ISO7710D [TI]

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125;
ISO7710D
型号: ISO7710D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125

文件: 总42页 (文件大小:1677K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISO7710  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
EMC 性能优异ISO7710 高速单通道增强型数字隔离器  
1 特性  
3 说明  
100 Mbps 数据速率  
• 稳健可靠的隔离栅:  
ISO7710 器件是一款高性能单通道数字隔离器可提  
供符合 UL 1577 5000VRMS DW 和  
3000VRMSD 封装隔离额定值。此器件还通过了  
VDETUVCSA CQC 认证。  
1500VRMS 工作电压下预计寿命超100 年  
– 隔离等级高5000 VRMS  
– 浪涌能力高12.8 kV  
在隔离互补金属氧化物半导体 (CMOS) 或者低电压互  
补金属氧化物半导体 (LVCMOS) 数字 I/O 的同时,  
ISO7710 器件还可提供高电磁抗扰度和低辐射同时  
具备低功耗特性。隔离通道的逻辑输入和输出缓冲器由  
双电容二氧化硅 (SiO2) 绝缘栅相隔离。如果输入功率  
或信号出现损失不带后缀 F 的器件默认输出高电  
带后缀 F 的器件默认输出低电平。更多详细信  
请参阅器件功能模部分。  
CMTI 典型值±100kV/μs  
• 宽电源电压范围2.25V 5.5V  
2.25V 5.5V 电平转换  
• 默认输出高电(ISO7710) 低电(ISO7710F)  
选项  
• 宽温度范围-55°C 125°C  
• 低功耗1Mbps 时的  
电流典型值1.7mA  
该器件与隔离式电源搭配使用有助于防止数据总线  
例如RS-485RS-232 CAN 或其他电路上的  
噪声电流进入本地接地以及干扰或损坏敏感电路。凭借  
创新型芯片设计和布线技术ISO7710 器件的电磁兼  
容性得到了显著增强可缓解系统级 ESDEFT 和浪  
涌问题并符合辐射标准。ISO7710 器件可提供 16 引脚  
SOIC (DW) 8 SOIC (D) 封装。  
• 低传播延迟典型值11ns  
5V 电源)  
• 优异的电磁兼容(EMC)  
– 系统ESDEFT 和浪涌抗扰性  
– 在整个隔离栅具±8kV IEC 61000-4-2 接触放  
电保护  
– 低辐射  
• 宽SOIC (DW-16) 和窄SOIC (D-8) 封装选项  
• 提供汽车版本ISO7710-Q1  
• 安全相关认证  
器件信息  
封装尺寸标称值)  
器件型号  
封装  
SOIC (D)  
4.90mm x 3.91mm  
10.30mm x 7.50mm  
ISO7710  
– 符DIN EN IEC 60747-17 (VDE 0884-17) 标  
VDE 增强型绝缘  
SOIC (DW)  
V
V
CC2  
CC1  
Series Isolation  
Capacitors  
UL 1577 组件认证计划  
IEC 62368-1IEC 61010-1IEC 60601-1 和  
GB 4943.1 认证  
OUT  
IN  
2 应用  
工业自动化  
电机控制  
电源  
GND2  
GND1  
Copyright © 2019, Texas Instruments Incorporated  
光伏逆变器  
医疗设备  
简化原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSER9  
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
Table of Contents  
6.18 Insulation Characteristics Curves........................... 17  
6.19 Typical Characteristics............................................18  
7 Parameter Measurement Information..........................19  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................21  
8.4 Device Functional Modes..........................................22  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................27  
11 Layout...........................................................................28  
11.1 Layout Guidelines................................................... 28  
11.2 Layout Example...................................................... 28  
12 Device and Documentation Support..........................29  
12.1 Documentation Support.......................................... 29  
12.2 Receiving Notification of Documentation Updates..29  
12.3 支持资源..................................................................29  
12.4 Trademarks.............................................................29  
12.5 静电放电警告.......................................................... 29  
12.6 术语表..................................................................... 29  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................4  
Pin Functions.................................................................... 5  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................7  
6.4 Thermal Information....................................................8  
6.5 Power Ratings.............................................................8  
6.6 Insulation Specifications............................................. 9  
6.7 Safety-Related Certifications.....................................11  
6.8 Safety Limiting Values...............................................11  
6.9 Electrical Characteristics5-V Supply..................... 13  
6.10 Supply Current Characteristics5-V Supply..........13  
6.11 Electrical Characteristics3.3-V Supply.................14  
6.12 Supply Current Characteristics3.3-V Supply.......14  
6.13 Electrical Characteristics2.5-V Supply ............... 15  
6.14 Supply Current Characteristics2.5-V Supply.......15  
6.15 Switching Characteristics5-V Supply...................16  
6.16 Switching Characteristics3.3-V Supply................16  
6.17 Switching Characteristics2.5-V Supply................17  
Information.................................................................... 30  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (April 2020) to Revision D (March 2023)  
Page  
• 将整个文档中的标准名称从“DIN V VDE V 0884-11:2017-01”更改为“DIN EN IEC 60747-17 (VDE  
0884-17)..........................................................................................................................................................1  
• 通篇删除了对标IEC/EN/CSA 60950-1 的引用............................................................................................... 1  
• 通篇删除了所有标准名称中的标准版本和年份参考............................................................................................ 1  
Added Maximum impulse voltage (VIMP) specification per DIN EN IEC 60747-17 (VDE 0884-17)....................9  
Changed test conditions and values of Maximum surge isolation voltage (VIOSM) specification per DIN EN IEC  
60747-17 (VDE 0884-17)....................................................................................................................................9  
Clarified method b test conditions of Apparent charge (qPD)..............................................................................9  
Changed working voltage lifetime margin from: 87.5% to: 50%, minimum required insulation lifetime from:  
37.5 years to: 30 years and insulation lifetime per TDDB from: 135 years to: 169 years in per DIN EN IEC  
