ISO7421-EP [TI]

低功耗双通道数字隔离器;
ISO7421-EP
型号: ISO7421-EP
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

低功耗双通道数字隔离器

文件: 总24页 (文件大小:789K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
ISO7421-EP 低功耗双路数字隔离器  
1 特性  
2 应用  
1
最高信号传输速率:1Mbps  
是下列应用中光耦合器的替代产品:  
低功耗,每通道 ICC 典型值(3.3V 工作电  
压):1.5mA  
工业现场总线  
Profibus 现场总线  
低传播延迟 - 9ns 典型值  
Modbus 协议  
低偏移 - 300ps 典型值  
DeviceNet™数据总线  
TA 温度范围:-55℃ 至 136℃  
50kV/μs 瞬态抗扰度,典型值  
在额定电压上超过 25 年的隔离装置完好性  
可由 3.3V 5V 电源及逻辑电平供电  
3.3V 5V 电平转换  
伺服控制接口  
电机控制  
电源  
电池组  
3 说明  
窄体小尺寸集成电路 (SOIC)-8 封装  
安全及管理批准:  
ISO7421-EP 器件可提供符合 UL 标准的长达 1 分钟且  
高达 2500 VRMS 的电流隔离。ISO7421-EP 器件有两  
个隔离通道。每个隔离通道的逻辑输入和输出缓冲器均  
由二氧化硅 (SiO2) 绝缘隔栅分离开来。与隔离式电源  
一起使用时,此器件可防止数据总线或者其他电路上的  
噪声电流进入本地接地端并干扰或损坏敏感电路。  
符合 DIN V VDE V 0884-10 DIN EN 61010-  
1 标准的 4242 VPK 隔离  
符合 UL 1577 标准且长达 1 分钟的 2500 VRMS  
隔离  
CSA 组件接受通知 5AIEC 60950-1 IEC  
61010-1 标准  
此器件具有晶体管-晶体管逻辑电路 (TTL) 输入阈值,  
并且需要两个电源电压,3.3 5V,或者任意组合。  
当由一个 3.3V 电源供电时,所有输入均为 5V 耐压。  
通过 GB4943.1-2011 CQC 认证  
ISO7421-EP 器件的额定信号传输速率高达 1Mbps。  
由于其响应时间短,在大多数情况下,此器件还将发送  
脉宽更短的数据。如果需要,设计人员应添加外部滤波  
来去除输入脉冲持续时间 < 20ns 的寄生信号。  
器件信息(1)  
部件号  
封装  
SOIC (8)  
封装尺寸(标称值)  
ISO7421-EP  
4.90mm x 3.91mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
数字电容隔离器的概念框图  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSEN3  
 
 
 
