ISO7740_V02 [TI]

ISO774x High-Speed, Robust-EMC Reinforced and Basic Quad-Channel Digital Isolators;
ISO7740_V02
型号: ISO7740_V02
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

ISO774x High-Speed, Robust-EMC Reinforced and Basic Quad-Channel Digital Isolators

文件: 总52页 (文件大小:2920K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
ISO774x High-Speed, Robust-EMC Reinforced and Basic Quad-Channel Digital Isolators  
1 Features  
3 Description  
The ISO774x devices are high-performance, quad-  
channel digital isolators with 5000 VRMS (DW  
package) and 3000 VRMS (DBQ package) isolation  
ratings per UL 1577. This family includes devices with  
reinforced insulation ratings according to VDE, CSA,  
TUV and CQC. The ISO7741B device is designed for  
applications that require basic insulation ratings only.  
1
100 Mbps data rate  
Robust isolation barrier:  
>100-year projected lifetime at 1500 VRMS  
working voltage  
Up to 5000 VRMS isolation rating  
Up to 12.8 kV surge capability  
±100 kV/μs typical CMTI  
The ISO774x devices provide high electromagnetic  
immunity and low emissions at low power  
consumption, while isolating CMOS or LVCMOS  
digital I/Os. Each isolation channel has a logic input  
and output buffer separated by a double capacitive  
silicon dioxide (SiO2) insulation barrier. These  
devices come with enable pins which can be used to  
put the respective outputs in high impedance for  
multi-master driving applications and to reduce power  
consumption. The ISO7740 device has all four  
channels in the same direction, the ISO7741 device  
has three forward and one reverse-direction  
channels, and the ISO7742 device has two forward  
and two reverse-direction channels. If the input power  
or signal is lost, default output is high for devices  
without suffix F and low for devices with suffix F. See  
the Device Functional Modes section for further  
details.  
Wide supply range: 2.25 V to 5.5 V  
2.25-V to 5.5-V level translation  
Default output high (ISO774x) and low  
(ISO774xF) options  
Wide temperature range: –55°C to 125°C  
Low power consumption, typical 1.5 mA per  
channel at 1 Mbps  
Low propagation delay: 10.7 ns typical  
(5-V Supplies)  
Robust electromagnetic compatibility (EMC)  
System-level ESD, EFT, and surge immunity  
±8 kV IEC 61000-4-2 contact discharge  
protection across isolation barrier  
Low emissions  
Device Information(1)  
Wide-SOIC (DW-16) and QSOP (DBQ-16)  
package options  
PART NUMBER  
ISO7740  
ISO7741  
ISO7742  
PACKAGE  
BODY SIZE (NOM)  
SOIC (DW)  
10.30 mm × 7.50 mm  
Automotive version available: ISO774x-Q1  
SSOP (DBQ)  
SOIC (DW)  
4.90 mm × 3.90 mm  
10.30 mm × 7.50 mm  
Safety-related certifications:  
ISO7741B  
DIN VDE V 0884-11:2017-01  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
UL 1577 component recognition program  
CSA, CQC, and TUV certifications  
Simplified Schematic  
2 Applications  
Industrial automation  
Motor control  
VCCO  
VCCI  
Power supplies  
Solar inverters  
Series Isolation  
Capacitors  
INx  
OUTx  
ENx  
Medical equipment  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
VCCI=Input supply, VCCO=Output supply  
GNDI=Input ground, GNDO=Output ground  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
Table of Contents  
7.18 Insulation Characteristics Curves ......................... 20  
7.19 Typical Characteristics.......................................... 21  
Parameter Measurement Information ................ 23  
Detailed Description ............................................ 25  
9.1 Overview ................................................................. 25  
9.2 Functional Block Diagram ....................................... 25  
9.3 Feature Description................................................. 26  
9.4 Device Functional Modes........................................ 27  
1
2
3
4
5
6
7
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Description Continued .......................................... 5  
Pin Configuration and Functions......................... 6  
Specifications......................................................... 8  
7.1 Absolute Maximum Ratings ...................................... 8  
7.2 ESD Ratings.............................................................. 8  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 9  
7.5 Power Rating............................................................. 9  
7.6 Insulation Specifications.......................................... 10  
7.7 Safety-Related Certifications................................... 11  
7.8 Safety Limiting Values ............................................ 11  
7.9 Electrical Characteristics—5-V Supply ................... 12  
7.10 Supply Current Characteristics—5-V Supply........ 13  
7.11 Electrical Characteristics—3.3-V Supply .............. 14  
7.12 Supply Current Characteristics—3.3-V Supply..... 15  
7.13 Electrical Characteristics—2.5-V Supply .............. 16  
7.14 Supply Current Characteristics—2.5-V Supply..... 17  
7.15 Switching Characteristics—5-V Supply................. 18  
7.16 Switching Characteristics—3.3-V Supply.............. 18  
7.17 Switching Characteristics—2.5-V Supply.............. 19  
8
9
10 Application and Implementation........................ 29  
10.1 Application Information.......................................... 29  
10.2 Typical Application ................................................ 29  
11 Power Supply Recommendations ..................... 32  
12 Layout................................................................... 33  
12.1 Layout Guidelines ................................................. 33  
12.2 Layout Example .................................................... 33  
13 Device and Documentation Support ................. 34  
13.1 Documentation Support ........................................ 34  
13.2 Related Links ........................................................ 34  
13.3 Receiving Notification of Documentation Updates 34  
13.4 Community Resources.......................................... 34  
13.5 Trademarks........................................................... 34  
13.6 Electrostatic Discharge Caution............................ 34  
13.7 Glossary................................................................ 35  
14 Mechanical, Packaging, and Orderable  
Information ........................................................... 35  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (May 2019) to Revision G  
Page  
Added ISO7741B device to the data sheet for applications that require basic insulation only.............................................. 1  
Combined CSA, CQC, and TUV Features bullets into a single bullet ................................................................................... 1  
Deleted "All certifications complete" bullet in Features .......................................................................................................... 1  
Changes from Revision E (January 2018) to Revision F  
Page  
Made editorial and cosmetic changes throughout the document .......................................................................................... 1  
Changed From: "Isolation Barrier Life: >40 Years" To: " >100-year projected lifetime at 1500 VRMS working voltage"  
in Features.............................................................................................................................................................................. 1  
Added "Up to 5000 VRMS isolation rating" in Features............................................................................................................ 1  
Added "Up to 12.8 kV surge capability" in Features .............................................................................................................. 1  