60747-17 (VDE 0884-17)..................................................................................................................................25  
Changed 9-5 per DIN EN IEC 60747-17 (VDE 0884-17).............................................................................25  
Changes from Revision B (March 2017) to Revision C (April 2020)  
Page  
• 通篇进行了编辑性和修饰性更改.........................................................................................................................1  
• 将“隔离栅寿命40 年”更改为“1500VRMS 工作电压下预计寿命超过 100 年”位于1..........1  
• 在1 中添加了“隔离等级高达 5000VRMS....................................................................................................1  
• 在1 中添加了“浪涌能力高达 12.8kV.........................................................................................................1  
• 在1 中添加了“在整个隔离栅具有 ±8kV IEC 61000-4-2 接触放电保护”......................................................1  
• 添加了“提供汽车版本ISO7710-Q1位于1....................................................................................... 1  
• 将“符DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 标准VDE 增强型绝缘”更改为“符DIN VDE  
V 0884-11:2017-01 标准VDE 增强型绝缘”位于1............................................................................. 1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
• 使用1 中的标准名称CSACQC TUV 要点合并为一个要点..............................................................1  
• 删除了1 中的“完DW-16 封装VDEULCSA TUV 认证已规划其他所有认证”要点................1  
• 更新了3-1以便显示两个串联的隔离电容器而不是单个隔离电容器......................................................... 1  
Added "Contact discarge per IEC 61000-4-2" specification of 8000V ............................................................. 6  
Changed "Signaling rate" to "Data rate" and added table note...........................................................................7  
Updated DW-16 package VIORM and VIOWM values............................................................................................9  
Added TDDB figure reference to VIOWM ............................................................................................................ 9  
Updated VIOSM, VIOTM, qpd test conditions..........................................................................................................9  
Corrected ground symbols for "Input (Devices with F suffix)" in 8.4.1 ........................................................ 22  
Fixed 9-2 INPUT wire connection................................................................................................................ 24  
Added 9.2.3.1 sub-section under 9.2.3 section....................................................................................... 25  
Added 'How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems' to 12.1  
section.............................................................................................................................................................. 29  
Changes from Revision A (December 2016) to Revision B (March 2017)  
Page  
Added D-8 values for TUV................................................................................................................................11  
Changed the Electrostatic Discharge Caution statement ................................................................................ 29  
Changes from Revision * (November 2016) to Revision A (December 2016)  
Page  
• 将IEC 60950-1IEC 60601-1 IEC 61010-1 终端设备标准更改IEC 60950-1 IEC 60601-1 终  
端设备标准..........................................................................................................................................................1  
Added Climatic category.....................................................................................................................................9  
Updated CSA column and changed DW package to (DW-16)..........................................................................11  
Changed tie TYP value from 1.5 to 1 in Switching Characteristics tables throughout the document................16  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
5 Pin Configuration and Functions  
GND1  
NC  
1
2
3
4
5
6
7
8
16 GND2  
15 NC  
14  
V
V
CC2  
CC1  
IN  
13 OUT  
12 NC  
11 NC  
10 NC  
9 GND2  
NC  
NC  
GND1  
NC  
5-1. DW Package 16-Pin SOIC Top View  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
4
Submit Document Feedback  
Product Folder Links: ISO7710  
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
1
2
3
4
8
7
6
V
V
CC2  
CC1  
IN  
NC  
OUT  
V
CC1  
GND1  
5 GND2  
5-2. D Package 8-Pin SOIC Top View  
Pin Functions  
PIN  
NO.  
I/O  
DESCRIPTION  
NAME  
DW  
D
1, 3  
8
VCC1  
VCC2  
GND1  
GND2  
IN  
3
Power supply, VCC1  
Power supply, VCC2  
Ground connection for VCC1  
Ground connection for VCC2  
Input channel  
I
14  
1, 7  
9, 16  
4
4
5
2
OUT  
13  
6
O
Output channel  
2, 5, 6, 8, 10 ,11, 12,  
15  
NC  
7
Not connect pin; it has no internal connection  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
See(1)  
MIN  
-0.5  
-0.5  
-15  
MAX  
UNIT  
V
VCC1, VCC2  
Supply Voltage (2)  
Voltage at INx, OUTx  
Output current  
6
V
VCCX + 0.5 (3)  
V
IO  
15  
150  
150  
mA  
°C  
TJ  
Tstg  
Junction temperature  
Storage temperature  
-65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/  
ESDA/JEDEC JS-001, all pins(1)  
±6000  
Charged device model (CDM), per  
JEDEC specification JESD22-C101, all  
pins(2)  
VESD  
Electrostatic discharge  
±1500  
±8000  
V
Contact discharge per IEC 61000-4-2;  
Isolation barrier withstand test(3) (4)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
6
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
 
