IWR1843AQGABLR [TI]

IWR1843 Single-Chip 76- to 81-GHz FMCW mmWave Sensor;
IWR1843AQGABLR
型号: IWR1843AQGABLR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

IWR1843 Single-Chip 76- to 81-GHz FMCW mmWave Sensor

文件: 总83页 (文件大小:2286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
IWR1843  
SWRS228 SEPTEMBER 2019  
IWR1843 Single-Chip 76- to 81-GHz FMCW mmWave Sensor  
1 Device Overview  
1.1 Features  
1
• FMCW transceiver  
• Other interfaces available to user application  
– Up to 6 ADC channels  
– Up to 2 SPI channels  
– Up to 2 UARTs  
– Integrated PLL, transmitter, receiver, Baseband,  
and A2D  
– 76- to 81-GHz coverage with 4 GHz available  
bandwidth  
– Four receive channels  
– Three transmit channels  
– Ultra-accurate chirp engine based on fractional-  
N PLL  
– I2C  
– GPIOs  
– 2-lane LVDS interface for raw ADC data and  
debug instrumentation  
• IWR1843 advanced features  
– TX power: 12 dBm  
– Embedded self-monitoring with no host  
processor involvement  
– Complex baseband architecture  
• Built-in calibration and self-test (monitoring)  
– ARM® Cortex®-R4F-based radio control system  
– Built-in firmware (ROM)  
– Embedded interference detection capability  
– Self-calibrating system across frequency and  
temperature  
– Programmable phase rotators in transmit path to  
enable beam forming  
• C674x DSP for FMCW signal processing  
• On-chip Memory: 2MB  
• Cortex-R4F microcontroller for object tracking and  
classification, and interface control  
– Supports autonomous mode (loading user  
application from QSPI flash memory)  
• Integrated peripherals  
– Internal memories With ECC  
• Host interface  
• Power management  
– Built-in LDO network for enhanced PSRR  
– I/Os support dual voltage 3.3 V/1.8 V  
• Clock source  
– Supports external oscillator at 40 MHz  
– Supports externally driven clock (square/sine) at  
40 MHz  
– Supports 40 MHz crystal connection with load  
capacitors  
– CAN and CAN-FD  
• Easy hardware design  
– 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip  
chip BGA package for easy assembly and low-  
cost PCB design  
– Small solution size  
1.2 Applications  
Smart/Automatic door openers Industrial sensor  
for measuring range, velocity, and angle  
Proximity sensing  
Security and surveillance  
Factory automation safety guards  
People counting  
Tank level probing radar  
Displacement sensing  
Field transmitters  
Motion detection  
Traffic monitoring  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
40-MHz  
Crystal  
Power  
Management  
QSPI Flash  
POWER  
SPI  
UART Tx/Rx  
CAN  
Integrated MCU  
ARM Cortex-R4F  
Antenna  
Structure  
RX1  
RX2  
RX3  
RX4  
mmWave/  
Radar  
Front End  
TX1  
TX2  
TX3  
Integrated DSP  
TI C674x  
IWR1843  
Figure 1-1. Autonomous Sensor For Industrial Applications  
1.3 Description  
The IWR1843 device is an integrated single-chip mmWave sensor based on FMCW radar technology  
capable of operating in the 76- to 81-GHz band with up to 4-GHz continuous chirp. The device is built with  
the low-power 45-nm RFCMOS process from Texas Instruments. This solution enables unprecedented  
levels of integration in an extremely small form factor. The IWR1843 is an ideal solution for low-power,  
self-monitored, ultra-accurate radar systems in industrial applications, such as, building automation,  
factory automation, drones, material handling, traffic monitoring, and surveillance.  
The IWR1843 device is a self-contained, single-chip solution that simplifies the implementation of  
mmWave sensors in the band of 76 to 81 GHz. The IWR1843 includes a monolithic implementation of a  
3TX, 4RX system with built-in PLL, and A2D converters. The IWR1843 also integrates a DSP subsystem,  
which contains a TI high-performance C674x DSP for the radar signal processing. The device includes an  
ARM R4F-based processor subsystem, which is responsible for front-end configuration, control, and  
calibration. Simple programming model changes can enable a wide variety of sensor implementation with  
the possibility of dynamic reconfiguration for implementing a multimode sensor. The Hardware Accelerator  
block (HWA) can perform radar processing and can help save MIPS on the DSP for higher-level  
algorithms. Additionally, the device is provided as a complete platform solution including TI reference  
designs, software drivers, sample configurations, API guides, training, and user documentation.  
Device Information(1)  
PART NUMBER  
IWR1843AQGABL (Tray)  
IWR1843AQGABLR (Reel)  
PACKAGE  
FCBGA (161)  
FCBGA (161)  
BODY SIZE  
10.4 mm × 10.4 mm  
10.4 mm × 10.4 mm  
(1) For more information, see Section 10, Mechanical, Packaging, and Orderable Information.  
2
Device Overview  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
1.4 Functional Block Diagram  
Figure 1-2 shows the functional block diagram of the device.  
Serial Flash interface  
QSPI  
Cortex R4F  
@ 200MHz  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Optional External  
MCU interface  
SPI  
(User programmable)  
Digital  
Front-end  
PMIC control  
SPI / I2C  
DCAN  
Prog RAM  
(512kB*)  
Data RAM  
(192kB*)  
Boot  
ROM  
(Decimation  
filter chain)  
Primary communication  
interfaces (automotive)  
CAN-FD  
UARTs  
Radar Hardware Accelerator  
(FFT, Log mag, and others)  
DMA  
Master sub-system  
(Customer programmed)  
Test/  
Debug  
JTAG for debug/  
development  
ADC  
Buffer  
PA  
û-  
û-  
û-  
Mailbox  
High-speed ADC output  
interface (for recording)  
LVDS  
HIL  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x4  
High-speed input for  
hardware-in-loop verification  
C674x DSP  
@ 400/600 MHz  
Radio (BIST)  
processor  
PA  
GPADC  
Osc.  
6
(For RF Calibration  
& Self-test œ TI  
programmed)  
L1P  
(32kB)  
L1D  
(32kB)  
L2 (256kB)  
Prog RAM  
& ROM  
Data  
RAM  
VMON  
Temp  
DMA  
CRC  
Radar Data Memory  
1024 kB*  
Radio processor  
sub-system  
(TI programmed)  
DSP sub-system  
(Customer programmed)  
RF/Analog sub-system  
* Up to 512kB of Radar Data Memory can be switched to the Master R4F program and data RAMs  
Figure 1-2. Functional Block Diagram  
Copyright © 2019, Texas Instruments Incorporated  
Device Overview  
3
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table of Contents  
1
Device Overview ......................................... 1  
1.1 Features .............................................. 1  
1.2 Applications........................................... 1  
1.3 Description............................................ 2  
1.4 Functional Block Diagram ............................ 3  
Revision History ......................................... 5  
Device Comparison ..................................... 6  
3.1 Related Products ..................................... 7  
Terminal Configuration and Functions.............. 8  
4.1 Pin Diagram .......................................... 8  
4.2 Pin Attributes ........................................ 12  
4.3 Signal Descriptions.................................. 21  
Specifications ........................................... 25  
5.1 Absolute Maximum Ratings......................... 25  
5.2 ESD Ratings ........................................ 25  
5.3 Power-On Hours (POH)............................. 26  
5.4 Recommended Operating Conditions............... 27  
5.5 Power Supply Specifications........................ 27  
5.6 Power Consumption Summary...................... 28  
5.7 RF Specification..................................... 30  
5.8 CPU Specifications.................................. 30  
5.10 Timing and Switching Characteristics ............... 32  
Detailed Description ................................... 55  
6.1 Overview ............................................ 55  
6.2 Functional Block Diagram........................... 55  
6.3 Subsystems ......................................... 56  
6.4 Other Subsystems................................... 64  
Monitoring and Diagnostics.......................... 66  
6
2
3
7
8
7.1  
Monitoring and Diagnostic Mechanisms ............ 66  
4
Applications, Implementation, and Layout........ 68  
8.1 Application Information.............................. 68  
8.2 Reference Schematic ............................... 68  
8.3 Layout ............................................... 70  
Device and Documentation Support ............... 73  
9.1 Device Nomenclature ............................... 73  
9.2 Tools and Software ................................. 74  
9.3 Documentation Support ............................. 74  
9.4 Support Resources.................................. 76  
9.5 Trademarks.......................................... 76  
9.6 Electrostatic Discharge Caution..................... 76  
9.7 Glossary ............................................. 76  
5
9
10 Mechanical, Packaging, and Orderable  
Information .............................................. 77  
10.1 Packaging Information .............................. 77  
5.9  
Thermal Resistance Characteristics for FCBGA  
Package [ABL0161] ................................. 31  
4
Table of Contents  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
2 Revision History  
DATE  
REVISION  
NOTES  
September 2019  
*
Initial Release  
Copyright © 2019, Texas Instruments Incorporated  
Revision History  
5
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
3 Device Comparison  
Table 3-1. Device Features Comparison  
FUNCTION  
IWR6843AOP  
IWR6843  
IWR1843  
IWR1642  
IWR1443  
Antenna on Package (AOP)  
Number of receivers  
Number of transmitters  
RF frequency range  
On-chip memory  
Yes  
4
4
4
4
4
3
3
60 to 64 GHz  
1.75MB  
10  
3
60 to 64 GHz  
1.75MB  
10  
3(1)  
76 to 81 GHz  
2MB  
2
76 to 81 GHz  
1.5MB  
5
76 to 81 GHz  
576KB  
15  
Max I/F (Intermediate Frequency) (MHz)  
Max real sampling rate (Msps)  
Max complex sampling rate (Msps)  
Processors  
10  
25  
25  
25  
12.5  
37.5  
12.5  
12.5  
12.5  
6.25  
18.75  
MCU (R4F)  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
DSP (C674x)  
Peripherals  
Serial Peripheral Interface (SPI) ports  
Quad Serial Peripheral Interface (QSPI)  
Inter-Integrated Circuit (I2C) interface  
Controller Area Network (DCAN) interface  
Controller Area Network (CAN-FD) interface  
Trace  
2
2
2
2
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
1
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
PWM  
Hardware In Loop (HIL/DMM)  
GPADC  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
LVDS/Debug  
CSI2  
Hardware accelerator  
1-V bypass mode  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
JTAG  
Product Preview (PP),  
Product  
Advance Information (AI),  
status  
AI(2)  
AI(2)  
PD(3)  
PD(3)  
PD(3)  
or Production Data (PD)  
(1) 3 Tx Simultaneous operation is supported only with 1-V LDO bypass and PA LDO disable mode. In this mode, the 1-V supply needs to  
be fed on the VOUT PA pin.  
(2) ADVANCE INFORMATION for pre-production products; subject to change without notice.  
(3) PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty.  
6
Device Comparison  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
3.1 Related Products  
For information about other devices in this family of products or related products see the links that follow.  
mmWave sensors TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with  
less power using the smallest footprint mmWave sensor portfolio for industrial applications.  
mmWave IWR sensors The Texas Instruments IWR1xxx family of mmWave Sensors are highly  
integrated and built on RFCMOS technology operating in 76- to 81-GHz frequency band.  
The devices have a closed-loop PLL for precise and linear chirp synthesis, includes a built-in  
radio processor (BIST) for RF calibration and safety monitoring. The devices have a very  
small-form factor, low power consumption, and are highly accurate. Industrial applications  
from long range to ultra short range can be realized using these devices.  