Added "±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier" in Features ......................................... 1  
Added "Automotive version available: ISO774x-Q1" in Features........................................................................................... 1  
Changed From: "All Certifications Complete except CQC Approval of DBQ-16 Package Devices" To: "All  
certifications complete" in Features ....................................................................................................................................... 1  
Updated Simplified Schematic to show two isolation capacitors in series per channel instead of a single isolation  
capacitor ................................................................................................................................................................................. 1  
Added "Contact discharge per IEC 61000-4-2" specification of ±8000 V in ESD Ratings..................................................... 8  
Added the following table note to Data rate specification: "100 Mbps is the maximum specified data rate, although  
higher data rates are possible." ............................................................................................................................................. 8  
2
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
Changed VIORM value for DW-16 package From: "1414 VPK" To: "2121 VPK" in Insulation Specifications table.................. 10  
Changed VIOWM values for DW-16 package From: "1000 VRMS" and "1414 VDC" To: "1500 VRMS" and "2121 VDC" in  
Insulation Specifications table ............................................................................................................................................. 10  
Added 'see Figure 28' to TEST CONDITIONS of VIOWM specification in Insulation Specifications...................................... 10  
Changed VIOSM TEST CONDITIONS From: "Test method per IEC 60065" To: "Test method per IEC 62368-1" in  
Insulation Specifications table .............................................................................................................................................. 10  
Updated certification information in Safety-Related Certifications table .............................................................................. 11  
Switched the line colors for VCC at 2.5 V and VCC at 3.3 V in Figure 12 .............................................................................. 21  
Added Insulation Lifetime sub-section under Application Curve section.............................................................................. 31  
Added 'How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems' application report to  
Documentation Support section ........................................................................................................................................... 34  
Changes from Revision D (May 2017) to Revision E  
Page  
Changed the DIN certification number and certification status throughout the document ..................................................... 1  
Changed the isolation rating of the DBQ package from 2500 VRMS to 3000 VRMS ................................................................. 1  
Added VTEST to the conditions for the maximum transient isolation voltage parameter in the Insulation Specifications  
table...................................................................................................................................................................................... 10  
Changed the value for the DBQ package from 3600 VPK to 4242 VPK throughout the document...................................... 10  
Changed the method b1 Vini condition for apparent charge in the Insulation Specifications table ...................................... 10  
Switched the labels for VCC1 falling and VCC2 rising in the graph legend of Power Supply Undervoltage Threshold vs  
Free-Air Temperature ........................................................................................................................................................... 21  
Changes from Revision C (December 2016) to Revision D  
Page  
Updated the Safety-Related Certifications table................................................................................................................... 11  
Changed the minimum CMTI from 40 to 85 in all Electrical Characteristics tables ............................................................ 12  
Changes from Revision B (October 2016) to Revision C  
Page  
Changed the Regulatory Information table to Safety-Related Certifications and updated content...................................... 11  
Changed the certifications from planned to certified in the Safety-Related Certifications table........................................... 11  
Changes from Revision A (June 2016) to Revision B  
Page  
Changed Feature From: High CMTI: ±75 kV/μs Typical To: High CMTI: ±100 kV/μs Typical ............................................... 1  
Changed Feature From: All Certifications are Planned To: 'VDE, UL, and TUV Certifications for DW Package  
Complete; All Other Certifications are Planned...................................................................................................................... 1  
Changed the unit value of CLR and CPG From: μm To: mm in Insulation Specifications................................................... 10  
Changed From: "Plan to certify" To: "Certified" in column VDE of Safety-Related Certifications ........................................ 11  
Added a conditions statement to Safety-Related Certifications .......................................................................................... 11  
Changed From: "Plan to certify" To: "Certified" in column UL of Safety-Related Certifications........................................... 11  
Changed From: "Plan to certify" To: "Certified" in column TUV of Safety-Related Certifications ........................................ 11  
Changed From: "Certification Planned" To: 'Certificate number: 40040142" in column VDE of Safety-Related  
Certifications......................................................................................................................................................................... 11  
Changed From: "Certification Planned" To: "File number: E181974" in column VDE of Safety-Related Certifications....... 11  
Changed From: "Certification Planned" To: "Client ID number: 77311" in column TUV of Safety-Related Certifications ... 11  
Changed the CMTI TYP value From: 75 kV/μs To: 100 kV/μs in the Electrical Characteristics—5-V Supply..................... 12  
Changed the CMTI TYP value From: 75 kV/μs To: 100 kV/μs in the Electrical Characteristics—3.3-V Supply.................. 14  
Changed the CMTI TYP value From: 75 kV/μs To: 100 kV/μs in the Electrical Characteristics—2.5-V Supply.................. 16  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
Changed the tDO TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 µs To: 0.3 µs in the Switching  
Characteristics—5-V Supply................................................................................................................................................. 18  
Changed the tDO TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 µs To: 0.3 µs in the Switching  
Characteristics—3.3-V Supply.............................................................................................................................................. 18  
Changed the tDO TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 µs To: 0.3 µs in the Switching  
