ISOW7821 [TI]

具有集成电源的双通道、1/1、增强型数字隔离器;
ISOW7821
型号: ISOW7821
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成电源的双通道、1/1、增强型数字隔离器

文件: 总43页 (文件大小:2093K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Reference  
Design  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
具有集成式高效低辐射直流/直流转换器的 ISOW7821 高性能 5000VRMS 增  
强型双通道数字隔离器  
1 特性  
2 应用  
1
集成高效直流/直流转换器与片上变压器  
工业自动化  
100Mbps 数据速率  
电机控制  
稳健可靠的隔离栅:  
电网基础设施  
医疗设备  
1kVRMS 工作电压下,预计寿命超过 100 年  
高达 5000V RMS 隔离额定值  
高达 10kVPK 的浪涌保护能力  
测试和测量  
3 说明  
±100kV/µs 最低 CMTI  
ISOW7821 器件是具有集成式高效电源转换器的高性  
能、双通道增强型数字隔离器。集成式直流/直流转换  
器高效运行,提供高达 650mW 的隔离式电源,可配  
置为各种输入和输出电压。因此,空间受限的隔离设计  
凭借该器件无需单独使用隔离式电源。  
3V 5.5V 宽输入电源电压范围  
5V 3.3V 稳压输出  
高达 0.65W 的输出功率  
5V 5V5V 3.3V:提供的负载电流 130mA  
3.3V 3.3V:提供的负载电流 75mA  
限制浪涌电流的软启动  
器件信息(1)  
过载保护和短路保护  
器件型号  
ISOW7821  
封装  
SOIC (16)  
封装尺寸(标称值)  
热关断  
10.30mm x 7.50mm  
默认输出:高电平和低电平选项  
低传播延迟:典型值为 13ns(由 5V 电源供电)  
优异的电磁兼容性 (EMC)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
系统级 ESDEFT 和浪涌抗扰性  
±8kV IEC 61000-4-2 跨隔离栅接触放电保护  
低辐射  
Isolation Transformer  
DC-DC  
Primary  
DC-DC  
Secondary  
VCC  
VISO  
16 引脚宽体小外形尺寸集成电路 (SOIC) 封装  
扩展温度范围:-40°C +125°C  
安全相关认证:  
VSI  
VSO  
Isolation Capacitors  
INx  
OUTx  
符合 DIN VDE V 0884-11:2017-01 标准的  
7071VPK 增强型隔离  
GNDI  
GNDO  
符合 UL 1577 标准且长达 1 分钟的 5000VRMS  
隔离  
V
CC 是以 GND1 为基准的主电源电压。VISO  
是以 GND2 为基准的隔离电源电压。  
SI VSO 可为 VCC VISO,具体取决于  
通道方向。  
SI 是以 GNDI 为基准的输入侧电源电压,  
获得 CSA 认证,符合 IEC 60950-1IEC  
62368-1 IEC 60601-1 终端设备标准  
V
符合 GB4943.1-2011 CQC 认证  
V
符合 EN 60950-1EN62368-1 EN 61010-1  
TUV 认证  
VSO 是以 GNDO 为基准的输出侧电源电  
压。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF40  
 
 
 
 
 
 
 
 
 
 
 
 
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
目录  
Output ...................................................................... 16  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 5  
Specifications......................................................... 6  
7.1 Absolute Maximum Ratings ...................................... 6  
7.2 ESD Ratings.............................................................. 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 7  
7.5 Power Ratings........................................................... 7  
7.6 Insulation Specifications............................................ 8  
7.7 Safety-Related Certifications..................................... 9  
7.8 Safety Limiting Values .............................................. 9  
7.9 Electrical Characteristics—5-V Input, 5-V Output... 10  
7.17 Switching Characteristics—3.3-V Input, 3.3-V  
Output ...................................................................... 16  
7.18 Insulation Characteristics Curves ......................... 17  
7.19 Typical Characteristics.......................................... 18  
Parameter Measurement Information ................ 22  
Detailed Description ............................................ 23  
9.1 Overview ................................................................. 23  
9.2 Functional Block Diagram ....................................... 23  
9.3 Feature Description................................................. 25  
9.4 Device Functional Modes........................................ 26  
8
9
10 Application and Implementation........................ 28  
10.1 Application Information.......................................... 28  
10.2 Typical Application ................................................ 28  
11 Power Supply Recommendations ..................... 31  
12 Layout................................................................... 32  
12.1 Layout Guidelines ................................................. 32  
12.2 Layout Example .................................................... 33  
13 器件和文档支持 ..................................................... 34  
13.1 器件支持................................................................ 34  
13.2 文档支持................................................................ 34  
13.3 接收文档更新通知 ................................................. 34  
13.4 社区资源................................................................ 34  
13.5 ....................................................................... 34  
13.6 静电放电警告......................................................... 34  
13.7 Glossary................................................................ 34  
14 机械、封装和可订购信息....................................... 34  
7.10 Supply Current Characteristics—5-V Input, 5-V  
Output ...................................................................... 11  
7.11 Electrical Characteristics—5-V Input, 3.3-V  
Output ...................................................................... 12  
7.12 Supply Current Characteristics—5-V Input, 3.3-V  
Output ...................................................................... 13  
7.13 Electrical Characteristics—3.3-V Input, 3.3-V  
Output ...................................................................... 14  
7.14 Supply Current Characteristics—3.3-V Input, 3.3-V  
Output ...................................................................... 15  
7.15 Switching Characteristics—5-V Input, 5-V Output 16  
7.16 Switching Characteristics—5-V Input, 3.3-V  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (March 2018) to Revision B  
Page  
通篇进行了编辑性和修饰性更改 ............................................................................................................................................. 1  
特性中添加了稳健可靠的隔离栅项目符........................................................................................................................ 1  
特性中添加了1kVRMS 工作电压下,预计寿命超过 100 项目符号............................................................................. 1  
特性中添加了高达 5000V RMS 隔离额定值项目符.................................................................................................... 1  
特性中添加了高达 10kVPK 的浪涌保护能力项目符号....................................................................................................... 1  
特性中添加了“±8kV IEC 61000-4-2 跨隔离栅接触放电保护项目符............................................................................... 1  
特性Insulation Specifications表中将 VDE 标准名称从“DIN V VDE V 0884-11:2017-01”更改为“DIN VDE V 0884-  
11:2017-01” ............................................................................................................................................................................ 1  
特性中的信息TUV 认证项目符号中添加了“EN 62368-1”标准 ..................................................................................... 1  
删除了 为选定的器件提供了汽车级版本中的已计划进行所有机构认证项目符号................................................................ 1  
更新了 简化原理图,以显示信号隔离通道的两个串联隔离电容器,而不是单个电容器.......................................................... 1  
Added "Contact discharge per IEC 61000-4-2; Isolation barrier withstand test" specification of ±8000 in ESD Ratings  
table........................................................................................................................................................................................ 6  
Added table note "IEC ESD strike is applied across the barrier with all pins on each side tied together creating a  
two-terminal device" to ESD Ratings table............................................................................................................................. 6  
Deleted "TJ or Junction temperature" parameter from Recommended Operating Conditions table as it is already  
specified in Absolute Maximum Ratings table........................................................................................................................ 6  
Added "See 34" to TEST CONDITIONS of VIOWM specification ........................................................................................ 8  
2
版权 © 2017–2019, Texas Instruments Incorporated  
 