Companion products for IWR1843 Review products that are frequently purchased or used in  
conjunction with this product.  
Reference designs for IWR1843 TI Designs Reference Design Library is a robust reference design  
library spanning analog, embedded processor and connectivity. Created by TI experts to  
help you jump-start your system design, all TI Designs include schematic or block diagrams,  
BOMs, and design files to speed your time to market. Search and download designs at  
ti.com/tidesigns.  
Copyright © 2019, Texas Instruments Incorporated  
Device Comparison  
7
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
4 Terminal Configuration and Functions  
4.1 Pin Diagram  
Figure 4-1 shows the pin locations for the 161-pin FCBGA package. Figure 4-2, Figure 4-3, Figure 4-4,  
and Figure 4-5 show the same pins, but split into four quadrants.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
VOUT_  
14APLL  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VOUT  
_14SYNTH  
VIN  
_18CLK  
VIN  
_18VCO  
VSSA  
VSSA  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VSSA  
VSSA  
VBGAP  
VSSA  
CLKP  
CLKM  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
GPACD_5  
SPIA_mosi  
SPIA_clk  
SPIB_mosi  
SYNC_OUT  
GPIO_0  
VSSA  
VIOIN  
_18DIFF  
VIN  
_13RF2  
GPADC_6  
SPIA_miso  
SPIB_clk  
SPIB_miso  
SPIB_cs_n  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
RX4  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
SPIA_cs_n  
VIN_18BB  
VSS  
VSS  
VSS  
VIOIN  
VIN  
_13RF1  
G
H
J
VSSA  
RX3  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VIN_SRAM  
VIN  
_13RF1  
VSSA  
VSS  
VDDIN  
VIN  
_13RF1  
VSSA  
RX2  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GPIO_1  
LVDS_TXP0 LVDS_TXM0  
LVDS_TXP1 LVDS_TXM1  
LVDS_CLKP LVDS_CLKM  
K
L
VSSA  
VIN_18BB  
VSS  
GPIO_2  
VSSA  
RX1  
VSSA  
VSS  
VPP  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
M
N
P
R
VSSA  
MCU  
_CLKOUT  
Warm  
_Reset  
VSSA  
GPADC1  
VSSA  
VSSA  
GPADC2  
GPADC4  
VSSA  
rs232_rx  
SYNC_in  
GPIO_31  
rs232_tx  
GPIO_32  
GPIO_33  
nERROR_OUT nERROR_IN  
TMS  
TCK  
VDDIN  
QSPI_cs_n  
TDI  
QSPI[1]  
QSPI[3]  
QSPI_clk  
TDO  
DMM_SYNC  
GPIO_47  
VDDIN  
SPI_HOST  
_INTR  
PMIC  
_CLKOUT  
GPADC3  
NRESET  
GPIO_34  
VDDIN  
GPIO_36  
GPIO_35  
GPIO_38  
GPIO_37  
VNWA  
VIOIN_18  
VIOIN  
QSPI[0]  
QSPI[2]  
VSS  
Not to scale  
Figure 4-1. Pin Diagram  
8
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
1
2
3
4
5
6
7
8
A
B
C
D
E
F
VSSA  
VOUT_PA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VOUT_PA  
VSSA  
VSSA  
TX1  
VSSA  
VSSA  
TX2  
VSSA  
VSSA  
TX3  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VIN  
_13RF2  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
RX4  
VIN_18BB  
VIN  
_13RF1  
G
VSSA  
VSSA  
VSS  
VSS  
VSS  
Not to scale  
1
3
2
4
Figure 4-2. Top Left Quadrant  
9
10  
11  
12  
13  
14  
15  
VOUT_  
14APLL  
OSC  
_CLKOUT  
A
B
C
D
E
F
VSSA  
VSSA  
VSSA  
VOUT  
_14SYNTH  
VIN  
_18CLK  
VIN  
_18VCO  
VSSA  
VSSA  
VBGAP  
VSSA  
CLKP  
CLKM  
GPACD_5  
SPIA_mosi  
SPIA_clk  
VSSA  
VIOIN  
_18DIFF  
GPADC_6  
SPIA_miso  
SPIB_clk  
VSS  
VSS  
VSS  
SPIA_cs_n  
VSS  
SPIB_mosi  
SYNC_OUT  
VIOIN  
G
VSS  
SPIB_miso  
VIN_SRAM  
Not to scale  
1
3
2
4
Figure 4-3. Top Right Quadrant  
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
9
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
1
2
3
4
5
6
7
8
VIN  
_13RF1  
H
RX3  
VSSA  
VSS  
VIN  
_13RF1  
J
VSSA  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
L
RX2  
VIN_18BB  
VSSA  
VSSA  
VSSA  
VSS  
VSS  
M
N
P
R
RX1  
VSSA  
MCU  
_CLKOUT  
VSSA  
GPADC1  
VSSA  
VSSA  
VSSA  
rs232_rx  
SYNC_in  
GPIO_31  
rs232_tx  
GPIO_32  
GPIO_33  
nERROR_OUT nERROR_IN  
GPADC2  
GPADC4  
GPADC3  
NRESET  
GPIO_34  
GPIO_36  
GPIO_35  
GPIO_38  
GPIO_37  
VDDIN  
Not to scale  
1
3
2
4
Figure 4-4. Bottom Left Quadrant  
10  
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
9
10  
11  
12  
13  
14  
15  
H
J
VSS  
VSS  
GPIO_0  
SPIB_cs_n  
VDDIN  
VSS  
VSS  
VSS  
GPIO_1  
GPIO_2  
VPP  
LVDS_TXP0 LVDS_TXM0  
LVDS_TXP1 LVDS_TXM1  
LVDS_CLKP LVDS_CLKM  
K
L
VSS  
VSS  
LVDS  
_FRCLKP  
LVDS  
_FRCLKM  
M
N
P
R
Warm  
_Reset  
TMS  
TCK  
VDDIN  
QSPI_cs_n  
TDI  
QSPI[1]  
QSPI[3]  
QSPI_clk  
TDO  
DMM_SYNC  
GPIO_47  
VDDIN  
SPI_HOST  
_INTR  
PMIC  
_CLKOUT  
VNWA  
VIOIN_18  
VIOIN  
QSPI[0]  
QSPI[2]  
VSS  
Not to scale  
1
3
2
4
Figure 4-5. Bottom Right Quadrant  
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
11  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
4.2 Pin Attributes  
Table 4-1. Pin Attributes (ABL0161 Package)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
H13  
J13  
GPIO_0  
GPIO_13  
0xFFFFEA04  
0
IO  
IO  
O
O
O
IO  
IO  
O
I
Output Disabled  
Pull Down  
GPIO_0  
1
PMIC_CLKOUT  
ePWM1b  
2
10  
11  
0
ePWM2a  
GPIO_1  
GPIO_2  
GPIO_31  
GPIO_16  
0xFFFFEA08  
Output Disabled  
Pull Down  
GPIO_1  
1
SYNC_OUT  
DMM_MUX_IN  
SPIB_cs_n_1  
SPIB_cs_n_2  
ePWM1SYNCI  
GPIO_26  
2
12  
13  
14  
15  
0
IO  
IO  
I
K13  
0xFFFFEA64  
IO  
IO  
O
O
O
O
O
O
IO  
I
Output Disabled  
Pull Down  
GPIO_2  
1
OSC_CLKOUT  
MSS_uartb_tx  
BSS_uart_tx  
SYNC_OUT  
PMIC_CLKOUT  
TRACE_DATA_0  
GPIO_31  
2
7
8
9
10  
0
R4  
0xFFFFEA7C  
Output Disabled  
Pull Down  
1
DMM0  
2
MSS_uarta_tx  
TRACE_DATA_1  
GPIO_32  
4
IO  
O
IO  
I
P5  
R5  
P6  
GPIO_32  
GPIO_33  
GPIO_34  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
0
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
1
DMM1  
2
TRACE_DATA_2  
GPIO_33  
0
O
IO  
I
1
DMM2  
2
TRACE_DATA_3  
GPIO_34  
0
O
IO  
I
1
DMM3  
2
ePWM3SYNCO  
4
O
12  
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 4-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
R7  
P7  
R8  
P8  
GPIO_35  
GPIO_36  
GPIO_37  
GPIO_38  
TRACE_DATA_4  
GPIO_35  
0xFFFFEA8C  
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0
1
2
4
0
1
2
5
0
1
2
5
0
1
2
5
O
IO  
I
Output Disabled  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
Pull Down  
DMM4  
ePWM2SYNCO  
TRACE_DATA_5  
GPIO_36  
O
O
IO  
I
DMM5  
MSS_uartb_tx  
TRACE_DATA_6  
GPIO_37  
O
O
IO  
I
DMM6  
BSS_uart_tx  
TRACE_DATA_7  
GPIO_38  
O
O
IO  
I
DMM7  
DSS_uart_tx  
O
D14  
B14  
GPIO_39  
GPIO_40  
TRACE_DATA_8  
GPIO_39  
0xFFFFEA9C  
0xFFFFEAA0  
0
1
2
4
5
0
1
2
4
5
0
1
2
4
0
1
2
4
0
1
2
4
5
O
IO  
I
Output Disabled  
Output Disabled  
Pull Down  
DMM8  
CAN_FD_tx  
ePWM1SYNCI  
TRACE_DATA_9  
GPIO_40  
IO  
I
O
IO  
I
Pull Down  
DMM9  
CAN_FD_rx  
ePWM1SYNCO  
TRACE_DATA_10  
GPIO_41  
IO  
O
O
IO  
I
B15  
C9  
GPIO_41  
GPIO_42  
GPIO_43  
0xFFFFEAA4  
0xFFFFEAA8  
0xFFFFEAAC  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
DMM10  
ePWM3a  
O
O
IO  
I
TRACE_DATA_11  
GPIO_42  
DMM11  
ePWM3b  
O
O
IO  
I
C8  
TRACE_DATA_12  
GPIO_43  
DMM12  
ePWM1a  
O
IO  
CAN_tx  
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
13  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 4-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
B9  
GPIO_44  
TRACE_DATA_13  
GPIO_44  
0xFFFFEAB0  
0
1
2
4
5
0
1
2
4
0
1
2
4
0
1
2
0
1
2
0
1
12  
0
0
O
IO  
I
Output Disabled  
Pull Down  
DMM13  
ePWM1b  
O
I
CAN_rx  
B8  
A9  
GPIO_45  
GPIO_46  
TRACE_DATA_14  
GPIO_45  
0xFFFFEAB4  
0xFFFFEAB8  
O
IO  
I
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
DMM14  
ePWM2a  
O
O
IO  
I
TRACE_DATA_15  
GPIO_46  
DMM15  
ePWM2b  
O
O
IO  
I
N15  
N14  
N8  
GPIO_47  
TRACE_CLK  
GPIO_47  
0xFFFFEABC  
0xFFFFEAC0  
0xFFFFEA60  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
Pull Down  
DMM_CLK  
TRACE_CTL  
RESERVED  
DMM_SYNC  
GPIO_25  
DMM_SYNC  
MCU_CLKOUT  
O
IO  
I
IO  
O
O
I
MCU_CLKOUT  
ePWM1a  
N7  
N6  
P9  
nERROR_IN  
nERROR_IN  
nERROR_OUT  
SOP[2]  
0xFFFFEA44  
0xFFFFEA4C  
0xFFFFEA68  
Input  
nERROR_OUT  
PMIC_CLKOUT  
O
I
Hi-Z (Open Drain)  
Output Disabled  
During Power Up  
Pull Down  
GPIO_27  
0
IO  
O
O
O