Characteristics—2.5-V Supply.............................................................................................................................................. 19  
Added Note B to Figure 17................................................................................................................................................... 24  
Changed the Design Requirements paragraph ................................................................................................................... 30  
Replaced the Power Supply Recommendations section ..................................................................................................... 32  
Changes from Original (March 2016) to Revision A  
Page  
Changed the device status From: Preview To: Production. ................................................................................................... 1  
4
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
5 Description Continued  
Used in conjunction with isolated power supplies, these devices help prevent noise currents on data buses, such  
as RS-485, RS-232, and CAN, or other circuits from entering the local ground and interfering with or damaging  
sensitive circuitry. Through innovative chip design and layout techniques, electromagnetic compatibility of the  
ISO774x devices have been significantly enhanced to ease system-level ESD, EFT, surge, and emissions  
compliance. The ISO774x devices are available in 16-pin SOIC and QSOP packages.  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
6 Pin Configuration and Functions  
ISO7740 DW and DBQ Packages  
16-Pin SOIC-WB and QSOP  
Top View  
ISO7741 DW and DBQ Packages  
16-Pin SOIC-WB and QSOP  
Top View  
1
2
3
4
5
6
7
8
16  
V
V
1
2
3
4
5
6
7
8
16  
V
CC1  
CC2  
V
CC1  
CC2  
GND1  
INA  
15 GND2  
14 OUTA  
13 OUTB  
12 OUTC  
11 OUTD  
10 EN2  
9 GND2  
GND1  
INA  
15 GND2  
14 OUTA  
13 OUTB  
12 OUTC  
11 IND  
10 EN2  
9 GND2  
INB  
INB  
INC  
INC  
IND  
OUTD  
EN1  
NC  
GND1  
GND1  
ISO7742 DW and DBQ Packages  
16-Pin SOIC-WB and QSOP  
Top View  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
GND1  
INA  
15 GND2  
14 OUTA  
13 OUTB  
12 INC  
11 IND  
10 EN2  
9 GND2  
INB  
OUTC  
OUTD  
EN1  
GND1  
6
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
Pin Functions  
PIN  
ISO7741  
I/O  
DESCRIPTION  
NAME  
ISO7740  
ISO7742  
Output enable 1. Output pins on side 1 are enabled when EN1 is high  
or open and in high-impedance state when EN1 is low.  
EN1  
7
7
I
I
Output enable 2. Output pins on side 2 are enabled when EN2 is high  
or open and in high-impedance state when EN2 is low.  
EN2  
10  
10  
10  
2
8
2
8
2
8
GND1  
Ground connection for VCC1  
Ground connection for VCC2  
9
9
9
GND2  
15  
3
15  
3
15  
3
INA  
I
I
Input, channel A  
Input, channel B  
Input, channel C  
Input, channel D  
Not connected  
INB  
4
4
4
INC  
5
5
12  
11  
14  
13  
5
I
IND  
6
11  
14  
13  
12  
6
I
NC  
7
O
O
O
O
OUTA  
OUTB  
OUTC  
OUTD  
VCC1  
VCC2  
14  
13  
12  
11  
1
Output, channel A  
Output, channel B  
Output, channel C  
Output, channel D  
Power supply, side 1  
Power supply, side 2  
6
1
1
16  
16  
16  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)  
See  
MIN  
–0.5  
–0.5  
–15  
MAX  
UNIT  
V
VCC1, VCC2  
Supply voltage(2)  
6
VCCX + 0.5(3)  
15  
V
Voltage at INx, OUTx, ENx  
Output current  
V
IO  
mA  
°C  
TJ  
Tstg  
Junction temperature  
Storage temperature  
150  
–65  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak  
voltage values.  
(3) Maximum voltage must not exceed 6 V.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±6000  
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
Contact discharge per IEC 61000-4-2; Isolation barrier withstand test(3)(4)  
V(ESD)  
Electrostatic discharge  
±1500  
±8000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
(4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.  
7.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
5.5  
UNIT  
V
VCC1, VCC2  
VCC(UVLO+)  
VCC(UVLO-)  
VHYS(UVLO)  
Supply voltage  
2.25  
UVLO threshold when supply voltage is rising  
UVLO threshold when supply voltage is falling  
Supply voltage UVLO hysteresis  
2
1.8  
2.25  
V
1.7  
100  
–4  
V
200  
mV  
VCCO(1) = 5 V  
IOH  
High-level output current  
Low-level output current  
VCCO = 3.3 V  
VCCO = 2.5 V  
VCCO = 5 V  
–2  
mA  
mA  
–1  
4
IOL  
VCCO = 3.3 V  
VCCO = 2.5 V  
2
1
(1)  
VIH  
VIL  
DR  
TA  
High-level input voltage  
Low-level input voltage  
Data rate(2)  
0.7 × VCCI  
VCCI  
V
V
0
0
0.3 × VCCI  
100  
Mbps  
°C  
Ambient temperature  
–55  
25  
125  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) 100 Mbps is the maximum specified data rate, although higher data rates are possible.  
8
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
7.4 Thermal Information  
ISO774x  
DBQ  
THERMAL METRIC(1)  
DWW (SOIC) DW (SOIC)  
UNIT  
(QSOP)  
16 Pins  
109  
16 Pins  
58.3  
21.4  
30.5  
7.1  
16 Pins  
83.4  
46  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
54.4  
48  
51.9  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
19.1  
47.5  
14.2  
ψJB  
29.8  
51.4  
RθJC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Rating  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ISO7740  
PD  
Maximum power dissipation  
200  
40  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
Input a 50-MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation by side-1  
Maximum power dissipation by side-2  
160  
ISO7741  
PD  
Maximum power dissipation  
200  
75  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
Input a 50-MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation by side-1  
Maximum power dissipation by side-2  
125  
ISO7742  
PD  
Maximum power dissipation  
200  
100  
100  
mW  
mW  
mW  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,  
Input a 50-MHz 50% duty cycle square wave  
PD1  
PD2  
Maximum power dissipation by side-1  
Maximum power dissipation by side-2  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
7.6 Insulation Specifications  
VALUE  
PARAMETER  
TEST CONDITIONS  
UNIT  
DW-16 DBQ-  
16  
CLR  
CPG External creepage(1)  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
>3.7  
>3.7  
>21  
>600  
I
mm  
mm  
μm  
V
Shortest terminal-to-terminal distance across the package surface  
Minimum internal gap (internal clearance)  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
DTI  
CTI  
Distance through the insulation  
>21  
>600  
I
Comparative tracking index  
Material group  
Rated mains voltage 300 VRMS  
I-IV  
I-IV  
I-III  
I-III  
n/a  
Overvoltage category per IEC  
60664-1  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
n/a  
DIN VDE V 0884-11:2017-01(2)  
ISO774x  
2121  
1414  
1500  
1000  
2121  
1414  
566  
n/a  
Maximum repetitive peak  
VIORM  
AC voltage (bipolar)  
VPK  
isolation voltage  
ISO7741B  
ISO774x  
400  
n/a  
AC voltage; Time dependent dielectric breakdown (TDDB)  
Test; see Figure 28  
VRMS  
ISO7741B  
ISO774x  
Maximum working isolation  
voltage  
VIOWM  
566  
n/a  
DC voltage  
VDC  
VPK  
ISO7741B  
VTEST = VIOTM, t = 60 s (qualification);  
VTEST = 1.2 × VIOTM, t= 1 s (100% production)  
Maximum transient isolation  
voltage  
VIOTM  
8000  
8000  
6000  
4242  
4000  
n/a  
VTEST = 1.6 × VIOSM  
(ISO774x)  
Maximum surge isolation  
VIOSM  
Test method per IEC 62368-1, 1.2/50 µs waveform  
VPK  
voltage(3)  
VTEST = 1.3 × VIOSM  
(ISO7741B)  
Method a, After Input/Output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM, tm = 10 s  
5  
5  
5  
5  
Vpd(m) = 1.6 × VIORM  
tm = 10 s (ISO774x)  
,
,
Method a, After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
qpd  
Apparent charge(4)  
Vpd(m) = 1.2 × VIORM  
pC  
tm = 10 s (ISO7741B)  
Vpd(m) = 1.875 × VIORM  
tm = 1 s (ISO774x)  
,
Method b1; At routine test (100% production) and  
