ISO7821LLSDWR [TI]

双通道、2/0、150Mbps、高性能、增强型隔离式 LVDS 缓冲器 | DW | 16 | -55 to 125;
ISO7821LLSDWR
型号: ISO7821LLSDWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

双通道、2/0、150Mbps、高性能、增强型隔离式 LVDS 缓冲器 | DW | 16 | -55 to 125

文件: 总38页 (文件大小:2431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
ISO7821LLS 高性能 8000 VPK 增强型隔离式双 LVDS 缓冲器  
1 特性  
2 应用  
1
符合 TIA/EIA-644-A LVDS 标准  
电机控制  
测试和测量  
工业自动化  
医疗设备  
通信系统  
信号传输速率:50Mbps 150Mbps  
针对直流均衡数据进行了优化  
宽电源电压范围:3V 5.5V  
宽温度范围:-55°C 125°C  
低功耗:电流典型值为 10.3mA/通道(150Mbps  
时)  
3 说明  
ISO7821LLS 器件是一款高性能、隔离式双 LVDS 缓  
冲器,隔离电压为 8000 VPK。在隔离 LVDS 总线信号  
时,该器件可提供高电磁抗扰度,辐射较低,并且具有  
低功耗特性。各隔离通道具有一个 LVDS 接收和传输  
缓冲器。ISO7821LLS 器件的定时性能针对与通信系  
统结合使用进行了优化。通信采用通过内部失真校正方  
案实现的直流均衡数据流。  
低传播延迟:17ns(典型值)  
行业领先的 CMTI(最小值):±100kV/μs  
优异的电磁兼容性 (EMC)  
系统级静电放电 (ESD)、瞬态放电 (EFT) 以及抗浪  
涌保护  
低辐射  
隔离栅寿命:> 40 年  
SOIC-16 宽体 (DW) 和超宽体 (DWW) 封装选项  
可承受的隔离浪涌电压高达 12800 VPK  
安全相关认证:  
ISO7821LLS 器件有一条正向通道和一条反向通道。  
凭借创新的芯片设计和布线技术,ISO7821LLS 器件  
的电磁兼容性得到了显著增强,从而可确保提供系统级  
ESDEFT 和浪涌保护并符合辐射标准。  
符合 DIN V VDE V 0884–10 (VDE V 0884–10):  
2006–12 标准的 8000 VPK 增强型隔离  
符合 UL 1577 标准且长达 1 分钟的 5700 VRMS  
隔离  
ISO7821LLS 器件采用 16 引脚小外形尺寸集成电路  
(SOIC) 宽体 (DW) 和超宽体 (DWW) 封装。  
CSA 组件验收通知 5AIEC 60950-1 IEC  
60601-1 终端设备标准  
器件信息(1)  
符合 EN 61010-1 EN 60950-1 标准的 TUV  
认证  
器件型号  
封装  
DW (16)  
DWW (16)  
封装尺寸(标称值)  
10.30mm x 7.50mm  
10.30mm x 14.00mm  
ISO7821LLS  
符合 GB4943.1–2011 标准的 CQC 认证  
已通过所有认证  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
简化电路原理图  
V
V
CCI  
CCO  
Isolation  
Capacitor  
INx+  
OUTx+  
LVDS RX  
LVDS TX  
INxœ  
OUTxœ  
ENx  
GNDI  
GNDO  
Copyright © 2016, Texas Instruments Incorporated  
V
CCI GNDI 分别是输入通道的电源和接地连接。  
CCO GNDO 分别是输出通道的电源和接地连接。  
V
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLLSET5  
 
 
 
 
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ..................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Power Ratings........................................................... 5  
6.6 Insulation Specifications............................................ 6  
6.7 Safety-Related Certifications..................................... 7  
6.8 Safety Limiting Values .............................................. 7  
6.9 DC Electrical Characteristics .................................... 8  
6.10 DC Supply Current Characteristics......................... 9  
7
8
Parameter Measurement Information ................ 14  
Detailed Description ............................................ 17  
8.1 Overview ................................................................. 17  
8.2 Functional Block Diagram ....................................... 17  
8.3 Feature Description................................................. 18  
8.4 Device Functional Modes........................................ 19  
Application and Implementation ........................ 20  
9.1 Application Information............................................ 20  
9.2 Typical Application .................................................. 20  
9
10 Power Supply Recommendations ..................... 23  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 文档支持................................................................ 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 Glossary................................................................ 25  
13 机械、封装和可订购信息....................................... 25  
6.11 Timing Requirements for Distortion Correction  
Scheme...................................................................... 9  
6.12 Switching Characteristics...................................... 10  
6.13 Insulation Characteristics Curves ......................... 11  
6.14 Typical Characteristics.......................................... 12  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2016) to Revision A  
Page  
已更改 器件状态产品预览量产数据并且已发布完整版本数据表 ..................................................................................... 1  
2
Copyright © 2016, Texas Instruments Incorporated  
 