 
 
 
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
VCC1, VCC2 Supply voltage  
2.25  
VCC(UVLO+) UVLO threshold when supply voltage is rising  
VCC(UVLO-) UVLO threshold when supply voltage is falling  
VHYS(UVLO) Supply voltage UVLO hysteresis  
VCC2 = 5 V  
2
1.8  
2.25  
V
1.7  
100  
-4  
V
200  
mV  
IOH  
High level output current  
VCC2 = 3.3 V  
VCC2 = 2.5 V  
VCC2 = 5 V  
-2  
mA  
mA  
-1  
4
IOL  
Low level output current  
VCC2 = 3.3 V  
VCC2 = 2.5 V  
2
1
VIH  
High level Input voltage  
Low level Input voltage  
Data Rate  
0.7 x VCC1  
VCC1  
V
V
VIL  
0
0
0.3 x VCC1  
100  
DR((1))  
Mbps  
°C  
TA  
Ambient temperature  
-55  
25  
125  
(1) 100 Mbps is the maximum specified data rate, although higher data rates are possible.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
ISO7710  
www.ti.com.cn  
UNIT  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.4 Thermal Information  
ISO7710  
THERMAL METRIC ((1))  
DW (SOIC)  
(16-Pin)  
D(SOIC)  
(8-Pin)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
94.4  
57.3  
57.1  
40.0  
56.8  
146.1  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
63.1  
80.0  
9.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
79.0  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO7710  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
50  
12.5  
37.5  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15  
pF, Input a 50-MHz 50% duty cycle  
square wave  
PD1  
PD2  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
8
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.6 Insulation Specifications  
PARAMETER  
VALUE  
TEST CONDITIONS  
UNIT  
DW-16  
D-8  
IEC 60664-1  
CLR  
CPG  
DTI  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
Shortest terminal-to-terminal distance across the package surface  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A  
According to IEC 60664-1  
8
4
4
mm  
mm  
µm  
V
External creepage(1)  
8
Distance through the insulation  
Comparative tracking index  
Material Group  
21  
21  
CTI  
>600  
I
>600  
I
I-IV  
I-III  
n/a  
n/a  
Rated mains voltage 150 VRMS  
IIV  
IIV  
IIV  
I-III  
Rated mains voltage 300 VRMS  
Overvoltage category per IEC  
60664-1  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
DIN EN IEC 60747-17 (VDE 0884-17)(2)  
Maximum repetitive peak  
VIORM  
AC voltage (bipolar)  
2121  
637  
VPK  
isolation voltage  
AC voltage; time-dependent dielectric breakdown (TDDB) test,  
see 9-5  
1500  
2121  
8000  
8000  
450  
VRMS  
VDC  
VPK  
VPK  
VPK  
Maximum working isolation  
voltage  
VIOWM  
DC voltage  
637  
Maximum transient isolation  
voltage  
VTEST = VIOTM , t = 60 s (qualification);  
VTEST = 1.2 × VIOTM, t = 1 s (100% production)  
VIOTM  
4242  
5000  
VIMP  
Maximum impulse voltage((3))  
Tested in air, 1.2/50-μs waveform per IEC 62368-1  
Maximum surge isolation  
voltage((4))  
V
IOSM 1.3 x VIMP; Tested in oil (qualification test),  
VIOSM  
12800 10000  
1.2/50-µs waveform per IEC 62368-1  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM , tm = 10 s  
5  
5  
5  
5  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
qpd  
Apparent charge((5))  
Vpd(m) = 1.6 × VIORM , tm = 10 s  
pC  
Method b: At routine test (100% production) and preconditioning  
(type test);  
Vini = 1.2 x VIOTM, tini = 1 s;  
5  
5  
Vpd(m) = 1.875 x VIORM (ISO7710), tm = 1 s (method b1) or  
Vpd(m) = Vini, tm = tini (method b2)  
Barrier capacitance, input to  
output(6)  
CIO  
RIO  
~0.4  
~0.4  
pF  
VIO = 0.4 × sin (2 πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
> 1012 > 1012  
> 1011 > 1011  
Insulation resistance((6))  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Ω
> 109  
2
> 109  
2
Pollution degree  
Climatic category  
55/125/ 55/125/  
21  
21  
UL 1577  
VTEST = VISO , t = 60 s (qualification);  
VTEST = 1.2 × VISO , t = 1 s (100% production)  
VISO  
Withstand isolation voltage  
5000  
3000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.  
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the  
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in  
certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these  
specifications.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured  
by means of suitable protective circuits.  
(3) Testing is carried out in air to determine the surge immunity of the package  
(4) Testing is carried out in oil to determine the intrinsic surge immunity of the isolation barrier.  
(5) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(6) All pins on each side of the barrier tied together creating a two-terminal device.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
10  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to DIN  
EN IEC 60747-17 (VDE  
0884-17)  
Certified according to UL  
1577 Component  
Recognition Program  
Certified according to IEC  