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
目录  
6.13 Switching Characteristics: VCC1 and VCC2 at 3.3 V  
±10%.......................................................................... 7  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.14 Typical Characteristics............................................ 8  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
8.1 Overview ................................................................. 10  
8.2 Functional Block Diagram ....................................... 10  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 13  
Application and Implementation ........................ 14  
9.1 Application Information............................................ 14  
9.2 Typical Application ................................................. 14  
7
8
9
6.5 Electrical Characteristics: VCC1 and VCC2 at 5 V  
±10%.......................................................................... 5  
10 Power Supply Recommendations ..................... 16  
11 Layout................................................................... 16  
11.1 Layout Guidelines ................................................. 16  
11.2 Layout Example .................................................... 16  
12 器件和文档支持 ..................................................... 17  
12.1 文档支持................................................................ 17  
12.2 社区资源................................................................ 17  
12.3 ....................................................................... 17  
12.4 静电放电警告......................................................... 17  
12.5 Glossary................................................................ 17  
13 机械、封装和可订购信息....................................... 17  
6.6 Electrical Characteristics: VCC1 at 5 V ±10%, VCC2 at  
3.3 V ±10% ................................................................ 5  
6.7 Electrical Characteristics: VCC1 at 3.3 V ±10%, VCC2  
at 5 V ±10% ............................................................... 6  
6.8 Electrical Characteristics: VCC1 and VCC2 at 3.3 V  
±10%.......................................................................... 6  
6.9 Power Dissipation ..................................................... 6  
6.10 Switching Characteristics: VCC1 and VCC2 at 5 V  
±10%.......................................................................... 7  
6.11 Switching Characteristics: VCC1 at 5 V ±10%, VCC2  
at 3.3 V ±10% ............................................................ 7  
6.12 Switching Characteristics: VCC1 at 3.3 V ±10%,  
VCC2 at 5 V ±10% ...................................................... 7  
4 修订历史记录  
日期  
修订版本  
注释  
2015 12 月  
*
最初发布版本。  
2
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
5 Pin Configuration and Functions  
D Package  
8-Pin SOIC  
Top View  
VCC1  
VCC2  
8
1
2
3
4
7
6
5
OUTA  
INB  
INA  
OUTB  
GND2  
GND1  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
GND1  
GND2  
INA  
NO.  
4
I
Ground connection for VCC1  
Ground connection for VCC2  
Input, channel A  
5
7
INB  
3
I
Input, channel B  
OUTA  
OUTB  
VCC1  
2
O
O
Output, channel A  
6
Output, channel B  
1
Power supply, VCC1  
Power supply, VCC2  
VCC2  
8
Copyright © 2015, Texas Instruments Incorporated  
3
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
(1)  
see  
MIN  
–0.5  
–0.5  
–15  
MAX  
UNIT  
V
VCC  
VI  
Supply voltage(2), VCC1, VCC2  
Voltage at IN, OUT  
6
VCC + 0.5(3)  
15  
V
IO  
Output current  
mA  
°C  
TJ(max)  
Tstg  
Maximum junction temperature  
Storage temperature  
150  
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to network ground terminal and are peak voltage values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Field-induced charged-device model, JEDEC Standard 22, Test Method  
C101  
V(ESD)  
Electrostatic discharge  
V
Machine model, ANSI/ESDS5.2-1996  
±200  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN NOM  
MAX  
3.6  
UNIT  
Supply voltage - 3.3-V operation  
Supply voltage - 5-V operation  
High-level output current  
Low-level output current  
High-level input voltage  
Low-level input voltage  
Signaling rate  
3
4.5  
–4  
3.3  
5
VCC1, VCC2  
V
5.5  
IOH  
IOL  
VIH  
VIL  
1/tui  
tui  
mA  
mA  
V
4
5.25  
0.8  
1
2
0
V
0
Mbps  
us  
Input pulse duration  
1
(1)  
TJ  
Junction temperature  
–55  
136  
°C  
(1) To maintain the recommended operating conditions for TJ, see the Thermal Information.  
6.4 Thermal Information  
ISO7421-EP  
D (SOIC)  
8 PINS  
212  
THERMAL METRIC(1)  
UNIT  
Low-K Board  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
High-K Board  
116.6  
RθJC(top)  
RθJB  
ψJT  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
71.6  
°C/W  
°C/W  
°C/W  
°C/W  
57.3  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
28.3  
ψJB  
56.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2015, Texas Instruments Incorporated  
 