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
5 Pin Configuration and Functions  
DW and DWW Packages  
16-Pin SOIC  
Top View  
1
2
3
4
5
6
7
8
16  
V
V
CC1  
CC2  
GND1  
INA+  
15 GND2  
14 OUTA+  
13 OUTAœ  
12 INBœ  
11 INB+  
10 EN2  
INAœ  
OUTBœ  
OUTB+  
EN1  
GND1  
9 GND2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and in high  
impedance state when EN1 is low.  
EN1  
7
I
I
Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high  
impedance state when EN2 is low.  
EN2  
10  
2
8
GND1  
Ground connection for VCC1  
Ground connection for VCC2  
9
GND2  
15  
3
INA+  
I
I
Positive differential input, channel A  
Negative differential input, channel A  
Positive differential input, channel B  
Negative differential input, channel B  
Positive differential output, channel A  
Negative differential output, channel A  
Positive differential output, channel B  
Negative differential output, channel B  
Power supply, side 1, VCC1  
INA–  
4
INB+  
11  
12  
14  
13  
6
I
INB–  
I
OUTA+  
OUTA–  
OUTB+  
OUTB–  
VCC1  
O
O
O
O
5
1
VCC2  
16  
Power supply, side 2, VCC2  
Copyright © 2016, Texas Instruments Incorporated  
3
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCCx  
V
Supply voltage(2)  
VCC1, VCC2  
–0.5  
6
V
Voltage on input, output, and  
enable pins  
OUTx, INx, ENx  
–0.5  
VCCx + 0.5(3)  
V
IO  
Maximum current through OUTx pins  
Junction temperature  
–20  
–55  
–65  
20  
mA  
°C  
TJ  
150  
150  
Tstg  
Storage temperature  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground pin (GND1 or GND2) and are peak voltage  
values.  
(3) Maximum voltage must not exceed 6 V.  
6.2 ESD Ratings  
VALUE  
±4500  
±1500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
MIN  
NOM  
MAX  
UNIT  
VCC1, VCC2 Supply voltage  
3
3.3  
5.5  
V
Magnitude of RX input  
differential voltage  
|VID  
|
Driven with voltage sources on RX pins  
100  
600  
mV  
V
RX input common-  
mode voltage  
VIC  
VCC1, VCC2 3 V  
0.5 |VID  
|
2.4 – 0.5 |VID|  
RL  
DR  
TA  
TX far-end differential termination  
Signaling rate  
100  
25  
Ω
Mbps  
°C  
50  
150  
125  
Ambient temperature  
–55  
4
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
6.4 Thermal Information  
ISO7821LLS  
THERMAL METRIC(1)  
DW (SOIC)  
16 PINS  
82  
DWW (SOIC)  
16 PINS  
84.6  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case(top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
44.6  
46.4  
46.6  
55.3  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case(bottom) thermal resistance  
17.8  
18.7  
ψJB  
46.1  
54.5  
RθJC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Power Ratings  
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 5 pF, RL = 100-Ω differential, input a 75-MHz 50% duty-cycle square wave,  
EN1 = EN2 = 5.5 V  
PARAMETER  
TEST CONDITIONS  
MAX  
TYP  
MAX  
180  
90  
UNIT  
mW  
mW  
mW  
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side 1)  
Maximum power dissipation (side 2)  
PD1  
PD2  
90  
Copyright © 2016, Texas Instruments Incorporated  
5
 
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6.6 Insulation Specifications  
over operating free-air temperature range (unless otherwise noted)  
SPECIFICATION  
PARAMETER  
TEST CONDITIONS  
UNIT  
DW  
DWW  
GENERAL  
CLR  
CPG  
DTI  
External clearance(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
>14.5  
>14.5  
>21  
mm  
mm  
μm  
V
Shortest terminal-to-terminal distance across the  
package surface  
External creepage(1)  
Distance through the insulation  
Minimum internal gap (internal clearance)  
>21  
>600  
Tracking resistance (comparative  
tracking index)  
CTI  
DIN EN 60112 (VDE 0303–11); IEC 60112; UL 746A  
>600  
Material group  
According to IEC 60664-1  
I
I
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I–IV  
I–III  
I–IV  
I–IV  
Overvoltage category per IEC 60664-1  
DIN V VDE V 0884–10 (VDE V 0884–10):2006–12(2)  
Maximum repetitive peak isolation  
voltage  
VIORM  
AC voltage (bipolar)  
2121  
2828  
VPK  
AC voltage (sine wave); time dependent dielectric  
breakdown (TDDB) test; see Figure 1 and Figure 2  
1500  
2121  
8000  
2000  
2828  
8000  
VRMS  
VDC  
VPK  
VIOWM Maximum isolation working voltage  
DC voltage  
VTEST = VIOTM, t = 60 s (qualification)  
t = 1 s (100% production)  
VIOTM Maximum transient isolation voltage  
VIOSM Maximum surge isolation voltage(3)  
Test method per IEC 60065, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 12800 VPK (qualification)  
8000  
8000  
VPK  
Method a: After I/O safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.2 × VIORM = 2545 VPK (DW) and  
3394 VPK (DWW), tm = 10 s  
5  
5  
Method a: After environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM = 3394 VPK (DW) and  
4525 VPK (DWW), tm = 10 s  
5  
5  
5  
5  
qpd  
Apparent charge(4)  
pC  
Method b1: At routine test (100% production) and  
preconditioning (type test)  
Vini = VIORM, tini = 1 s;  
Vpd(m) = 1.875 × VIORM= 3977 VPK (DW) and  
5303 VPK (DWW), tm = 1 s  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Isolation resistance, input to output(5)  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
~0.7  
>1012  
>1011  
>109  
2
~0.7  
>1012  
>1011  
>109  
2
pF  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V at TS = 150°C  
Pollution degree  
Climatic category  
55/125/21 55/125/21  
UL 1577  
VTEST = VISO = 5700 VRMS, t = 60 s (qualification);  
VISO  
Withstanding isolation voltage  
VTEST = 1.2 × VISO = 6840 VRMS  
,
5700  
5700  
VRMS  
t = 1 s (100% production)  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
6
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
6.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Plan to certify according to  
DIN V VDE V 0884-10  
(VDE V 0884-10):2006-12  
and DIN EN 60950-1 (VDE  
0805 Teil 1):2011-01  
Plan to certify under CSA  
Component Acceptance  
Notice 5A, IEC 60950-1 and  
IEC 60601-1  
Plan to certify according to  
Plan to certify according to EN 61010-1:2010 (3rd Ed) and  
Plan to certify according  
to UL 1577 Component  
Recognition Program  
GB 4943.1-2011  
EN 60950-1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013  
Reinforced insulation per CSA  
60950-1-07+A1+A2 and IEC  
60950-1 2nd Ed., 800 VRMS  
(DW package) and 1450 VRMS  
(DWW package) max working  
voltage (pollution degree 2,  
material group I);  
5700 VRMS Reinforced insulation per  
EN 61010-1:2010 (3rd Ed) up to  
working voltage of 600 VRMS (DW  
package) and 1000 VRMS (DWW  
package)  
Reinforced insulation  
Maximum transient  
isolation voltage, 8000 VPK  
Maximum repetitive peak  
isolation voltage, 2121 VPK  
(DW), 2828 VPK (DWW);  
Maximum surge isolation  
voltage, 8000 VPK  
;
Reinforced Insulation,  
Altitude 5000 m, Tropical  
Climate, 250 VRMS  
Single protection,  
5700 VRMS  
maximum working voltage  
2 MOPP (Means of Patient  
Protection) per CSA 60601-  
1:14 and IEC 60601-1 Ed. 3.1,  
250 VRMS (354 VPK) max  
5700 VRMS Reinforced insulation per  
EN 60950-1:2006/A11:2009/A1:2010/  
A12:2011/A2:2013 up to working  
voltage of 800 VRMS (DW package) and  
1450 VRMS (DWW package)  
working voltage (DW package)  
Certification planned  
Certification planned  
Certification planned  
Certification planned  
Certification planned  
6.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of  
the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat  
the die and damage the isolation barrier potentially leading to secondary system failures.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DW PACKAGE  
R
θJA = 82°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C,  
277  
423  
see Figure 3  
θJA = 82°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
see Figure 3  
θJA = 82°C/W, TJ = 150°C, TA = 25°C,  
see Figure 5  
Safety input, output, or supply  
current  
IS  
mA  
R
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1524  
150  
mW  
°C  
DWW PACKAGE  
R
θJA = 84.6°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C,  
see Figure 4  
θJA = 84.6°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C,  
see Figure 4  
θJA = 84.6°C/W, TJ = 150°C, TA = 25°C,  
see Figure 6  
269  
410  
Safety input, output, or supply  
current  
IS  
mA  
R
R
PS  
TS  
Safety input, output, or total power  
Maximum safety temperature  
1478  
150  
mW  
°C  
The maximum safety temperature is the maximum junction temperature specified for the device. The power  
dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines  
the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information is that of a  
device installed on a High-K test board for leaded surface-mount packages. The power is the recommended  
maximum input voltage times the current. The junction temperature is then the ambient temperature plus the  
power times the junction-to-air thermal resistance.  
Copyright © 2016, Texas Instruments Incorporated  
7
 