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
PMIC_CLKOUT  
ePWM1b  
1
11  
12  
0
ePWM2a  
R13  
N12  
QSPI[0]  
QSPI[1]  
GPIO_8  
0xFFFFEA2C  
0xFFFFEA30  
Output Disabled  
Output Disabled  
Pull Down  
Pull Down  
QSPI[0]  
1
SPIB_miso  
GPIO_9  
2
0
QSPI[1]  
1
SPIB_mosi  
SPIB_cs_n_2  
GPIO_10  
2
8
R14  
QSPI[2]  
0xFFFFEA34  
0
Output Disabled  
Pull Down  
QSPI[2]  
1
CAN_FD_tx  
8
O
14  
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 4-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
P12  
R12  
QSPI[3]  
GPIO_11  
0xFFFFEA38  
0
IO  
IO  
I
Output Disabled  
Pull Down  
QSPI[3]  
1
CAN_FD_rx  
GPIO_7  
8
QSPI_clk  
0xFFFFEA3C  
0
IO  
IO  
O
O
IO  
IO  
IO  
IO  
I
Output Disabled  
Pull Down  
QSPI_clk  
1
SPIB_clk  
2
DSS_uart_tx  
GPIO_6  
6
P11  
N4  
QSPI_cs_n  
rs232_rx  
0xFFFFEA40  
0xFFFFEA74  
0
Output Disabled  
Input Enabled  
Pull Up  
Pull Up  
QSPI_cs_n  
SPIB_cs_n  
GPIO_15  
1
2
0
rs232_rx  
1
MSS_uarta_rx  
BSS_uart_tx  
MSS_uartb_rx  
CAN_FD_rx  
I2C_scl  
2
I
6
IO  
IO  
I
7
8
9
IO  
O
O
O
IO  
O
IO  
IO  
IO  
O
IO  
O
O
I
ePWM2a  
10  
11  
12  
0
ePWM2b  
ePWM3a  
N5  
rs232_tx  
GPIO_14  
0xFFFFEA78  
Output Enabled  
rs232_tx  
1
MSS_uarta_tx  
MSS_uartb_tx  
BSS_uart_tx  
CAN_FD_tx  
I2C_sda  
5
6
7
10  
11  
12  
13  
14  
15  
0
ePWM1a  
ePWM1b  
NDMM_EN  
ePWM2a  
O
IO  
IO  
I
E13  
C13  
SPIA_clk  
GPIO_3  
0xFFFFEA14  
0xFFFFEA18  
Output Disabled  
Output Disabled  
Pull Up  
Pull Up  
SPIA_clk  
1
CAN_rx  
6
DSS_uart_tx  
SPIA_cs_n  
SPIA_cs_n  
CAN_tx  
7
O
IO  
IO  
O
SPIA_cs_n  
0
1
6
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
15  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 4-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
E14  
D13  
SPIA_miso  
GPIO_20  
0xFFFFEA10  
0
1
2
0
1
2
8
0
1
2
6
7
8
0
1
2
6
7
8
9
0
1
2
6
0
1
2
0
1
6
0
1
6
7
9
IO  
IO  
O
IO  
IO  
I
Output Disabled  
Pull Up  
SPIA_miso  
CAN_FD_tx  
GPIO_19  
SPIA_mosi  
SPIB_clk  
0xFFFFEA0C  
Output Disabled  
Pull Up  
SPIA_mosi  
CAN_FD_rx  
DSS_uart_tx  
GPIO_5  
O
IO  
IO  
I
F14  
0xFFFFEA24  
Output Disabled  
Pull Up  
SPIB_clk1  
MSS_uarta_rx  
MSS_uartb_tx  
BSS_uart_tx  
CAN_FD_rx  
GPIO_4  
O
O
I
H14  
SPIB_cs_n  
0xFFFFEA28  
IO  
IO  
O
O
IO  
I
Output Disabled  
Pull Up  
SPIB_cs_n  
MSS_uarta_tx  
MSS_uartb_tx  
BSS_uart_tx  
QSPI_clk_ext  
CAN_FD_tx  
GPIO_22  
O
IO  
IO  
IO  
O
IO  
IO  
IO  
IO  
O
IO  
IO  
I
G14  
SPIB_miso  
0xFFFFEA20  
Output Disabled  
Pull Up  
SPIB_miso  
I2C_scl  
DSS_uart_tx  
GPIO_21  
F13  
P13  
P4  
SPIB_mosi  
0xFFFFEA1C  
0xFFFFEA00  
0xFFFFEA6C  
Output Disabled  
Output Disabled  
Output Disabled  
Pull Up  
SPIB_mosi  
I2C_sda  
SPI_HOST_INTR  
SYNC_in  
GPIO_12  
Pull Down  
Pull Down  
SPI_HOST_INTR  
SPIB_cs_n_1  
GPIO_28  
SYNC_IN  
MSS_uartb_rx  
DMM_MUX_IN  
SYNC_OUT  
IO  
I
O
16  
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 4-1. Pin Attributes (ABL0161 Package) (continued)  
PINCNTL  
SIGNAL NAME [3]  
BALL RESET  
STATE [7]  
PULL UP/DOWN  
TYPE [8]  
BALL NUMBER [1]  
BALL NAME [2]  
MODE [5]  
TYPE [6]  
ADDRESS [4]  
G13  
SYNC_OUT  
SOP[1]  
0xFFFFEA70  
During Power Up  
I
Output Disabled  
Pull Down  
GPIO_29  
0
IO  
O
I
SYNC_OUT  
DMM_MUX_IN  
SPIB_cs_n_1  
SPIB_cs_n_2  
GPIO_17  
1
9
10  
IO  
IO  
IO  
I
11  
P10  
TCK  
0xFFFFEA50  
0
Input Enabled  
Pull Down  
Pull Up  
TCK  
1
MSS_uartb_tx  
CAN_FD_tx  
GPIO_23  
2
O
O
IO  
I
8
R11  
N13  
TDI  
0xFFFFEA58  
0xFFFFEA5C  
0
Input Enabled  
TDI  
1
MSS_uarta_rx  
SOP[0]  
2
I
TDO  
During Power Up  
I
Output Enabled  
GPIO_24  
0
1
2
6
7
9
0
1
2
6
0
IO  
O
O
O
O
I
TDO  
MSS_uarta_tx  
MSS_uartb_tx  
BSS_uart_tx  
NDMM_EN  
GPIO_18  
N10  
N9  
TMS  
0xFFFFEA54  
0xFFFFEA48  
IO  
I
Input Enabled  
Pull Down  
TMS  
BSS_uart_tx  
CAN_FD_rx  
Warm_Reset  
O
I
Warm_Reset  
IO  
Hi-Z Input (Open  
Drain)  
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
17  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
The following list describes the table column headers:  
1. BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.  
2. BALL NAME: Mechanical name from package device (name is taken from muxmode 0).  
3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the  
signal name in muxmode 0).  
4. PINCNTL ADDRESS: MSS Address for PinMux Control  
5. MODE: Multiplexing mode number: value written to PinMux Cntl register to select specific Signal name  
for this Ball number. Mode column has bit range value.  
6. TYPE: Signal type and direction:  
I = Input  
O = Output  
IO = Input or Output  
7. BALL RESET STATE: The state of the terminal at power-on reset  
8. PULL UP/DOWN TYPE: indicates the presence of an internal pullup or pulldown resistor. Pullup and  
pulldown resistors can be enabled or disabled via software.  
Pull Up: Internal pullup  
Pull Down: Internal pulldown  
An empty box means No pull.  
9. Pin Mux Control Value maps to lower 4 bits of register.  
18  
Terminal Configuration and Functions  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
Copyright © 2019, Texas Instruments Incorporated  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
IO MUX registers are available in the MSS memory map and the respective mapping to device pins is as  
follows:  
Table 4-2. PAD IO Control Registers  
Default Pin/Ball Name  
SPI_HOST_INTR  
GPIO_0  
Package Ball /Pin (Address)  
Pin Mux Config Register  
0xFFFFEA00  
0xFFFFEA04  
0xFFFFEA08  
0xFFFFEA0C  
0xFFFFEA10  
0xFFFFEA14  
0xFFFFEA18  
0xFFFFEA1C  
0xFFFFEA20  
0xFFFFEA24  
0xFFFFEA28  
0xFFFFEA2C  
0xFFFFEA30  
0xFFFFEA34  
0xFFFFEA38  
0xFFFFEA3C  
0xFFFFEA40  
0xFFFFEA44  
0xFFFFEA48  
0xFFFFEA4C  
0xFFFFEA50  
0xFFFFEA54  
0xFFFFEA58  
0xFFFFEA5C  
0xFFFFEA60  
0xFFFFEA64  
0xFFFFEA68  
0xFFFFEA6C  
0xFFFFEA70  
0xFFFFEA74  
0xFFFFEA78  
0xFFFFEA7C  
0xFFFFEA80  
0xFFFFEA84  
0xFFFFEA88  
0xFFFFEA8C  
0xFFFFEA90  
0xFFFFEA94  
0xFFFFEA98  
0xFFFFEABC  
0xFFFFEAC0  
P13  
H13  
J13  
D13  
E14  
E13  
E15  
F13  
G14  
F14  
H14  
R13  
N12  
R14  
P12  
R12  
P11  
N7  
GPIO_1  
SPIA_MOSI  
SPIA_MISO  
SPIA_CLK  
SPIA_CN_EN  
SPIB_MOSI  
SPIB_MISO  
SPIB_CLK  
SPIB_CS_N  
QSPI[0]  
QSPI[1]  
QSPI[2]  
QSPI[3]  
QSPI_CLK  
QSPI_CS_N  
NERROR_IN  
WARM_RESET  
NERROR_OUT  
TCK  
N9  
N6  
P10  
N10  
R11  
N13  
N8  
TMS  
TDI  
TDO  
MCU_CLKOUT  
GPIO_2  
K13  
P9  
PMIC_CLKOUT  
SYNC_IN  
P4  
SYNC_OUT  
RS232_RX  
RS232_TX  
GPIO_31  
G13  
N4  
N5  
R4  
GPIO_32  
P5  
GPIO_33  
R5  
GPIO_34  
P6  
GPIO_35  
R7  
GPIO_36  
P7  
GPIO_37  
R8  
GPIO_38  
P8  
GPIO_47  
N15  
N14  
DMM_SYNC  
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
19  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
The register layout is as follows:  
Table 4-3. PAD IO Register Bit Descriptions  
RESET  
BIT FIELD  
TYPE  
(POWER ON  
DEFAULT)  
DESCRIPTION  
31-11 NU  
RW  
RW  
0
0
Reserved  
10  
SC  
IO slew rate control:  
0 = Higher slew rate  
1 = Lower slew rate  
9
PUPDSEL  
PI  
RW  
RW  
RW  
0
0
Pullup/PullDown Selection  
0 = Pull Down  
1 = Pull Up (This field is valid only if Pull Inhibit is set as '0')  
8
Pull Inhibit/Pull Disable  
0 = Enable  
1 = Disable  
7
6
OE_OVERRIDE  
1
1
Output Override  
OE_OVERRIDE_CTR RW  
L
Output Override Control:  
(A '1' here overrides any o/p manipulation of this IO by any of the peripheral  
block hardware it is associated with for example a SPI Chip select)  
5
4
IE_OVERRIDE  
RW  
0
0
Input Override  
IE_OVERRIDE_CTR RW  
L
Input Override Control:  
(A '1' here overrides any i/p value on this IO with a desired value)  
3-0  
FUNC_SEL  
RW  
1
Function select for Pin Multiplexing (Refer to the Pin Mux Sheet)  
20  
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
4.3 Signal Descriptions  
NOTE  
All digital IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET)  
are non-failsafe; hence, care needs to be taken that they are not driven externally without the  
VIO supply being present to the device.  