62368-1 and IEC 60601-1  
Certified according to  
GB4943.1  
Certified according to EN  
61010-1 and EN 62368-1  
5000 VRMS (DW-16) and  
3000 VRMS (D-8)  
Maximum transient  
Reinforced insulation per  
DW-16: Reinforced  
Insulation, Altitude ≤  
5000 m, Tropical Climate,  
700 VRMS maximum  
working voltage;  
D-8: Basic Insulation,  
Altitude 5000 m,  
Tropical Climate, 400  
VRMS maximum working  
voltage  
isolation voltage, 8000 VPK CSA 62368-1 and IEC  
(DW-16, Reinforced) and 62368-1, 800 VRMS  
4242 VPK (D-8); Maximum (DW-16) and 400 VRMS  
Reinforced insulation per  
EN 61010-1 up to working  
voltage of 600 VRMS  
(DW-16) and 300 VRMS  
(D-8) 5000 VRMS (DW-16)  
and 3000 VRMS (D-8)  
Reinforced insulation per  
EN 62368-1 up to working  
voltage of 800 VRMS  
(DW-16) and 400 VRMS  
(D-8)  
repetitive peak isolation  
(D-8) max working voltage DW-16: Single  
(pollution degree 2, protection, 5000 VRMS  
D-8: Single protection,  
637 VPK (D-8); Maximum 2 MOPP (Means of Patient 3000 VRMS  
voltage, 2121 VPK  
;
(DW-16, Reinforced) and material group I);  
surge isolation voltage,  
12800 VPK (DW-16,  
Reinforced) and 10000  
VPK (D-8)  
Protection) per CSA  
60601-1 and IEC 60601-1,  
250 VRMS (DW-16) max  
working voltage  
Certificate numbers:  
CQC21001304083  
(DW-16)  
File number:  
E181974  
Certificate number:  
40040142  
Master contract number:  
220991  
Client ID number: 77311  
CQC15001121656 (D-8)  
6.8 Safety Limiting Values  
Safety limiting((1)) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A  
failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to  
overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DW-16 PACKAGE  
R
θJA =94.4°C/W, VI = 5.5 V, TJ = 150°C, TA  
241  
368  
482  
= 25°C, see 6-1  
θJA = 94.4°C/W, VI = 3.6 V, TJ = 150°C, TA  
= 25°C, see 6-1  
θJA = 94.4°C/W, VI = 2.75 V, TJ = 150°C, TA  
= 25°C, see 6-1  
θJA = 94.4°C/W, TJ = 150°C, TA = 25°C,  
see 6-2  
R
Safety input, output, or supply  
current  
IS  
mA  
R
R
Safety input, output, or total  
power  
PS  
TS  
1324  
150  
mW  
°C  
Maximum safety temperature  
D-8 PACKAGE  
R
θJA =146.1°C/W, VI = 5.5 V, TJ = 150°C, TA  
156  
238  
311  
= 25°C, see 6-3  
RθJA = 146.1°C/W, VI = 3.6 V, TJ = 150°C, TA  
Safety input, output, or supply  
IS  
mA  
current (1)  
= 25°C, see 6-3  
RθJA = 146.1°C/W, VI = 2.75 V, TJ = 150°C,  
TA = 25°C, see 6-3  
R
θJA = 146.1°C/W, TJ = 150°C, TA = 25°C,  
Safety input, output, or total  
power (1)  
PS  
TS  
856  
150  
mW  
°C  
see 6-4  
Maximum safety temperature (1)  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount  
packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
12  
Submit Document Feedback  
Product Folder Links: ISO7710  
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.9 Electrical Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -4 mA; see 7-1  
IOL = 4 mA; see 7-1  
MIN  
TYP  
4.8  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input threshold voltage  
Falling input threshold voltage  
Input threshold voltage hysteresis  
High-level input current  
VCC2 - 0.4  
V
VOL  
0.2  
0.4  
V
V
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
0.6 x VCC1  
0.4 x VCC1  
0.2 x VCC1  
0.7 x VCC1  
0.3 x VCC1  
0.1 x VCC1  
V
V
VIH = VCC1 at INx  
VIL = 0 V at INx  
10  
µA  
µA  
IIL  
Low-level input current  
-10  
85  
VI = VCC1 or 0 V, VCM = 1200 V;  
see 7-3  
CMTI  
CI  
Common mode transient immunity  
Input Capacitance ((1))  
100  
2
kV/μs  
VI = VCC/ 2 + 0.4×sin(2πft), f =  
1 MHz, VCC = 5 V;  
pF  
(1) Measured from input pin to same side ground.  
6.10 Supply Current Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO7710  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
0.5  
0.6  
1.6  
0.6  
1.1  
0.6  
1.1  
1.1  
1.4  
5.9  
0.8  
1
VI = VCC1(ISO7710), VI = 0 V (ISO7710 with F suffix)  
VI = 0V (ISO7710), VI = VCC1 (ISO7710 with F suffix)  
1 Mbps  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
Supply current - AC signal  
2.5  
1
1.5  
mA  
1.1  
1.6  
1.6  
2
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
7
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.11 Electrical Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -2mA ; see 7-1  
IOL = 2mA ; see 7-1  
MIN  
TYP  
3.2  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input threshold voltage  
Falling input threshold voltage  
VCC2 - 0.3  
V
VOL  
0.1  
0.3  
V
V
V
VIT+(IN)  
VIT-(IN)  
0.6 x VCC1  
0.4 x VCC1  
0.7 x VCC1  
0.3 x VCC1  
0.1 x VCC1  
Input threshold voltage  
hysteresis  
VI(HYS)  
0.2 x VCC1  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC1 at INx  
VIL = 0 V at INx  
10  
µA  
µA  
-10  
85  
VI = VCC1 or 0 V, VCM = 1200 V;  
see 7-3  
Common mode transient  
immunity  
CMTI  
100  
kV/µs  
6.12 Supply Current Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO7710  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