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
MAX UNIT  
6.9 DC Electrical Characteristics  
(over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
GENERAL  
Leakage Current on ENx  
pins  
IIN(EN)  
Internal pullup on ENx pins  
13  
40  
µA  
V
Positive-going undervoltage-  
lockout (UVLO) threshold  
VCC+(UVLO)  
VCC–(UVLO)  
2.25  
Negative-going UVLO  
threshold  
1.7  
V
VHYS(UVLO) UVLO threshold hysteresis  
0.2  
V
V
V
V
VEN(ON)  
VEN(OFF)  
VEN(HYS)  
EN pin turn-on threshold  
EN pin turn-off threshold  
EN pin threshold hysteresis  
0.7 VCCx  
0.3 VCCx  
100  
0.1 VCCx  
120  
Common-mode transient  
immunity  
VI = VCCI(1) or 0 V;  
VCM = 1000 V, see Figure 22  
CMTI  
kV/μs  
LVDS TX  
TX DC output differential  
voltage  
|VOD  
|
RL = 100 Ω, see Figure 23  
RL = 100 Ω, see Figure 23  
250  
–10  
350  
0
450 mV  
Change in TX DC output  
differential between logic 1  
and 0 states  
VOD  
10  
mV  
TX DC output common-  
mode voltage  
VOC  
RL = 100 Ω, see Figure 23  
RL = 100 Ω, see Figure 23  
1.125  
–25  
1.2  
0
1.375  
25  
V
TX DC common-mode  
voltage difference  
VOC  
mV  
OUTx = 0  
10  
10  
TX output short circuit  
current through OUTx  
IOS  
IOZ  
mA  
µA  
OUTxP = OUTxM  
TX output current when in  
high impedance  
ENx = 0, OUTx from 0 to VCCx  
–5  
5
DW package: ENx = 0, DC offset = VCC / 2,  
Swing = 200 mV, Frequency (f) = 1 MHz  
10  
10  
TX output pad capacitance  
on OUTx at 1 MHz  
COUT  
pF  
DWW package: ENx = 0,  
DC offset = VCC / 2, Swing = 200 mV,  
Frequency (f) = 1 MHz  
LVDS RX  
RX input common mode  
voltage  
VIC  
VCCx 3 V  
0.5 |VID  
|
1.2 2.4 – 0.5 |VID  
|
V
Positive going RX input  
differential threshold  
VIT1  
Across VIC  
Across VIC  
50  
mV  
mV  
Negative going RX input  
differential threshold  
VIT2  
IINx  
–50  
–6  
Input current on INx  
From 0 to VCC (each input independently)  
From 0 to VCC  
10  
20  
6
µA  
µA  
IINxP – IINxM Input current balance  
DW package: DC offset = 1.2 V,  
Swing = 200 mV, f = 1 MHz  
6.6  
7.5  
RX input pad capacitance on  
INx at 1 MHz  
CIN  
pF  
DWW package: DC offset = 1.2 V,  
Swing = 200 mV, f = 1 MHz  
(1) VCCI = Input-side VCCx; VCCO = Output-side VCCx  
.
8
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
6.10 DC Supply Current Characteristics  
(over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP MAX UNIT  
EN1 = EN2 = 0, OUTx floating, VID 50 mV  
EN1 = EN2 = 0, OUTx floating, VID –50 mV  
EN1 = EN2 = 1, RL = 100-Ω differential, VID 50 mV  
EN1 = EN2 = 1, RL = 100-Ω differential, VID –50 mV  
2.3  
3.5  
6.2  
7.5  
3.6  
5.6  
9.9  
12  
3 V < VCC1  
VCC2 < 3.6 V  
,
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at  
50 Mbps  
7.6 12.1  
8.5 13.6  
8.9 14.2  
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at  
125 Mbps  
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at  
150 Mbps  
Supply current  
side 1 and  
side 2  
ICC1  
ICC2  
mA  
EN1 = EN2 = 0, OUTx floating, VID 50 mV  
2.3  
3.6  
3.6  
5.7  
EN1 = EN2 = 0, OUTx floating, VID –50 mV  
EN1 = EN2 = 1, RL = 100-Ω differential, VID 50 mV  
EN1 = EN2 = 1, RL = 100-Ω differential, VID –50 mV  
6.6 10.5  
7.9 12.6  
4.5 V < VCC1  
VCC2 < 5.5 V  
,
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at  
50 Mbps  
8.3 13.2  
9.7 15.5  
10.3 16.4  
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at  
125 Mbps  
EN1 = EN2 = 1, RL = 100-Ω differential, data communication at  
150 Mbps  
6.11 Timing Requirements for Distortion Correction Scheme  
Valid data = 8b10b like data with DC balance and bounded disparity. See Figure 25.  
MIN  
NOM  
MAX  
UNIT  
Time to complete internal calibration, after exiting idle state. LVDS TX  
tCALIB  
output is held high during this time. During this time valid data must be  
presented at the receiver.  
250  
750  
µs  
The minimum duration of any idle state that must be maintained between  
valid data transmissions.  
tIDLE  
10  
µs  
ns  
After a channel enters idle state, the internal calibration loses lock after this  
time, and the LVDS outputs are gated high.  
tIDLE_OUT  
200  
600  
Copyright © 2016, Texas Instruments Incorporated  
9
 