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
修订历史记录 (接下页)  
Updated Safety-Related Certifications table .......................................................................................................................... 9  
Added the following note to 25: "Optional 100 µF capacitor can be added between VCC and GND1; refer to  
Power Supply Recommendations" ...................................................................................................................................... 22  
Added the following note to 30: "Optional 100 µF capacitor can be added between VCC and GND1; refer to  
Power Supply Recommendations" ...................................................................................................................................... 28  
Added the following text to Design Requirements: "Optional 100 µF decoupling capacitor can be added between  
VCC and GND1 pins; refer to Power Supply Recommendations for more details"............................................................... 29  
Added text to Power Supply Recommendations section to emphasise that input decoupling capacitor should be  
larger than output capacitor by at least 100 µF ................................................................................................................... 31  
Added the following note to 35: "Optional 100 µF capacitor can be added between VCC and GND1; refer to  
Power Supply Recommendations" ...................................................................................................................................... 33  
Changes from Original (November 2017) to Revision A  
Page  
Changed OUTB to pin 4 and INB to pin 13 in the Pin Functions table .................................................................................. 5  
版权 © 2017–2019, Texas Instruments Incorporated  
3
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
5 说明 (续)  
ISOW7821 器件可提供高电磁抗扰度和低辐射,同时能够隔离 CMOS LVCMOS 数字 I/O。信号隔离通道具有由  
二氧化硅 (SiO2) 绝缘栅相隔离的逻辑输入和输出缓冲器,而电源隔离使用片上变压器,以薄膜聚合物作为绝缘材  
料。提供各种正向和反向通道配置。如果输入信号丢失,则默认输出对于 ISOW7821 器件为高电平,对于具有 F  
后缀的器件为低电平(请参阅器件 具有)。  
这些器件有助于防止数据总线或者其他电路上的噪声电流进入本地接地并干扰或损坏敏感电路。凭借创新型芯片设  
计和布局技术,ISOW7821 器件的电磁兼容性得到了显著增强,可缓解系统级 ESDEFT 和浪涌问题并符合辐射  
标准。电源转换器效率较高,允许在较高的环境温度下工作。ISOW7821 器件采用 16 引脚 SOIC 宽体 (SOIC-WB)  
DWE 封装。  
4
Copyright © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
6 Pin Configuration and Functions  
DWE Package  
16-Pin SOIC-WB  
Top View  
VCC  
GND1  
INA  
1
2
3
4
5
6
7
8
16 VISO  
15 GND2  
14 OUTA  
13 INB  
12 NC  
OUTB  
NC  
NC  
11  
SEL  
EN1  
GND1  
10 NC  
9
GND2  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Output enable for side 1.  
EN1  
7
Output pins on side 1 are enabled when EN1 is high or open.  
Output pins on side 1 are high impedance when EN1 is low.  
GND1  
GND2  
INA  
2, 8  
9, 15  
3
I
Ground connection for VCC  
Ground connection for VISO  
Input channel A  
OUTB  
NC  
4
I
Output channel B  
Not connected  
5
O
O
NC  
6
Not connected  
NC  
10  
12  
14  
13  
Not connected  
NC  
Not connected  
OUTA  
INB  
Output channel A  
Input channel B  
VISO selection pin.  
VISO = 5 V when SEL is connected to VISO  
VISO = 3.3 V, when SEL is connected to GND2 or left floating. For more information see the Device Functional  
Modes.  
.
SEL  
11  
I
VCC  
1
Supply voltage  
VISO  
16  
Isolated supply voltage determined by SEL pin  
Copyright © 2017–2019, Texas Instruments Incorporated  
5
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
(1)(2)  
See  
MIN  
–0.5  
–0.5  
MAX  
UNIT  
V
VCC  
Supply voltage  
6
6
VISO  
Isolated supply voltage  
V
VCC + 0.5,  
VIO  
Voltage at INx, OUTx, SEL pins  
–0.5  
–15  
V
VISO + 0.5(3)  
IO  
Maximum output current through data channels  
Junction temperature  
15  
mA  
°C  
TJ  
150  
150  
Tstg  
Storage temperature  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values except differential I/O bus voltages are with respect to the local ground pin (GND1 or GND2) and are peak voltage  
values.  
(3) This value depends on whether the pin is located on the VCC or VISO side. The maximum voltage at the I/O pins should not exceed 6 V.  
7.2 ESD Ratings  
VALUE  
±2000  
±1000  
±8000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Contact discharge per IEC 61000-4-2; Isolation barrier withstand test(3)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.  
7.3 Recommended Operating Conditions  
MIN  
3
NOM  
MAX  
UNIT  
VCC  
IOH  
Supply voltage  
5.5  
V
VSO(1) = 5 V  
VSO = 3.3 V  
VSO = 5 V  
–4  
–2  
High level output current(2)  
mA  
mA  
4
2
IOL  
Low level output current(2)  
VSO = 3.3 V  
VIH  
VIL  
DR  
TA  
High-level input voltage  
Low-level input voltage  
Data rate  
0.7 × VSI  
0
VSI  
V
V
0.3 × VSI  
100  
Mbps  
°C  
Ambient temperature  
–40  
125  
(1) VSI is the input side supply, VSO is the output side supply  
(2) This current is for data output channel.  
6
Copyright © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
7.4 Thermal Information  
ISOW7821  
THERMAL METRIC(1)  
DWE (SOIC)  
16 PINS  
56.8  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
15.6  
28.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
2.4  
ΨJB  
28.5  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Power Ratings  
VCC = 5.5 V, IISO = 110 mA, TJ = 150°C, TA 80°C, CL = 15 pF, input a 50-MHz 50% duty-cycle square wave  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.16  
0.58  
0.58  
UNIT  
W
PD  
Maximum power dissipation (both sides)  
Maximum power dissipation (side-1)  
Maximum power dissipation (side-2)  
PD1  
PD2  
W
W
Copyright © 2017–2019, Texas Instruments Incorporated  
7
 