preconditioning (type test)  
Vini = 1.2 × VIOTM, tini = 1 s;  
5  
5  
Vpd(m) = 1.5 × VIORM  
,
tm = 1 s (ISO7741B)  
Barrier capacitance, input to  
output(5)  
CIO  
RIO  
VIO = 0.4 × sin (2πft), f = 1 MHz  
~1  
~1  
pF  
>1012  
>1011  
>109  
2
>1012  
>1011  
>109  
2
VIO = 500 V, TA = 25°C  
Isolation resistance(5)  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
55/125/ 55/125/  
21  
21  
UL 1577  
Maximum withstanding isolation  
VTEST = VISO , t = 60 s (qualification),  
VTEST = 1.2 × VISO , t = 1 s (100% production)  
VISO  
5000  
3000  
VRMS  
voltage  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation (ISO774x) and basic electrical insulation (ISO7741B) only within the safety ratings.  
Compliance with the safety ratings shall be ensured by means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
10  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
7.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to EN  
61010-1:2010/A1:2019, EN  
60950-1:2006/A2:2013 and  
EN 62368-1:2014  
Certified according to IEC  
60950-1, IEC 62368-1 and IEC  
60601-1  
Certified according to UL 1577  
Component Recognition  
Program  
Certified according to DIN  
VDE V 0884-11:2017-01  
Certified according to GB  
4943.1-2011  
5000 VRMS (DW-16) and  
3000 VRMS (DBQ-16)  
Maximum transient  
Reinforced insulation per CSA  
60950-1-07+A1+A2, IEC 60950-  
1 2nd Ed.+A1+A2, CSA 62368-  
1-14 and IEC 62368-1 2nd Ed.  
800 VRMS (DW-16) and 370 VRMS  
(DBQ-16) max working voltage  
(pollution degree 2, material  
group I);  
2 MOPP (Means of Patient  
Protection) per CSA 60601-1:14  
and IEC 60601-1 Ed. 3.1, 250  
VRMS (DW-16) max working  
voltage  
isolation voltage, 8000 VPK  
(DW-16) and 4242 VPK  
(DBQ-16);  
Reinforced insulation per  
EN 61010-1:2010/A1:2019  
up to working voltage of 600  
VRMS (DW-16) and 300  
VRMS (DBQ-16)  
DW-16: Reinforced Insulation,  
Altitude 5000 m, Tropical  
DW-16: Single protection, 5000 Climate, 700 VRMS maximum  
Maximum repetitive peak  
isolation voltage, 2121 VPK  
(DW-16, Reinforced),  
1414 VPK (DW-16, Basic)  
and 566 VPK (DBQ-16);  
Maximum surge isolation  
voltage, 8000 VPK (DW-16,  
Reinforced), 6000 VPK  
(DW-16, Basic) and 4000  
VPK (DBQ-16)  
VRMS  
;
working voltage;  
5000 VRMS (DW-16) and  
3000 VRMS (DBQ-16)  
DBQ-16: Single protection,  
3000 VRMS  
DBQ-16: Basic Insulation,  
Altitude 5000 m, Tropical  
Climate, 400 VRMS maximum  
working voltage  
Reinforced insulation per  
EN 60950-1:2006/A2:2013  
and EN 62368-1:2014 up to  
working voltage of 800 VRMS  
(DW-16) and 370 VRMS  
(DBQ-16)  
Reinforced certificate:  
40040142  
Basic certificate:  
40047657  
Certificate numbers:  
CQC15001121716 (DW-16)  
CQC18001199097 (DBQ-16)  
Master contract number: 220991 File number: E181974  
Client ID number: 77311  
7.8 Safety Limiting Values  
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure  
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
DW-16 PACKAGE  
TEST CONDITIONS  
MIN TYP MAX UNIT  
R
R
R
θJA = 83.4 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 1  
θJA = 83.4 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 1  
θJA = 83.4 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see  
273  
Safety input, output, or supply  
current  
416  
mA  
IS  
545  
Figure 1  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
RθJA = 83.4 °C/W, TJ = 150°C, TA = 25°C, see Figure 3  
1499 mW  
150  
°C  
DBQ-16 PACKAGE  
R
R
R
θJA = 109 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 2  
θJA = 109 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 2  
θJA = 109 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see  
209  
319  
Safety input, output, or supply  
current  
IS  
mA  
417  
Figure 2  
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
RθJA = 109 °C/W, TJ = 150°C, TA = 25°C, see Figure 4  
1147 mW  
150 °C  
(1) The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-to-  
air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-  
air thermal resistance in the Thermal Information is that of a device installed on a High-K test board for leaded Surface Mount Packages.  
The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature  
plus the power times the junction-to-air thermal resistance  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
7.9 Electrical Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
IOH = –4 mA; see Figure 15  
IOL = 4 mA; see Figure 15  
MIN  
VCCO(1) – 0.4  
TYP  
4.8  
MAX UNIT  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
V
0.2  
0.4  
V
V
V
VIT+(IN) Rising input voltage threshold  
VIT-(IN) Falling input voltage threshold  
0.6 × VCCI  
0.4 × VCCI  
0.7 × VCCI  
0.3 × VCCI  
0.1 × VCCI  
Input threshold voltage  
hysteresis  
VI(HYS)  
0.2 × VCCI  
V
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = VCCI(1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
μA  
–10  
85  
Common-mode transient  
immunity  
VI = VCCI or 0 V, VCM = 1200 V; see  
Figure 18  
CMTI  
CI  
100  
2
kV/μs  
VI = VCC/ 2 + 0.4×sin(2πft), f = 1 MHz,  
VCC = 5 V  
Input Capacitance(2)  
pF  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
(2) Measured from input pin to ground.  
12  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
7.10 Supply Current Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO7740  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.2  
0.3  
5.5  
0.3  
1.2  
2
1.6  
0.5  
7.8  
0.5  
1.6  
3.2  
EN2 = 0 V; VI = VCC1 (ISO7740);  
VI = 0 V (ISO7740 with F suffix)  
Supply current - Disable  
Supply current - DC signal  
EN2 = 0 V; VI = 0 V (ISO7740);  
VI = VCC1 (ISO7740 with F suffix)  
EN2 = VCC2; VI = VCC1 (ISO7740);  
VI = 0 V (ISO7740 with F suffix)  
5.5  
2.2  
3.3  
2.3  
3.4  
4.2  
3.8  
22.7  
7.8  
mA  
3.6  
EN2 = VCC2; VI = 0 V (ISO7740);  
VI = VCC1 (ISO7740 with F suffix)  
4.7  
3.6  
4.8  
5.8  
5.7  
28  
1 Mbps  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
100 Mbps  
ISO7741  
EN1 = EN2 = 0 V; VI = VCCI(1) (ISO7741);  
VI = 0 V (ISO7741 with F suffix)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1
0.8  
4.3  
1.8  
1.5  
2
1.5  
1.1  
6.3  
2.7  
2.3  
3
Supply current - Disable  
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);  
VI = VCCI (ISO7741 with F suffix)  
EN1 = EN2 = VCCI; VI = VCCI (ISO7741);  
VI = 0 V (ISO7741 with F suffix)  
Supply current - DC signal  
Supply current - AC signal  
4.8  
3.2  
3.2  
2.8  
3.7  
4.2  
8.6  
18  
6.8  
mA  
4.9  
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);  
VI = VCCI (ISO7741 with F suffix)  
4.6  
4.1  
1 Mbps  
5.2  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
5.7  
11.3  
22  
100 Mbps  
ISO7742  
EN1 = EN2 = 0 V; VI = VCCI (ISO7742);  
VI = 0 V (ISO7742 with F suffix)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
0.9  
3
1.3  
4.6  
Supply current - Disable  
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);  
VI = VCCI (ISO7742 with F suffix)  
EN1 = EN2 = VCCI; VI = VCCI (ISO7742);  
VI = 0 V (ISO7742 with F suffix)  
1.7  
4
2.7  
mA  
Supply current - DC signal  
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);  
VI = VCCI (ISO7742 with F suffix)  
5.9  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
3
4
4.4  
5.5  
17  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
(1) VCCI = Input-side VCC  
10 Mbps  
100 Mbps  
13.4  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
7.11 Electrical Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCCO(1) – 0.3  
TYP  
3.2  
MAX  
UNIT  
V
VOH  
High-level output voltage  
Low-level output voltage  
Rising input voltage threshold  
Falling input voltage threshold  
Input threshold voltage hysteresis  
High-level input current  
IOH = –2 mA; see Figure 15  
VOL  
IOL = 2 mA; see Figure 15  
0.1  
0.3  
V
