time  
Output signal fall time  
See Figure 1  
See Figure 1  
2
2
ns  
ns  
Sleep-mode propagation delay,  
high-level-to-high-impedance output  
tpHZ  
tpZH  
tpLZ  
7
5
7
5
13  
6
25 ns  
μs  
25 ns  
See Figure 2  
Sleep-mode propagation delay,  
high-impedance-to-high-level output  
8
ISO722-Q1  
Sleep-mode propagation delay,  
low-level-to-high-impedance output  
13  
See Figure 3  
See Figure 4  
Sleep-mode propagation delay,  
high-impedance-to-low-level output  
tpZL  
tfs  
6
3
2
8
μs  
μs  
Failsafe output delay time from input power loss  
100-Mbps NRZ data input,  
See Figure 6  
tjit(PP)  
Peak-to-peak eye-pattern jitter  
ns  
100-Mbps unrestricted bit run  
length data input, See  
Figure 6  
3
(1) tsk(PP) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
8
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
PARAMETER MEASUREMENT INFORMATION  
V
CC1  
V
V
V
/2  
V
/2  
CC1  
I
I
OUT  
CC1  
O
IN  
0 V  
t
t
PHL  
V
PLH  
Input  
Generator  
(see Note A)  
V
O
OH  
OL  
C
90%  
10%  
V
L
I
50 W  
50%  
50%  
O
(see Note B)  
V
t
t
f
r
A. A generator having the following characteristics supplies the input pulse:  
PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO = 50 .  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms  
V
O
V
CC2  
IN  
V
OUT  
C
I
V
/2  
3 V  
V
/2  
CC2  
CC2  
0 V  
V
EN  
t
R
= 1 kW ±1 %  
PZH  
L
L
OH  
NOTE B  
+
50%  
Input  
Generator  
NOTE A  
0.5 V  
V
O
V
I
50 W  
0 V  
t
PHZ  
-
Figure 2. ISO722-Q1 Sleep-Mode High-Level Output Test Circuit and Voltage Waveforms  
V
CC2  
R
= 1 kW ±1%  
L
V
CC2  
0 V  
V
I
V
/2  
V
/2  
CC2  
CC2  
IN  
OUT  
V
0 V  
O
t
t
PZL  
PLZ  
V
CC2  
EN  
0.5 V  
V
C
L
O
50%  
NOTE B  
+
V
Input  
Generator  
NOTE A  
OL  
50 W  
V
I
-
Figure 3. ISO722-Q1 Sleep-Mode Low-Level Output Test Circuit and Voltage Waveforms  
NOTE  
A: A generator having the following characteristics Supplies the input pulse:  
PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3 ns, ZO = 50 .  
B: CL = 15 pF ± 20% and includes instrumentation and fixture capacitance.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
PARAMETER MEASUREMENT INFORMATION (continued)  
V
I
V
CC1  
V
CC1  
V
2.7 V  
I
IN  
0 V  
V
OUT  
V
0 V  
t
fs  
O
OH  
50%  
V
O
C
L
V
OL  
15 pF  
±20%  
NOTE: VI transition time is 100 ns.  
Figure 4. Failsafe Delay-Time Test Circuit and Voltage Waveforms  
V
V
CC2  
CC1  
OUT  
C
IN  
V
L
CC  
V
15 pF  
±20%  
O
or  
0 V  
C = 0.1 mF,  
I
GND1  
GND2  
±1%  
V
CM  
NOTE: Pass or fail criterion is no change in VO.  
Figure 5. Common-Mode Transient Immunity Test Circuit and Voltage Waveform  
10  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
PARAMETER MEASUREMENT INFORMATION (continued)  
Tektronix  
HFS9009  
Tektronix  
784D  
PATTERN  
GENERATOR  
V
CC1  
In p u t  
0 V  
O u tp u t  
V
CC2/2  
J itte r  
NOTE: Bit pattern run length is 216 – 1. Transition time is 800 ps. NRZ data input has no more than five consecutive  
1s or 0s.  
Figure 6. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
DEVICE INFORMATION  
PACKAGE CHARACTERISTICS  
TEST CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX UNIT  
(1)  
L(101)  
L(102)  
Minimum air gap (clearance)  
Shortest terminal-to-terminal distance through air  
4.8  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
Minimum external tracking (creepage)  
4.3  
175  
0.008  
mm  
V
Tracking resistance (comparative  
tracking index)  
CTI  
DIN IEC 60112/VDE 0303 Part 1  
Distance through insulation  
Minimum internal gap  
(internal clearance)  
mm  
Input to output, VIO = 500 V, all pins on each side of  
the barrier tied together creating a two-terminal  
device, TA < 100°C  
>1012  
>1011  
RIO  
Isolation resistance  
Input-to-output, VIO = 500 V,  
100°C TA< TA max.  
CIO  
CI  
Barrier capacitance, input to output  
Input capacitance to ground  
VI = 0.4 sin (4E6πt)  
VI = 0.4 sin (4E6πt)  