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
UNIT  
7.6 Insulation Specifications  
PARAMETER  
TEST CONDITIONS  
VALUE  
GENERAL  
CLR  
External clearance(1)  
External creepage(1)  
Shortest terminal-to-terminal distance through air  
>8  
>8  
mm  
mm  
Shortest terminal-to-terminal distance across the  
package surface  
CPG  
Minimum internal gap (internal clearance – capacitive  
signal isolation)  
> 21  
DTI  
CTI  
Distance through the insulation  
µm  
V
Minimum internal gap (internal clearance –  
transformer power isolation)  
>120  
Comparative tracking index  
Material group  
DIN EN 60112 (VDE 0303-11); IEC 60112  
According to IEC 60664-1  
> 600  
I
Rated mains voltage 300 VRMS  
Rated mains voltage 600 VRMS  
Rated mains voltage 1000 VRMS  
I-IV  
I-IV  
I-III  
Overvoltage category per IEC 60664-1  
DIN VDE V 0884-11:2017-01(2)  
Maximum repetitive peak isolation  
VIORM  
AC voltage (bipolar)  
1414  
VPK  
voltage  
AC voltage; Time dependent dielectric breakdown  
(TDDB) Test; See 34  
1000  
1414  
7071  
VRMS  
VDC  
VPK  
VIOWM  
Maximum working isolation voltage  
DC voltage  
VTEST = VIOTM; t = 60 s (qualification);  
VTEST = 1.2 × VIOTM; t = 1 s (100% production)  
VIOTM  
VIOSM  
Maximum transient isolation voltage  
Maximum surge isolation voltage(3)  
Test method per IEC 62368-1, 1.2/50 µs waveform,  
VTEST = 1.6 × VIOSM = 10000 VPK (qualification)  
6250  
VPK  
Method a, after input/output safety test subgroup 2/3,  
Vini = VIOTM, tini = 60 s;  
5  
Vpd(m) = 1.2 × VIORM = 1697 VPK, tm = 10 s  
Method a, after environmental tests subgroup 1,  
Vini = VIOTM, tini = 60 s;  
Vpd(m) = 1.6 × VIORM = 2263 VPK, tm = 10 s  
qpd  
Apparent charge(4)  
pC  
5  
5  
Method b1, at routine test (100% production) and  
preconditioning (type test), Vini = 1.2 × VIOTM  
,
tini = 1 s; Vpd(m) = 1.875 × VIORM = 2652 VPK, tm = 1 s  
VIO = 0.4 × sin (2πft), f = 1 MHz  
VIO = 500 V, TA = 25°C  
CIO  
RIO  
Barrier capacitance, input to output(5)  
Insulation resistance(5)  
~3.5  
> 1012  
> 1011  
> 109  
pF  
VIO = 500 V, 100°C TA 125°C  
VIO = 500 V, TS = 150°C  
Ω
Pollution degree  
Climatic category  
2
40/125/21  
UL 1577  
VTEST = VISO(UL), t = 60 s (qualification),  
VTEST = 1.2 × VISO(UL) = 6000 VRMS, t = 1 s (100%  
production)  
VISO(UL)  
Withstand isolation voltage  
5000  
VRMS  
(1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care  
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on  
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.  
Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.  
(2) This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by  
means of suitable protective circuits.  
(3) Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.  
(4) Apparent charge is electrical discharge caused by a partial discharge (pd).  
(5) All pins on each side of the barrier tied together creating a two-terminal device.  
8
Copyright © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
7.7 Safety-Related Certifications  
VDE  
CSA  
UL  
CQC  
TUV  
Certified according to EN  
61010-1:2010/A1:2019,  
EN 60950-  
1:2006/A2:2013 and EN  
62368-1:2014  
Certified according to IEC  
60950-1, IEC 62368-1, and IEC 1577 Component  
60601-1  
Recognized under UL  
Certified according to DIN  
VDE V 0884-11:2017-01  
Certified according to  
GB 4943.1-2011  
Recognition Program  
Reinforced insulation per CSA  
60950-1-07+A1+A2, IEC  
60950-1 2nd Ed.+A1+A2, CSA  
62368-1-14 and IEC 62368-1  
2nd Ed., 800 VRMS maximum  
working voltage (pollution  
degree 2, material group I);  
2 MOPP (Means of Patient  
Protection) per CSA 60601-1:14 VRMS  
and IEC 60601-1 Ed. 3+A1, 250  
VRMS maximum working  
voltage;  
5000 VRMS Reinforced  
insulation per EN 61010-  
1:2010/A1:2019 up to  
working voltage of 600  
Reinforced insulation;  
Maximum transient  
isolation voltage, 7071  
Reinforced Insulation,  
Altitude 5000 m,  
Tropical Climate, 700  
VRMS maximum  
VPK  
;
VRMS;  
Single protection, 5000  
Maximum repetitive peak  
isolation voltage, 1414  
5000 VRMS Reinforced  
insulation per EN 60950-  
1:2006/A2:2013 and EN  
62368-1:2014 up to  
working voltage of 800  
VRMS  
VPK  
;
working voltage;  
Maximum surge isolation  
voltage, 6250 VPK  
Temperature rating is 90°C for  
reinforced insulation and 125°C  
for basic insulation; see  
certificate for details.  
Certificate number:  
40040142  
Master contract number:  
220991  
File number: E181974 Certificate number:  
CQC15001121716  
Client ID number: 77311  
7.8 Safety Limiting Values  
Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R
θJA = 56.8°C/W, VI = 5.5 V, TJ = 150°C,  
400  
TA = 25°C, see 1  
θJA = 56.8°C/W, VI = 3.6 V, TJ = 150°C,  
TA = 25°C, see 1  
θJA = 56.8°C/W, TJ = 150°C, TA = 25°C,  
see 2  
IS  
Safety input, output, or supply current(1)  
mA  
R
611  
R
PS  
TS  
Safety input, output, or total power(1)  
Maximum safety temperature(1)  
2200  
150  
mW  
°C  
(1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS  
and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be  
exceeded. These limits vary with the ambient temperature, TA.  
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for  
leaded surface-mount packages. Use these equations to calculate the value for each parameter:  
TJ = TA + RθJA × P, where P is the power dissipated in the device.  
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.  
PS = IS × VI, where VI is the maximum input voltage.  
Copyright © 2017–2019, Texas Instruments Incorporated  
9
 
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.9 Electrical Characteristics—5-V Input, 5-V Output  
VCC = 5 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
External IISO = 0 to 50 mA  
MIN  
4.75  
4.5  
TYP  
5.07  
5.07  
2
MAX  
UNIT  
V
5.43  
5.43  
VISO  
Isolated supply voltage  
External IISO = 0 to 130 mA  
IISO = 50 mA, VCC = 4.5 V to 5.5 V  
IISO = 0 to 130 mA  
VISO(LINE)  
VISO(LOAD)  
DC line regulation  
DC load regulation  
mV/V  
1%  
IISO = 130 mA, CLOAD = 0.1 µF || 10 µF;  
VI = VSI (ISOW7821); VI = 0 V (ISOW7821  
with F suffix)  
Efficiency at maximum load  
current  
EFF  
53%  
Positive-going UVLO threshold  
on VCC, VISO  
VCC+(UVLO)  
VCC–(UVLO)  
VHYS (UVLO)  
2.7  
0.7  
V
V
V
Negative-going UVLO threshold  
on VCC, VISO  
2.1  
UVLO threshold hysteresis on  
VCC, VISO  
0.2  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
VSI  
VSI  
0.3  
0.1  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
VSI  
IIL  
Low level input current  
High level input current  
VIL = 0 at INx or SEL  
VIH = VSI(1) at INx or SEL  
–10  
µA  
µA  
IIH  
10  
(1)  
VSO  
VSO  
VOH  
High level output voltage  
Low level output voltage  
IO = –4 mA, see 24  
V
V
0.4  
0.2  
VOL  
IO = 4 mA, see 24  
0.2  
0.4  
High-level common-mode  
transient immunity  
|CMH|  
VI = VSI, VCM = 1000 V; see 25  
100  
100  
kV/µs  
Low-level common-mode  
transient immunity  
|CML|  
VI = 0 V, VCM = 1000 V; see 25  
kV/µs  
mA  
DC current from supply under  
short circuit on VISO  
ICC_SC  
VISO(RIP)  
VISO shorted to GND2  
137  
100  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.1 µF || 20 µF,  
(pk-pk) IISO = 130 mA  
mV  
(1) VSI= input side supply; VSO= output side supply  
10  
Copyright © 2017–2019, Texas Instruments Incorporated  
 