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
0.6 × VCCI  
0.4 × VCCI  
0.2 × VCCI  
0.7 × VCCI  
V
0.3 × VCCI  
0.1 × VCCI  
V
V
VIH = VCCI(1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
μA  
IIL  
Low-level input current  
–10  
85  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V, VCM = 1200 V; see Figure 18  
100  
kV/μs  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
14  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
7.12 Supply Current Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO7740  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.2  
0.3  
5.5  
0.3  
1.2  
1.9  
5.5  
2.2  
3.3  
2.2  
3.4  
3.6  
3.3  
17  
1.6  
0.5  
7.8  
0.5  
1.6  
3.2  
EN2 = 0 V; VI = VCC1 (ISO7740);  
VI = 0 V (ISO7740 with F suffix)  
Supply current - Disable  
Supply current - DC signal  
EN2 = 0 V; VI = 0 V (ISO7740);  
VI = VCC1 (ISO7740 with F suffix)  
EN2 = VCC2; VI = VCC1 (ISO7740);  
VI = 0 V (ISO7740 with F suffix)  
7.8  
mA  
3.6  
EN2 = VCC2; VI = 0 V (ISO7740);  
VI = VCC1 (ISO7740 with F suffix)  
4.7  
3.6  
4.8  
5
1 Mbps  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
100 Mbps  
5.5  
20  
ISO7741  
EN1 = EN2 = 0 V; VI = VCCI(1) (ISO7741);  
VI = 0 V (ISO7741 with F suffix)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1
0.8  
4.3  
1.9  
1.5  
2
1.5  
1.1  
6.3  
2.7  
2.3  
3
Supply current - Disable  
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);  
VI = VCCI (ISO7741 with F suffix)  
EN1 = EN2 = VCCI; VI = VCCI (ISO7741);  
VI = 0 V (ISO7741 with F suffix)  
Supply current - DC signal  
Supply current - AC signal  
4.8  
3.2  
3.2  
2.7  
3.5  
3.7  
6.8  
13.7  
6.8  
mA  
4.9  
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);  
VI = VCCI (ISO7741 with F suffix)  
4.6  
4.1  
5
1 Mbps  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
5.2  
9.3  
16.4  
100 Mbps  
ISO7742  
EN1 = EN2 = 0 V; VI = VCCI (ISO7742);  
VI = 0 V (ISO7742 with F suffix)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
0.9  
3
1.3  
4.6  
Supply current - Disable  
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);  
VI = VCCI (ISO7742 with F suffix)  
EN1 = EN2 = VCCI; VI = VCCI (ISO7742);  
VI = 0 V (ISO7742 with F suffix)  
1.7  
4
2.7  
mA  
Supply current - DC signal  
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);  
VI = VCCI (ISO7742 with F suffix)  
5.9  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
2.9  
3.6  
4.3  
5.1  
13  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
(1) VCCI = Input-side VCC  
10 Mbps  
100 Mbps  
10.3  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
7.13 Electrical Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
VCCO(1) – 0.2  
TYP  
2.45  
MAX  
UNIT  
V
VOH  
High-level output voltage  
Low-level output voltage  
Rising input voltage threshold  
Falling input voltage threshold  
Input threshold voltage hysteresis  
High-level input current  
IOH = –1 mA; see Figure 15  
VOL  
IOL = 1 mA; see Figure 15  
0.05  
0.2  
V
VIT+(IN)  
VIT-(IN)  
VI(HYS)  
IIH  
0.6 × VCCI  
0.4 × VCCI  
0.2 × VCCI  
0.7 × VCCI  
V
0.3 × VCCI  
0.1 × VCCI  
V
V
VIH = VCCI(1) at INx or ENx  
VIL = 0 V at INx or ENx  
10  
μA  
μA  
IIL  
Low-level input current  
–10  
85  
Common-mode transient  
immunity  
CMTI  
VI = VCCI or 0 V, VCM = 1200 V; see Figure 18  
100  
kV/μs  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC  
.
16  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
7.14 Supply Current Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted).  
SUPPLY  
CURRENT  
PARAMETER  
ISO7740  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1.2  
0.3  
5.5  
0.3  
1.2  
1.9  
5.4  
2.2  
3.3  
2.2  
3.4  
3.2  
3.2  
13  
1.6  
0.5  
7.8  
0.5  
1.6  
3.2  
EN2 = 0 V; VI = VCC1 (ISO7740);  
VI = 0 V (ISO7740 with F suffix)  
Supply current - Disable  
Supply current - DC signal  
EN2 = 0 V; VI = 0 V (ISO7740);  
VI = VCC1 (ISO7740 with F suffix)  
EN2 = VCC2; VI = VCC1 (ISO7740);  
VI = 0 V (ISO7740 with F suffix)  
7.8  
mA  
3.6  
EN2 = VCC2; VI = 0 V (ISO7740);  
VI = VCC1 (ISO7740 with F suffix)  
4.7  
3.5  
4.8  
4.7  
5.4  
17  
1 Mbps  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
10 Mbps  
100 Mbps  
ISO7741  
EN1 = EN2 = 0 V; VI = VCCI(1) (ISO7741);  
VI = 0 V (ISO7741 with F suffix)  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
ICC1  
ICC2  
1
0.8  
4.3  
1.8  
1.4  
2
1.5  
1.1  
6.3  
2.7  
2.3  
3
Supply current - Disable  
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);  
VI = VCCI (ISO7741 with F suffix)  
EN1 = EN2 = VCCI; VI = VCCI (ISO7741);  
VI = 0 V (ISO7741 with F suffix)  
Supply current - DC signal  
Supply current - AC signal  
4.7  
3.2  
3.1  
2.7  
3.4  
3.5  
5.6  
10.8  
6.8  
mA  
4.9  
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);  
VI = VCCI (ISO7741 with F suffix)  
4.6  
4
1 Mbps  
4.9  
4.9  
8.3  
13.8  
All channels switching with square  
wave clock input; CL = 15 pF  
10 Mbps  
100 Mbps  
ISO7742  
EN1 = EN2 = 0 V; VI = VCCI (ISO7742);  
VI = 0 V (ISO7742 with F suffix)  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
0.9  
3
1.3  
4.6  
Supply current - Disable  
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);  
VI = VCCI (ISO7742 with F suffix)  
EN1 = EN2 = VCCI; VI = VCCI (ISO7742);  
VI = 0 V (ISO7742 with F suffix)  
1.7  
4
2.7  
mA  
Supply current - DC signal  
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);  
VI = VCCI (ISO7742 with F suffix)  
5.9  
1 Mbps  
ICC1, ICC2  
ICC1, ICC2  
ICC1, ICC2  
2.9  
3.4  
8.3  
4.3  
4.9  
All channels switching with square  
wave clock input; CL = 15 pF  
Supply current - AC signal  
(1) VCCI = Input-side VCC  
10 Mbps  
100 Mbps  
11.5  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
MAX UNIT  
7.15 Switching Characteristics—5-V Supply  
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
TEST CONDITIONS  
MIN  
TYP  
10.7  
0
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
6
16  
4.9  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
See Figure 15  
|
Same-direction channels  
See Figure 15  
4.4  
3.9  
3.9  
20  
20  
Output signal rise time  
2.4  
2.4  
9
tf  
Output signal fall time  
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
9
Enable propagation delay, high impedance-to-high output  
for ISO774x  
7
3
3
7
20  
8.5  
8.5  
20  
ns  
μs  
μs  
ns  
tPZH  
Enable propagation delay, high impedance-to-high output  
for ISO774x with F suffix  
See Figure 16  
Enable propagation delay, high impedance-to-low output for  
ISO774x  
tPZL  
Enable propagation delay, high impedance-to-low output for  
ISO774x with F suffix  
Measured from the time VCC goes  
below 1.7 V. See Figure 18  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
0.8  
0.3  
μs  
216 – 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.16 Switching Characteristics—3.3-V Supply  
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
TEST CONDITIONS  
MIN  
TYP  
11  
MAX  
16  
5
UNIT  
ns  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
6
See Figure 15  
|
0.1  
ns  
Same-direction channels  
See Figure 15  
4.1  
4.5  
3
ns  
ns  
Output signal rise time  
1.3  
1.3  
17  
ns  
tf  
Output signal fall time  
3
ns  
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
30  
30  
ns  
17  
ns  
Enable propagation delay, high impedance-to-high output  
for ISO774x  
17  
3.2  
3.2  
17  
30  
8.5  
8.5  
30  
ns  
μs  
μs  
ns  
tPZH  
Enable propagation delay, high impedance-to-high output  
for ISO774x with F suffix  
See Figure 16  
Enable propagation delay, high impedance-to-low output  
for ISO774x  
tPZL  
Enable propagation delay, high impedance-to-low output  
for ISO774x with F suffix  
Measured from the time VCC goes  
below 1.7 V. See Figure 18  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