1
1
pF  
pF  
(1) Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Take care to  
maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit  
board do not reduce this distance.  
Creepage and clearance on a printed circuit board become equal according to the measurement techniques shown in the Isolation  
Glossary. Use techniques such as inserting grooves and/or ribs on a printed circuit board to help increase these specifications.  
IEC 60664-1 RATINGS TABLE  
PARAMETER  
Basic isolation group  
TEST CONDITIONS  
SPECIFICATION  
Material group  
IIIa  
I-IV  
I-III  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
Installation classification  
DEVICE I/O SCHEMATIC  
Figure 7. Equivalent Input and Output Schematic Diagrams  
Input  
Output  
V
CC2  
V
V
CC1  
CC1  
V
CC1  
8 W  
1 MW  
OUT  
500 W  
IN  
13 W  
12  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
IEC SAFETY LIMITING VALUES  
Safety limiting is designed to prevent potential damage to the isolation barrier on failure of input or output  
circuitry. A failure of the IO can allow low resistance to ground or the supply, and without current limiting,  
dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary  
system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX UNIT  
θJA = 263°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C  
θJA = 263°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C  
100  
mA  
153  
IS  
Safety input, output, or supply current  
Maximum case temperature  
TS  
150  
°C  
The safety-limiting constraint is the absolute maximum junction temperature specified in the absolute maximum  
ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The junction-to-air thermal resistance in the Thermal  
Characteristics table is that of a device installed in the JESD51-3, Low Effective Thermal Conductivity Test Board  
for Leaded Surface Mount Packages and is conservative. The power is the recommended maximum input  
voltage times the current. The junction temperature is then the ambient temperature plus the power times the  
junction-to-air thermal resistance.  
Table 2. THERMAL CHARACTERISTICS  
(over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
263  
125  
44  
MAX UNIT  
Low-K(1)  
High-K(1)  
θJA  
Junction-to-air thermal resistance  
°C/W  
θJB  
θJC  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
°C/W  
°C/W  
75  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
Input a 100-Mbps 50% duty cycle square wave  
PD  
Device power dissipation  
159 mW  
(1) Tested in accordance with the low-K or high-K thermal metric definition of EIA/JESD51-3 for leaded surface-mount packages.  
200  
175  
V
, V  
= 3.6 V  
CC1 CC2  
150  
125  
100  
75  
50  
25  
0
V
, V  
= 5.5 V  
CC1 CC2  
0
50  
100  
Case Temperature  
150  
200  
oC  
Figure 8. θJC Thermal Derating Curve Per IEC 60747-5-2  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
Table 3. FUNCTION TABLE(1)  
INPUT  
(IN)  
OUTPUT  
(OUT)  
VCC1  
VCC2  
H
H
L
PU  
PD  
PU  
PU  
L
Open  
X
H
H
(1) PU = powered up (VCC 3 V), PD = powered down (VCC 2.5 V), X = irrelevant, H = high level,  
L = low level  
14  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
TYPICAL CHARACTERISTICS  
RMS SUPPLY CURRENT versus  
RMS SUPPLY CURRENT versus  
SIGNALING RATE  
SIGNALING RATE  
10  
9
15  
14  
13  
12  
V
V
T
= 3.3 V,  
= 3.3 V,  
= 25oC,  
V
V
T
= 5 V,  
CC1  
CC2  
CC1  
CC2  
= 5 V,  
= 25oC,  
8
7
6
5
A
A
I
CC2  
C
= 15 pF  
C
= 15 pF  
L
L
11  
10  
9
8
7
6
I
CC2  
I
4
3
2
CC1  
5
4
3
2
1
0
I
CC1  
1
0
0
25  
50  
75  
100  
0
25  
50  
75  
100  
Signaling Rate (Mbps)  
Figure 9.  
Signaling Rate (Mbps)  
Figure 10.  
PROPAGATION DELAY versus  
FREE-AIR TEMPERATURE  
PROPAGATION DELAY versus  
FREE-AIR TEMPERATURE  
30  
25  
20  
18  
t
PLH  
t
PLH  
16  
t
PHL  
t
PHL  
14  
12  
10  
20  
15  
8
6
4
10  
V
V
= 3.3 V,  
CC1  
CC2  
V
V
= 5 V,  
= 5 V,  
CC1  