0.5  
0.6  
1.6  
0.6  
1.1  
0.6  
1
0.8  
1
VI = VCC1 (ISO7710), VI = 0 V (ISO7710 with F suffix)  
VI = 0V (ISO7710), VI = VCC1 (ISO7710 with F suffix)  
1 Mbps  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
Supply current - AC signal  
2.5  
1
1.5  
mA  
1
1.6  
1.4  
1.8  
5.3  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
1.1  
1.3  
4.3  
100 Mbps  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
14  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.13 Electrical Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = -1mA ; see 7-1  
IOL = 1mA ; see 7-1  
MIN  
TYP  
2.45  
MAX UNIT  
VOH  
High-level output voltage  
Low-level output voltage  
Rising input threshold voltage  
Falling input threshold voltage  
VCC2 - 0.2  
V
VOL  
0.05  
0.2  
V
V
V
VIT+(IN)  
VIT-(IN)  
0.6 x VCC1  
0.4 x VCC1  
0.7 x VCC1  
0.3 x VCC1  
0.1 x VCC1  
Input threshold voltage  
hysteresis  
VI(HYS)  
0.2 x VCC1  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCC1 at INx  
VIL = 0 V at INx  
10  
µA  
µA  
-10  
85  
VI = VCC1 or 0 V, VCM = 1200 V;  
see 7-3  
Common mode transient  
immunity  
CMTI  
100  
kV/µs  
6.14 Supply Current Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
SUPPLY  
CURRENT  
PARAMETER  
ISO7710  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
0.5  
0.6  
1.6  
0.6  
1.1  
0.6  
1.1  
0.9  
1.2  
3.4  
0.8  
1
VI = VCC1 (ISO7710), VI = 0 V (ISO7710 with F suffix)  
VI = 0V (ISO7710), VI = VCC1 (ISO7710 with F suffix)  
1 Mbps  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
Supply current - DC signal  
Supply current - AC signal  
2.5  
1
1.5  
mA  
1
1.5  
1.4  
1.6  
4.4  
All channels switching with square  
10 Mbps  
wave clock input; CL = 15 pF  
100 Mbps  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.15 Switching Characteristics5-V Supply  
VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX  
16  
UNIT  
ns  
tPLH, tPHL  
Propagation delay time  
Pulse width distortion((1)) |tPHL tPLH  
Part-to-part skew time ((2))  
Output signal rise time  
6
See 7-1  
PWD  
tsk(pp)  
tr  
0.6  
4.9  
4.5  
3.9  
3.9  
ns  
|
ns  
1.8  
1.9  
ns  
See 7-1  
tf  
Output signal fall time  
ns  
Measured from the time VCC1 goes  
below 1.7V. See 7-2  
Default output delay time from input  
power loss  
tDO  
tie  
0.1  
1
0.3  
μs  
216 1 PRBS data at 100 Mbps  
Time interval error  
ns  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.16 Switching Characteristics3.3-V Supply  
VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX  
16  
5
UNIT  
ns  
tPLH, tPHL  
Propagation delay time  
Pulse width distortion((1)) |tPHL tPLH  
Part-to-part skew time ((2))  
Output signal rise time  
6
See 7-1  
PWD  
tsk(pp)  
tr  
0.1  
ns  
|
4.5  
3
ns  
0.7  
0.7  
ns  
See 7-1  
tf  
Output signal fall time  
3
ns  
Measured from the time VCC1 goes  
below 1.7V. See 7-2  
Default output delay time from input  
power loss  
tDO  
tie  
0.1  
1
0.3  
μs  
216 1 PRBS data at 100 Mbps  
Time interval error  
ns  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
16  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.17 Switching Characteristics2.5-V Supply  
VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
12  
MAX  
18.5  
5.1  
UNIT  
ns  
tPLH, tPHL  
Propagation delay time  
Pulse width distortion(1) |tPHL tPLH  
Part-to-part skew time((2))  
Output signal rise time  
Output signal fall time  
7.5  
See 7-1  
PWD  
tsk(pp)  
tr  
0.2  
ns  
|
4.6  
ns  
1
1
3.5  
ns  
See 7-1  
tf  
3.5  
ns  
Measured from the time VCC1 goes  
below 1.7V. See 7-2  
Default output delay time from input  
power loss  
tDO  
tie  
0.1  
1
0.3  
μs  
216 1 PRBS data at 100 Mbps  
Time interval error  
ns  
(1) Also known as pulse skew.  
(2) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
6.18 Insulation Characteristics Curves  
600  
500  
400  
300  
200  
100  
0
1400  
1200  
1000  
800  
600  
400  
200  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D002  
D001  
6-2. Thermal Derating Curve for Limiting Power  
6-1. Thermal Derating Curve for Limiting Current  
per VDE for DW-16 Package  
per VDE for DW-16 Package  
350  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
300  
250  
200  
150  
100  
50  
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
Ambient Temperature (èC)  
D003  
D004  
6-3. Thermal Derating Curve for Limiting Current 6-4. Thermal Derating Curve for Limiting Power  
per VDE for D-8 Package  
per VDE for D-8 Package  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
6.19 Typical Characteristics  
7
2.5  
2
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
6
5
4
3
2
1
0
1.5  
1
0.5  
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D006  
D005  
TA = 25°C  
CL = No Load  
TA = 25°C  
CL = 15 pF  
6-6. ISO7710 Supply Current vs Data Rate (With  