0.9  
0.3  
μs  
216 – 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
18  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
7.17 Switching Characteristics—2.5-V Supply  
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)  
PARAMETER  
Propagation delay time  
Pulse width distortion(1) |tPHL – tPLH  
Channel-to-channel output skew time(2)  
Part-to-part skew time(3)  
TEST CONDITIONS  
MIN  
7.5  
TYP  
12  
MAX  
18.5  
UNIT  
ns  
tPLH, tPHL  
PWD  
tsk(o)  
tsk(pp)  
tr  
See Figure 15  
|
0.2  
5.1  
4.1  
4.6  
3.5  
3.5  
40  
ns  
Same-direction Channels  
See Figure 15  
ns  
ns  
Output signal rise time  
1
1
ns  
tf  
Output signal fall time  
ns  
tPHZ  
tPLZ  
Disable propagation delay, high-to-high impedance output  
Disable propagation delay, low-to-high impedance output  
22  
22  
ns  
40  
ns  
Enable propagation delay, high impedance-to-high output  
for ISO774x  
18  
3.3  
3.3  
18  
40  
8.5  
8.5  
40  
ns  
μs  
μs  
ns  
tPZH  
Enable propagation delay, high impedance-to-high output  
for ISO774x with F suffix  
See Figure 16  
Enable propagation delay, high impedance-to-low output  
for ISO774x  
tPZL  
Enable propagation delay, high impedance-to-low output  
for ISO774x with F suffix  
Measured from the time VCC goes  
below 1.7 V. See Figure 18  
tDO  
tie  
Default output delay time from input power loss  
Time interval error  
0.1  
0.7  
0.3  
μs  
216 – 1 PRBS data at 100 Mbps  
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
7.18 Insulation Characteristics Curves  
600  
450  
400  
350  
300  
250  
200  
150  
100  
50  
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
VCC1 = VCC2 = 2.75 V  
VCC1 = VCC2 = 3.6 V  
VCC1 = VCC2 = 5.5 V  
500  
400  
300  
200  
100  
0
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D001  
D002  
Figure 1. Thermal Derating Curve for Safety Limiting  
Current for DW-16 Package  
Figure 2. Thermal Derating Curve for Safety Limiting  
Current for DBQ-16 Package  
1600  
1400  
1400  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
0
50  
100  
Ambient Temperature (èC)  
150  
200  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
D003  
D004  
Figure 3. Thermal Derating Curve for Safety Limiting Power  
for DW-16 Package  
Figure 4. Thermal Derating Curve for Safety Limiting Power  
for DBQ-16 Package  
20  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
7.19 Typical Characteristics  
25  
9
8
7
6
5
4
3
2
1
0
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
20  
ICC2 at 5 V  
15  
ICC2 at 5 V  
10  
5
0
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
D005  
D006  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 5. ISO7740 Supply Current vs Data Rate  
(With 15-pF Load)  
Figure 6. ISO7740 Supply Current vs Data Rate  
(With No Load)  
20  
18  
16  
14  
12  
10  
8
9
8
7
6
5
4
3
2
1
0
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC2 at 5 V  
6
4
2
0
25  
50  
Data Rate (Mbps)  
75  
100  
25  
50  
Data Rate (Mbps)  
75  
100  
D007  
D008  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 7. ISO7741 Supply Current vs Data Rate  
(With 15-pF Load)  
Figure 8. ISO7741 Supply Current vs Data Rate  
(With No Load)  
16  
14  
12  
10  
8
8
7
6
5
4
3
2
1
0
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC1 at 2.5 V  
ICC2 at 2.5 V  
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC2 at 5 V  
6
4
2
0
25  
50  
Data Rate (Mbps)  
75  
100  
25  
50  
Data Rate (Mbps)  
75  
100  
D009  
D010  
TA = 25°C  
CL = 15 pF  
TA = 25°C  
CL = No Load  
Figure 9. ISO7742 Supply Current vs Data Rate  
(With 15-pF Load)  
Figure 10. ISO7742 Supply Current vs Data Rate  
(With No Load)  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
Typical Characteristics (continued)  
6
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4
3
2
1
0
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
VCC at 2.5 V  
VCC at 3.3 V  
VCC at 5 V  
-15  
-10  
High-Level Output Current (mA)  
-5  
0
0
5 10  
Low-Level Output Current (mA)  
15  
D011  
D012  
TA = 25°C  
TA = 25°C  
Figure 11. High-Level Output Voltage vs High-level Output  
Current  
Figure 12. Low-Level Output Voltage vs Low-Level Output  
Current  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
14  
13  
12  
11  
10  
VCC1 Rising  
VCC2 Rising  
VCC1 Falling  
VCC2 Falling  
1.75  
1.70  
tPHL at 2.5 V  
tPLH at 2.5 V  
tPHL at 3.3 V  
tPLH at 3.3 V  
tPHL at 5 V  
tPLH at 5 V  
9
8
1.65  
-55  
-5  
45  
95  
125  
-55  
-25  
5
35  
65  
95  
125  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
D013  
D014  
Figure 13. Power Supply Undervoltage Threshold vs Free-  
Air Temperature  
Figure 14. Propagation Delay Time vs Free-Air Temperature  
22  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
8 Parameter Measurement Information  
V
CCI  
V
50%  
I
50%  
IN  
OUT  
0 V  
V
t
t
PHL  
PLH  
Input  
Generator  
(See Note A)  
C
L
V
I
V
50  
O
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in  
actual application.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 15. Switching Characteristics Test Circuit and Voltage Waveforms  
V
CCO  
V
CC  
R
L
= 1 k1%  
V
/ 2  
CC  
V
/ 2  
CC  
V
I
IN  
OUT  
0 V  
V
0 V  
O
t
t
PLZ  
PZL  
V
OH  
EN  
0.5 V  
V
V
O
50%  
C
L
OL  
See Note B  
Input  
Generator  
(See Note A)  
V
I
50 ꢀ  
V
CC  
V
O
IN  
OUT  
3 V  
V / 2  
CC  
V
/ 2  
CC  
V
I
0 V  
t
PZH  
EN  
See Note B  
R
L
= 1 k1%  
V
OH  
C
L
50%  
Input  
Generator  
(See Note A)  
0.5 V  
V
O
V
I
0 V  
t
50 ꢀ  
PHZ  
Copyright © 2016, Texas Instruments Incorporated  
A. The input pulse is supplied by a generator having the following characteristics: PRR 10 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 Ω.  
B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 16. Enable/Disable Propagation Delay Time Test Circuit and Waveform  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
Parameter Measurement Information (continued)  
V
I
See Note B  
V
CC  
V
CC  
V
1.7 V  
I
0 V  
default high  
IN  
OUT  
IN = 0 V (Devices without suffix F)  
IN = V (Devices with suffix F)  
V
O
t
DO  
CC  
V
OH  
C
L
50%  
V
O
See Note A  
V
OL  
default low  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
B. Power Supply Ramp Rate = 10 mV/ns  
Figure 17. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
V
CCO  
CCI  
C = 0.1 µF 1%  
C = 0.1 µF 1%  
Pass-fail criteria:  
The output must  
remain stable.  
IN  
OUT  
S1  
+
C
L
V
or V  
OL  
OH  
See Note A  
œ
GNDO  
GNDI  
+
œ
V
CM  
A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 18. Common-Mode Transient Immunity Test Circuit  
24  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
9 Detailed Description  
9.1 Overview  
The ISO774x family of devices an ON-OFF keying (OOK) modulation scheme to transmit the digital data across  
a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to  
represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the  
signal after advanced signal conditioning and produces the output through a buffer stage. If the ENx pin is low  
then the output goes to high impedance. The ISO774x devices also incorporate advanced circuit techniques to  
maximize the CMTI performance and minimize the radiated emissions due to the high frequency carrier and IO  
buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 19, shows a functional  
block diagram of a typical channel.  
9.2 Functional Block Diagram  
Transmitter  
Receiver  
EN  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
Figure 19. Conceptual Block Diagram of a Digital Capacitive Isolator  
Figure 20 shows a conceptual detail of how the ON-OFF keying scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
Figure 20. On-Off Keying (OOK) Based Modulation Scheme  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
 