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
7.10 Supply Current Characteristics—5-V Input, 5-V Output  
VCC = 5 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
No external ILOAD; VI = 0 V (ISOW7821);  
VI = VSI(1) (ISOW7821 with F suffix)  
21  
No external ILOAD; VI = VSI (ISOW7821);  
VI = 0 V (ISOW7821 with F suffix)  
17  
19  
All channels switching with square wave clock  
input of 1 Mbps; CL = 15 pF, No external ILOAD  
ICC  
Current drawn from supply  
mA  
All channels switching with square wave clock  
input of 10 Mbps; CL = 15 pF, No external  
ILOAD  
20  
33  
All channels switching with square wave clock  
input of 100 Mbps; CL = 15 pF, No external  
ILOAD  
VI = 0 V (ISOW7821); VI = VSI (ISOW7821  
with F suffix)  
127  
130  
128  
128  
125  
VI = VSI (ISOW7821); VI = 0 V (ISOW7821  
with F suffix)  
Current available on isolated  
supply  
All channels switching with square wave clock  
input of 1 Mbps; CL = 15 pF  
(2)  
IISO(OUT)  
mA  
All channels switching with square wave clock  
input of 10 Mbps; CL = 15 pF  
All channels switching with square wave clock  
input of 100 Mbps; CL = 15 pF  
(1) VSI= input side supply; VSO= output side supply  
(2) Current available to load should be derated by 2 mA/°C for TA > 80°C.  
Copyright © 2017–2019, Texas Instruments Incorporated  
11  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.11 Electrical Characteristics—5-V Input, 3.3-V Output  
VCC = 5 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
External IISO = 0 to 50 mA  
MIN  
3.13  
3
TYP  
3.34  
3.34  
2
MAX  
UNIT  
V
3.56  
3.56  
VISO  
Isolated supply voltage  
External IISO = 0 to 130 mA  
IISO = 50 mA, VCC = 4.5 V to 5.5 V  
IISO = 10 to 130 mA  
VISO(LINE)  
VISO(LOAD)  
DC line regulation  
DC load regulation  
mV/V  
1%  
IISO = 130 mA, CLOAD = 0.1 µF || 10 µF; VI =  
VSI (ISOW7821); VI = 0 V (ISOW7821 with  
F suffix)  
Efficiency at maximum load  
current  
EFF  
48%  
Positive-going UVLO threshold  
on VCC, VISO  
VCC+(UVLO)  
VCC–(UVLO)  
VHYS (UVLO)  
2.7  
0.7  
V
V
V
Negative-going UVLO threshold  
on VCC, VISO  
2.1  
UVLO threshold hysteresis on  
VCC, VISO  
0.2  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
VSI  
VSI  
0.3  
0.1  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
VSI  
IIL  
Low level input current  
High level input current  
VIL = 0 at INx or SEL  
VIH = VSI(1) at INx or SEL  
–10  
µA  
µA  
IIH  
10  
(1)  
VSO  
VSO  
VOH  
High level output voltage  
Low level output voltage  
IO = –2 mA, see 24  
V
V
0.3  
0.1  
VOL  
IO = 2 mA, see 24  
0.1  
0.3  
High-level common-mode  
transient immunity  
|CMH|  
VI = VSI, VCM = 1000 V; see 25  
100  
100  
kV/µs  
Low-level common-mode  
transient immunity  
|CML|  
VI = 0 V, VCM = 1000 V; see 25  
kV/µs  
mA  
DC current from supply under  
short circuit on VISO  
ICC_SC  
VISO(RIP)  
VISO shorted to GND2  
137  
100  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.1 µF || 20 µF,  
(pk-pk) IISO = 130 mA  
mV  
(1) VSI= input side supply; VSO= output side supply  
12  
Copyright © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
7.12 Supply Current Characteristics—5-V Input, 3.3-V Output  
VCC = 5 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
No external ILOAD; VI = 0 V (ISOW7821);  
VI = VS(1)(ISOW7821 with F suffix)  
17  
No external ILOAD; VI = VSI (ISOW7821);  
VI = 0 V (ISOW7821 with F suffix)  
14  
16  
All channels switching with square wave  
clock input of 1 Mbps; CL = 15 pF, No  
external ILOAD  
ICC  
Current drawn from supply  
mA  
All channels switching with square wave  
clock input of 10 Mbps; CL = 15 pF, No  
external ILOAD  
17  
27  
All channels switching with square wave  
clock input of 100 Mbps; CL = 15 pF, No  
external ILOAD  
VI = 0 V (ISOW7821); VI = VSI (ISOW7821  
with F suffix)  
127  
130  
128  
128  
126  
VI = VSI (ISOW7821); VI = 0 V (ISOW7821  
with F suffix)  
Current available on isolated  
supply  
All channels switching with square wave  
clock input of 1 Mbps; CL= 15 pF  
(2)  
IISO(OUT)  
mA  
All channels switching with square wave  
clock input of 10 Mbps; CL = 15 pF  
All channels switching with square wave  
clock input of 100 Mbps; CL = 15 pF  
(1) VSI= input side supply; VSO= output side supply  
(2) Current available to load should be derated by 2 mA/°C for TA > 105°C.  
Copyright © 2017–2019, Texas Instruments Incorporated  
13  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.13 Electrical Characteristics—3.3-V Input, 3.3-V Output  
VCC = 3.3 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
External IISO = 0 to 30 mA  
MIN  
3.13  
3
TYP  
3.34  
3.34  
2
MAX  
UNIT  
V
3.58  
3.58  
VISO  
Isolated supply voltage  
External IISO = 0 to 75 mA  
IISO = 30 mA, VCC = 3 V to 3.6 V  
IISO = 0 to 75 mA  
VISO(LINE)  
VISO(LOAD)  
DC line regulation  
DC load regulation  
mV/V  
1%  
IISO = 75 mA, CLOAD = 0.1 µF || 10 µF;  
VI = VSI (ISOW7821); VI = 0 V (ISOW7821 with  
F suffix)  
Efficiency at maximum load  
current  
EFF  
47%  
Positive-going UVLO threshold  
on VCC, VISO  
VCC+(UVLO)  
VCC–(UVLO)  
VHYS (UVLO)  
2.7  
0.7  
V
V
V
Negative-going UVLO threshold  
on VCC, VISO  
2.1  
UVLO threshold hysteresis on  
VCC, VISO  
0.2  
VITH  
VITL  
Input pin rising threshold  
Input pin falling threshold  
VSI  
VSI  
0.3  
0.1  
Input pin threshold hysteresis  
(INx)  
VI(HYS)  
VSI  
IIL  
Low level input current  
High level input current  
VIL = 0 at INx or SEL  
VIH = VSI(1) at INx or SEL  
–10  
µA  
µA  
IIH  
10  
(1)  
VSO  
VSO  
VOH  
High level output voltage  
Low level output voltage  
IO = –2 mA, see 24  
V
V
0.3  
0.1  
VOL  
IO = 2 mA, see 24  
0.1  
0.3  
High-level common-mode  
transient immunity  
|CMH|  
VI = VSI, VCM = 1000 V; see 25  
100  
100  
kV/µs  
Low-level common-mode  
transient immunity  
|CML|  
VI = 0 V, VCM = 1000 V; see 25  
kV/µs  
mA  
DC current from supply under  
short circuit on VISO  
ICC_SC  
VISO(RIP)  
VISO shorted to GND2  
143  
90  
Output ripple on isolated supply 20-MHz bandwidth, CLOAD = 0.1 µF || 20 µF,  
(pk-pk) IISO = 75 mA  
mV  
(1) VSI= input side supply; VSO= output side supply  
14  
Copyright © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
7.14 Supply Current Characteristics—3.3-V Input, 3.3-V Output  
VCC = 3.3 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
No external ILOAD; VI = 0 V (ISOW7821);  
VI = VS(1) (ISOW7821 with F suffix)  
24  
No external ILOAD; VI = VSI (ISOW7821);  
VI = 0 V (ISOW7821 with F suffix)  
19  
22  
All channels switching with square wave clock  
input of 1 Mbps; CL = 15 pF, No external ILOAD  
ICC  
Current drawn from supply  
mA  
All channels switching with square wave clock  
input of 10 Mbps; CL = 15 pF, No external  
ILOAD  
22  
32  
All channels switching with square wave clock  
input of 100 Mbps; CL = 15 pF, No external  
ILOAD  
VI = 0 V (ISOW7821);  
VI = VSI (ISOW7821 with F suffix)  
72  
75  
75  
73  
71  
VI = VSI(ISOW7821);  
VI = 0 V (ISOW7821 with F suffix)  
Current available on isolated  
supply  
All channels switching with square wave clock  
input of 1 Mbps; CL= 15 pF  
(2)  
IISO(OUT)  
mA  
All channels switching with square wave clock  
input of 10 Mbps; CL = 15 pF  
All channels switching with square wave clock  
input of 100 Mbps; CL = 15 pF  
(1) VSI= input side supply; VSO= output side supply  
(2) Current available to load should be derated by 2 mA/°C for TA > 115°C.  
Copyright © 2017–2019, Texas Instruments Incorporated  
15  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.15 Switching Characteristics—5-V Input, 5-V Output  
VCC = 5 V ±10%, SEL shorted to VISO (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
13  
MAX  
UNIT  
ns  
tPLH, tPHL Propagation delay time  
See 24  
17.6  
4.7  
4
PWD  
tSK(o)  
tSK(p-p)  
tr, tf  
Pulse width distortion(1) |tPHL – tPLH  
|
Channel-channel output skew time(2)  
Part-part skew time(3)  
0.6  
ns  
Same-direction channels  
ns  
4.5  
4
ns  
Output signal rise and fall times  
2
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.16 Switching Characteristics—5-V Input, 3.3-V Output  
VCC = 5 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
14  
MAX  
19.7  
4.4  
4
UNIT  
ns  
tPLH, tPHL Propagation delay time  
See 24  
PWD  
tSK(o)  
tSK(p-p)  
tr, tf  
Pulse width distortion(1) |tPHL – tPLH  
|
Channel-channel output skew time(2)  
Part-part skew time(3)  
0.6  
ns  
Same-direction channels  
ns  
4.5  
4
ns  
Output signal rise and fall times  
1
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
7.17 Switching Characteristics—3.3-V Input, 3.3-V Output  
VCC = 3.3 V ±10%, SEL shorted to GND2 (over recommended operating conditions, unless otherwise specified)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
14.5  
0.6  
MAX  
20.2  
4.4  
4
UNIT  
ns  
tPLH, tPHL Propagation delay time  
See 24  
PWD  
tSK(o)  
tSK(p-p)  
tr, tf  
Pulse width distortion(1) |tPHL – tPLH  
|
Channel-channel output skew time(2)  
Part-part skew time(3)  
ns  
Same-direction channels  
ns  
4.5  
3
ns  
Output signal rise and fall times  
1
ns  
(1) Also known as pulse skew.  
(2) tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same  
direction while driving identical loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same  
direction while operating at identical supply voltages, temperature, input signals and loads.  