 
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
6.5 Electrical Characteristics: VCC1 and VCC2 at 5 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
TEST CONDITIONS  
IOH = –4 mA; see Figure 6.  
MIN  
VCCO(1) – 0.8  
VCCO – 0.1  
TYP  
4.6  
5
MAX  
UNIT  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 6.  
IOL = 4 mA; see Figure 6.  
IOL = 20 μA; see Figure 6.  
0.2  
0
0.4  
0.1  
VOL  
Low-level output voltage  
V
VI(HYS) Input threshold voltage hysteresis  
400  
mV  
μA  
IIH  
IIL  
High-level input current  
Low-level input current  
10  
(1)  
INx at 0 V or VCCI  
–10  
25  
μA  
CMTI Common-mode transient immunity  
VI = VCCI or 0 V; see Figure 8.  
50  
kV/μs  
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)  
ICC1  
ICC2  
Supply current for VCC1  
Supply current for VCC2  
2
2
4
4
DC to 1 Mbps VI = VCCI or 0 V, 15 pF load  
mA  
(1) VCCI = Input-side power supply, VCCO = Output-side power supply  
6.6 Electrical Characteristics: VCC1 at 5 V ±10%, VCC2 at 3.3 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
IOH = –4 mA; see  
Figure 6.  
5-V side  
VCCO  
4.6  
0.8  
VOH  
High-level output voltage  
V
3.3-V side  
VCCO – 0.4  
VCCO – 0.1  
3
VCC  
0.2  
0
IOH = –20 μA; see Figure 6,  
IOL = 4 mA; see Figure 6.  
IOL = 20 μA; see Figure 6.  
0.4  
V
VOL  
Low-level output voltage  
0.1  
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
400  
mV  
10  
μA  
μA  
(1)  
INx at 0 V or VCCI  
IIL  
Low-level input current  
–10  
25  
CMTI  
Common-mode transient immunity  
VI = VCCI or 0 V; seeFigure 8 .  
40  
kV/μs  
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)  
ICC1  
ICC2  
Supply current for VCC1  
Supply current for VCC2  
2
4
mA  
mA  
VI = VCCI or 0 V,  
15 pF load  
DC to 1 Mbps  
1.5  
3.5  
(1) VCCI = Input-side power supply, VCCO = Output-side power supply  
Copyright © 2015, Texas Instruments Incorporated  
5
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
6.7 Electrical Characteristics: VCC1 at 3.3 V ±10%, VCC2 at 5 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
(1)  
VCCO  
5-V side  
3.3-V side  
4.6  
0.8  
IOH = –4 mA; see Figure 6.  
VOH  
High-level output voltage  
V
VCCO – 0.4  
VCCO – 0.1  
3
VCC  
0.2  
0
IOH = –20 μA; see Figure 6  
IOL = 4 mA; see Figure 6.  
IOL = 20 μA; see Figure 6.  
0.4  
V
VOL  
Low-level output voltage  
0.1  
VI(HYS)  
IIH  
Input threshold voltage hysteresis  
High-level input current  
400  
mV  
10  
μA  
μA  
(1)  
INx at 0 V or VCCI  
IIL  
Low-level input current  
–10  
25  
CMTI  
Common-mode transient immunity  
VI = VCCI or 0 V; see Figure 8.  
40  
kV/μs  
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)  
ICC1  
ICC2  
Supply current for VCC1  
Supply current for VCC2  
1.5  
2
3.5  
4
VI = VCCI or 0  
V, 15 pF load  
DC to 1 Mbps  
mA  
(1) VCCI = Input-side power supply, VCCO = Output-side power supply  
6.8 Electrical Characteristics: VCC1 and VCC2 at 3.3 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
TEST CONDITIONS  
IOH = –4 mA; see Figure 6.  
MIN  
VCCO(1) – 0.4  
VCCO – 0.1  
TYP  
3
MAX UNIT  
VOH  
High-level output voltage  
V
IOH = –20 μA; see Figure 6.  
IOL = 4 mA; see Figure 6.  
IOL = 20 μA; see Figure 6.  
3.3  
0.2  
0
0.4  
V
VOL  
Low-level output voltage  
0.1  
VI(HYS) Input threshold voltage hysteresis  
400  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
10  
μA  
μA  
(1)  
INx at 0 V or VCCI  
–10  
25  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V; seeFigure 8 .  
40  
kV/μs  
SUPPLY CURRENT (ALL INPUTS SWITCHING WITH SQUARE WAVE CLOCK SIGNAL FOR DYNAMIC ICC MEASUREMENT)  