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6.12 Switching Characteristics  
(over recommended operating conditions unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
LVDS CHANNEL  
tPLH  
tPHL  
Propagation delay time  
Channel-to-channel output skew time  
Part-part skew  
17  
25  
4.5  
4.5  
20  
ns  
ns  
ns  
µs  
Opposite directional channels, same  
voltage and temperature  
tsk(o)  
Same directional channels, same  
voltage and temperature  
tsk(pp)  
tCMset  
Common-mode setting time after  
EN = 0 to EN = 1 transition  
Common-mode capacitive  
load = 100 pF to 0.5 nF  
DC balanced data with maximum run  
length of 6 at 125 Mbps,  
RX VID = 350 mVPP, 1 ns trf 10%-90%,  
30%  
–40 < TA < 125°C, 3 V < VCC1  
,
VCC2 < 5 V  
Total eye closure  
DC balanced data with maximum run  
length of 6 at 150 Mbps,  
RX VID = 350 mVPP, 1 ns trf 10%-90%,  
40%  
9
–40 < TA < 125°C, 3 V < VCC1  
,
VCC2 < 5 V  
Default output delay time from input  
power loss  
Measured from the time VCC goes  
below 1.7 V, see Figure 21  
tfs  
0.2  
µs  
ps  
LVDS TX AND RX  
TX differential rise and fall times  
(20% to 80%)  
trf  
See Figure 19  
300  
780  
1380  
TX common-mode voltage peak-to-  
peak at 100 Mbps  
VOC(pp)  
0
10  
10  
150  
20  
mVPP  
ns  
tPLZ, tPHZ TX disable time—valid output to HiZ See Figure 20  
TX enable time—HiZ to valid high  
tPZH  
See Figure 20  
20  
ns  
output(1)  
Driven with voltage sources on RX pins,  
see figures in the Parameter  
Measurement Information section  
Magnitude of RX input differential  
voltage for valid operation  
|VID  
|
100  
600  
mV  
ns  
Allowed RX input differential rise and  
fall times (20% to 80%)  
trf(RX)  
See Figure 24  
1
0.3 × UI(2)  
(1) The tPZL parameter is not defined because of the distortion-correction scheme. See the Distortion-Correction Scheme section for more  
information.  
(2) UI is the unit interval.  
10  
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
6.13 Insulation Characteristics Curves  
1.E+11  
1.E+11  
1.E+10  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
1.E+2  
1.E+1  
Safety Margin Zone: 1800 VRMS, 254 Years  
Operating Zone: 1500 VRMS, 135 Years  
TDDB Line (<1 PPM Fail Rate)  
87.5%  
Safety Margin Zone: 2400 VRMS, 63 Years  
Operating Zone: 2000 VRMS, 34 Years  
TDDB Line (<1 PPM Fail Rate)  
1.E+10  
87.5%  
1.E+9  
1.E+8  
1.E+7  
1.E+6  
1.E+5  
1.E+4  
1.E+3  
20%  
1.E+2  
20%  
1.E+1  
500 1500 2500 3500 4500 5500 6500 7500 8500 9500  
400 1400 2400 3400 4400 5400 6400 7400 8400 9400  
Stress Voltage (VRMS  
)
Stress Voltage (VRMS  
)
TA upto 150°C  
Operating lifetime = 135 years  
Stress-voltage frequency = 60 Hz  
Isolation working voltage = 1500 VRMS  
TA upto 150°C  
Operating lifetime = 34 years  
Stress-voltage frequency = 60 Hz  
Isolation working voltage = 2000 VRMS  
Figure 1. Reinforced Isolation Capacitor Lifetime Projection  
for Devices in DW Package  
Figure 2. Reinforced Isolation Capacitor Lifetime Projection  
for Devices in DWW Package  
500  
500  
VCCx = 3.6 V  
VCCx = 5.5 V  
VCCx = 3.6 V  
VCCx = 5.5 V  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D006  
D008  
Figure 3. Thermal Derating Curve for Limiting Current for  
DW Package  
Figure 4. Thermal Derating Curve for Limiting Current for  
DWW Package  
1800  
1600  
Power  
1400  
Power  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
1200  
1000  
800  
600  
400  
200  
0
0
50  
100  
150  
200  
0
50  
100  
150  
200  
Ambient Temperature (èC)  
Ambient Temperature (èC)  
D007  
D010109  
Figure 5. Thermal Derating Curve for Limiting Power for DW  
Package  
Figure 6. Thermal Derating Curve for Limiting Power for  
DWW Package  
Copyright © 2016, Texas Instruments Incorporated  
11  
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
6.14 Typical Characteristics  
10  
10  
8
8
6
4
2
0
6
4
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
ICC1 at 3.3 V  
2
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
0
50  
75  
100  
125  
150  
50  
75  
100  
125  
150  
Data Rate (Mbps)  
Data Rate (Mbps)  
D001  
D002  
TA = 25°C  
CH-A toggle  
TA = 25°C  
CH-B toggle  
Figure 7. Supply Current vs Data Rate (CH-A)  
Figure 8. Supply Current vs Data Rate (CH-B)  
10  
8
14  
12  
10  
8
6
6
4
4
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
ICC2 at 5 V  
2
2
ICC1, ICC2 at 50 Mbps  
ICC1, ICC2 at 150 Mbps  
0
0
3
3.5  
4
4.5  
5
5.5  
-55  
-35  
-15  
5
25  
45  
65  
85  
105 125  
VCCx Output Supply Voltage (V)  
Temperature (èC)  
D003  
D004  
TA = 25°C  
Data rate = 150 Mbps  
CH-A toggle  
Figure 9. Supply Current vs VCCx Output Supply Voltage  
Figure 10. Supply Current vs Temperature (CH-A)  
10  
16  
15  
14  
13  
12  
11  
10  
9
8
6
4
ICC1 at 3.3 V  
ICC2 at 3.3 V  
ICC1 at 5 V  
tPLH at 3.3 V  
tPHL at 3.3 V  
tPLH at 5 V  
tPHL at 5 V  
2
ICC2 at 5 V  
0
-55  
8
-55  
-35  
-15  
5
25  
45  
65  
85 105 125  
-35  
-15  
5
25  
45  
65  
85  
105 125  
Temperature (èC)  
Temperature (èC)  
D005  
D010  
Data rate = 150 Mbps  
CH-B toggle  
Figure 11. Supply Current vs Temperature (CH-B)  
Figure 12. Propagation Delay Time vs Temperature  
12  
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
17  
16  
15  
14  
13  
12  
11  
10  
9
3
2
1
0
tPLH  
tPHL  
VOUT+  
VOC  
VOUT-  
8
3
3.5  
4
4.5  
5
5.5  
3
3.5  
4
4.5  
5
5.5  
VCCx Output Supply Voltage (V)  
VCCx Output Supply Voltage (V)  
D011  
D012  
TA = 25°C  
TA = 25°C  