Table 4-4. Signal Descriptions - Digital  
SIGNAL NAME  
BSS_UART_TX  
PIN TYPE  
DESCRIPTION  
BALL NO.  
F14, H14, K13, N10, N13,  
N4, N5, R8  
O
Debug UART Transmit [Radar Block]  
CAN_FD_RX  
CAN_FD_TX  
CAN_RX  
CAN_TX  
DMM0  
I
O
I
CAN FD (MCAN) Receive Signal  
D13, F14, N10, N4, P12  
CAN FD (MCAN) Transmit Signal  
E14, H14, N5, P10, R14  
CAN (DCAN) Receive Signal  
E13  
E15  
R4  
P5  
IO  
I
CAN (DCAN) Transmit Signal  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Data Line  
Debug Interface (Hardware In Loop) - Clock  
DMM1  
I
DMM2  
I
R5  
P6  
DMM3  
I
DMM4  
I
R7  
P7  
DMM5  
I
DMM6  
I
R8  
P8  
DMM7  
I
DMM_CLK  
I
N15  
Debug Interface (Hardware In Loop) Mux Select between DMM1 and  
DMM2 (Two Instances)  
DMM_MUX_IN  
I
G13, J13, P4  
DMM_SYNC  
DSS_UART_TX  
EPWM1A  
EPWM1B  
EPWM1SYNCI  
EPWM2A  
EPWM2B  
EPWM2SYNCO  
EPWM3A  
EPWM3SYNCO  
GPIO_0  
I
Debug Interface (Hardware In Loop) - Sync  
Debug UART Transmit [DSP]  
PWM Module 1 - Output A  
N14  
O
D13, E13, G14, P8, R12  
O
N5, N8  
O
PWM Module 1 - Output B  
H13, N5, P9  
I
D14, J13  
O
PWM Module 2- Output A  
PWM Module 2 - Output B  
H13, N4, N5, P9  
O
N4  
R7  
O
O
PWM Module 3 - Output A  
N4  
O
P6  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
H13  
J13  
K13  
E13  
H14  
F14  
P11  
R12  
R13  
N12  
R14  
P12  
P13  
H13  
GPIO_1  
GPIO_2  
GPIO_3  
GPIO_4  
GPIO_5  
GPIO_6  
GPIO_7  
GPIO_8  
GPIO_9  
GPIO_10  
GPIO_11  
GPIO_12  
GPIO_13  
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
21  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 4-4. Signal Descriptions - Digital (continued)  
SIGNAL NAME  
GPIO_14  
PIN TYPE  
DESCRIPTION  
BALL NO.  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
General-purpose I/O  
I2C Clock  
N5  
GPIO_15  
N4  
GPIO_16  
J13  
GPIO_17  
P10  
GPIO_18  
N10  
GPIO_19  
D13  
GPIO_20  
E14  
GPIO_21  
F13  
GPIO_22  
G14  
GPIO_23  
R11  
GPIO_24  
N13  
GPIO_25  
N8  
GPIO_26  
K13  
GPIO_27  
P9  
GPIO_28  
P4  
GPIO_29  
G13  
GPIO_30  
E15  
GPIO_31  
R4  
GPIO_32  
P5  
GPIO_33  
R5  
GPIO_34  
P6  
GPIO_35  
R7  
GPIO_36  
P7  
GPIO_37  
R8  
GPIO_38  
P8  
N15  
GPIO_47  
I2C_SCL  
G14, N4  
F13, N5  
J14  
I2C_SDA  
I2C Data  
LVDS_TXP[0]  
LVDS_TXM[0]  
LVDS_TXP[1]  
LVDS_TXM[1]  
LVDS_CLKP  
LVDS_CLKM  
LVDS_FRCLKP  
LVDS_FRCLKM  
MCU_CLKOUT  
MSS_UARTA_RX  
MSS_UARTA_TX  
MSS_UARTB_RX  
Differential data Out – Lane 0  
Differential data Out – Lane 1  
Differential clock Out  
O
J15  
O
K14  
O
K15  
O
L14  
O
L15  
O
M14  
Differential Frame Clock  
O
M15  
O
Programmable clock given out to external MCU or the processor  
Master Subsystem - UART A Receive  
N8  
I
F14, N4, R11  
H14, N13, N5, R4  
N4, P4  
O
Master Subsystem - UART A Transmit  
IO  
Master Subsystem - UART B Receive  
F14, H14, K13, N13, N5,  
P10, P7  
MSS_UARTB_TX  
NDMM_EN  
O
I
Master Subsystem - UART B Transmit  
Debug Interface (Hardware In Loop) Enable - Active Low Signal  
N13, N5  
Failsafe input to the device. Nerror output from any other device can  
be concentrated in the error signaling monitor module inside the  
device and appropriate action can be taken by Firmware  
NERROR_IN  
I
N7  
Open drain fail safe output signal. Connected to  
NERROR_OUT  
O
PMIC/Processor/MCU to indicate that some severe criticality fault  
has happened. Recovery would be through reset.  
N6  
22  
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 4-4. Signal Descriptions - Digital (continued)  
SIGNAL NAME  
PIN TYPE  
DESCRIPTION  
Output Clock from IWR1843 device for PMIC  
QSPI Data Line #0 (Used with Serial Data Flash)  
QSPI Data Line #1 (Used with Serial Data Flash)  
QSPI Data Line #2 (Used with Serial Data Flash)  
QSPI Data Line #3 (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Clock (Used with Serial Data Flash)  
QSPI Chip Select (Used with Serial Data Flash)  
Debug UART (Operates as Bus Master) - Receive Signal  
Debug UART (Operates as Bus Master) - Transmit Signal  
Sense On Power - Line#0  
BALL NO.  
PMIC_CLKOUT  
QSPI[0]  
O
IO  
IO  
I
H13, K13, P9  
R13  
QSPI[1]  
N12  
QSPI[2]  
R14  
QSPI[3]  
IO  
IO  
I
P12  
QSPI_CLK  
QSPI_CLK_EXT  
QSPI_CS_N  
RS232_RX  
RS232_TX  
SOP[0]  
R12  
H14  
IO  
I
P11  
N4  
O
I
N5  
N13  
SOP[1]  
I
Sense On Power - Line#1  
G13  
SOP[2]  
I
Sense On Power - Line#2  
P9  
SPIA_CLK  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
O
I
SPI Channel A - Clock  
E13  
SPIA_CS_N  
SPIA_MISO  
SPIA_MOSI  
SPIB_CLK  
SPI Channel A - Chip Select  
E15  
SPI Channel A - Master In Slave Out  
SPI Channel A - Master Out Slave In  
SPI Channel B - Clock  
E14  
D13  
F14, R12  
SPIB_CS_N  
SPIB_CS_N_1  
SPIB_CS_N_2  
SPIB_MISO  
SPIB_MOSI  
SPI_HOST_INTR  
SYNC_IN  
SPI Channel B Chip Select (Instance ID 0)  
SPI Channel B Chip Select (Instance ID 1)  
SPI Channel B Chip Select (Instance ID 2)  
SPI Channel B - Master In Slave Out  
SPI Channel B - Master Out Slave In  
Out of Band Interrupt to an external host communicating over SPI  
Low frequency Synchronization signal input  
Low Frequency Synchronization Signal output  
JTAG Test Clock  
H14, P11  
G13, J13, P13  
G13, J13, N12  
G14, R13  
F13, N12  
P13  
P4  
SYNC_OUT  
TCK  
O
I
G13, J13, K13, P4  
P10  
R11  
N13  
N10  
N15  
N14  
R4  
TDI  
I
JTAG Test Data Input  
TDO  
O
I
JTAG Test Data Output  
TMS  
JTAG Test Mode Signal  
TRACE_CLK  
TRACE_CTL  
TRACE_DATA_0  
TRACE_DATA_1  
TRACE_DATA_2  
TRACE_DATA_3  
TRACE_DATA_4  
TRACE_DATA_5  
TRACE_DATA_6  
TRACE_DATA_7  
O
O
O
O
O
O
O
O
O
O
Debug Trace Output - Clock  
Debug Trace Output - Control  
Debug Trace Output - Data Line  
Debug Trace Output - Data Line  
P5  
Debug Trace Output - Data Line  
R5  
Debug Trace Output - Data Line  
P6  
Debug Trace Output - Data Line  
R7  
Debug Trace Output - Data Line  
P7  
Debug Trace Output - Data Line  
R8  
Debug Trace Output - Data Line  
P8  
Open drain fail safe warm reset signal. Can be driven from PMIC for  
diagnostic or can be used as status signal that the device is going  
through reset.  
WARM_RESET  
IO  
N9  
Copyright © 2019, Texas Instruments Incorporated  
Terminal Configuration and Functions  
23  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 4-5. Signal Descriptions - Analog  
PIN  
TYPE  
INTERFACE  
SIGNAL NAME  
DESCRIPTION  
BALL NO.  
TX1  
O
O
O
I
Single ended transmitter1 o/p  
B4  
B6  
B8  
M2  
K2  
H2  
F2  
R3  
Transmitters  
TX2  
Single ended transmitter2 o/p  
Single ended transmitter3 o/p  
Single ended receiver1 i/p  
Single ended receiver2 i/p  
Single ended receiver3 i/p  
Single ended receiver4 i/p  
Power on reset for chip. Active low  
TX3  
RX1  
RX2  
I
Receivers  
Reset  
RX3  
I
RX4  
I
NRESET  
I
In XTAL mode: Differential port for reference crystal  
In External clock mode: Single ended input  
reference clock port  
CLKP  
I
B15  
Reference  
Oscillator  
In XTAL mode: Differential port for reference crystal  
In External clock mode: Connect this port to ground  
CLKM  
I
C15  
A14  
Reference clock output from clocking subsystem  
after cleanup PLL (1.4V output voltage swing).  