ICC1  
ICC2  
Supply current for VCC1  
Supply current for VCC2  
1.5  
1.5  
3.5  
3.5  
DC to 1 Mbps VI = VCCI or 0 V, 15 pF load  
mA  
(1) VCCI = Input-side power supply, VCCO = Output-side power supply  
6.9 Power Dissipation  
ISO7421-EP  
D (SOIC)  
8 PINS  
THERMAL METRIC  
UNIT  
VCC1 = VCC2 = 5.25 V, TJ = 150°C, CL = 15 pF  
Input a 1-Mbps 50% duty-cycle square wave  
PD  
Device power dissipation  
55  
mW  
6
Copyright © 2015, Texas Instruments Incorporated  
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
6.10 Switching Characteristics: VCC1 and VCC2 at 5 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
Propagation delay time  
TEST CONDITIONS  
MIN  
MIN  
MIN  
MIN  
TYP  
9
MAX  
14  
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
See Figure 6.  
Pulse width distortion |tPHL – tPLH  
|
0.3  
4
ns  
tsk(pp)  
tsk(o)  
tr  
Part-to-part skew time  
4.9  
3.6  
ns  
Channel-to-channel output skew time  
Output signal rise time  
ns  
See Figure 6.  
See Figure 7.  
1
1
6
ns  
tf  
Output signal fall time  
ns  
tfs  
Fail-safe output delay time from input power loss  
μs  
(1) Also known as pulse skew.  
6.11 Switching Characteristics: VCC1 at 5 V ±10%, VCC2 at 3.3 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
Propagation delay time  
TEST CONDITIONS  
See Figure 6.  
TYP  
10  
MAX  
18.5  
6
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
Pulse width distortion |tPHL – tPLH  
|
0.5  
ns  
tsk(pp)  
tsk(o)  
tr  
Part-to-part skew time  
6.3  
7
ns  
Channel-to-channel output skew time  
Output signal rise time  
ns  
See Figure 6.  
See Figure 7.  
2
2
6
ns  
tf  
Output signal fall time  
ns  
tfs  
Fail-safe output delay time from input power loss  
μs  
(1) Also known as pulse skew.  
6.12 Switching Characteristics: VCC1 at 3.3 V ±10%, VCC2 at 5 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
Propagation delay time  
TEST CONDITIONS  
See Figure 6.  
TYP  
10  
MAX  
21  
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
Pulse width distortion |tPHL – tPLH  
|
0.5  
4.5  
ns  
tsk(pp)  
tsk(o)  
tr  
Part-to-part skew time  
8.5  
ns  
Channel-to-channel output skew time  
Output signal rise time  
10.8  
ns  
See Figure 6.  
See Figure 7.  
2
2
6
ns  
tf  
Output signal fall time  
ns  
tfs  
Fail-safe output delay time from input power loss  
μs  
(1) Also known as pulse skew.  
6.13 Switching Characteristics: VCC1 and VCC2 at 3.3 V ±10%  
TJ = –55°C to 136°C  
PARAMETER  
Propagation delay time  
TEST CONDITIONS  
TYP  
12  
1
MAX  
UNIT  
ns  
tPLH, tPHL  
PWD(1)  
22.5  
5.2  
Pulse width distortion |tPHL – tPLH  
|
See Figure 6.  
ns  
tsk(pp)  
tsk(o)  
tr  
Part-to-part skew time  
6.8  
ns  
Channel-to-channel output skew time  
Output signal rise time  
7.8  
ns  
2
2
6
ns  
See Figure 6.  
See Figure 7.  
tf  
Output signal fall time  
ns  
tfs  
Fail-safe output delay time from input power loss  
μs  
(1) Also known as pulse skew.  
Copyright © 2015, Texas Instruments Incorporated  
7
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
6.14 Typical Characteristics  
14  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
VIT+, 5 V  
12  
10  
8
V , V  
CC1 CC2  
at 3.3 V  
VIT+, 3.3 V  
V , V  
CC1 CC2  
at 5 V  
6
VIT−, 5 V  
4
VIT−, 3.3 V  
2
0
−55 −35 −15  
5
25  
45  
65  
85  
105 125  
−55 −35 −15  
5
25  
T − Free-Air Temperature − °C  
A
45  
65  
85  
105 125  
T
− Free-Air Temperature − °C  
A
G004  
G005  
Figure 1. Propagation Delay Time vs Free-Air Temperature  
Figure 2. Input Voltage Switching Threshold vs Free-Air  