6-5. ISO7710 Supply Current vs Data Rate (With  
No Load)  
15 pF Load)  
6
5
4
3
2
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
1
0.1  
0
0
0
5
10  
Low-Level Output Current (mA)  
15  
-15  
-10 -5  
High-Level Output Current (mA)  
0
D012  
D011  
TA = 25°C  
TA = 25°C  
6-8. Low-Level Output Voltage vs Low-Level  
6-7. High-Level Output Voltage vs High-level  
Output Current  
Output Current  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
14  
13  
12  
11  
10  
1.75  
VCC1 Rising  
VCC1 Falling  
VCC2 Rising  
VCC2 Falling  
1.70  
tPLH at 2.5 V  
tPHL at 2.5 V  
tPLH at 3.3 V  
tPHL at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
9
8
1.65  
1.60  
-55 -40 -25 -10  
5
20 35 50 65 80 95 110 125  
-55  
-25  
5
35  
65  
95  
125  
Free-Air Temperature (èC)  
D009  
Free Air Temperature (èC)  
D010  
6-9. Power Supply Undervoltage Threshold vs  
6-10. Propagation Delay Time vs Free-Air  
Free-Air Temperature  
Temperature  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
7 Parameter Measurement Information  
V
CC1  
V
50%  
I
50%  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
O
50  
V
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3 ns, tf 3ns, ZO  
= 50 Ω. At the input, 50 Ωresistor is required to terminate Input Generator signal. It is not needed in actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-1. Switching Characteristics Test Circuit and Voltage Waveforms  
V
I
See Note B  
V
CC  
V
CC  
V
1.7 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
7-2. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CC1  
CC1  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
EN  
V
or V  
OH  
OL  
C
L
œ
See Note A  
GND1  
GND2  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
7-3. Common-Mode Transient Immunity Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
8 Detailed Description  
8.1 Overview  
The ISO7710 device has an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a  
silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to  
represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the  
signal after advanced signal conditioning and produces the output through a buffer stage. The device also  
incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated  
emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital  
capacitive isolator, 8-1, shows a functional block diagram of a typical channel.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
8-1. Conceptual Block Diagram of a Digital Capacitive Isolator  
8-2 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
8-2. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
20  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
8.3 Feature Description  
The ISO7710 device is available in two default output state options to enable a variety of application uses. 8-1  
lists the device features.  
8-1. Device Features  
MAXIMUM DATA  
RATE  
CHANNEL  
DIRECTION  
DEFAULT OUTPUT  
STATE  
PART NUMBER  
PACKAGE  
RATED ISOLATION(1)  
DW-16  
D-8  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
ISO7710  
100 Mbps  
100 Mbps  
1 Forward, 0 Reverse  
1 Forward, 0 Reverse  
High  
Low  
DW-16  
D-8  
ISO7710F  
(1) See the Safety-Related Certifications section for detailed isolation ratings.  
8.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO7710  
device incorporates many chip-level design improvements for overall system robustness. Some of these  
improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
8.4 Device Functional Modes  
8-2 lists the functional modes of ISO7710 device.  
8-2. Function Table  
INPUT  
(IN)(3)  
OUTPUT  
(OUT)  
VCC1  
VCC2  
COMMENTS  
H
L
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU(1)  
PU  
Default mode: When IN is open, the corresponding channel output goes to its  
default logic state. Default is High for ISO7710 and Low for ISO7710F.  
Open  
Default  
Default mode: When VCC1 is unpowered, a channel output assumes the logic  
state based on the selected default option. Default is High for ISO7710 and  
Low for ISO7710F.  
PD  
X
PU  
PD  
X
Default  
When VCC1 transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input.  
When VCC1 transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCC2 is unpowered, a channel output is undetermined (2)  
.
X
Undetermined  
When VCC2 transitions from unpowered to powered-up, a channel output  
assumes the logic state of its input  
(1) PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant; H = High level; L = Low level  
(2) The outputs are in undetermined state when 1.7 V < VCC1, VCC2 < 2.25 V.  
(3) A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output.  
8.4.1 Device I/O Schematics  
Input (Devices without F suffix)  
Input (Devices with F suffix)  
V
V
V
V
CCI  
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
1.5 M  
985 ꢀ  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