Figure 13. Propagation Delay Time vs VCCx Output Supply  
Voltage  
Figure 14. Output Voltage vs VCCx Output Supply Voltage  
15  
15  
Input to LVDS RX  
Input to LVDS RX  
Output from  
LVDS TX  
Output from  
LVDS TX  
D023  
D023  
Figure 15. Distortion Correction Scheme Calibration Time  
Figure 16. Transition From Valid Data to Idle (tIDLE_OUT)  
(tCALIB  
)
15  
15  
VI  
VI  
VOD  
VOD  
D023  
D023  
Figure 17. Disable to Enable Time (tPZH  
)
Figure 18. Disable Time (tPLZ, tPHZ)  
Copyright © 2016, Texas Instruments Incorporated  
13  
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
7 Parameter Measurement Information  
V
C
P
CCI  
V
V
V
ID(H)  
ID(L)  
CCO  
50%  
50%  
OUTx+  
LVDS TX  
INx+  
V
ID  
100  
ID  
R
L
Signal  
Generator  
LVDS RX  
V
V
t
t
PHL  
OD  
PLH  
V
V
OD(H)  
OD(L)  
INxœ  
OUTxœ  
C
80%  
20%  
P
50%  
50%  
V
OD  
GNDI  
GNDO  
t
t
f
r
A. The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3 ns, ZO = 50 Ω.  
B. CP = 5 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 19. Switching Characteristics Test Circuit and Voltage Waveforms  
V
CCI  
V
CCO  
OUTx+  
LVDS TX  
INx+  
LVDS RX  
100  
V
V
R
C
V
CCO  
OD  
ID  
L
L
V
I
V
/ 2  
CCO  
INxœ  
V
≤ œ50 mV  
OUTxœ  
ID  
0 V  
0V  
t
EN  
PLZ  
GNDI  
GNDO  
50%  
V
V
OD  
OD(L)  
Signal  
Generator  
V
50 ꢀ  
I
V
CCI  
V
CCO  
OUTx+  
INx+  
V
CCO  
LVDS RX  
LVDS TX  
100 ꢀ  
V
C
L
V
R
OD  
ID  
L
V / 2  
CCO  
V
CCO  
/ 2  
V
I
INxœ  
V
50 mV  
OUTxœ  
EN  
ID  
0 V  
t
PZH  
V
OD(H)  
GNDI  
GNDO  
50%  
50%  
V
OD  
0 V  
t
PHZ  
Signal  
Generator  
V
50 ꢀ  
I
A. The input pulse is supplied by a generator having the following characteristics: PRR 10 kHz, 50% duty cycle,  
tr 3 ns, tf 3 ns, ZO = 50 Ω.  
B. CL = 5 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 20. Enable and Disable Propagation Delay Time Test Circuit and Waveform  
14  
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
Parameter Measurement Information (continued)  
V
I
V
CCI  
V
CCO  
V
CCI  
1.7 V  
V
I
OUTx+  
LVDS TX  
INx+  
0 V  
LVDS RX  
100  
V
C
L
V
ID  
R
L
OD  
t
fs  
V
OD(H)  
V
≤ œ50 mV  
INxœ  
ID  
OUTxœ  
V
50%  
OD  
V
OD(L)  
GNDI  
GNDO  
A. CL = 5 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 21. Default Output Delay Time Test Circuit and Voltage Waveforms  
V
CCI  
V
CCO  
OUTx+  
LVDS TX  
INx+  
S1  
S2  
LVDS RX  
100  
V
C
L
V
R
OD  
ID  
L
INxœ  
OUTxœ  
GNDO  
GNDI  
œ
+
V
CM  
A. CL = 5 pF and includes instrumentation and fixture capacitance within ±20%.  
Figure 22. Common-Mode Transient Immunity Test Circuit  
V
CCI  
V
CCO  
R
L
/ 2  
INx+  
100  
OUTx+  
LVDS RX  
LVDS TX  
V
V
OUTxœ  
INxœ  
V
V
OD  
R
L
/ 2  
OC  
GNDI  
GNDO  
= Measured Parameter  
Figure 23. Driver Test Circuit  
Copyright © 2016, Texas Instruments Incorporated  
15  
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Parameter Measurement Information (continued)  
V
CCI  
V
CCO  
INx+  
OUTx+  
LVDS RX  
LVDS TX  
V
V
OD  
ID  
INxœ  
OUTxœ  
V
OUT+  
V
IN+  
V
V
OUTœ  
INœ  
GNDI  
GNDO  
1.375 V  
1.025 V  
V
V
IN+  
INœ  
U
I
V
ID  
V
0.35 V  
ID(H),  
0 V  
V
œ0.35 V  
ID(L),  
t
t
PLH  
PHL  
V
OD(H)  
V
OD  
80%  
20%  
50%  
V
OD(L)  
t
t
f
r
Figure 24. Voltage Definitions and Waveforms  
16  
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
8 Detailed Description  
8.1 Overview  
The ISO7821LLS device is an isolated LVDS buffer. The differential signal received on the LVDS input pins is  
first converted to CMOS logic levels. It is then transmitted across a silicon dioxide based capacitive isolation  
barrier using an On-Off Keying (OOK) modulation scheme. A high frequency carrier transmitted across the  
barrier represents one logic state and an absence of a carrier represents the other logic state. On the other side  
of the barrier a demodulator converts the OOK signal back to logic levels, which is then converted to LVDS  
outputs by a differential driver. This device incorporates advanced circuit techniques to maximize CMTI  
performance and minimize radiated emissions.  
The ISO7821LLS device implements an eye-diagram improvement scheme to correct for signal distortions that  
are introduced in the LVDS receiver as well as the isolation channel. This enables the device to guarantee an  
eye closure of less than 30% at 125 Mbps, and less than 40% at 150 Mbps. The distortion correction scheme is  
optimized for operation with DC balanced data (for example 8b10b or equivalent) with a maximum run length of  
6. The minimum data-rate of operation is also constrained to 50 Mbps. For general purpose data communication  
from 0 to 100 Mbps, the ISO782xLL family of devices should be considered.  
The ISO7821LLS device is TIA/EIA-644-A standard compliant. The LVDS transmitter drives a minimum  
differential-output voltage magnitude of 250 mV into a 100-load, and the LVDS receiver is capable of detecting  
differential signal 50 mV in magnitude. The device consumes 11 mA per channel at 150 Mbps with 5-V  
supplies.  
The Functional Block Diagram section shows a conceptual block diagram of one channel of the ISO7821LLS  
device.  
8.2 Functional Block Diagram  
Transmitter  
Receiver  
EN  
OOK  
modulation  
Envelope  
Detector  
+
Distortion  
Correction  
IN+  
OUT+  
SiO2  
based  
Capacitive  
Isolation  
Barrier  
LVDS  
RX  
Preamplifier  
LVDS  
TX  
INœ  
OUTœ  
Emissions  
Reduction  
Techniques  
Oscillator  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
17  
 