Temperature  
2.62  
2.61  
0
T
A
= 25°C  
−10  
−20  
−30  
−40  
−50  
−60  
−70  
−80  
−90  
FS+  
2.60  
2.59  
2.58  
2.57  
2.56  
2.55  
2.54  
2.53  
2.52  
V , V  
CC1 CC2  
at 3.3 V  
FS−  
25  
V , V  
CC1 CC2  
at 5 V  
−55 −35 −15  
5
45  
65  
85  
105 125  
0
1
2
3
4
5
6
T
A
− Free-Air Temperature − °C  
V
OH  
− High-Level Output Voltage − V  
G006  
G007  
Figure 3. Fail-Safe Voltage Threshold vs Free-Air  
Temperature  
Figure 4. High-Level Output Current vs High-Level Output  
Voltage  
80  
T
A
= 25°C  
70  
60  
50  
40  
30  
20  
10  
0
V
, V  
CC1 CC2  
at 5 V  
V
, V  
CC1 CC2  
at 3.3 V  
0
1
2
3
4
5
6
V
OL  
− Low-Level Output Voltage − V  
G008  
Figure 5. Low-Level Output Current vs Low-Level Output Voltage  
8
Copyright © 2015, Texas Instruments Incorporated  
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
7 Parameter Measurement Information  
VCCI  
VI  
1.4 V  
1.4 V  
IN  
OUT  
VO  
0 V  
tPLH  
tPHL  
Input  
Generator(1)  
(2)  
50 W  
VI  
CL  
VOH  
VOL  
90%  
10%  
50%  
50%  
VO  
tr  
tf  
(1) The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 . At the input, a 50-Ω resistor is required to terminate the Input Generator signal. It is not  
needed in actual application.  
(2) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 6. Switching Characteristic Test Circuit and Voltage Waveforms  
VI  
VCCI  
VCCI  
VI  
2.7 V  
0 V  
OUT  
IN = 0 V  
tfs  
VO  
VOH  
(1)  
50%  
VO  
Fail-Safe HIGH  
VOL  
CL  
(1) CL = 15 pF ± 20% includes instrumentation and fixture capacitance.  
Figure 7. Fail-Safe Output Delay-Time Test Circuit and Voltage Waveforms  
VCCI  
VCCO  
C = 0.1 μF 1ꢀ  
C = 0.1 μF 1ꢀ  
Pass-fail criteria –  
output must remain  
stable.  
IN  
OUT  
S1  
+
CL  
(1)  
VOH or VOL  
GNDI  
GNDO  
+
VCM  
(1) CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 8. Common-Mode Transient Immunity Test Circuit  
Copyright © 2015, Texas Instruments Incorporated  
9
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The ISO7421 digital isolator has two isolated channels. The ISO7421 provides galvanic isolation up to  
2500VRMS for one minute per UL. The isolator in Figure 9 is based on a capacitive isolation barrier technique.  
The I/O channel of the device consists of two internal data channels, a high-frequency channel (HF) with a  
bandwidth from 100 kbps up to 1 Mbps, and a low-frequency channel (LF) covering the range from 100 kbps  
down to DC. In principle, a single- ended input signal entering the HF-channel is split into a differential signal via  
the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into transients,  
which then are converted into differential pulses by two comparators. The comparator outputs drive a NOR-gate  
flip-flop whose output feeds an output multiplexer. A decision logic (DCL) at the driving output of the flip-flop  
measures the durations between signal transients. If the duration between two consecutive transients exceeds a  
certain time limit, (as in the case of a low-frequency signal), the DCL forces the output-multiplexer to switch from  
the high- to the low-frequency channel.  
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these  
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a  
sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a low-pass  
filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the output  
multiplexer.  
8.2 Functional Block Diagram  
Figure 9. Conceptual Block Diagram of a Digital Capacitive Isolator  
10  
Copyright © 2015, Texas Instruments Incorporated  
 