Output  
V
CCO  
~20 ꢀ  
OUTx  
Copyright © 2016, Texas Instruments Incorporated  
8-3. Device I/O Schematics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
22  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The ISO7710 device is a high-performance, single-channel digital isolator. The device uses single-ended CMOS-  
logic switching technology. The supply voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and VCC2  
.
When designing with digital isolators, keep in mind that because of the single-ended design structure, digital  
isolators do not conform to any specific interface standard and are only intended for isolating single-ended  
CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or  
UART), and a data converter or a line transceiver, regardless of the interface type or standard.  
9.2 Typical Application  
The ISO7710 device can be used with Texas Instruments' mixed signal microcontroller, CAN transceiver,  
transformer driver, and low-dropout voltage regulator to create an Isolated CAN Interface as shown below.  
VS  
10 F  
3.3 V  
2
MBR0520L  
Vcc  
1:1.33  
ISO 3.3V  
3
1
1
5
2
D2  
D1  
IN  
OUT  
GND  
TPS76333  
SN6501  
10 F  
0.1 F  
10 F  
3
EN  
MBR0520L  
GND  
GND  
4
5
ISO Barrier  
0.1 F  
5
4
GND2  
GND1  
IN  
3
0.1 F  
6
8
2
ISO7710  
OUT  
VCC  
RS  
8
10 (optional)  
10 (optional)  
1,3  
4
1
VCC2  
VCC1  
R
CANH  
29,57  
7
6
0.1 F  
0.1 F  
SN65HVD231  
V
DDIO  
26  
25  
D
CANL  
Vref  
CANRXA  
TMS320F28035PAG  
CANTXA  
0.1 F  
GND  
5
0.1 F  
SM712  
2
VCC1  
VCC2  
OUT  
1,3  
2
8
6
V
SS  
IN  
ISO7710  
6,28  
GND1  
GND2  
4
5
4.7 nF /  
2 kV  
Copyright © 2016, Texas Instruments Incorporated  
9-1. Isolated CAN Interface  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
9.2.1 Design Requirements  
To design with this device, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETER  
VALUE  
2.25 V to 5.5 V  
0.1 µF  
Supply voltage, VCC1 and VCC2  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
9.2.2 Detailed Design Procedure  
Unlike optocouplers, which require components to improve performance, provide bias, or limit current, the  
ISO7710 device only requires two external bypass capacitors to operate.  
VCC1  
VCC2  
2 mm  
2 mm  
maximum  
from VCC1  
maximum  
from VCC2  
0.1 F  
0.1 F  
1
2
8
7
INPUT  
IN  
3
4
OUT 6  
5
OUTPUT  
GND2  
GND1  
9-2. Typical ISO7710 Circuit Hook-up  
9.2.3 Application Curve  
The following typical eye diagram of the ISO7710 device indicates low jitter and wide open eye at the maximum  
data rate of 100 Mbps.  
Time = 3.5 ns / div  
9-3. ISO7710 Eye Diagram at 100 Mbps PRBS, 5-V Supplies and 25°C  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
24  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
9.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 9-4 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 50% for  
lifetime which translates into minimum required insulation lifetime of 30 years at a working voltage that's 20%  
higher than the specified value.  
9-5 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the intrinsic capability of the insulation is 1500 VRMS with a lifetime of 169 years. Other  
factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the  
component. The working voltage of DW-16 package is specified up to 1500 VRMS and D-8 package up to 450  
VRMS. At the lower working voltages, the corresponding insulation lifetime is much longer than 169 years.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
9-4. Test Setup for Insulation Lifetime Measurement  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
9-5. Insulation Lifetime Projection Data  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
26  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins  
as possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or  
SN6505A. For such applications, detailed power supply design and transformer selection recommendations are  
available in SN6501 Transformer Driver for Isolated Power Supplies or SN6505 Low-Noise 1-A Transformer  
Drivers for Isolated Power Supplies.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see 11-1). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength  
and stiffness, and the self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
11-1. Layout Example  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
28  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Digital Isolator Design Guide  
Isolation Glossary  
How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems  
SN6501 Transformer Driver for Isolated Power Supplies  
SN65HVD23x 3.3-V CAN Bus Transceivers  
TMS320F28035 PiccoloMicrocontrollers  
TPS76333 Low-Power 150-mA Low-Dropout Linear Regulators  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
Piccolois a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
 