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
8.3 Feature Description  
The ISO7821LLS device is available in a two-channel configuration with a default differential-high output state.  
Table 1 lists the device features.  
Table 1. Device Features  
PART  
NUMBER  
DEFAULT DIFFERENTIAL  
OUTPUT  
CHANNEL DIRECTION  
RATED ISOLATION  
MAXIMUM DATA RATE  
(1)  
ISO7821LLS  
1 Forward, 1 Reverse  
5700 VRMS / 8000 VPK  
150 Mbps  
High  
(1) See the Safety-Related Certifications section for detailed isolation ratings.  
8.3.1 Distortion-Correction Scheme  
The ISO7821LLS device implements a distortion-correction scheme to correct for signal distortions that are  
introduced in the LVDS receiver as well as the isolation channel. This scheme is optimized for a DC-balanced  
data-stream with a maximum run length of 6. One example of such a data stream is 8b10b encoded data. The  
minimum data rate supported by the ISO7821LLS device is 50 Mbps and the maximum is 150 Mbps.  
Figure 25 shows the timing requirements associated with the distortion correction scheme (see the Timing  
Requirements for Distortion Correction Scheme table for timing parameters). The input to the LVDS channel  
should be either idle low, idle high, or should have clock or DC-balanced data transitions at 25 MHz / 50 Mbps or  
higher. Low frequency or DC-unbalanced data is not allowed. The distortion-correction scheme runs an internal  
calibration each time the LVDS channel transitions from an idle state to a data transmission state. The calibration  
runs for a period of tCALIB during which the LVDS channel output is held at logic high. This calibration is also run  
at power up. Lack of activity on the receive inputs for a period greater than tIDLE_OUT takes the channel to an  
uncalibrated state. If the communication protocol requires the channel to transition to the idle state, the idle-high  
or idle-low state must be held for at least duration of tIDLE  
.
t
t
IDLE  
CALIB  
Input to LVDS RX  
Output from LVDS TX  
t
IDLE_OUT  
A. Signals shown are differential logic states.  
Logic high VIN+ > VIN–  
Logic low VIN– > VIN+  
B. The data to ISOLVDS channel should be either idle high, idle low, clock, or valid data.  
Valid data = 8b10b like data with DC balance and bounded disparity.  
C. When transitioning from an uncalibrated sate to a calibrated state, the ISOLVDS channel output is gated high for up  
to tCALIB, during which the channel is calibrated.  
D. If the channel finds no transitions in the incoming data for a period of tIDLE_OUT, the channel goes to an uncalibrated  
state.  
E. Power loss (which implies no data transitions) takes the channel to an uncalibrated state.  
F. If, for some reason, the idle-high or idle-low state must be held on the line, this state must be held for at least tIDLE  
.
Figure 25. DCD Correction Timing Diagram  
18  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
8.4 Device Functional Modes  
Table 2 lists the functional modes for the ISO7821LLS device.  
Table 2. ISO7821LLS Function Table(1)  
INPUT  
OUTPUT ENABLE  
(ENx)  
OUTPUT  
VCCI  
PU  
X
VCCO  
COMMENTS  
(INx±)(2)  
(OUTx±)(3)  
H
L
I
H or open  
H or open  
H or open  
H
L
Normal Operation:  
A channel output assumes the logic state of the input.  
PU  
H or L  
A low-logic state at the output enable causes the outputs to be in high  
impedance.  
PU  
X
L
Z
Default mode: When VCCI is unpowered, a channel output assumes  
the logic high state.  
When VCCI transitions from unpowered to powered up, a channel  
output assumes the logic state of the input.  
PD  
PU  
X
H or open  
H
When VCCI transitions from powered up to unpowered, a channel  
output assumes the selected default high state.  
When VCCO is unpowered, a channel output is undetermined.  
X
PD  
X
X
Undetermined When VCCO transitions from unpowered to powered up, a channel  
output assumes the logic state of the input  
(1) VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCCx 2.25 V); PD = Powered down (VCCx 1.7 V); X = Irrelevant  
(2) Input (INx±): H = high level (VID 50 mV); L = low level (VID –50 mV); I = indeterminate (–50 mV < VID < 50 mV)  
(3) Output (OUTx±): H = high level (VOD 250 mV); L = low level (VOD –250 mV); Z = high impedance.  
8.4.1 Device I/O Schematics  
LVDS Input  
LVDS Output  
V
CC  
600 k  
600 kꢀ  
INxœ  
V
CC  
INx+  
20 ꢀ  
OUTx  
20 kꢀ  
Enable  
VCC  
275 kꢀ  
1 kꢀ  
ENx  
Figure 26. Device I/O Schematics  
Copyright © 2016, Texas Instruments Incorporated  
19  
 