CC2  
= 3.3 V,  
= 15 pF,  
5
0
C
L
C
= 15 pF,  
L
Air Flow at 7 cf/m  
2
0
Air Flow at 7 cf/m  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
T
− Free-Air Temperature − o  
C
T
− Free-Air Temperature − o  
C
A
A
Figure 11.  
Figure 12.  
INPUT THRESHOLD VOLTAGE versus  
FREE-AIR TEMPERATURE  
VCC1 FAILSAFE THRESHOLD VOLTAGE versus  
FREE-AIR TEMPERATURE  
1.4  
1.35  
1.3  
2.92  
2.9  
5-V (V  
)
IT+  
3.3-V (V  
)
V
2.88  
2.86  
IT+  
fs+  
1.25  
1.2  
V
= 5 V or 3.3 V,  
= 15 pF,  
CC  
C
L
Air Flow at 7 cf/m  
Air Flow at 7 cf/m  
2.84  
2.82  
1.15  
1.1  
1.05  
1
5-V (V  
)
IT-  
V
fs-  
2.8  
3.3-V (V  
)
IT-  
2.78  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
− Free-Air Temperature − o  
C
T
− Free-Air Temperature − o  
C
T
A
A
Figure 13.  
Figure 14.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
LOW-LEVEL OUTPUT CURRENT versus  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT CURRENT versus  
HIGH-LEVEL OUTPUT VOLTAGE  
-80  
-70  
-60  
-50  
-40  
-30  
-20  
70  
60  
T
= 25oC  
= 25oC  
A
T
A
V
= 5 V  
CC  
V
= 5 V  
CC  
50  
40  
30  
20  
V
= 3.3 V  
V
= 3.3 V  
CC  
CC  
10  
0
-10  
0
0
1
2
3
4
5
6
0
1
2
3
4
5
V
− High-Level Output Voltage − V  
V
− Low-Level Output Voltage − V  
OL  
OH  
Figure 15.  
Figure 16.  
16  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
APPLICATION INFORMATION  
MANUFACTURER CROSS-REFERENCE DATA  
The ISO72x-Q1 isolator has the same functional pinout as most other vendors, and it is often a pin-for-pin drop-  
in replacement. The notable differences in the product are propagation delay, signaling rate, power consumption,  
and transient protection rating. Use(1) as a guide for replacing other isolators with the ISO72x-Q1 single-channel  
isolators.  
HCPL-xxxx  
IL710  
ISO722  
ISO721  
ADuM1100  
V
V
V
V
V
V
V
DD2  
1
2
3
4
1
8
7
6
5
8
7
6
5
1
2
3
4
8
7
6
5
DD1  
V
V
V
V
V
V
CC2  
DD1  
DD2  
DD2  
DD1  
1
2
3
4
8
7
6
5
1
2
3
4
8
7
6
5
CC1  
CC2  
CC1  
V
I
V
V
2
3
4
NC  
GND2  
V
I
V
I
OE  
GND2  
OUT  
GND2  
OUT  
IN  
IN  
V
O
V
O
NC  
DD1  
O
CC1  
CC1  
*
GND1  
GND2  
GND1  
GND1  
GND2  
GND2  
GND1  
GND2  
GND1  
GND2  
Figure 17. Pinout Cross-Reference  
Table 4. Competitive Cross-Reference  
PIN 7  
ISOLATOR  
PIN 1  
PIN 2  
PIN 3  
PIN 4  
PIN 5  
PIN 6  
PIN 8  
ISO721  
ISO722  
ISO721(1) (2)  
VCC1  
VDD1  
IN  
VI  
VCC1  
VDD1  
GND1  
GND1  
GND2  
GND2  
OUT  
VO  
GND2  
EN  
VCC2  
VDD2  
ADuM1100(1) (2)  
HCPL-xxxx  
IL710  
GND2  
NC(4)  
V OE  
Leave  
VDD1  
VDD1  
VI  
VI  
GND1  
GND1  
GND2  
GND2  
VO  
VO  
VDD2  
VDD2  
open(3)  
NC(5)  
(1) An HCPL device pin 7 must be floating (open) or grounded to use an ISO722 device as a drop-in replacement. Placing pin 7 of the  
ISO722 device in a high logic state disables the output of the device.  
(1) The ISO721 pin 1 and pin 3 connect together internally. One may use either or both as VCC1  
.
(2) The ISO721 pin 5 and pin 7 connect together internally. One may use either or both as GND2.  
(3) Pin 3 of the HCPL devices must be open. This is not a problem when substituting an ISO721, because the extra VCC1 on pin 3 may be  
open-circuit as well.  
(4) An HCPL device pin 7 must be floating (open) or grounded to use an ISO722 device as a drop-in replacement. Placing pin 7 of the  
ISO722 device in a high logic state disables the output of the device.  
(5) Pin 3 of the IL710 must not tie to ground on the circuit board, because this shorts the ISO721 VCC1 to ground. The IL710 pin 3 may only  
tie to VCC or be open to drop in an ISO721.  
20 mm (max)  
from VCC1  
20 mm (max)  
from VCC2  
VCC1  
VCC2  
0.1 µF  
0.1 µF  
ISO721  
1
2
3
4
8
7
6
5
Input  
IN  
Output  
GND2  
OUT  
GND1  
Figure 18. Basic Application Circuit  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
ISOLATION GLOSSARY  
Creepage Distance—The shortest path between two conductive input to output leads measured along the  