 
 
 
 
 
 
 
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
30  
Submit Document Feedback  
Product Folder Links: ISO7710  
 
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
PACKAGE OUTLINE  
D0008B  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
.041  
[1.04]  
4221445/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15], per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
EXAMPLE BOARD LAYOUT  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.055)  
[1.4]  
8X (.061 )  
[1.55]  
SEE  
DETAILS  
SEE  
DETAILS  
SYMM  
SYMM  
1
1
8
8
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
(.217)  
[5.5]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSDE  
METAL  
EXPOSED  
METAL  
.0028 MIN  
[0.07]  
ALL AROUND  
.0028 MAX  
[0.07]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221445/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSER9  
32  
Submit Document Feedback  
Product Folder Links: ISO7710  
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
EXAMPLE STENCIL DESIGN  
D0008B  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
8X (.055)  
[1.4]  
SYMM  
SYMM  
1
1
8
8
5
8X (.024)  
[0.6]  
8X (.024)  
[0.6]  
SYMM  
SYMM  
(R.002 ) TYP  
[0.05]  
(R.002 )  
[0.05]  
TYP  
5
4
4
6X (.050 )  
[1.27]  
6X (.050 )  
[1.27]  
(.217)  
[5.5]  
(.213)  
[5.4]  
HV / ISOLATION OPTION  
.162 [4.1] CLEARANCE / CREEPAGE  
IPC-7351 NOMINAL  
.150 [3.85] CLEARANCE / CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:6X  
4221445/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
R0.05 TYP  
14X (1.27)  
R0.05 TYP  
9
9
8
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
ISO7710  
www.ti.com.cn  
ZHCSFQ7D NOVEMBER 2016 REVISED MARCH 2023  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (0.6)  
16X (2)  
1
1
16  
16  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2023 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: ISO7710  
English Data Sheet: SLLSER9  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7710D  
ISO7710DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
7710  
7710  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
Samples  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7710DW  
ISO7710DWR  
ISO7710FD  
DW  
DW  
D
16  
16  
8
ISO7710  
ISO7710  
7710F  
ISO7710FDR  
ISO7710FDW  
ISO7710FDWR  
D
8
7710F  
DW  
DW  
16  
16  
ISO7710F  
ISO7710F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ISO7710 :  
Automotive : ISO7710-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Mar-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7710DR  
ISO7710DWR  
ISO7710DWR  
ISO7710FDR  
ISO7710FDWR  
ISO7710FDWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
2500  
2000  
2000  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
16.4  
16.4  
12.4  
16.4  
16.4  
6.4  
5.2  
2.1  
2.7  
2.7  
2.1  
2.7  
2.7  
8.0  
12.0  
12.0  
8.0  
12.0  
16.0  
16.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
DW  
DW  
D
16  
16  
8
10.75 10.7  
10.75 10.7  
6.4  
5.2  
DW  
DW  
16  
16  
10.75 10.7  
10.75 10.7  
12.0  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Mar-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7710DR  
ISO7710DWR  
ISO7710DWR  
ISO7710FDR  
ISO7710FDWR  
ISO7710FDWR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
8
2500  
2000  
2000  
2500  
2000  
2000  
350.0  
356.0  
350.0  
350.0  
350.0  
356.0  
350.0  
356.0  
350.0  
350.0  
350.0  
356.0  
43.0  
35.0  
43.0  
43.0  
43.0  
35.0  
DW  
DW  
D
16  
16  
8
DW  
DW  
16  
16  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
30-Mar-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7710D  
ISO7710DW  
ISO7710DW  
ISO7710FD  
ISO7710FDW  
ISO7710FDW  
D
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
8
75  
40  
40  
75  
40  
40  
505.46  
506.98  
507  
6.76  
12.7  
3810  
4826  
5080  
3810  
4826  
5080  
4
DW  
DW  
D
16  
16  
8
6.6  
6.6  
4
12.83  
6.76  
505.46  
506.98  
507  
DW  
DW  
16  
16  
12.7  
6.6  
6.6  
12.83  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

ISO7710DR

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125
TI

ISO7710DW

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710DWR

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710FD

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125
TI

ISO7710FDR

EMC 性能优异的单通道、增强型数字隔离器 | D | 8 | -55 to 125
TI

ISO7710FDW

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710FDWR

EMC 性能优异的单通道、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7710FQDQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | D | 8 | -40 to 125
TI

ISO7710FQDRQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | D | 8 | -40 to 125
TI

ISO7710FQDWQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | DW | 16 | -40 to 125
TI

ISO7710FQDWRQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | DW | 16 | -40 to 125
TI

ISO7710QDQ1

EMC 性能优异的汽车类单通道、增强型数字隔离器 | D | 8 | -40 to 125
TI