16  
版权 © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
7.18 Insulation Characteristics Curves  
2500  
2000  
1500  
1000  
500  
700  
VCC = 3.6 V  
VCC = 5.5 V  
600  
500  
400  
300  
200  
100  
0
0
0
20  
40  
60  
80  
100  
120  
140  
160  
0
50  
100  
Ambient Temperature (èC)  
150  
200  
Ambient Temperature (èC)  
D001  
D002  
1. Thermal Derating Curve for Safety Limiting Current per  
2. Thermal Derating Curve for Safety Limiting Power per  
VDE  
VDE  
版权 © 2017–2019, Texas Instruments Incorporated  
17  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
7.19 Typical Characteristics  
3.45  
5.2  
5.15  
5.1  
VCC = 3.3 V  
VCC = 5 V  
3.43  
3.41  
3.39  
3.37  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
5.05  
5
0
20  
40  
60  
Load Current (mA)  
80  
100  
120  
140  
0
20  
40  
60  
Load Current (mA)  
80  
100  
120  
140  
VISO = 3.3 V  
TA = 25°C  
VISO = 5 V  
TA = 25°C  
3. Isolated Supply Voltage (VISO) vs Load Current (IISO  
)
4. Isolated Supply Voltage (VISO) vs Load Current (IISO)  
260  
100  
90  
80  
70  
60  
50  
40  
30  
210  
160  
110  
20  
60  
VCC = 3.3 V, VISO = 3.3 V  
VCC = 5 V, VISO = 3.3 V  
VCC = 5 V, VISO = 5 V  
VCC = 3.3 V, VISO = 3.3 V  
VCC = 5 V, VISO = 3.3 V  
VCC = 5 V, VISO = 5 V  
10  
0
10  
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
D005  
TA = 25°C  
TA = 25°C  
6. Efficiency vs Load Current (IISO  
)
5. ISOW7821 Supply Current (ICC) vs Load Current (IISO  
)
640  
3.4  
3.35  
3.3  
560  
480  
400  
320  
240  
160  
3.25  
VCC = 3.3 V, VISO = 3.3 V  
VCC = 5 V, VISO = 3.3 V  
VCC = 5 V, VISO = 5 V  
80  
0
3.2  
0
20  
40  
60  
80  
Load Current (mA)  
100  
120  
140  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Free-Air Temperature (èC)  
D007  
D008  
TA = 25°C  
No IISO load  
VCC = 5 V  
VISO = 3.3 V  
7. Power Dissipation vs Load Current (IISO  
)
8. 3.3-V Isolated Supply Voltage (VISO) vs Free-Air  
Temperature  
18  
版权 © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
5.14  
130  
125  
120  
115  
110  
105  
100  
95  
800  
700  
600  
500  
400  
300  
200  
5.09  
5.04  
4.99  
4.94  
100  
Short-circuit Supply Current  
Short-circuit Power  
0
90  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
Input Supply Voltage (V)  
5
5.2 5.4  
Free-Air Temperature (èC)  
No IISO load  
VCC = 5 V  
VISO = 5 V  
VISO shorted to GND2  
TA = 25°C  
9. 5-V Isolated Supply Voltage (VISO) vs Free-Air  
10. Short-Circuit Supply Current (ICC) and Power (P) vs  
Supply Voltage (VCC  
Temperature  
)
40  
35  
30  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
ICC at VCC = 3.3 V, VISO = 3.3 V  
ICC at VCC = 5 V, VISO = 3.3 V  
ICC at VCC = 5 V, VISO = 5 V  
ICC at VCC = 3.3 V, VISO = 3.3 V  
ICC at VCC = 5 V, VISO = 3.3 V  
ICC at VCC = 5 V, VISO = 5 V  
0
0
0
25  
50  
Data Rate (Mbps)  
75  
100  
0
25  
50  
Data Rate (Mbps)  
75  
100  
D001  
D002  
CL = 15 pF  
TA = 25°C  
No IISO load  
CL = no load  
TA = 25°C  
No IISO load  
11. Supply Current vs Data Rate  
12. Supply Current vs Data Rate  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2
17  
16  
15  
14  
13  
12  
11  
10  
9
tPHL at VCC = 3.3 V, VISO = 3.3 V  
tPLH at VCC = 3.3 V, VISO = 3.3 V  
tPHL at VCC = 5 V, VISO = 3.3 V  
tPLH at VCC = 5 V, VISO = 3.3 V  
tPHL at VCC = 5 V, VISO = 5 V  
tPLH at VCC = 5 V, VISO = 5 V  
VCC Rising  
VCC Falling  
8
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Free-Air Temperature (èC)  
Free-Air Temperature (èC)  
13. Power-Supply Undervoltage Threshold vs Free Air  
14. Propagation Delay Time vs Free-Air Temperature  
Temperature  
版权 © 2017–2019, Texas Instruments Incorporated  
19  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Typical Characteristics (接下页)  
6
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5
4
3
2
1
VSO = 3.3 V  
VSO = 5 V  
VSO = 3.3 V  
VSO = 5 V  
0
-15  
-10  
High-Level Output Current (mA)  
-5  
0
0
5 10  
Low-Level Output Current (mA)  
15  
D015  
D016  
TA = 25°C  
TA = 25°C  
15. High-Level Output Voltage vs High-Level Output  
16. Low-Level Output Voltage vs Low-Level Output  
Current  
Current  
VISO = 3.3 V (50 mV/div)(1)  
ICC (40 mA/div)  
IISO  
110 mA  
VISO = 3.3 V (1 V/div)  
10 mA  
10 mA  
2
100 µs/div  
2 ms/div  
VCC = 5 V  
VISO = 3.3 V  
VCC = 5 V  
VISO = 3.3 V  
1. Negligible undershoot and overshoot because of load transient  
Current spike is because of charging the input supply capacitor  
17. 10-mA to 110-mA Load Transient Response  
18. Soft Start at 10-mA Load  
ICC (40 mA/div)  
ICC (40 mA/div)  
VISO = 5 V (1 V/div)  
VISO = 3.3 V (1 V/div)  
2 ms/div  
2 ms/div  
VCC = 5 V  
VISO = 3.3 V  
VCC = 5 V  
VISO = 5 V  
Input current spike is because of charging the input supply  
decoupling capacitor  
Input current spike is because of charging the input supply  
decoupling capacitor  
19. Soft Start at 120-mA Load  
20. Soft Start at 10-mA Load  
20  
版权 © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
Typical Characteristics (接下页)  
ICC (40 mA/div)  
VISO = 5 V (20 mV/div)  
VISO = 5 V (1 V/div)  
2 ms/div  
5 µs/div  
VCC = 5 V  
VISO = 5 V  
VCC = 5 V  
VISO = 5 V  
Input current spike is because of charging the input supply  
decoupling capacitor  
21. Soft Start at 130-mA Load  
22. VISO Ripple Voltage at 130 mA  
VISO = 3.3 V (20 mV/div)  
5 µs/div  
VCC = 5 V  
VISO = 3.3 V  
23. VISO Ripple Voltage at 130 mA  
版权 © 2017–2019, Texas Instruments Incorporated  
21  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
8 Parameter Measurement Information  
V
SI  
V
50%  
I
50%  
IN  
OUT  
0 V  
t
t
PHL  
PLH  
Input Generator  
(See Note A)  
C
L
V
I
V
O
50  
V
See Note B  
OH  
90%  
10%  
50%  
50%  
V
O
V
OL  
t
r
t
f
The input pulse is supplied by a generator having the following characteristics: PRR 50 kHz, 50% duty cycle, tr 3  
ns, tf 3 ns, ZO = 50 Ω. At the input, 50-Ω resistor is required to terminate the input generator signal. The resistor is  
not required in the actual application.  
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
24. Switching Characteristics Test Circuit and Voltage Waveforms  
5 V  
5 V  
V
SO  
V
SI  
10 F || 0.1 µF  
C3  
C4  
10 F  
0.1 F  
GNDI  
IN  
OUT  
C
L
GNDI  
GNDO  
+
œ
V
CM  
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.  
Optional 100 µF capacitor can be added between VCC and GND1; refer to Power Supply Recommendations.  
Pass-fail criteria: Outputs must remain stable.  
25. Common-Mode Transient Immunity Test Circuit  
22  
版权 © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
9 Detailed Description  
9.1 Overview  
The ISOW7821 device comprises a high-efficiency, low-emissions isolated DC-DC converter and two high-speed  
isolated data channels. 26 shows the functional block diagram of the ISOW7821 device.  
The integrated DC-DC converter uses switched mode operation and proprietary circuit techniques to reduce  
power losses and boost efficiency. Specialized control mechanisms, clocking schemes, and the use of a high-Q  
on-chip transformer provide high efficiency and low radiated emissions. The integrated transformer uses thin film  
polymer as the insulation barrier.  
The VCC supply is provided to the primary power controller that switches the power stage connected to the  
integrated transformer. Power is transferred to the secondary side, rectified and regulated to either 3.3 V or 5 V,  
depending on the SEL pin. The output voltage, VISO, is monitored and feedback information is conveyed to the  
primary side through a dedicated isolation channel. The duty cycle of the primary switching stage is adjusted  
accordingly. The fast feedback control loop of the power converter ensures low overshoots and undershoots  
during load transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the VCC and VISO supplies  
which ensures robust system performance under noisy conditions. An integrated soft-start mechanism ensures  
controlled inrush current and avoids any overshoot on the output during power up.  
The integrated signal-isolation channels employ an ON-OFF keying (OOK) modulation scheme to transmit the  
digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high-frequency carrier across  
the barrier to represent one state and sends no signal to represent the other state. The receiver demodulates the  
signal after signal conditioning and produces the output through a buffer stage. The signal-isolation channels  
incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions  
from the high frequency carrier and IO buffer switching. 27 shows a functional block diagram of a typical  
signal isolation channel.  
The ISOW7821 device is suitable for applications that have limited board space and require more integration.  
These devices are also suitable for very-high voltage applications, where power transformers meeting the  
required isolation specifications are bulky and expensive.  
9.2 Functional Block Diagram  
Transformer  
V
CC  
V
ISO  
Power  
Controller  
Transformer  
Driver  
Rectifier  
UVLO, Soft-start  
Thermal  
Shutdown,  
UVLO, Soft-start  
FB Channel (Tx)  
FB Controller  
I/O Channels  
FB Channel (Rx)  
V
ref  
I/O Channels  
Data Channels  
(2)  
Data Channels  
(2)  
Isolation Barrier  
Copyright © 2017, Texas Instruments Incorporated  
26. ISOW7821 Block Diagram  
版权 © 2017–2019, Texas Instruments Incorporated  
23  
 