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
9.3 Feature Description  
Table 1 provides an overview of the device features.  
Table 1. Device Features  
MAXIMUM DATA  
RATE  
DEFAULT  
OUTPUT  
PART NUMBER  
CHANNEL DIRECTION  
PACKAGE  
RATED ISOLATION(1)  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
DW-16  
DBQ-16  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
4 Forward,  
0 Reverse  
ISO7740  
100 Mbps  
100 Mbps  
100 Mbps  
100 Mbps  
High  
Low  
High  
Low  
ISO7740 with F  
suffix  
4 Forward,  
0 Reverse  
3 Forward,  
1 Reverse  
ISO7741  
ISO7741 with F  
suffix  
3 Forward,  
1 Reverse  
3 Forward,  
1 Reverse  
ISO7741B  
100 Mbps  
100 Mbps  
High  
Low  
DW-16  
DW-16  
5000 VRMS / 8000 VPK  
5000 VRMS / 8000 VPK  
ISO7741B with F  
suffix  
3 Forward,  
1 Reverse  
DW-16  
DBQ-16  
DW-16  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
5000 VRMS / 8000 VPK  
3000 VRMS / 4242 VPK  
2 Forward,  
2 Reverse  
ISO7742  
100 Mbps  
100 Mbps  
High  
Low  
ISO7742 with F  
suffix  
2 Forward,  
2 Reverse  
DBQ-16  
(1) See Safety-Related Certifications for detailed isolation ratings.  
9.3.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISO774x  
family of devices incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
26  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
9.4 Device Functional Modes  
Table 2 lists the functional modes for the ISO774x devices.  
Table 2. Function Table(1)  
OUTPUT  
ENABLE  
(ENx)  
INPUT  
(INx)(2)  
OUTPUT  
(OUTx)  
VCCI  
VCCO  
COMMENTS  
H
L
H or open  
H or open  
H
L
Normal Operation:  
A channel output assumes the logic state of its input.  
PU  
X
PU  
PU  
Default mode: When INx is open, the corresponding channel output  
goes to its default logic state. Default is High for ISO774x and Low for  
ISO774x with F suffix.  
Open  
X
H or open  
L
Default  
Z
A low value of output enable causes the outputs to be high-  
impedance.  
Default mode: When VCCI is unpowered, a channel output assumes  
the logic state based on the selected default option. Default is High  
for ISO774x and Low for ISO774x with F suffix.  
PD  
X
PU  
PD  
X
X
H or open  
Default  
When VCCI transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
When VCCI transitions from powered-up to unpowered, channel output  
assumes the selected default state.  
When VCCO is unpowered, a channel output is undetermined(3)  
.
X
Undetermined When VCCO transitions from unpowered to powered-up, a channel  
output assumes the logic state of the input.  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC 2.25 V); PD = Powered down (VCC 1.7 V); X = Irrelevant; H  
= High level; L = Low level ; Z = High Impedance  
(2) A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output.  
(3) The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
9.4.1 Device I/O Schematics  
Input (ISO774x)  
Input (ISO774xF)  
V
V
V
V
V
V
V
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
CCI  
1.5 MW  
985 W  
985 W  
INx  
INx  
1.5 MW  
Output  
Enable  
V
CCO  
V
V
V
V
CCO  
CCO  
CCO  
CCO  
2 MW  
~20 W  
1970 W  
OUTx  
ENx  
Copyright © 2016, Texas Instruments Incorporated  
Figure 21. Device I/O Schematics  
28  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ISO774x devices are high-performance, quad-channel digital isolators. These devices come with enable pins  
on each side which can be used to put the respective outputs in high impedance for multi master driving  
applications and reduce power consumption. The ISO774x devices use single-ended CMOS-logic switching  
technology. The voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and VCC2. When designing with  
digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform  
to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal  
lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a  
line transceiver, regardless of the interface type or standard.  
10.2 Typical Application  
Figure 22 shows the isolated serial peripheral interface (SPI).  
VS  
0.1 F  
3.3 V  
2
MBR0520L  
1:1.33  
3.3 VISO  
3
1
4
3
1
2
Vcc  
D2  
SN6501  
IN  
OUT  
TLV70733  
EN GND  
10 F 0.1 F  
10 F  
2
4
6
D1  
GND  
VIN VOUT  
REF5025  
GND  
10 F  
MBR0520L  
4,5  
1 F  
22 F  
ISO-BARRIER  
0.1 F  
0.1 F  
0.1 F  
0.1 F  
1
16  
4.7 kꢁ  
4.7 kꢁ  
Vcc1  
EN1  
INA  
Vcc2  
2
3
2
28 32 31  
7
3
4
5
6
10  
EN2  
AINP MXO VBD VA REFP  
DVcc  
6
14  
23  
24  
25  
26  
20  
OUTA  
CS  
CH0  
P1.4  
5
6
ISO7741  
7
13  
12  
11  
16  
Analog  
Inputs  
MSP430  
G2132  
(14-PW)  
XOUT  
INB  
INC  
OUTB  
SCLK  
SDI  
SCLK  
ADS7953  
8
OUTC  
SDO  
XIN  
9
5
OUTD  
GND1  
2,8  
IND  
SDO  
CH15  
SDI  
DVss  
4
BDGND AGND REFM  
GND2  
27 1,22 30  
9,15  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. Isolated SPI for an Analog Input Module With 16 Input  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
Typical Application (continued)  
10.2.1 Design Requirements  
To design with these devices, use the parameters listed in Table 3.  
Table 3. Design Parameters  
PARAMETER  
Supply voltage, VCC1 and VCC2  
VALUE  
2.25 to 5.5 V  
0.1 µF  
Decoupling capacitor between VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
10.2.2 Detailed Design Procedure  
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,  
the ISO774x family of devices only require two external bypass capacitors to operate.  
2 mm maximum  
from VCC1  
2 mm maximum  
from VCC2  
0.1 µF  
0.1 µF  
VCC2  
VCC1  
1
16  
GND1  
GND2  
2
3
15  
14  
INA  
INB  
INC  
OUTA  
OUTB  
OUTC  
13  
4
12  
11  
10  
9
5
6
7
8
IND  
OUTD  
EN2  
EN1  
GND2  
GND1  
Figure 23. Typical ISO774x Circuit Hook-up  
The DWW package provides wider creepage and clearance without the need for two isolators in series or an  
extra isolated power supply, saving design cost and board space. For more details, please refer to the technical  
document How to Meet the Higher Isolation Creepage & Clearance Needs in Automotive Applications.  
30  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
10.2.3 Application Curve  
The following typical eye diagrams of the ISO774x family of devices indicates low jitter and wide open eye at the  
maximum data rate of 100 Mbps.  
Time = 2.5 ns / div  
Time = 2.5 ns / div  
Figure 24. Eye Diagram at 100 Mbps PRBS 216 – 1, 5 V and  
25°C  
Figure 25. Eye Diagram at 100 Mbps PRBS 216 – 1, 3.3 V  
and 25°C  
Time = 2.5 ns / div  
Figure 26. Eye Diagram at 100 Mbps PRBS 216 – 1, 2.5 V and 25°C  
10.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See Figure 27 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
Figure 28 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.  
Based on the TDDB data, the insulation withstand capability of DW-16 package is 1500 VRMS with a lifetime of  
135 years as illustrated in Figure 28. Similarly, the insulation withstand capability of DWW-16 package is 2000  
VRMS with a corresponding lifetime of 34 years. DBQ-16 package at 400 VRMS working voltage has a much longer  
lifetime than both DW-16 and DWW-16 packages. Factors, such as package size, pollution degree, and material  
group can limit the working voltage of a component.  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
Figure 27. Test Setup for Insulation Lifetime Measurement  
Figure 28. Insulation Lifetime Projection Data  
11 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins  
as possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or  
SN6505A. For such applications, detailed power supply design and transformer selection recommendations are  
available in SN6501 Transformer Driver for Isolated Power Supplies data sheet or SN6505A Low-Noise 1-A  
Transformer Drivers for Isolated Power Supplies data sheet.  
32  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
12 Layout  
12.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 29). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/inch2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
For detailed layout recommendations, refer to the Digital Isolator Design Guide.  
12.1.1 PCB Material  
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of  
up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper  
alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and self-extinguishing flammability-characteristics.  
12.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Keep this  
FR-4  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
0 ~ 4.5  
r
Power plane  
Low-speed traces  
Figure 29. Layout Example Schematic  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: ISO7740 ISO7741 ISO7742  
 