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
8.3 Feature Description  
8.3.1 Insulation Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER(1)  
TEST CONDITIONS  
SPECIFICATION  
UNIT  
DIN V VDE V 0884-10 (VDE V 0884-10):2006-12  
VIORM  
VPR  
Maximum working insulation voltage  
Input-to-output test voltage  
566  
VPK  
VPK  
t = 1 s (100% production), partial discharge 5 pC  
t = 60 s (qualification)  
1062  
VIOTM  
RS  
Transient overvoltage  
4242  
VPK  
t = 1 s (100% production)  
Insulation resistance  
Pollution degree  
VIO = 500 V at TS  
>109  
2
UL 1577  
VTEST = VISO = 2500 VRMS, t = 60 s (qualification)  
VTEST = 1.2 x VISO = 3000 VRMS, t = 1 s (100%  
production)  
VISO  
Isolation voltage per UL  
2500  
VRMS  
(1) Climatic Classification 40/125/21  
Table 1. IEC 60664-1 Ratings Table  
PARAMETER  
TEST CONDITIONS  
SPECIFICATION  
Material group  
II  
Rated mains voltage 150 VRMS  
Rated mains voltage 300 VRMS  
I–IV  
I–III  
Installation classification  
8.3.2 Package Characteristics  
Over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
L(I01)  
L(I02)  
Minimum air gap (clearance)  
Shortest terminal-to-terminal distance through air  
4
mm  
Minimum external tracking  
(creepage)  
Shortest terminal-to-terminal distance across the  
package surface  
4
mm  
V
Tracking resistance (comparative  
tracking index)  
CTI  
DTI  
DIN EN 60112 (VDE 0303-11); IEC 60112  
>400  
Distance through the insulation  
Minimum internal gap (internal clearance)  
VIO = 500 V, TA = 25°C  
0.014  
mm  
>1012  
>1011  
Isolation resistance, input to  
output(1)  
RIO  
VIO = 500 V, 100°C TA max  
Barrier capacitance, input to  
output(1)  
Input capacitance(2)  
CIO  
CI  
VIO = 0.4 sin (2πft), f = 1 MHz  
1
1
pF  
pF  
VI = VCC/2 + 0.4 sin (2πft), f = 1 MHz, VCC = 5 V  
(1) All pins on each side of the barrier tied together creating a two-terminal device.  
(2) Measured from input pin to ground.  
Copyright © 2015, Texas Instruments Incorporated  
11  
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
SPACER  
NOTE  
Creepage and clearance requirements should be applied according to the specific  
equipment isolation standards of an application. Care should be taken to maintain the  
creepage and clearance distance of a board design to ensure that the mounting pads of  
the isolator on the printed-circuit board do not reduce this distance.  
Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to  
help increase these specifications.  
8.3.3 Safety Limiting Values  
Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier, potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
112  
171  
150  
UNIT  
mA  
R
θJA = 212°C/W, VI = 5.25 V, TJ = 150°C, TA = 25°C  
θJA = 212°C/W, VI = 3.45 V, TJ = 150°C, TA = 25°C  
Safety input, output, or supply  
current  
IS  
R
TS  
Maximum safety temperature  
°C  
The safety-limiting constraint is the absolute-maximum junction temperature specified in the Absolute Maximum  
Ratings table. The power dissipation and junction-to-air thermal impedance of the device installed in the  
application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the  
Thermal Information table is that of a device installed in the JESD51-3, Low-Effective-Thermal-Conductivity Test  
Board for Leaded Surface-Mount Packages and is conservative. The power is the recommended maximum input  
voltage times the current. The junction temperature is then the ambient temperature plus the power times the  
junction-to-air thermal resistance.  
180  
V , V  
CC1 CC2  
at 3.45 V  
160  
140  
120  
100  
80  
V , V  
CC1 CC2  
at 5.25 V  
60  
40  
20  
0
0
50  
100  
Case Temperature − °C  
150  
200  
G002  
Figure 10. RθJC Thermal Derating Curve per VDE  
12  
Copyright © 2015, Texas Instruments Incorporated  
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
8.3.4 Regulatory Information  
VDE  
CSA  
UL  
CQC  
Certified according to  
DIN V VDE V 0884-10 (VDE V  
Recognized under UL1577  
Component Recognition  
Program(1)  
Approved under CSA Component  
Acceptance Notice #5A  
Certified according to  
GB4943.1-2011  
0884-10):2006-12 and  
DIN EN 61010-1 (VDE 0411-1):  
2011-07  
Basic Insulation  
Maximum Transient Overvoltage,  
4242 VPK  
Maximum Working Voltage, 566  
VPK  
Basic insulation per CSA 60950-1-  
07 and IEC 60950-1 (2nd Ed),  
390 VRMS maximum working  
voltage  
Basic Insulation, Altitude ≤  
5000 m, Tropical Climate, 250  
VRMS maximum working  
voltage  
Single Protection, 2500 VRMS  
File number: E181974  
Certificate number:  
CQC14001109540  
Certificate number: 40016131  
Master contract number: 220991  
(1) Production tested 3000 VRMS for 1 second in accordance with UL 1577.  
8.4 Device Functional Modes  
Table 2 shows the device functions.  
Table 2. Function Table(1)  
INPUT  
INA, INB  
OUTPUT  
OUTA, OUTB  
VCCI  
VCCO  
H
L
H
PU  
PU  
L
H(2)  
H(2)  
Open  
X
PD  
X
PU  
PD  
X
Undetermined  
(1) VCCI = Input-side power supply; VCCO = Output-side power supply;  
PU = Powered up (VCC 3.15 V); PD = Powered down (VCC 2.1  
V); X = Irrelevant; H = High level; L = Low level  
(2) In fail-safe condition, output defaults to high level.  
Input  
V
Output  
V
CC2  
V
V
CC1  
CC1  
CC1  
1 MW  
8 W  
500 W  
IN  
OUT  
13 W  
Figure 11. Device I/O Schematics  
Copyright © 2015, Texas Instruments Incorporated  
13  
 