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Functional Block Diagram (接下页)  
Transmitter  
Receiver  
OOK  
Modulation  
TX IN  
SiO based  
2
RX OUT  
TX Signal  
Conditioning  
RX Signal  
Conditioning  
Envelope  
Detection  
Capacitive  
Isolation  
Barrier  
Emissions  
Reduction  
Techniques  
Oscillator  
27. Conceptual Block Diagram of a Capacitive Data Channel  
28 shows a conceptual detail of how the OOK scheme works.  
TX IN  
Carrier signal through  
isolation barrier  
RX OUT  
28. On-Off Keying (OOK) Based Modulation Scheme  
24  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
9.3 Feature Description  
1 provides an overview of the device features.  
1. Device Features  
DEFAULT OUTPUT  
RATED ISOLATION(2)  
STATE  
PART NUMBER(1)  
CHANNEL DIRECTION  
MAXIMUM DATA RATE  
ISOW7821  
High  
1 forward, 1 reverse  
100 Mbps  
5000 VRMS / 7071 VPK  
Low  
ISOW7821F  
(1) The F suffix is part of the orderable part number. See the 机械、封装和可订购信息 section for the full orderable part number.  
(2) For detailed isolation ratings, see the Safety-Related Certifications table.  
9.3.1 Electromagnetic Compatibility (EMC) Considerations  
The ISOW7821 device uses emissions reduction schemes for the internal oscillator and advanced internal layout  
scheme to minimize radiated emissions at the system level.  
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge  
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances  
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level  
performance and reliability depends, to a large extent, on the application board design and layout, the ISOW7821  
device incorporates many chip-level design improvements for overall system robustness. Some of these  
improvements include:  
Robust ESD protection cells for input and output signal pins and inter-chip bond pads.  
Low-resistance connectivity of ESD cells to supply and ground pins.  
Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.  
Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance  
path.  
PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic  
SCRs.  
Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.  
9.3.2 Power-Up and Power-Down Behavior  
The ISOW7821 device has built-in UVLO on the VCC and VISO supplies with positive-going and negative-going  
thresholds and hysteresis. When the VCC voltage crosses the positive-going UVLO threshold during power-up,  
the DC-DC converter initializes and the power converter duty cycle is increased in a controlled manner. This soft-  
start scheme limits primary peak currents drawn from the VCC supply and charges the VISO output in a controlled  
manner, avoiding overshoots. Outputs of the isolated data channels are in an indeterminate state until the VCC or  
VISO voltage crosses the positive-going UVLO threshold. When the UVLO positive-going threshold is crossed on  
the secondary side VISO pin, the feedback data channel starts providing feedback to the primary controller. The  
regulation loop takes over and the isolated data channels go to the normal state defined by the respective input  
channels or their default states. Design should consider a sufficient time margin (typically 10 ms with 10-µF load  
capacitance) to allow this power up sequence before valid data channels are accounted for system functionality.  
When VCC power is lost, the primary side DC-DC controller turns off when the UVLO lower threshold is reached.  
The VISO capacitor then discharges depending on the external load. The isolated data outputs on the VISO side  
are returned to the default state for the brief time that the VISO voltage takes to discharge to zero.  
9.3.3 Current Limit, Thermal Overload Protection  
The ISOW7821 device is protected against output overload and short circuit. Output voltage starts dropping  
when the power converter is not able to deliver the current demanded during overload conditions. For a VISO  
short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage.  
版权 © 2017–2019, Texas Instruments Incorporated  
25  
 