Reference clock  
Bandgap voltage  
OSC_CLKOUT  
O
VBGAP  
VDDIN  
O
Device's Band Gap Reference Output  
1.2V digital power supply  
B10  
H15, N11, P15, R6  
G15  
Power  
Power  
Power  
VIN_SRAM  
VNWA  
1.2V power rail for internal SRAM  
1.2V power rail for SRAM array back bias  
P14  
I/O Supply (3.3V or 1.8V): All CMOS I/Os would  
operate on this supply  
VIOIN  
Power  
R10, F15  
Power supply  
VIOIN_18  
VIN_18CLK  
VIOIN_18DIFF  
VPP  
Power  
Power  
Power  
Power  
1.8V supply for CMOS IO  
1.8V supply for clock module  
1.8V supply for LVDS port  
Voltage supply for fuse chain  
R9  
B11  
D15  
L13  
1.3V Analog and RF supply,VIN_13RF1 and  
VIN_13RF2 could be shorted on the board  
VIN_13RF1  
Power  
G5, H5, J5  
VIN_13RF2  
VIN_18BB  
VIN_18VCO  
Power  
Power  
Power  
1.3V Analog and RF supply  
1.8V Analog base band power supply  
1.8V RF VCO supply  
C2,D2  
K5, F5  
B12  
L5, L6, L8, L10,  
K7, K8, K9, K10,  
K11, J6, J7, J8,  
VSS  
Ground Digital ground  
J10, H7, H9, H11,  
G6, G7, G8, G10,  
F9, F11, E5, E6,  
E8, E10, E11, R15  
Power supply  
A1, A3, A5, A7,  
A15, B1, B3, B5,  
B7, C1, C3, C4,  
C5, C6, C7, E1,  
E2, E3, F3, G1,  
G2, G3, H3, J1, J2,  
J3, K3, L1, L2, L3,  
M3, N1, N2, N3,  
R1, A13, C8,A9,  
B9, C9, B14, C14  
VSSA  
Ground Analog ground  
VOUT_14APLL  
O
Internal LDO output  
Internal LDO output  
A10  
B13  
VOUT_14SYNTH  
O
When internal PA LDO is used this pin provides the  
output voltage of the LDO. When the internal PA  
Internal LDO  
output/inputs  
VOUT_PA  
IO  
LDO is bypassed and disabled 1V supply should be A2, B2  
fed on this pin. This is mandatory in 3TX  
simultaneous use case.  
24  
Terminal Configuration and Functions  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 4-5. Signal Descriptions - Analog (continued)  
PIN  
TYPE  
INTERFACE  
SIGNAL NAME  
DESCRIPTION  
BALL NO.  
Analog Test1 / ADC1  
Analog Test2 / ADC2  
Analog Test3 / ADC3  
Analog Test4 / ADC4  
ANAMUX / ADC5  
IO  
ADC Channel 1(1)  
ADC Channel 2(1)  
ADC Channel 3(1)  
ADC Channel 4(1)  
ADC Channel 5(1)  
ADC Channel 6(1)  
P1  
Test and Debug  
output for pre-  
production phase.  
Can be pinned out  
on production  
hardware for field  
debug  
IO  
IO  
IO  
IO  
IO  
P2  
P3  
R2  
C13  
D14  
VSENSE / ADC6  
(1) For details, see Section 6.4.1.  
5 Specifications  
5.1 Absolute Maximum Ratings(1)(2)  
PARAMETERS  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
1.4  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.4  
1.2 V power rail for SRAM array back bias  
1.4  
I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this  
supply.  
VIOIN  
–0.5  
3.8  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
–0.5  
–0.5  
–0.5  
2
2
2
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
VIN_13RF1  
1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could  
be shorted on the board.  
–0.5  
1.45  
V
1-V Internal LDO bypass mode. Device supports mode where  
external Power Management block can supply 1 V on  
VIN_13RF1 and VIN_13RF2 rails. In this configuration, the  
internal LDO of the device would be kept bypassed.  
–0.5  
1.4  
V
VIN_13RF2  
VIN_18BB  
1.8-V Analog baseband power supply  
1.8-V RF VCO supply  
–0.5  
–0.5  
2
2
V
V
VIN_18VCO supply  
Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State)  
–0.3V  
VIOIN + 0.3  
Input and output  
voltage range  
V
Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V  
(Transient Overshoot/Undershoot) or external oscillator input  
VIOIN + 20% up to  
20% of signal period  
CLKP, CLKM  
Clamp current  
Input ports for reference crystal  
–0.5  
2
V
Input or Output Voltages 0.3 V above or below their respective  
power rails. Limit clamp current that flows through the internal  
diode protection cells of the I/O.  
–20  
20  
mA  
TJ  
Operating junction temperature range  
–40  
–55  
105  
150  
ºC  
ºC  
TSTG  
Storage temperature range after soldered onto PC board  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to VSS, unless otherwise noted.  
5.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM)(1)  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002  
(1) ANSI/ESDA/JEDEC JS0991 specification.  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
25  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.3 Power-On Hours (POH)(1)  
JUNCTION  
TEMPERATURE (Tj)  
OPERATING  
CONDITION  
NOMINAL CVDD VOLTAGE (V)  
POWER-ON HOURS [POH] (HOURS)  
90% at 85ºC Tj  
10% at 105ºC Tj  
80,000  
50% duty cycle  
1.2  
100% at 85ºC Tj  
100,000  
(1) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms  
and conditions for TI semiconductor products.  
26  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.4 Recommended Operating Conditions  
MIN  
1.14  
1.14  
1.14  
3.135  
1.71  
1.71  
1.71  
1.71  
NOM  
1.2  
1.2  
1.2  
3.3  
1.8  
1.8  
1.8  
1.8  
MAX  
1.32  
1.32  
1.32  
3.465  
1.89  
1.9  
UNIT  
VDDIN  
1.2 V digital power supply  
V
V
V
VIN_SRAM  
VNWA  
1.2 V power rail for internal SRAM  
1.2 V power rail for SRAM array back bias  
I/O supply (3.3 V or 1.8 V):  
All CMOS I/Os would operate on this supply.  
VIOIN  
V
VIOIN_18  
1.8 V supply for CMOS IO  
1.8 V supply for clock module  
1.8 V supply for LVDS port  
V
V
V
VIN_18CLK  
VIOIN_18DIFF  
VIN_13RF1  
VIN_13RF2  
1.9  
1.9  
1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2  
could be shorted on the board  
1.23  
1.3  
1.36  
V
VIN_13RF1  
(1-V Internal LDO  
bypass mode)  
0.95  
1
1.05  
V
VIN_13RF2  
(1-V Internal LDO  
bypass mode)  
VIN18BB  
1.8-V Analog baseband power supply  
1.8V RF VCO supply  
1.71  
1.71  
1.17  
2.25  
1.8  
1.8  
1.9  
1.9  
V
V
VIN_18VCO  
Voltage Input High (1.8 V mode)  
Voltage Input High (3.3 V mode)  
Voltage Input Low (1.8 V mode)  
Voltage Input Low (3.3 V mode)  
High-level output threshold (IOH = 6 mA)  
Low-level output threshold (IOL = 6 mA)  
VIL (1.8V Mode)  
VIH  
VIL  
V
V
0.3*VIOIN  
0.62  
VOH  
VOL  
VIOIN – 450  
mV  
mV  
450  
0.2  
VIH (1.8V Mode)  
0.96  
1.57  
NRESET  
SOP[2:0]  
V
VIL (3.3V Mode)  
0.3  
VIH (3.3V Mode)  
5.5 Power Supply Specifications  
Table 5-1 describes the four rails from an external power supply block of the IWR1843 device.  
Table 5-1. Power Supply Rails Characteristics  
SUPPLY  
DEVICE BLOCKS POWERED FROM THE SUPPLY  
RELEVANT IOS IN THE DEVICE  
Input: VIN_18VCO, VIN18CLK, VIN_18BB,  
VIOIN_18DIFF, VIOIN_18IO  
LDO Output: VOUT_14SYNTH, VOUT_14APLL  
Synthesizer and APLL VCOs, crystal oscillator, IF  
Amplifier stages, ADC, LVDS  
1.8 V  
1.3 V (or 1 V in internal  
LDO bypass mode)  
Power Amplifier, Low Noise Amplifier, Mixers and LO  
Distribution  
Input: VIN_13RF2, VIN_13RF1  
LDO Output: VOUT_PA  
3.3 V (or 1.8 V for 1.8 V  
I/O mode)  
Digital I/Os  
Input VIOIN  
1.2 V  
Core Digital and SRAMs  
Input: VDDIN, VIN_SRAM  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
27  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
The 1.3-V (1.0 V) and 1.8-V power supply ripple specifications mentioned in are defined to meet a target  
spur level of –105 dBc (RF Pin = –15 dBm) at the RX. The spur and ripple levels have a dB-to-dB  
relationship, for example, a 1-dB increase in supply ripple leads to a ~1 dB increase in spur level. Values  
quoted are rms levels for a sinusoidal input applied at the specified frequency.  
Table 5-2. Ripple Specifications  
RF RAIL  
1.0 V (INTERNAL LDO BYPASS)  
VCO/IF RAIL  
FREQUENCY (kHz)  
1.3 V (µVRMS  
)
1.8 V (µVRMS)  
(µVRMS  
)
137.5  
275  
7
5
648  
76  
22  
4
83  
21  
11  
6
550  
3
1100  
2200  
4400  
6600  
2
11  
13  
22  
82  
93  
117  
13  
19  
29  
5.6 Power Consumption Summary  
Table 5-3 and summarize the power consumption at the power terminals.  
Table 5-3. Maximum Current Ratings at Power Terminals  
PARAMETER  
SUPPLY NAME  
DESCRIPTION  
MIN  
TYP  
MAX  
UNIT  
Total current drawn by all  
nodes driven by 1.2V rail  
VDDIN, VIN_SRAM, VNWA  
1000  
Total current drawn by all  
nodes driven by 1.3V or  
1.0V rail (2TX, 4 RX  
simultaneously)(1)  
VIN_13RF1, VIN_13RF2  
2000  
850  
Current consumption  
mA  
VIOIN_18, VIN_18CLK,  
VIOIN_18DIFF, VIN_18BB,  
VIN_18VCO  
Total current drawn by all  
nodes driven by 1.8V rail  
Total current drawn by all  
nodes driven by 3.3V  
rail(2)  
VIOIN  
50  
(1) 3 Transmitters can simultaneously be deployed only in devices with 1V / LDO bypass and PA LDO disable mode. In this mode 1-V  
supply needs to be fed on the VOUT PA pin. In this case the peak 1-V supply current goes up to 2500 mA.  
(2) The exact VIOIN current depends on the peripherals used and their frequency of operation.  
28  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 5-4. Average Power Consumption at Power Terminals  
PARAMETER  
CONDITION  
DESCRIPTION  
MIN  
TYP MAX UNIT  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
1TX, 4RX  
2TX, 4RX  
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 128 chirps,  
128 samples/chirp, 8-µs  
interchirp time (25% duty  
cycle), DSP active  
1.3  
25% Duty  
Cycle  
1.38  
1.77  
1.92  
1.0-V internal  
LDO bypass  
mode  
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 256 chirps,  
128 samples/chirp, 8-µs  
interchirp time (50% duty  
cycle), DSP active  
50% Duty  
Cycle  
Average power  
consumption  
W
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 128 chirps,  
128 samples/chirp, 8-µs  
interchirp time (25% duty  
cycle), DSP active  
1.4  
25% Duty  
Cycle  
1.48  
1.94  
2.14  
1.3-V internal  
LDO enabled  
mode  
Use Case: Low power mode,  
3.2 MSps complex transceiver,  
25-ms frame time, 256 chirps,  
128 samples/chirp, 8-µs  
interchirp time (50% duty  
cycle), DSP active  
50% Duty  
Cycle  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
29  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.7 RF Specification  
over recommended operating conditions and with run time calibrations enabled (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
76 to 77 GHz  
77 to 81 GHz  
14  
15  
–8  
48  
24  
2
Noise figure(1)  
dB  
1-dB compression point (Out Of Band / Specified at 10 kHz)(2)  
dBm  
dB  
Maximum gain  
Gain range  
dB  
Gain step size  
dB  
Image Rejection Ratio (IMRR)  
IF bandwidth(3)  
30  
dB  
10  
MHz  
A2D sampling rate (real)  
A2D sampling rate (complex 1x)  
A2D resolution  
25 Msps  
12.5 Msps  
Receiver  
12  
<–10  
±0.5  
±3  
Bits  
dB  
dB  
°
Return loss (S11)  
Gain mismatch variation (over temperature)  
Phase mismatch variation (over temperature)  
RX gain = 30dB  
In-band IIP2  
IF = 1.5, 2 MHz at  
–12 dBFS  
16  
24  
dBm  
dBm  
RX gain = 24dB  
IF = 10 kHz at -10dBm,  
1.9 MHz at -30 dBm  
Out-of-band IIP2  
Idle Channel Spurs  
Output power  
–90  
12  
dBFS  
dBm  
Transmitter  
Amplitude noise  
Frequency range  
Ramp rate  
–145  
dBc/Hz  
76  
81  
GHz  
100 MHz/µs  
Clock  
subsystem  
76 to 77 GHz  
77 to 81 GHz  
–95  
–93  
Phase noise at 1-MHz offset  
dBc/Hz  
(1) Specification is quoted for complex 1x mode.  