ISO7740, ISO7741, ISO7742  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, ADS79xx 12/10/8-Bit, 1 MSPS, 16/12/8/4-Channel, Single-Ended, MicroPower, Serial  
Interface ADCs data sheet  
Texas Instruments, Digital Isolator Design Guide  
Texas Instruments, Isolation Glossary  
Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems  
application report  
Texas Instruments, MSP430G2132 Mixed Signal Microcontroller data sheet  
Texas Instruments, REF50xx Low-Noise, Very Low Drift, Precision Voltage Reference data sheet  
Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet  
Texas Instruments, SN6505A Low-Noise 1-A Transformer Drivers for Isolated Power Supplies data sheet  
Texas Instruments, TLV707, TLV707P 200-mA, Low-IQ, Low-Noise, Low-Dropout Regulator for Portable  
Devices data sheet  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 4. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
ISO7740  
ISO7741  
ISO7742  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.4 Community Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
34  
Submit Documentation Feedback  
Copyright © 2016–2020, Texas Instruments Incorporated  
Product Folder Links: ISO7740 ISO7741 ISO7742  
ISO7740, ISO7741, ISO7742  
www.ti.com  
SLLSEP4G MARCH 2016REVISED FEBRUARY 2020  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2016–2020, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: ISO7740 ISO7741 ISO7742  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7740DBQ  
ISO7740DBQR  
ISO7740DW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
SOIC  
DBQ  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
7740  
7740  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7740  
ISO7740  
7740F  
ISO7740DWR  
ISO7740FDBQ  
ISO7740FDBQR  
ISO7740FDW  
ISO7740FDWR  
ISO7741BDW  
ISO7741BDWR  
ISO7741DBQ  
ISO7741DBQR  
ISO7741DW  
DW  
DBQ  
DBQ  
DW  
7740F  
ISO7740F  
ISO7740F  
ISO7741B  
ISO7741B  
7741  
DW  
DW  
DW  
DBQ  
DBQ  
DW  
7741  
ISO7741  
ISO7741  
ISO7741DWR  
ISO7741FBDW  
DW  
DW  
(ISO7731FB, ISO774  
1FB)  
ISO7741FBDWR  
ISO7741FDBQ  
ISO7741FDBQR  
ISO7741FDW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
DW  
DBQ  
DBQ  
DW  
16  
16  
16  
16  
16  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
ISO7741FB  
7741F  
7741F  
ISO7741F  
ISO7741F  
ISO7741FDWR  
DW  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2021  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7742DBQ  
ISO7742DBQR  
ISO7742DW  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SSOP  
SSOP  
SOIC  
SOIC  
SSOP  
SSOP  
SOIC  
SOIC  
DBQ  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
75  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
7742  
7742  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
75 RoHS & Green  
2500 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7742  
ISO7742  
7742F  
ISO7742DWR  
ISO7742FDBQ  
ISO7742FDBQR  
ISO7742FDW  
ISO7742FDWR  
DW  
DBQ  
DBQ  
DW  
7742F  
ISO7742F  
ISO7742F  
DW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2021  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF ISO7740, ISO7741, ISO7742 :  
Automotive : ISO7740-Q1, ISO7741-Q1, ISO7742-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jun-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7740DBQR  
ISO7740DWR  
ISO7740DWR  
ISO7740FDBQR  
ISO7740FDWR  
ISO7740FDWR  
ISO7741BDWR  
ISO7741BDWR  
ISO7741DBQR  
ISO7741DWR  
ISO7741DWR  
ISO7741FBDWR  
ISO7741FBDWR  
ISO7741FDBQR  
ISO7741FDWR  
ISO7741FDWR  
ISO7742DBQR  
ISO7742DWR  
SSOP  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SSOP  
SOIC  
DBQ  
DW  
DW  
DBQ  
DW  
DW  
DW  
DW  
DBQ  
DW  
DW  
DW  
DW  
DBQ  
DW  
DW  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500  
2000  
2000  
2500  
2000  
2000  
2000  
2000  
2500  
2000  
2000  
2000  
2000  
2500  
2000  
2000  
2500  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
16.4  
16.4  
12.4  
16.4  
16.4  
16.4  
16.4  
12.4  
16.4  
16.4  
16.4  
16.4  
12.4  
16.4  
16.4  
12.4  
16.4  
6.4  
5.2  
2.1  
2.7  
2.7  
2.1  
2.7  
2.7  
2.7  
2.7  
2.1  
2.7  
2.7  
2.7  
2.7  
2.1  
2.7  
2.7  
2.1  
2.7  
8.0  
12.0  
12.0  
8.0  
12.0  
16.0  
16.0  
12.0  
16.0  
16.0  
16.0  
16.0  
12.0  
16.0  
16.0  
16.0  
16.0  
12.0  
16.0  
16.0  
12.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
10.75 10.7  
10.75 10.7  
6.4  
5.2  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
12.0  
12.0  
12.0  
12.0  
8.0  
6.4  
5.2  
10.75 10.7  
10.75 10.7  
10.75 10.7  
10.75 10.7  
12.0  
12.0  
12.0  
12.0  
8.0  
6.4  
5.2  
10.75 10.7  
10.75 10.7  
12.0  
12.0  
8.0  
6.4  
5.2  
10.75 10.7  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jun-2021  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7742DWR  
ISO7742FDBQR  
ISO7742FDWR  
ISO7742FDWR  
SOIC  
SSOP  
SOIC  
SOIC  
DW  
DBQ  
DW  
16  
16  
16  
16  
2000  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
16.4  
12.4  
16.4  
16.4  
10.75 10.7  
6.4 5.2  
2.7  
2.1  
2.7  
2.7  
12.0  
8.0  
16.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
10.75 10.7  
10.75 10.7  
12.0  
12.0  
DW  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7740DBQR  
ISO7740DWR  
ISO7740DWR  
ISO7740FDBQR  
ISO7740FDWR  
ISO7740FDWR  
ISO7741BDWR  
ISO7741BDWR  
ISO7741DBQR  
ISO7741DWR  
ISO7741DWR  
ISO7741FBDWR  
ISO7741FBDWR  
SSOP  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SOIC  
SOIC  
DBQ  
DW  
DW  
DBQ  
DW  
DW  
DW  
DW  
DBQ  
DW  
DW  
DW  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500  
2000  
2000  
2500  
2000  
2000  
2000  
2000  
2500  
2000  
2000  
2000  
2000  
350.0  
350.0  
853.0  
350.0  
853.0  
350.0  
367.0  
350.0  
350.0  
350.0  
853.0  
853.0  
350.0  
350.0  
350.0  
449.0  
350.0  
449.0  
350.0  
367.0  
350.0  
350.0  
350.0  
449.0  
449.0  
350.0  
43.0  
43.0  
35.0  
43.0  
35.0  
43.0  
38.0  
43.0  
43.0  
43.0  
35.0  
35.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-Jun-2021  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7741FDBQR  
ISO7741FDWR  
ISO7741FDWR  
ISO7742DBQR  
ISO7742DWR  
ISO7742DWR  
ISO7742FDBQR  
ISO7742FDWR  
ISO7742FDWR  
SSOP  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
SSOP  
SOIC  
SOIC  
DBQ  
DW  
16  
16  
16  
16  
16  
16  
16  
16  
16  
2500  
2000  
2000  
2500  
2000  
2000  
2500  
2000  
2000  
350.0  
853.0  
350.0  
350.0  
350.0  
853.0  
350.0  
367.0  
350.0  
350.0  
449.0  
350.0  
350.0  
350.0  
449.0  
350.0  
367.0  
350.0  
43.0  
35.0  
43.0  
43.0  
43.0  
35.0  
43.0  
38.0  
43.0  
DW  
DBQ  
DW  
DW  
DBQ  
DW  
DW  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A B  
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4220721/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SEE  
DETAILS  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
9
8
(9.3)  
LAND PATTERN EXAMPLE  
SCALE:7X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4220721/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016A  
SOIC - 2.65 mm max height  
SOIC  
16X (2)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
R0.05 TYP  
8
9
(9.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:7X  
4220721/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DBQ0016A  
SSOP - 1.75 mm max height  
SCALE 2.800  
SHRINK SMALL-OUTLINE PACKAGE  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
14X .0250  
[0.635]  
16  
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.175  
[4.45]  
8
9
16X .008-.012  
[0.21-0.30]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.007 [0.17]  
C A  
B
.005-.010 TYP  
[0.13-0.25]  
SEE DETAIL A  
.010  
[0.25]  
GAGE PLANE  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.035  
[0.41-0.88]  
DETAIL A  
TYPICAL  
(.041 )  
[1.04]  
4214846/A 03/2014  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 inch, per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MO-137, variation AB.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SEE  
DETAILS  
SYMM  
1
16  
16X (.016 )  
[0.41]  
14X (.0250 )  
[0.635]  
8
9
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
.002 MAX  
[0.05]  
ALL AROUND  
.002 MIN  
[0.05]  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214846/A 03/2014  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBQ0016A  
SSOP - 1.75 mm max height  
SHRINK SMALL-OUTLINE PACKAGE  
16X (.063)  
[1.6]  
SYMM  
1
16  
16X (.016 )  
[0.41]  
SYMM  
14X (.0250 )  
[0.635]  
9
8
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.127 MM] THICK STENCIL  
SCALE:8X  
4214846/A 03/2014  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party  
intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages,  
costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (https:www.ti.com/legal/termsofsale.html) or other applicable terms available either  
on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s  
applicable warranties or warranty disclaimers for TI products.IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

ISO7741

EMC 性能优异的四通道、3/1、增强型数字隔离器
TI

ISO7741-Q1

EMC 性能优异的汽车类四通道、3/1、增强型数字隔离器
TI

ISO7741BDW

EMC 性能优异的四通道、3/1、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7741BDWR

EMC 性能优异的四通道、3/1、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7741DBQ

EMC 性能优异的四通道、3/1、增强型数字隔离器 | DBQ | 16 | -55 to 125
TI

ISO7741DBQR

EMC 性能优异的四通道、3/1、增强型数字隔离器 | DBQ | 16 | -55 to 125
TI

ISO7741DW

EMC 性能优异的四通道、3/1、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7741DWR

EMC 性能优异的四通道、3/1、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7741E-Q1

EMC 性能优异的汽车 0 级高速四通道数字隔离器
TI

ISO7741EDWQ1

EMC 性能优异的汽车 0 级高速四通道数字隔离器 | DW | 16 | -40 to 150
TI

ISO7741EDWRQ1

EMC 性能优异的汽车 0 级高速四通道数字隔离器 | DW | 16 | -40 to 150
TI

ISO7741FBDW

EMC 性能优异的四通道、3/1、增强型数字隔离器 | DW | 16 | -55 to 125
TI