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The ISO7821LLS device is a high-performance, reinforced isolated dual-LVDS buffer. Isolation can be used to  
help achieve human and system safety, to overcome ground potential difference (GPD), or to improve noise  
immunity and system performance.  
The LVDS signaling can be used over most interfaces to achieve higher data rates because the LVDS is only a  
physical layer. LVDS can also be used for a proprietary communication scheme implemented between a host  
controller and a slave. Example use cases include connecting a high-speed I/O module to a host controller, a  
subsystem connecting to a backplane, and connection between two high-speed subsystems. Many of these  
systems operate under harsh environments making them susceptible to electromagnetic interferences, voltage  
surges, electrical fast transients (EFT), and other disturbances. These systems must also meet strict limits on  
radiated emissions. Using isolation in combination with a robust low-noise signaling standard such as LVDS,  
achieves both high immunity to noise and low emissions.  
Example end applications that could benefit from the ISO7821LLS device include high-voltage motor control, test  
and measurement, industrial automation, and medical equipment.  
9.2 Typical Application  
One application for isolated LVDS buffers is for point-to-point communication between two high-speed capable,  
application-specific integrated circuits (ASICs) or FPGAs. In a high-voltage motor control application, for  
example, Node 1 could be a controller on a low-voltage or earth referenced board, and Node 2, could be  
controller placed on the power board, biased to high voltage. Figure 27 and Figure 28 show the application  
schematics.  
Figure 28 provides further details of using the ISO7821LLS device to isolate the LVDS interface. The LVDS  
connection to the ISO7821LLS device can be traces on a board (shown as straight lines between Node 1 and  
the ISO7821LLS device), a twisted pair cable (as shown between Node 2 and the ISO7821LLS device), or any  
other controlled impedance channel. Differential 100-terminations are placed near each LVDS receiver. The  
characteristic impedance of the channel should also be 100-differential.  
In the example shown in Figure 27 and Figure 28, the ISO7821LLS device provides reinforced or safety isolation  
between the high-voltage elements of the motor drive and the low-voltage control circuitry. This configuration  
also ensures reliable communication, regardless of the high conducted and radiated noise present in the system.  
20  
Copyright © 2016, Texas Instruments Incorporated  
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
Typical Application (continued)  
Isolated IGBT  
Gate Drivers  
Rectifier Diodes  
IGBT Module  
DC+  
Drive  
Output  
Power  
Input  
M
PWM  
Signals  
DCœ  
ISO7821LLS  
Communication Bus  
RS-485, CAN,  
Ethernet  
Node 2  
Node 1  
Isolated Current  
and Voltage Sense  
Encoder  
High Voltage Motor Drive  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. Isolated LVDS Interface in Motor Control Application  
VCC1  
VCC2  
0.1 F  
0.1 F  
3.3 V  
3.3 V  
1
16  
Vcc2  
Vcc1  
7
10  
14  
13  
12  
EN1  
EN2  
3
4
5
6
INA+  
OUTA+  
Node 1  
100 Ω  
ISO7821LLS  
100 Ω  
Node 2  
INAœ  
OUTAœ  
ASIC or FPGA  
INBœ  
OUTBœ  
OUTB+  
ASIC or FPGA  
100 Ω  
100 Ω  
11  
INB+  
GND1  
2, 8  
GND2  
9, 15  
Copyright © 2016, Texas Instruments Incorporated  
Figure 28. Isolated LVDS Interface Between Two Nodes (ASIC or FPGA)  
Copyright © 2016, Texas Instruments Incorporated  
21  
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
Typical Application (continued)  
9.2.1 Design Requirements  
For the ISO7821LLS device, use the parameters listed in Table 3.  
Table 3. Design Parameters  
PARAMETER  
VALUE  
3 V to 5.5 V  
0.5 |VID| to 2.4 – 0.5 |VID  
100 Ω  
Supply voltage range, VCC1 and VCC2  
Receiver common-mode voltage range  
External termination resistance  
|
Interconnect differential characteristic impedance  
Signaling rate  
100 Ω  
50 to 150 Mbps  
0.1 µF  
Decoupling capacitor from VCC1 and GND1  
Decoupling capacitor from VCC2 and GND2  
0.1 µF  
9.2.2 Detailed Design Procedure  
The ISO7821LLS device has minimum requirements on external components for correct operation. External  
bypass capacitors (0.1 µF) are required for both supplies (VCC1 and VCC2). A termination resistor with a value of  
100 is required between each differential input pair (INx+ and INx–), with the resistors placed as close to the  
device pins as possible. A differential termination resistor with a value of 100 is required on the far end for the  
LVDS transmitters. Figure 29 shows these connections.  
VCC1  
VCC2  
1
16  
0.1 F  
0.1 F  
GND2  
OUTA+  
OUTAœ  
INBœ  
GND1  
INA+  
2
3
15  
14  
LVDS  
RX  
LVDS  
TX  
100 ꢁ  
INAœ  
13  
4
OUTBœ  
12  
11  
10  
9
5
6
7
8
LVDS  
TX  
LVDS  
RX  
100 ꢁ  
OUTB+  
EN1  
INB+  
EN2  
GND1  
GND2  
Figure 29. Typical ISO7821LLS Circuit Hook-Up  
22  
Copyright © 2016, Texas Instruments Incorporated  
 