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7421-EP device uses a single-ended TTL-logic switching technology. Its supply voltage range is from  
3.15 V to 5.25 V for both supplies, VCC1 and VCC2. When designing with digital isolators, it is important to keep in  
mind that due to the single-ended design structure, digital isolators do not conform to any specific interface  
standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is  
typically placed between the data controller (that is, μC or UART), and a data converter or a line transceiver,  
regardless of the interface type or standard.  
9.2 Typical Application  
ISO7421-EP can be used with Texas Instruments' mixed signal micro-controller, digital-to-analog converter,  
transformer driver, and voltage regulator to create an isolated 4-20 mA current loop.  
V
S
0.1 F  
3.3 V  
2
MBR0520L  
1:1.33  
3.3VISO  
10 F  
3
1
1
3
5
2
V
CC  
D2  
D1  
IN  
OUT  
GND  
TPS76333  
SN6501  
10 F 0.1 F  
EN  
GND  
4, 5  
10 F  
MBR0520L  
0.1 F  
0.1 F  
20 ꢁ  
ISO-BARRIER  
0.1 F  
LOOP+  
15  
3
0.1 F  
0.1 F  
VA  
VD  
10  
8
16  
LOW  
BASE  
OUT  
1
8
0.1 F 1 F  
2
ERRLVL  
V
V
CC2  
CC1  
DAC161P997  
DV  
CC  
7
5
4
5
22 ꢁ  
OUTA  
INB  
INA  
DBACK  
DIN  
11  
12  
2
3
XOUT  
P3.0  
P3.1  
ISO7421  
9
MSP430  
G2132  
6
OUTB  
6
LOOPœ  
C1 C2 C3 COMA COMD  
XIN  
GND1  
GND2  
5
14 13 12  
1
2
DV  
SS  
3 þ 22 nF  
4
4
Figure 12. Isolated 4- to 20-mA Current Loop  
9.2.1 Design Requirements  
For applications that require isolation in place of using x-fmr to provide isolation, ISO7421-EP meets the system  
needs with small size. Unlike optocouplers, which require external components to improve performance, provide  
bias, or limit current, the ISO7421-EP device only requires two external bypass capacitors to operate.  
14  
Copyright © 2015, Texas Instruments Incorporated  
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
ISO7421 digital isolator containing two channels has logic input and output buffer isolated by silicon dioxide  
(SiO2) isolation barrier. When using ISO7421 in conjunction with isolated power supplies, these devices prevent  
noise currents on a data bus or other circuit from entering the local ground and interfering with or damaging  
sensitive circuitry. ISO7421 are specified for signaling rate up to 1Mbps. These devices also transmit data with  
much shorter pulse widths, in most cases, because of their fast response time. Designer must add external  
filtering to remove spurious signals with input pulse duration < 20 ns.  
VCC1  
1
8
VCC2  
0.1 µF  
0.1 µF  
OUTA  
INB  
7
6
INA  
2
3
OUTB  
GND2  
GND1  
5
4
Figure 13. Typical ISO7421-EP Circuit Hookup  
9.2.3 Application Curve  
100  
28 Years  
VIORM at 566 V  
10  
0
120  
250  
500  
VIORM – Working Voltage – V  
750  
880  
1000  
G001  
Figure 14. Life Expectancy vs Working Voltage  
Copyright © 2015, Texas Instruments Incorporated  
15  
ISO7421-EP  
ZHCSEG4 DECEMBER 2015  
www.ti.com.cn  
10 Power Supply Recommendations  
Install high quality X7R capacitors typically 0.1 µF close to the device. To ensure reliable operation at all data  
rates and supply voltages, a 0.1 µF bypass capacitor is recommended at input and output supply pins (VCC1 and  
VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side  
power supply is available in an application, isolated power can be generated for the secondary-side with the help  
of a transformer driver such as Texas Instruments' SN6501. For such applications, detailed power supply design  
and transformer selection recommendations are available in SN6501 datasheet (SLLSEA0).  
11 Layout  
11.1 Layout Guidelines  
There are several signals that conduct fast charging current or voltages that can interact with stray inductance or  
parasitic capacitors to generate noise. Thus to eliminate these problems Vin ins of ISO7421 should be bypass to  
gnd with low esr ceramic bypass capacitor with X7R dielectric. A minimum of four layers is required to  
accomplish a low EMI PCB design (see Figure 15). Layer stacking should be in the following order (top-to-  
bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to the  
stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, see Application Note Digital Isolator Design Guide, SLLA284.  
11.1.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 epoxy-glass as PCB material. FR-4 (Flame Retardant 4) meets the  
requirements of Underwriters Laboratories UL94-V0, and is preferred over cheaper alternatives due to its lower  
dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and its self-  
extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces , pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 15. Recommended Layer Stack  
16  
版权 © 2015, Texas Instruments Incorporated  
 