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
Thermal protection is also integrated to help prevent the device from getting damaged during overload and short-  
circuit conditions on the isolated output. Under these conditions, the device temperature starts to increase. When  
the temperature goes above 180°C, thermal shutdown activates and the primary controller turns off which  
removes the energy supplied to the VISO load, which causes the device to cool off. When the junction  
temperature goes below 150°C, the device starts to function normally. If an overload or output short-circuit  
condition prevails, this protection cycle is repeated. Care should be taken in the design to prevent the device  
junction temperatures from reaching such high values.  
9.4 Device Functional Modes  
2 lists the supply configurations for these devices.  
2. Supply Configurations  
SEL INPUT  
VCC  
5 V  
VISO  
5 V  
Shorted to VISO  
Shorted to GND2 or floating  
Shorted to GND2 or floating  
5 V  
3.3 V(1)  
3.3 V  
3.3 V(2)  
(1) VCC = 3.3 V, SEL shorted to VISO (essentially VISO = 5 V) is not recommended mode of configuration.  
(2) The SEL pin has a weak pulldown internally. Therefore for VISO = 3.3 V, the SEL pin should be  
strongly connected to the GND2 pin in noisy system scenarios.  
3 lists the functional modes for ISOW7821 device.  
3. Function Table(1)  
INPUT SUPPLY  
INPUT  
(INx)  
OUTPUT  
(OUTx)  
COMMENTS  
(VCC  
)
H
L
H
Output channel assumes the logic state of its input  
L
PU  
Default mode(2): When INx is open, the corresponding  
output channel assumes logic based on default output  
mode of selected version  
Open  
x
Default  
PD  
Undetermined(3)  
(1) PU = Powered up (VCC 2.7 V); PD = Powered down (VCC < 2.1 V); X = Irrelevant; H = High level; L = Low level, VCC = Input-side  
supply  
(2) In the default condition, the output is high for ISOW7821 and low for ISOW7821 with the F suffix.  
(3) The outputs are in an undetermined state when VCC < 2.1 V.  
26  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
9.4.1 Device I/O Schematics  
Input (Devices without F suffix)  
Input (Devices with F suffix)  
V
V
V
V
V
V
V
CC  
CC  
CC  
CC  
CC  
CC  
CC  
1.5 M  
985 ꢀ  
985 ꢀ  
INx  
INx  
1.5 Mꢀ  
SEL Pin  
Output  
V
ISO  
V
V
ISO  
V
ISO  
ISO  
~20 ꢀ  
1970 ꢀ  
OUTx  
SEL  
2 Mꢀ  
29. Device I/O Schematics  
版权 © 2017–2019, Texas Instruments Incorporated  
27  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
The ISOW7821 high-performance, dual channel digital isolator with integrated DC-DC converter. Typically digital  
isolators require two power supplies isolated from each other to power up both sides of device. Due to the  
integrated DC-DC converter in the ISOW7821 device, the isolated supply is generated inside the device that can  
be used to power isolated side of the device and peripherals on isolated side, thus saving board space. The  
ISOW7821 device uses single-ended CMOS-logic switching technology. When designing with digital isolators,  
keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific  
interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator  
is typically placed between the data controller (that is a microcontroller or UART), and a data converter or a line  
transceiver, regardless of the interface type or standard.  
The ISOW7821 device is suitable for applications that have limited board space and desire more integration.  
These devices are also suitable for very high voltage applications, where power transformers meeting the  
required isolation specifications are bulky and expensive.  
10.2 Typical Application  
30 shows the typical schematic for CAN isolation.  
0.1 F  
22 F  
22 F  
0.1 F  
3.3VIN  
VISO  
SEL  
VCC  
3.3VOUT  
EN1  
DVCC  
MCU  
DVSS  
Vcc  
Tx  
INA  
OUTA  
TXD  
CANH  
ISOW7821  
CAN  
Transceiver  
CAN Bus  
CANL  
RXD  
INB  
GND  
Rx  
OUTB  
GND1  
GND2  
Copyright © 2017, Texas Instruments Incorporated  
Optional 100 µF capacitor can be added between VCC and GND1; refer to Power Supply Recommendations.  
30. Isolating CAN Bus and Generating Isolated Power for CAN Transceiver  
10.2.1 Design Requirements  
To design with this device, use the parameters listed in 4.  
4. Design Parameters  
PARAMETER  
VALUE  
Input voltage  
3 V to 5.5 V  
Decoupling capacitor between VCC and GND1  
Decoupling capacitor between VISO and GND2  
0.1 µF to 10 µF  
0.1 µF to 10 µF  
28  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
Because of very-high current flowing through the ISOW7821 VCC and VISO supplies, higher decoupling capacitors  
typically provide better noise and ripple performance. Although a 10-µF capacitor is adequate, higher decoupling  
capacitors (such as 47 µF) on both the VCC and VISO pins to the respective grounds are strongly recommended  
to achieve the best performance. Optional 100 µF decoupling capacitor can be added between VCC and GND1  
pins; refer to Power Supply Recommendations for more details.  
10.2.2 Detailed Design Procedure  
The ISOW7821 device only requires external bypass capacitors to operate. These low-ESR ceramic bypass  
capacitors must be placed as close to the chip pads as possible.  
10 F  
10 F  
2 mm Maximum  
from Vcc  
2 mm Maximum  
from VISO  
0.1 F  
0.1 F  
VCC  
VISO  
1
2
3
4
5
6
7
8
16  
GND1  
15  
14  
13  
GND2  
INA  
OUTA  
INB  
OUTB  
12  
11  
SEL  
10  
9
EN1  
GND1  
GND2  
Optional 100 µF capacitor can be added between VCC and GND1; refer to Power Supply Recommendations.  
31. Typical Circuit Hook-Up  
The VCC power-supply input provides power to isolated data channels and to the isolated DC-DC converter. Use  
公式 1 to calculate the total power budget on the primary side.  
ICC = (VISO × IISO) / (η × VCC) + Iinpx  
where  
ICC is the total current required by the primary supply.  
VISO is the isolated supply voltage.  
IISO is the external load on the isolated supply voltage.  
η is the efficiency.  
VCC is the supply voltage.  
Iinpx is the total current drawn for the isolated data channels and power converter when data channels are  
toggling at a specific data rate. This data is shown in the Electrical Characteristics—5-V Input, 5-V Output  
table.  
(1)  
29  
版权 © 2017–2019, Texas Instruments Incorporated  
 