(2) 1-dB Compression Point (Out Of Band) is measured by feed a Continuous wave Tone below the lowest HPF cut-off frequency (50 kHz).  
(3) The analog IF stages include high-pass filtering, with two independently configurable first-order high-pass corner frequencies. The set of  
available HPF corners is summarized as follows:  
Available HPF Corner Frequencies (kHz)  
HPF1  
HPF2  
175, 235, 350, 700  
350, 700, 1400, 2800  
The filtering performed by the digital baseband chain is targeted to provide:  
Less than ±0.5 dB pass-band ripple/droop, and  
Better than 60 dB anti-aliasing attenuation for any frequency that can alias back into the pass-band.  
5.8 CPU Specifications  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
600  
32  
MAX UNIT  
Clock Speed  
DSP  
MHz  
KB  
L1 Code Memory  
Subsystem  
(C674  
Family)  
L1 Data Memory  
32  
KB  
L2 Memory  
256  
200  
512  
192  
KB  
Master  
Clock Speed  
MHz  
KB  
Controller  
Subsystem  
(R4F Family)  
Tightly Coupled Memory - A (Program)  
Tightly Coupled Memory - B (Data)  
KB  
30  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
CPU Specifications (continued)  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
MIN  
TYP  
MAX UNIT  
Shared  
Shared L3 Memory  
Memory  
1024  
KB  
5.9 Thermal Resistance Characteristics for FCBGA Package [ABL0161]  
THERMAL METRICS(1)  
°C/W(2) (3)  
4.2  
RΘJC  
RΘJB  
RΘJA  
RΘJMA  
PsiJT  
PsiJB  
Junction-to-case  
Junction-to-board  
5.7  
Junction-to-free air  
Junction-to-moving air  
Junction-to-package top  
Junction-to-board  
20.9  
14.5(4)  
0.38  
5.6  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) °C/W = degrees Celsius per watt.  
(3) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a  
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these  
EIA/JEDEC standards:  
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)  
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages  
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements  
A junction temperature of 105ºC is assumed.  
(4)  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
31  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.10 Timing and Switching Characteristics  
5.10.1 Power Supply Sequencing and Reset Timing  
The IWR1843 device expects all external voltage rails and SOP lines to be stable before reset is  
deasserted. describes the device wake-up sequence.  
SOP  
Setup  
Time  
SOP  
Hold time to  
nRESET  
DC power  
Stable before  
nRESET  
MSS  
BOOT  
START  
nRESET  
ASSERT  
tPGDEL  
DC  
Power  
notOK  
DC  
Power  
OK  
QSPI  
READ  
release  
VDDIN,  
VIN_SRAM  
VNWA  
VIOIN_18  
VIN18_CLK  
VIOIN_18DIFF  
VIN18_BB  
VIN_13RF1  
VIN_13RF2  
VIOIN  
SOP IO  
Reuse  
SOP IO‘s can be used as functional IO‘s  
SOP[2.1.0]  
nRESET  
WARMRESET  
OUTPUT  
VBGAP  
OUTPUT  
CLKP, CLKM  
Using Crystal  
MCUCLK  
OUTPUT (1)  
QSPI_CS  
OUTPUT  
8 ms (XTAL Mode)  
850 µs (REFCLK Mode)  
(1) MCU_CLK_OUT in autonomous mode, where IWR1843 application is booted from the serial flash, MCU_CLK_OUT is not enabled  
by default by the device bootloader.  
Figure 5-1. Device Wake-up Sequence  
32  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.10.2 Input Clocks and Oscillators  
5.10.2.1 Clock Specifications  
The IWR1843 requires external clock source (that is, a 40-MHz crystal) for initial boot and as a reference  
for an internal APLL hosted in the device. An external crystal is connected to the device pins. Figure 5-2  
shows the crystal implementation.  
Cf1  
CLKP  
Cp  
40 MHz  
CLKM  
Cf2  
Figure 5-2. Crystal Implementation  
NOTE  
The load capacitors, Cf1 and Cf2 in Figure 5-2, should be chosen such that Equation 1 is  
satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete  
components used to implement the oscillator circuit should be placed as close as possible to  
the associated oscillator CLKP and CLKM pins.  
C f2  
CL = C f1  
´
+CP  
C
f1 +C f2  
Table 5-5 lists the electrical characteristics of the clock crystal.  
Table 5-5. Crystal Electrical Characteristics (Oscillator Mode)  
(1)  
NAME  
DESCRIPTION  
Parallel resonance crystal frequency  
MIN  
TYP  
40  
MAX  
UNIT  
MHz  
pF  
fP  
CL  
Crystal load capacitance  
Crystal ESR  
5
8
12  
50  
ESR  
Ω
Temperature range Expected temperature range of operation  
–40  
105  
ºC  
Frequency  
tolerance  
Crystal frequency tolerance(1)(2)  
–200  
200  
200  
ppm  
µW  
Drive level  
50  
(1) The crystal manufacturer's specification must satisfy this requirement.  
(2) Includes initial tolerance of the crystal, drift over temperature, aging and frequency pulling due to incorrect load capacitance.  
Table 5-6. External Clock Mode Specifications  
SPECIFICATION  
PARAMETER  
UNIT  
MIN  
TYP  
MAX  
Frequency  
40  
MHz  
mV (pp)  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
%
AC-Amplitude  
700  
1200  
–132  
–143  
–152  
–153  
65  
Phase Noise at 1 kHz  
Phase Noise at 10 kHz  
Phase Noise at 100 kHz  
Phase Noise at 1 MHz  
Duty Cycle  
Input Clock:  
External AC-coupled sine wave or DC-  
coupled square wave  
Phase Noise referred to 40 MHz  
35  
Freq Tolerance  
–50  
50  
ppm  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
33  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
 
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.10.3 Multibuffered / Standard Serial Peripheral Interface (MibSPI)  
5.10.3.1 Peripheral Description  
The MibSPI/SPI is a high-speed synchronous serial input/output port that allows a serial bit stream of  
programmed length (2 to 16 bits) to be shifted into and out of the device at a programmed bit-transfer rate.  
The MibSPI/SPI is normally used for communication between the microcontroller and external peripherals  
or another microcontroller.  
Standard and MibSPI modules have the following features:  
16-bit shift register  
Receive buffer register  
8-bit baud clock generator  
SPICLK can be internally-generated (master mode) or received from an external clock source  
(slave mode)  
Each word transferred can have a unique format.  
SPI I/Os not used in the communication can be used as digital input/output signals  
5.10.3.2 MibSPI Transmit and Receive RAM Organization  
The Multibuffer RAM is comprised of 256 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a  
16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer  
RAM can be partitioned into multiple transfer group with variable number of buffers each.  
Table 5-8 and Table 5-9 assume the operating conditions stated in Table 5-7.  
Table 5-7. SPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
34  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 5-8. SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1)(2)(3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
256tc(VCLK)  
UNIT  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
3(4)  
4(4)  
5(4)  
ns  
ns  
ns  
ns  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 1)  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 0)  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0)  
Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1)  
(C2TDELAY+2)*tc(VCLK  
) – 7.5  
(C2TDELAY+2) *  
tc(VCLK) + 7  
CSHOLD = 0  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
(C2TDELAY +3) *  
tc(VCLK) – 7.5  
(C2TDELAY+3) *  
tc(VCLK) + 7  
CSHOLD = 1  
6(5)  
tC2TDELAY  
ns  
ns  
(C2TDELAY+2)*tc(VCLK  
) – 7.5  
(C2TDELAY+2) *  
tc(VCLK) + 7  
CSHOLD = 0  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
(C2TDELAY +3) *  
tc(VCLK) – 7.5  
(C2TDELAY+3) *  
tc(VCLK) + 7  
CSHOLD = 1  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(T2CDELAY + 1) *  
tc(VCLK) + 7.5  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
7(5)  
tT2CDELAY  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(T2CDELAY + 1) *  
tc(VCLK) + 7.5  
(T2CDELAY + 1)  
*tc(VCLK) – 7  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
th(SPCL-SOMI)M  
th(SPCH-SOMI)M  
5
5
3
3
8(4)  
ns  
ns  
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
9(4)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is cleared (where x= 0 or 1).  
(2) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M (PS +1)tc(MSS_VCLK) 25ns, where PS is the prescale value set in the SPIFMTx.[15:8]  
register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) 25ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
35  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
11  
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1  
4
5
Master Out Data Is Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 5-3. SPI Master Mode External Timing (CLOCK PHASE = 0)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 5-4. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0)  
36  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 5-9. SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output,  
SPISIMO = output, and SPISOMI = input)(1)(2)(3)  
NO.  
PARAMETER  
MIN  
25  
TYP  
MAX  
256tc(VCLK)  
UNIT  
1
tc(SPC)M  
Cycle time, SPICLK(4)  
ns  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 0)  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 4  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 3  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M – 10.5  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
0.5tc(SPC)M + 4  
2(4)  
3(4)  
4(4)  
5(4)  
ns  
ns  
ns  
ns  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 1)  
tw(SPCL)M  
Pulse duration, SPICLK low (clock polarity = 0)  
tw(SPCH)M  
Pulse duration, SPICLK high (clock polarity = 1)  
td(SPCH-SIMO)M  
td(SPCL-SIMO)M  
tv(SPCL-SIMO)M  
tv(SPCH-SIMO)M  
Delay time, SPISIMO valid before SPICLK low, (clock polarity = 0)  
Delay time, SPISIMO valid before SPICLK high, (clock polarity = 1)  
Valid time, SPISIMO data valid after SPICLK low, (clock polarity = 0)  
Valid time, SPISIMO data valid after SPICLK high, (clock polarity = 1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
CSHOLD = 0  
(C2TDELAY +  
2)*tc(VCLK) – 7  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
Setup time CS active until SPICLK high  
(clock polarity = 0)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
CSHOLD = 1  
CSHOLD = 0  
(C2TDELAY +  
2)*tc(VCLK) – 7  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
6(5)  
tC2TDELAY  
ns  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
(C2TDELAY+2) *  
tc(VCLK) + 7.5  
(C2TDELAY+2)*tc(  
VCLK) – 7  
Setup time CS active until SPICLK low  
(clock polarity = 1)  
0.5*tc(SPC)M  
+
0.5*tc(SPC)M +  
CSHOLD = 1  
(C2TDELAY+3)*tc(  
VCLK) – 7  
(C2TDELAY+3) *  
tc(VCLK) + 7.5  
(T2CDELAY + 1)  
*tc(VCLK) – 7.5  
(T2CDELAY + 1)  
*tc(VCLK) + 7  
Hold time, SPICLK low until CS inactive (clock polarity = 0)  
Hold time, SPICLK high until CS inactive (clock polarity = 1)  
7(5)  
8(4)  
9(4)  
tT2CDELAY  
ns  
ns  
ns  
(T2CDELAY + 1)  
*tc(VCLK) – 7.5  
(T2CDELAY + 1)  
*tc(VCLK) + 7  
Setup time, SPISOMI before SPICLK low  
(clock polarity = 0)  
tsu(SOMI-SPCL)M  
tsu(SOMI-SPCH)M  
th(SPCL-SOMI)M  
th(SPCH-SOMI)M  
5
5
3
3
Setup time, SPISOMI before SPICLK high  
(clock polarity = 1)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 0)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 1)  
(1) The MASTER bit (SPIGCRx.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set ( where x = 0 or 1 ).  