 
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
9.2.2.1 Electromagnetic Compatibility (EMC) Considerations  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the  
ISO7821LLS device incorporates many chip-level design improvements for overall system robustness. Some of  
these improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
9.2.3 Application Curve  
Figure 30 shows a typical eye diagram of the ISO7821LLS device which indicates low jitter and a wide-open eye  
at the maximum data rate of 150 Mbps.  
Figure 30. Eye Diagram at 150 Mbps PRBS, 3.3 V and 25°C  
10 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended  
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins  
as possible. If only a single primary-side power supply is available in an application, isolated power can be  
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or  
SN6505. For such applications, detailed power supply design and transformer selection recommendations are  
available in the following data sheets: SN6501 Transformer Driver for Isolated Power Supplies (SLLSEA0) and  
SN6505 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies (SLLSEP9).  
Copyright © 2016, Texas Instruments Incorporated  
23  
 
ISO7821LLS  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 31). Layer stacking should  
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
While routing differential traces on a board, TI recommends that the distance between two differential pairs be  
much higher (at least 2x) than the distance between the traces in a differential pair. This distance minimizes  
crosstalk between the two differential pairs.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
The ISO7821LLS device requires no special layout considerations to mitigate electromagnetic emissions.  
For detailed layout recommendations, see the application note, Digital Isolator Design Guide (SLLA284).  
11.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps (or rise and fall times higher than 1 ns) and trace  
lengths of up to 10 inches, use standard FR–4 UL94V-0 epoxy-glass as PCB material. This PCB is preferred  
over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption,  
greater strength and stiffness, and self-extinguishing flammability-characteristics.  
11.2 Layout Example  
High-speed traces  
10 mils  
Ground plane  
Yeep this  
FR-4  
0 ~ 4.5  
space free  
from planes,  
traces, pads,  
and vias  
40 mils  
10 mils  
r
Power plane  
Low-speed traces  
Figure 31. Layout Example  
24  
版权 © 2016, Texas Instruments Incorporated  
 
ISO7821LLS  
www.ti.com.cn  
ZHCSFH5A MARCH 2016REVISED SEPTEMBER 2016  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档ꢀ  
相关文档如下:  
《数字隔离器设计指南》(文献编号:SLLA284)  
ISO782xLLx 隔离式双 LVDS 缓冲器评估模块》(文献编号:SLLU240)  
《隔离相关术语》(文献编号:SLLA353)  
LVDS 所有者手册》(文献编号:SNLA187)  
SN6501 适用于隔离式电源的变压器驱动器》(文献编号:SLLSEA0)  
SN6505 适用于隔离式电源的低噪声 1A 变压器驱动器》(文献编号:SLLSEP9)  
12.2 接收文档更新通知  
要接收文档更新通知,请访问 www.ti.com.cn 您器件对应的产品文件夹。点击右上角的提醒我 (Alert me) 注册后,  
即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2016, Texas Instruments Incorporated  
25  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISO7821LLSDW  
ISO7821LLSDWR  
ISO7821LLSDWW  
ISO7821LLSDWWR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
DW  
DW  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-55 to 125  
-55 to 125  
-55 to 125  
-55 to 125  
ISO7821LLS  
2000 RoHS & Green  
45 RoHS & Green  
1000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
ISO7821LLS  
ISO7821LLS  
ISO7821LLS  
DWW  
DWW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISO7821LLSDWR  
SOIC  
SOIC  
DW  
16  
16  
2000  
1000  
330.0  
330.0  
16.4  
24.4  
10.75 10.7  
18.0 10.0  
2.7  
3.0  
12.0  
20.0  
16.0  
24.0  
Q1  
Q1  
ISO7821LLSDWWR  
DWW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISO7821LLSDWR  
SOIC  
SOIC  
DW  
16  
16  
2000  
1000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
ISO7821LLSDWWR  
DWW  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISO7821LLSDW  
DW  
SOIC  
SOIC  
16  
16  
40  
45  
506.98  
507  
12.7  
20  
4826  
5000  
6.6  
9
ISO7821LLSDWW  
DWW  
Pack Materials-Page 3  
GENERIC PACKAGE VIEW  
DW 16  
7.5 x 10.3, 1.27 mm pitch  
SOIC - 2.65 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224780/A  
www.ti.com  
PACKAGE OUTLINE  
DW0016B  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4221009/B 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
R0.05 TYP  
9
9
8
8
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221009/B 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DW0016B  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
14X (1.27)  
8
9
8
9
R0.05 TYP  
R0.05 TYP  
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221009/B 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DWW0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC SMALL OUTLINE  
C
17.4  
17.1  
SEATING PLANE  
A
0.1 C  
PIN 1 ID AREA  
14X 1.27  
16  
1
10.4  
10.2  
NOTE 3  
2X  
8.89  
8
9
0.51  
0.31  
16X  
(2.286)  
14.1  
13.9  
NOTE 4  
B
0.25  
A B  
C
2.65 MAX  
0.28  
0.22  
TYP  
SEE DETAIL A  
(1.625)  
0.25  
GAGE PLANE  
0.3  
0.1  
1.1  
0.6  
0 -8  
DETAIL A  
TYPICAL  
4221501/A 11/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0,15 mm per side.  
4. This dimension does not include interlead flash.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWW0016A  
SOIC - 2.65 mm max height  
PLASTIC SMALL OUTLINE  
16X (1.875)  
(14.5)  
16X (2)  
(14.25)  
16X (0.6)  
16X (0.6)  
1
1
16  
16  
SYMM  
SYMM  
14X  
8
14X  
(1.27)  
9
8
9
(1.27)  
SYMM  
(16.25)  
SYMM  
(16.375)  
LAND PATTERN EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
SCALE:3X  
LAND PATTERN EXAMPLE  
STANDARD  
SCALE:3X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4221501/A 11/2014  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWW0016A  
SOIC - 2.65 mm max height  
PLASTIC SMALL OUTLINE  
16X (2)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
8
9
(16.25)  
SOLDER PASTE EXAMPLE  
STANDARD  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
16X (1.875)  
SYMM  
1
16  
16X (0.6)  
SYMM  
14X (1.27)  
8
9
(16.375)  
SOLDER PASTE EXAMPLE  
PCB CLEARANCE & CREEPAGE OPTIMIZED  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4221501/A 11/2014  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISO7821LLSDWW

双通道、2/0、150Mbps、高性能、增强型隔离式 LVDS 缓冲器 | DWW | 16 | -55 to 125
TI

ISO7821LLSDWWR

双通道、2/0、150Mbps、高性能、增强型隔离式 LVDS 缓冲器 | DWW | 16 | -55 to 125
TI

ISO7830

高隔离额定值、三通道、3/0、增强型数字隔离器
TI

ISO7830DW

高隔离额定值、三通道、3/0、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7830DWR

高隔离额定值、三通道、3/0、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7830DWW

高隔离额定值、三通道、3/0、增强型数字隔离器 | DWW | 16 | -55 to 125
TI

ISO7830DWWR

高隔离额定值、三通道、3/0、增强型数字隔离器 | DWW | 16 | -55 to 125
TI

ISO7830FDW

高隔离额定值、三通道、3/0、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7830FDWR

高隔离额定值、三通道、3/0、增强型数字隔离器 | DW | 16 | -55 to 125
TI

ISO7830FDWW

高隔离额定值、三通道、3/0、增强型数字隔离器 | DWW | 16 | -55 to 125
TI

ISO7830FDWWR

高隔离额定值、三通道、3/0、增强型数字隔离器 | DWW | 16 | -55 to 125
TI

ISO7831

高隔离额定值、三通道、2/1、增强型数字隔离器
TI