 
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
10.2.3 Application Curve  
ICC (40 mA/div)  
VISO (600 mV/div)  
VCC = 3.3 V  
IISO = 70 mA  
Input current spike is because of charging the input supply decoupling capacitor  
32. Soft-Start Waveform  
10.2.3.1 Insulation Lifetime  
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown  
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal  
device and high voltage applied between the two sides; See 33 for TDDB test setup. The insulation  
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced  
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million  
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation  
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for  
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%  
higher than the specified value.  
34 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based  
on the TDDB data, the intrinsic capability of the insulation is 1000 VRMS with a lifetime of 1184 years.  
A
Vcc 1  
Vcc 2  
Time Counter  
> 1 mA  
DUT  
GND 1  
GND 2  
V
S
Oven at 150 °C  
33. Test Setup for Insulation Lifetime Measurement  
30  
版权 © 2017–2019, Texas Instruments Incorporated  
 
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
34. Insulation Lifetime Projection Data  
11 Power Supply Recommendations  
To help ensure reliable operation at data rates and supply voltages, adequate decoupling capacitors must be  
located as close to supply pins as possible. The input supply must have an appropriate current rating to support  
output load and switching at the maximum data rate required by the end application. For more information, refer  
to the Detailed Design Procedure section.  
ISOW7821 integrates a synchronous, isolated DC/DC converter along with isolated data channels. Due to finite  
efficiency of the integrated micro-transformer, for any given output load current, the input current will be  
proportionally higher. Thus, the input supply (VCC) decoupling capacitor also needs to be sufficiently larger than  
the output supply (VISO) decoupling capacitor. It is recommended to have an input capacitor that is larger than  
the output capacitor by at least 100 µF. It is also recommended to have an input power supply to ISOW7821 with  
sufficient current limit to support output load current requirements. For an output load current of 130 mA, it is  
recommended to have >600 mA of input current limit and for lower output load currents, the input current limit  
can be proportionally lower. When the input supply is lower than 2.7 V, the device can go into a protected under-  
voltage lock out (UVLO) state per the UVLO thresholds specified in datasheet. Under UVLO state, it is  
recommended that the output voltage also be discharged to less than 2.1 V. This can be accomplished by having  
an input capacitor that is 100 µF larger compared to the output capacitor. It also helps to have a small load (~10  
mA) at the output capacitor to bleed off any unwanted, residual charge. To make sure ISOW7821 quickly  
transitions from UVLO state to powered state, it is recommended to have an input supply rise time of less than  
10 ms.  
If it is not possible to follow the aforementioned recommendations and frequent brownouts are expected on the  
input supply, then simple secondary side monitoring, protection and reset components can help improve the  
robustness of overall system and power-up or reset mechanisms. More details on output monitoring, protection  
and an example of reset mechanism can be found in Overvoltage protection for isolated DC/DC converter.  
版权 © 2017–2019, Texas Instruments Incorporated  
31  
 
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
A minimum of four layers is required to accomplish a low-EMI PCB design (see 35). Layer stacking should be  
in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane, and low-frequency  
signal layer.  
Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits  
of the data link.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of  
approximately 100 pF/in2.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
Keep decoupling capacitors as close as possible to the VCC and VISO pins.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency  
bypass capacitance significantly.  
Because the device has no thermal pad to dissipate heat, the device dissipates heat through the respective GND  
pins. Ensure that enough copper is present on both GND pins to prevent the internal junction temperature of the  
device from rising to unacceptable levels.  
The ISOW7821 integrated signal and power isolation device simplifies system design and reduces board area.  
The use of low-inductance micro-transformers in the ISOW7821 device necessitates the use of high frequency  
switching, resulting in higher radiated emissions compared to discrete solutions. The ISOW7821 device uses on-  
chip circuit techniques to reduce emissions compared to competing solutions. For further reduction in radiated  
emissions at system level, refer to the Low-Emission Designs With ISOW7841 Integrated Signal and Power  
Isolator application report.  
12.1.1 PCB Material  
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace  
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper  
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and  
stiffness, and the self-extinguishing flammability-characteristics.  
32  
版权 © 2017–2019, Texas Instruments Incorporated  
ISOW7821  
www.ti.com.cn  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
12.2 Layout Example  
Solid supply islands reduce  
inductance because large peak  
currents flow into the VCC pin  
2 mm  
maximum  
from VCC  
2 mm  
maximum  
from VISO  
VCC  
VISO  
16  
1
0.1 F  
GND2  
10 F  
0.1 F  
10 F  
GND1  
2
3
15  
14  
4
13  
5
6
12  
11  
SEL  
EN1  
7
8
10  
9
GND2  
GND1  
Solid ground islands help  
dissipate heat through PCB  
Optional 100 µF capacitor can be added between VCC and GND1; refer to Power Supply Recommendations.  
35. Layout Example  
版权 © 2017–2019, Texas Instruments Incorporated  
33  
ISOW7821  
ZHCSH39B NOVEMBER 2017REVISED SEPTEMBER 2019  
www.ti.com.cn  
13 器件和文档支持  
13.1 器件支持  
13.1.1 开发支持  
如需开发支持,请参阅使用数字隔离器并集成电源的尺寸和成本优化型二进制模块参考设计 TI 设计  
13.2 文档支持  
13.2.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《数字隔离器设计指南》  
德州仪器 (TI)《隔离相关术语》  
德州仪器 (TI)《具有集成直流/直流转换器的 ISOW784x 四通道数字隔离器评估模块》用户指南  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
34  
版权 © 2017–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ISOW7821DWE  
ISOW7821DWER  
ISOW7821FDWE  
ISOW7821FDWER  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
SOIC  
SOIC  
DWE  
DWE  
DWE  
DWE  
16  
16  
16  
16  
40  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
ISOW7821  
2000 RoHS & Green  
40 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
NIPDAU  
NIPDAU  
ISOW7821  
ISOW7821F  
ISOW7821F  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
ISOW7821DWER  
ISOW7821FDWER  
SOIC  
SOIC  
DWE  
DWE  
16  
16  
2000  
2000  
330.0  
330.0  
16.4  
16.4  
10.75 10.7  
10.75 10.7  
2.7  
2.7  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
ISOW7821DWER  
ISOW7821FDWER  
SOIC  
SOIC  
DWE  
DWE  
16  
16  
2000  
2000  
350.0  
350.0  
350.0  
350.0  
43.0  
43.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
ISOW7821DWE  
ISOW7821FDWE  
DWE  
DWE  
SO-MOD  
SO-MOD  
16  
16  
40  
40  
506.98  
506.98  
12.7  
12.7  
4826  
4826  
6.6  
6.6  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DWE0016A  
SOIC - 2.65 mm max height  
S
C
A
L
E
1
.
5
0
0
SOIC  
C
10.63  
9.97  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
14X 1.27  
16  
1
2X  
10.5  
10.1  
NOTE 3  
8.89  
8
9
0.51  
0.31  
16X  
7.6  
7.4  
B
2.65 MAX  
0.25  
C A  
B
NOTE 4  
0.33  
0.10  
TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.3  
0.1  
0 - 8  
1.27  
0.40  
DETAIL A  
TYPICAL  
(1.4)  
4223098/A 07/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm, per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side.  
5. Reference JEDEC registration MS-013.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (2)  
1
16X (1.65)  
SEE  
DETAILS  
SEE  
DETAILS  
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
9
9
8
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
LAND PATTERN EXAMPLE  
SCALE:4X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4223098/A 07/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DWE0016A  
SOIC - 2.65 mm max height  
SOIC  
SYMM  
SYMM  
16X (1.65)  
16X (2)  
1
1
16  
16  
16X (0.6)  
16X (0.6)  
SYMM  
SYMM  
14X (1.27)  
8
14X (1.27)  
8
9
9
(9.75)  
(9.3)  
HV / ISOLATION OPTION  
8.1 mm CLEARANCE/CREEPAGE  
IPC-7351 NOMINAL  
7.3 mm CLEARANCE/CREEPAGE  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:4X  
4223098/A 07/2016  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

ISOW7821DWE

具有集成电源的双通道、1/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7821DWER

具有集成电源的双通道、1/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7821FDWE

具有集成电源的双通道、1/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7821FDWER

具有集成电源的双通道、1/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7840

具有集成电源的四通道、4/0、增强型数字隔离器
TI

ISOW7840DWE

具有集成电源的四通道、4/0、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7840DWER

具有集成电源的四通道、4/0、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7840FDWE

具有集成电源的四通道、4/0、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7840FDWER

具有集成电源的四通道、4/0、增强型数字隔离器 | DWE | 16 | -40 to 125
TI

ISOW7841

具有集成电源的四通道、3/1、增强型数字隔离器
TI

ISOW7841A-Q1

具有集成电源的汽车类、四通道、3/1、增强型数字隔离器
TI

ISOW7841AQDWEQ1

具有集成电源的汽车类、四通道、3/1、增强型数字隔离器 | DWE | 16 | -40 to 125
TI