(2) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(3) When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M (PS +1)tc(MSS_VCLK) 25 ns, where PS is the prescale value set in the SPIFMTx.[15:8]  
register bits. For PS values of 0: tc(SPC)M = 2tc(MSS_VCLK) 25 ns.  
(4) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
(5) C2TDELAY and T2CDELAY is programmed in the SPIDELAY register  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
37  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
Master Out Data Is Valid  
Data Valid  
SPISIMO  
8
9
Master In Data  
Must Be Valid  
SPISOMI  
Figure 5-5. SPI Master Mode External Timing (CLOCK PHASE = 1)  
Write to buffer  
SPICLK  
(clock polarity=0)  
SPICLK  
(clock polarity=1)  
SPISIMO  
SPICSn  
Master Out Data Is Valid  
6
7
Figure 5-6. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1)  
38  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.10.3.3 SPI Slave Mode I/O Timings  
Table 5-10. SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input,  
and SPISOMI = output)(1)(2)(3)  
NO.  
PARAMETER  
Cycle time, SPICLK(4)  
MIN  
25  
TYP  
MAX  
UNIT  
1
tc(SPC)S  
ns  
tw(SPCH)S  
tw(SPCL)S  
tw(SPCL)S  
tw(SPCH)S  
Pulse duration, SPICLK high (clock polarity = 0)  
Pulse duration, SPICLK low (clock polarity = 1)  
Pulse duration, SPICLK low (clock polarity = 0)  
Pulse duration, SPICLK high (clock polarity = 1)  
10  
2(5)  
3(5)  
ns  
ns  
10  
10  
10  
Delay time, SPISOMI valid after SPICLK high (clock  
polarity = 0)  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
10  
10  
4(5)  
ns  
ns  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0)  
2
2
5(5)  
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1)  
Delay time, SPISOMI valid after SPICLK high (clock  
polarity = 0; clock phase = 0) OR (clock polarity = 1;  
clock phase = 1)  
td(SPCH-SOMI)S  
td(SPCL-SOMI)S  
th(SPCH-SOMI)S  
th(SPCL-SOMI)S  
tsu(SIMO-SPCL)S  
tsu(SIMO-SPCH)S  
th(SPCL-SIMO)S  
th(SPCL-SIMO)S  
10  
10  
4(5)  
5(5)  
6(5)  
7(5)  
ns  
ns  
ns  
ns  
Delay time, SPISOMI valid after SPICLK low (clock  
polarity = 1; clock phase = 0) OR (clock polarity = 0;  
clock phase = 1)  
Hold time, SPISOMI data valid after SPICLK high  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
2
2
3
3
1
1
Hold time, SPISOMI data valid after SPICLK low  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
Setup time, SPISIMO before SPICLK low (clock  
polarity = 0; clock phase = 0) OR (clock polarity = 1;  
clock phase = 1)  
Setup time, SPISIMO before SPICLK high (clock  
polarity = 1; clock phase = 0) OR (clock polarity = 0;  
clock phase = 1)  
Hold time, SPISIMO data valid after SPICLK low  
(clock polarity = 0; clock phase = 0) OR (clock  
polarity = 1; clock phase = 1)  
Hold time, SPISIMO data valid after SPICLK high  
(clock polarity = 1; clock phase = 0) OR (clock  
polarity = 0; clock phase = 1)  
(1) The MASTER bit (SPIGCRx.0) is cleared ( where x = 0 or 1 ).  
(2) The CLOCK PHASE bit (SPIFMTx.16) is either cleared or set for CLOCK PHASE = 0 or CLOCK PHASE = 1 respectively.  
(3) tc(MSS_VCLK) = master subsystem clock time = 1 / f(MSS_VCLK). For more details, see the Technical Reference Manual.  
(4) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S (PS +1)tc(MSS_VCLK) 25 ns, where  
PS is the prescale value set in the SPIFMTx.[15:8] register bits.For PS values of 0: tc(SPC)S = 2tc(MSS_VCLK) 25 ns.  
(5) The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17).  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
39  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
5
4
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 5-7. SPI Slave Mode External Timing (CLOCK PHASE = 0)  
1
SPICLK  
(clock polarity = 0)  
2
3
SPICLK  
(clock polarity = 1)  
4
5
SPISOMI  
SPISOMI Data Is Valid  
6
7
SPISIMO Data  
Must Be Valid  
SPISIMO  
Figure 5-8. SPI Slave Mode External Timing (CLOCK PHASE = 1)  
40  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.10.3.4 Typical Interface Protocol Diagram (Slave Mode)  
1. Host should ensure that there is a delay of two SPI clocks between CS going low and start of SPI  
clock.  
2. Host should ensure that CS is toggled for every 16 bits of transfer through SPI.  
Figure 5-9 shows the SPI communication timing of the typical interface protocol.  
2 SPI clocks  
CS  
CLK  
0x4321  
0x1234  
CRC  
0x5678  
0x8765  
MOSI  
MISO  
IRQ  
0xDCBA  
0xABCD  
CRC  
16 bytes  
Figure 5-9. SPI Communication  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
41  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.10.4 LVDS Interface Configuration  
The supported IWR1843 LVDS lane configuration is two Data lanes (LVDS_TXP/M), one Bit Clock lane  
(LVDS_CLKP/M) and one Frame clock lane (LVDS_FRCLKP/M). The LVDS interface is used for  
debugging. The LVDS interface supports the following data rates:  
900 Mbps (450 MHz DDR Clock)  
600 Mbps (300 MHz DDR Clock)  
450 Mbps (225 MHz DDR Clock)  
400 Mbps (200 MHz DDR Clock)  
300 Mbps (150 MHz DDR Clock)  
225 Mbps (112.5 MHz DDR Clock)  
150 Mbps (75 MHz DDR Clock)  
Note that the bit clock is in DDR format and hence the numbers of toggles in the clock is equivalent to  
data.  
LVDS_TXP/M  
LVDS_FRCLKP/M  
Data bitwidth  
LVDS_CLKP/M  
Figure 5-10. LVDS Interface Lane Configuration And Relative Timings  
5.10.4.1 LVDS Interface Timings  
Table 5-11. LVDS Electrical Characteristics  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
max 1 pF lumped capacitive load on  
LVDS lanes  
48%  
52%  
Duty Cycle Requirements  
peak-to-peak single-ended with 100 Ω  
resistive load between differential pairs  
Output Differential Voltage  
250  
450  
mV  
Output Offset Voltage  
Trise and Tfall  
1125  
1275  
mV  
ps  
20%-80%, 900 Mbps  
900 Mbps  
Jitter (pk-pk)  
80  
ps  
42  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Trise  
LVDS_CLK  
Clock Jitter = 6sigma  
LVDS_TXP/M  
LVDS_FRCLKP/M  
1100 ps  
Figure 5-11. Timing Parameters  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
43  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.10.5 General-Purpose Input/Output  
Table 5-12 lists the switching characteristics of output timing relative to load capacitance.  
Table 5-12. Switching Characteristics for Output Timing versus Load Capacitance (CL)(1)(2)  
PARAMETER  
TEST CONDITIONS  
CL = 20 pF  
VIOIN = 1.8V  
VIOIN = 3.3V  
UNIT  
2.8  
6.4  
9.4  
2.8  
6.4  
9.4  
3.3  
6.7  
9.6  
3.1  
6.6  
9.6  
3.0  
6.9  
tr  
tf  
tr  
tf  
Max rise time  
CL = 50 pF  
ns  
CL = 75 pF  
10.2  
2.8  
Slew control = 0  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
CL = 20 pF  
CL = 50 pF  
CL = 75 pF  
Max fall time  
Max rise time  
Max fall time  
6.6  
ns  
ns  
ns  
9.8  
3.3  
7.2  
10.5  
3.1  
Slew control = 1  
6.6  
9.6  
(1) Slew control, which is configured by PADxx_CFG_REG, changes behavior of the output driver (faster or slower output slew rate).  
(2) The rise/fall time is measured as the time taken by the signal to transition from 10% and 90% of VIOIN voltage.  
44  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.10.6 Controller Area Network Interface (DCAN)  
The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication  
protocol that efficiently supports distributed real-time control with robust communication rates of up to 1  
Mbps. The DCAN is ideal for applications operating in noisy and harsh environments that require reliable  
serial communication or multiplexed wiring.  
The DCAN has the following features:  
Supports CAN protocol version 2.0 part A, B  
Bit rates up to 1 Mbps  
Configurable Message objects  
Individual identifier masks for each message object  
Programmable FIFO mode for message objects  
Suspend mode for debug support  
Programmable loop-back modes for self-test operation  
Direct access to Message RAM in test mode  
Supports two interrupt lines - Level 0 and Level 1  
Automatic Message RAM initialization  
Table 5-13. Dynamic Characteristics for the DCANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
15  
UNIT  
ns  
td(CAN_tx)  
td(CAN_rx)  
Delay time, transmit shift register to CAN_tx pin(1)  
Delay time, CAN_rx pin to receive shift register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
45  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.10.7 Controller Area Network - Flexible Data-rate (CAN-FD)  
The CAN-FD module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate)  
specifications. CAN FD feature allows high throughput and increased payload per data frame. The classic  
CAN and CAN FD devices can coexist on the same network without any conflict.  
The CAN-FD has the following features:  
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1  
Full CAN FD support (up to 64 data bytes per frame)  
AUTOSAR and SAE J1939 support  
Up to 32 dedicated Transmit Buffers  
Configurable Transmit FIFO, up to 32 elements  
Configurable Transmit Queue, up to 32 elements  
Configurable Transmit Event FIFO, up to 32 elements  
Up to 64 dedicated Receive Buffers  
Two configurable Receive FIFOs, up to 64 elements each  
Up to 128 11-bit filter elements  
Internal Loopback mode for self-test  
Mask-able interrupts, two interrupt lines  
Two clock domains (CAN clock / Host clock)  
Parity / ECC support - Message RAM single error correction and double error detection (SECDED)  
mechanism  
Full Message Memory capacity (4352 words).  
Table 5-14. Dynamic Characteristics for the CANx TX and RX Pins  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
Delay time, transmit shift register to  
CAN_FD_tx pin(1)  
td(CAN_FD_tx)  
td(CAN_FD_rx)  
15  
ns  
Delay time, CAN_FD_rx pin to receive shift  
register(1)  
10  
ns  
(1) These values do not include rise/fall times of the output buffer.  