surface of the insulation. The shortest-distance path is around the end of the package body.  
Clearance—The shortest distance between two conductive input to output leads measured through air (line of  
sight)  
Input-to-Output Barrier Capacitance—The total capacitance between all input terminals connected together,  
and all output terminals connected together  
Input-to-Output Barrier Resistance—The total resistance between all input terminals connected together, and  
all output terminals connected together  
Primary Circuit—An internal circuit directly connected to an external supply main or other equivalent source  
which supplies the primary-circuit electric power  
Secondary Circuit—A circuit with no direct connection to primary power, and deriving its power from a separate  
isolated source  
Comparative Tracking Index (CTI)—CTI is an index used for electrical insulating materials and defined as the  
numerical value of the voltage that causes failure by tracking during standard testing. Tracking is the process that  
produces a partially conducting path of localized deterioration on or through the surface of an insulating material  
as a result of the action of electric discharges on or close to an insulation surface -- the higher CTI value of the  
insulating material, the smaller the minimum creepage distance.  
Generally, insulation breakdown occurs either through the material, over its surface, or both. Surface failure may  
arise from flashover or from the progressive degradation of the insulation surface by small localized sparks. Such  
sparks are the result of the breaking of a surface film of conducting contaminant on the insulation. The resulting  
break in the leakage current produces an overvoltage at the site of the discontinuity, generating an electric spark.  
These sparks often cause carbonization on insulation material and lead to a carbon track between points of  
different potential. The name of this process is tracking.  
18  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
ISO721-Q1, ISO722-Q1  
www.ti.com  
SLLS918C JULY 2008REVISED JUNE 2013  
Insulation  
Operational insulation—Insulation needed for the correct operation of the equipment  
Basic insulation—Insulation to provide basic protection against electric shock  
Supplementary insulation-—Independent insulation applied in addition to basic insulation in order to ensure  
protection against electric shock in the event of a failure of the basic insulation  
Double insulation—Insulation comprising both basic and supplementary insulation  
Reinforced insulation—A single insulation system that provides a degree of protection against electric shock  
equivalent to double insulation  
Pollution Degree  
Pollution Degree 1—No pollution, or only dry, nonconductive pollution occurs. The pollution has no influence.  
Pollution Degree 2—Normally, only nonconductive pollution occurs. However, a temporary conductivity caused  
by condensation must be expected.  
Pollution Degree 3—Conductive pollution occurs or dry nonconductive pollution occurs that becomes conductive  
due to condensation, which is to be expected.  
Pollution Degree 4–Continuous conductivity occurs due to conductive dust, rain, or other wet conditions.  
Installation Category  
Overvoltage Category—This section addresses insulation coordination by identifying the transient overvoltages  
that may occur and by assigning four different levels as indicated in IEC 60664.  
I: Signal Level-—Special equipment or parts of equipment  
II: Local Level—Portable equipment, etc.  
III: Distribution Level-—Fixed installation  
IV: Primary Supply Level-—Overhead lines, cable systems  
Each successive category should be subject to smaller transients than any higher-numbered category following  
it.  
Copyright © 2008–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ISO721-Q1 ISO722-Q1  
 