ISO7421-EP  
www.ti.com.cn  
ZHCSEG4 DECEMBER 2015  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
SN6501 用于隔离电源的变压器驱动器》SLLSEA0  
《隔离相关术语》SLLA353  
《数字隔离器设计指南》SLLA284  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
DeviceNet, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2015, Texas Instruments Incorporated  
17  
重要声明  
德州仪器(TI) 及其下属子公司有权根据 JESD46 最新标准, 对所提供的产品和服务进行更正、修改、增强、改进或其它更改, 并有权根据  
JESD48 最新标准中止提供任何产品和服务。客户在下订单前应获取最新的相关信息, 并验证这些信息是否完整且是最新的。所有产品的销售  
都遵循在订单确认时所提供的TI 销售条款与条件。  
TI 保证其所销售的组件的性能符合产品销售时 TI 半导体产品销售条件与条款的适用规范。仅在 TI 保证的范围内,且 TI 认为 有必要时才会使  
用测试或其它质量控制技术。除非适用法律做出了硬性规定,否则没有必要对每种组件的所有参数进行测试。  
TI 对应用帮助或客户产品设计不承担任何义务。客户应对其使用 TI 组件的产品和应用自行负责。为尽量减小与客户产品和应 用相关的风险,  
客户应提供充分的设计与操作安全措施。  
TI 不对任何 TI 专利权、版权、屏蔽作品权或其它与使用了 TI 组件或服务的组合设备、机器或流程相关的 TI 知识产权中授予 的直接或隐含权  
限作出任何保证或解释。TI 所发布的与第三方产品或服务有关的信息,不能构成从 TI 获得使用这些产品或服 务的许可、授权、或认可。使用  
此类信息可能需要获得第三方的专利权或其它知识产权方面的许可,或是 TI 的专利权或其它 知识产权方面的许可。  
对于 TI 的产品手册或数据表中 TI 信息的重要部分,仅在没有对内容进行任何篡改且带有相关授权、条件、限制和声明的情况 下才允许进行  
复制。TI 对此类篡改过的文件不承担任何责任或义务。复制第三方的信息可能需要服从额外的限制条件。  
在转售 TI 组件或服务时,如果对该组件或服务参数的陈述与 TI 标明的参数相比存在差异或虚假成分,则会失去相关 TI 组件 或服务的所有明  
示或暗示授权,且这是不正当的、欺诈性商业行为。TI 对任何此类虚假陈述均不承担任何责任或义务。  
客户认可并同意,尽管任何应用相关信息或支持仍可能由 TI 提供,但他们将独力负责满足与其产品及在其应用中使用 TI 产品 相关的所有法  
律、法规和安全相关要求。客户声明并同意,他们具备制定与实施安全措施所需的全部专业技术和知识,可预见 故障的危险后果、监测故障  
及其后果、降低有可能造成人身伤害的故障的发生机率并采取适当的补救措施。客户将全额赔偿因 在此类安全关键应用中使用任何 TI 组件而  
TI 及其代理造成的任何损失。  
在某些场合中,为了推进安全相关应用有可能对 TI 组件进行特别的促销。TI 的目标是利用此类组件帮助客户设计和创立其特 有的可满足适用  
的功能安全性标准和要求的终端产品解决方案。尽管如此,此类组件仍然服从这些条款。  
TI 组件未获得用于 FDA Class III(或类似的生命攸关医疗设备)的授权许可,除非各方授权官员已经达成了专门管控此类使 用的特别协议。  
只有那些 TI 特别注明属于军用等级或增强型塑料TI 组件才是设计或专门用于军事/航空应用或环境的。购买者认可并同 意,对并非指定面  
向军事或航空航天用途的 TI 组件进行军事或航空航天方面的应用,其风险由客户单独承担,并且由客户独 力负责满足与此类使用相关的所有  
法律和法规要求。  
TI 已明确指定符合 ISO/TS16949 要求的产品,这些产品主要用于汽车。在任何情况下,因使用非指定产品而无法达到 ISO/TS16949 要  
求,TI不承担任何责任。  
产品  
应用  
www.ti.com.cn/telecom  
数字音频  
www.ti.com.cn/audio  
www.ti.com.cn/amplifiers  
www.ti.com.cn/dataconverters  
www.dlp.com  
通信与电信  
计算机及周边  
消费电子  
能源  
放大器和线性器件  
数据转换器  
DLP® 产品  
DSP - 数字信号处理器  
时钟和计时器  
接口  
www.ti.com.cn/computer  
www.ti.com/consumer-apps  
www.ti.com/energy  
www.ti.com.cn/dsp  
工业应用  
医疗电子  
安防应用  
汽车电子  
视频和影像  
www.ti.com.cn/industrial  
www.ti.com.cn/medical  
www.ti.com.cn/security  
www.ti.com.cn/automotive  
www.ti.com.cn/video  
www.ti.com.cn/clockandtimers  
www.ti.com.cn/interface  
www.ti.com.cn/logic  
逻辑  
电源管理  
www.ti.com.cn/power  
www.ti.com.cn/microcontrollers  
www.ti.com.cn/rfidsys  
www.ti.com/omap  
微控制器 (MCU)  
RFID 系统  
OMAP应用处理器  
无线连通性  
www.ti.com.cn/wirelessconnectivity  
德州仪器在线技术支持社区  
www.deyisupport.com  
IMPORTANT NOTICE  
邮寄地址: 上海市浦东新区世纪大道1568 号,中建大厦32 楼邮政编码: 200122  
Copyright © 2016, 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7421MDREP  
V62/16605-01XE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
2500 RoHS & Green  
2500 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
7421EP  
7421EP  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

ISO7421A-Q1

LOW-POWER DUAL DIGITAL ISOLATORS
TI

ISO7421AQDRQ1

LOW-POWER DUAL DIGITAL ISOLATORS
TI

ISO7421D

Low-Power Dual Digital Isolators
TI

ISO7421DR

Low-Power Dual Digital Isolators
TI

ISO7421E

Low-Power Dual Channel Digital Isolators
TI

ISO7421E-Q1

Low-Power Dual Digital Isolators
TI

ISO7421ED

Low-Power Dual Channel Digital Isolators
TI

ISO7421EDR

Low-Power Dual Channel Digital Isolators
TI

ISO7421EQDWRQ1

Low-Power Dual Digital Isolators
TI

ISO7421FCC

Low-Power Dual Channel Digital Isolators
TI

ISO7421FCCDR

SPECIALTY ANALOG CIRCUIT, PDSO8, PLASTIC, MS-012AA, SOIC-8
TI

ISO7421FE

Low-Power Dual Channel Digital Isolators
TI