ISO721-Q1, ISO722-Q1  
SLLS918C JULY 2008REVISED JUNE 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision B (June 2013) to Revision C  
Page  
Changed temperature grade from 3 to 1 .............................................................................................................................. 1  
Changes from Revision A (September 2011) to Revision B  
Page  
Added AEC-Q100 qualifications ........................................................................................................................................... 1  
Changed signaling-rate limit to 100 Mbps ............................................................................................................................ 1  
Deleted Ordering Information table ....................................................................................................................................... 3  
Changed last sentence in the Installation Category section ............................................................................................... 19  
20  
Submit Documentation Feedback  
Copyright © 2008–2013, Texas Instruments Incorporated  
Product Folder Links: ISO721-Q1 ISO722-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO721QDRQ1  
ISO722QDRQ1  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
IS721Q  
IS722Q  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
OTHER QUALIFIED VERSIONS OF ISO721-Q1, ISO722-Q1 :  
Catalog: ISO721, ISO722  
Military: ISO721M  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Military - QML certified for Military and Defense Applications  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO721QDRQ1  
ISO722QDRQ1  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.4  
6.4  
5.2  
5.2  
2.1  
2.1  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
26-Feb-2019  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO721QDRQ1  
ISO722QDRQ1  
SOIC  
SOIC  
D
D
8
8
2500  
2500  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

ISO7230A

One Megabit per Second Triple Digital Isolators
TI

ISO7230ADW

One Megabit per Second Triple Digital Isolators
TI

ISO7230ADWG4

One Megabit per Second Triple Digital Isolators
TI

ISO7230ADWR

One Megabit per Second Triple Digital Isolators
TI

ISO7230ADWRG4

One Megabit per Second Triple Digital Isolators
TI

ISO7230C

HIGH SPEED, TRIPLE DIGITAL ISOLATORS
TI

ISO7230CDW

HIGH SPEED, TRIPLE DIGITAL ISOLATORS
TI

ISO7230CDWG4

HIGH SPEED, TRIPLE DIGITAL ISOLATORS
TI

ISO7230CDWR

HIGH SPEED, TRIPLE DIGITAL ISOLATORS
TI

ISO7230CDWRG4

HIGH SPEED, TRIPLE DIGITAL ISOLATORS
TI

ISO7230CQDWRQ1

HIGH SPEED, TRIPLE DIGITAL ISOLATORS
TI

ISO7230C_09

HIGH SPEED, TRIPLE DIGITAL ISOLATORS
TI