5.10.8 Serial Communication Interface (SCI)  
The SCI has the following features:  
Standard universal asynchronous receiver-transmitter (UART) communication  
Standard non-return to zero (NRZ) format  
Double-buffered receive and transmit functions  
Asynchronous or iso-synchronous communication modes with no CLK pin  
Capability to use Direct Memory Access (DMA) for transmit and receive data  
Two external pins: RS232_RX and RS232_TX  
Table 5-15. SCI Timing Requirements  
MIN  
TYP  
921.6  
MAX  
UNIT  
kHz  
f(baud)  
Supported baud rate at 20 pF  
46  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.10.9 Inter-Integrated Circuit Interface (I2C)  
The inter-integrated circuit (I2C) module is a multimaster communication module providing an interface  
between devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by  
an I2C-bus™. This module will support any slave or master I2C compatible device.  
The I2C has the following features:  
Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number  
9398 393 40011)  
Bit/Byte format transfer  
7-bit and 10-bit device addressing modes  
General call  
START byte  
Multi-master transmitter/ slave receiver mode  
Multi-master receiver/ slave transmitter mode  
Combined master transmit/receive and receive/transmit mode  
Transfer rates of 100 kbps up to 400 kbps (Phillips fast-mode rate)  
Free data format  
Two DMA events (transmit and receive)  
DMA event enable/disable capability  
Module enable/disable capability  
The SDA and SCL are optionally configurable as general purpose I/O  
Slew rate control of the outputs  
Open drain control of the outputs  
Programmable pullup/pulldown capability on the inputs  
Supports Ignore NACK mode  
NOTE  
This I2C module does not support:  
High-speed (HS) mode  
C-bus compatibility mode  
The combined format in 10-bit address mode (the I2C sends the slave address second  
byte every time it sends the slave address first byte)  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
47  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 5-16. I2C Timing Requirements(1)  
STANDARD MODE  
FAST MODE  
UNIT  
MIN  
MAX  
MIN  
MAX  
tc(SCL)  
Cycle time, SCL  
10  
2.5  
μs  
μs  
Setup time, SCL high before SDA low  
(for a repeated START condition)  
tsu(SCLH-SDAL)  
4.7  
4
0.6  
0.6  
Hold time, SCL low after SDA low  
(for a START and a repeated START condition)  
th(SCLL-SDAL)  
μs  
tw(SCLL)  
Pulse duration, SCL low  
4.7  
4
1.3  
0.6  
100  
0
μs  
μs  
μs  
μs  
tw(SCLH)  
Pulse duration, SCL high  
tsu(SDA-SCLH)  
th(SCLL-SDA)  
Setup time, SDA valid before SCL high  
Hold time, SDA valid after SCL low  
250  
0
3.45(1)  
0.9  
Pulse duration, SDA high between STOP and START  
conditions  
tw(SDAH)  
4.7  
4
1.3  
μs  
μs  
Setup time, SCL high before SDA high  
(for STOP condition)  
tsu(SCLH-SDAH)  
tw(SP)  
0.6  
0
Pulse duration, spike (must be suppressed)  
Capacitive load for each bus line  
50  
ns  
(2)(3)  
Cb  
400  
400  
pF  
(1) The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered  
down.  
(2) The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL  
signal.  
(3) Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.  
SDA  
tw(SDAH)  
tsu(SDA-SCLH)  
tw(SP)  
tw(SCLL)  
tr(SCL)  
tsu(SCLH-SDAH)  
tw(SCLH)  
SCL  
tc(SCL)  
th(SCLL-SDAL)  
tf(SCL)  
th(SCLL-SDAL)  
tsu(SCLH-SDAL)  
th(SDA-SCLL)  
Stop  
Start  
Repeated Start  
Stop  
Figure 5-12. I2C Timing Diagram  
NOTE  
A device must internally provide a hold time of at least 300 ns for the SDA signal  
(referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling  
edge of SCL.  
The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW  
period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a  
Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) 250 ns must then be  
met. This will automatically be the case if the device does not stretch the LOW period of  
the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must  
output the next data bit to the SDA line tr max + tsu(SDA-SCLH)  
.
48  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.10.10 Quad Serial Peripheral Interface (QSPI)  
The quad serial peripheral interface (QSPI) module is a kind of SPI module that allows single, dual, or  
quad read access to external SPI devices. This module has a memory mapped register interface, which  
provides a direct interface for accessing data from external SPI devices and thus simplifying software  
requirements. The QSPI works as a master only. The QSPI in the device is primarily intended for fast  
booting from quad-SPI flash memories.  
The QSPI supports the following features:  
Programmable clock divider  
Six-pin interface  
Programmable length (from 1 to 128 bits) of the words transferred  
Programmable number (from 1 to 4096) of the words transferred  
Support for 3-, 4-, or 6-pin SPI interface  
Optional interrupt generation on word or frame (number of words) completion  
Programmable delay between chip select activation and output data from 0 to 3 QSPI clock cycles  
Table 5-18 and Table 5-19 assume the operating conditions stated in Table 5-17.  
Table 5-17. QSPI Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD  
Output load capacitance  
2
15  
pF  
Table 5-18. Timing Requirements for QSPI Input (Read) Timings(1)(2)  
MIN  
7.3  
TYP  
MAX  
UNIT  
ns  
tsu(D-SCLK)  
th(SCLK-D)  
tsu(D-SCLK)  
th(SCLK-D)  
Setup time, d[3:0] valid before falling sclk edge (Q12)  
Hold time, d[3:0] valid after falling sclk edge (Q13)  
Setup time, final d[3:0] bit valid before final falling sclk edge  
Hold time, final d[3:0] bit valid after final falling sclk edge  
1.5  
ns  
7.3 – P(3)  
1.5 + P(3)  
ns  
ns  
(1) Clock Mode 0 (clk polarity = 0 ; clk phase = 0 ) is the mode of operation.  
(2) The Device captures data on the falling clock edge in Clock Mode 0, as opposed to the traditional rising clock edge. Although non-  
standard, the falling-edge-based setup and hold time timings have been designed to be compatible with standard SPI devices that  
launch data on the falling edge in Clock Mode 0.  
(3) P = SCLK period in ns.  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
49  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 5-19. QSPI Switching Characteristics  
NO.  
PARAMETER  
Cycle time, sclk  
MIN  
TYP  
MAX  
UNIT  
ns  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Q8  
tc(SCLK)  
25  
tw(SCLKL)  
Pulse duration, sclk low  
0.5*P – 3(1)  
0.5*P – 3  
–M*P – 1(2)  
N*P – 1(2)  
–3.5  
ns  
tw(SCLKH)  
td(CS-SCLK)  
td(SCLK-CS)  
td(SCLK-D1)  
tena(CS-D1LZ)  
tdis(CS-D1Z)  
Pulse duration, sclk high  
ns  
Delay time, sclk falling edge to cs active edge  
Delay time, sclk falling edge to cs inactive edge  
Delay time, sclk falling edge to d[0] transition  
Enable time, cs active edge to d[0] driven (lo-z)  
Disable time, cs active edge to d[0] tri-stated (hi-z)  
–M*P + 2.5(2)  
N*P + 2.5(2)  
7
ns  
ns  
ns  
–P – 4(2)  
–P – 4(2)  
–P +1(2)  
–P +1(2)  
ns  
ns  
Delay time, sclk first falling edge to first d[1] transition  
(for PHA = 0 only)  
Q9  
td(SCLK-D1)  
–3.5 – P(2)  
7 – P(2)  
ns  
(1) P = SCLK period in ns.  
(2) M = QSPI_SPI_DC_REG.DDx + 1, N = 2  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q12  
Q13  
Q12 Q13  
Read Data  
Bit 0  
Q6  
Q7  
Q9  
Command  
Bit n-1  
Command  
Bit n-2  
Read Data  
Bit 1  
d[0]  
Q12 Q13  
Read Data  
Bit 1  
Q12 Q13  
Read Data  
Bit 0  
d[3:1]  
SPRS85v_TIMING_OSPI1_02  
Figure 5-13. QSPI Read (Clock Mode 0)  
50  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
PHA=0  
cs  
Q5  
Q4  
Q1  
Q2  
Q3  
POL=0  
sclk  
Q8  
Q6  
Q6  
Q7  
Q9  
Q6  
Command  
Bit n-1  
Command  
Bit n-2  
Write Data  
Bit 1  
Write Data  
Bit 0  
d[0]  
d[3:1]  
SPRS85v_TIMING_OSPI1_04  
Figure 5-14. QSPI Write (Clock Mode 0)  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
51  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.10.11 ETM Trace Interface  
Table 5-21 and assume the recommended operating conditions stated in Table 5-20.  
Table 5-20. ETMTRACE Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Output Conditions  
CLOAD Output load capacitance  
2
20  
pF  
Table 5-21. ETM TRACE Switching Characteristics  
NO.  
PARAMETER  
Cycle time, TRACECLK period  
Pulse Duration, TRACECLK High  
Pulse Duration, TRACECLK Low  
Clock and data rise time  
MIN  
20  
9
TYP  
MAX  
UNIT  
ns  
1
2
3
4
5
tcyc(ETM)  
th(ETM)  
ns  
tl(ETM)  
9
ns  
tr(ETM)  
3.3  
3.3  
7
ns  
tf(ETM)  
Clock and data fall time  
ns  
td(ETMTRAC  
ECLKH-  
1
1
ns  
6
7
Delay time, ETM trace clock high to ETM data valid  
Delay time, ETM trace clock low to ETM data valid  
ETMDATAV)  
td(ETMTRAC  
ECLKl-  
7
ns  
ETMDATAV)  
tl(ETM)  
th(ETM)  
tr(ETM)  
tf(ETM)  
tcyc(ETM)  
Figure 5-15. ETMTRACECLKOUT Timing  
Figure 5-16. ETMDATA Timing  
52  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5.10.12 Data Modification Module (DMM)  
A Data Modification Module (DMM) gives the ability to write external data into the device memory.  
The DMM has the following features:  
Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention  
Writes to memory locations specified in the received packet (leverages packets defined by trace mode  
of the RAM trace port [RTP] module)  
Writes received data to consecutive addresses, which are specified by the DMM (leverages packets  
defined by direct data mode of RTP module)  
Configurable port width (1, 2, 4, 8, 16 pins)  
Up to 65 Mbit/s pin data rate  
Table 5-22. DMM Timing Requirements  
MIN  
TYP  
MAX  
UNIT  
ns  
tcyc(DMM)  
Clock period  
15.4  
1
tR  
Clock rise time  
3
3
ns  
tF  
Clock fall time  
1
ns  
th(DMM)  
tl(DMM)  
tssu(DMM)  
tsh(DMM)  
tdsu(DMM)  
tdh(DMM)  
High pulse width  
6
ns  
Low pulse width  
6
ns  
SYNC active to clk falling edge setup time  
DMM clk falling edge to SYNC deactive hold time  
DATA to DMM clk falling edge setup time  
DMM clk falling edge to DATA hold time  
2
ns  
3
ns  
2
ns  
3
ns  
tl(DMM)  
th(DMM)  
tf  
tr  
tcyc(DMM)  
Figure 5-17. DMMCLK Timing  
tssu(DMM)  
tsh(DMM)  
DMMSYNC  
DMMCLK  
DMMDATA  
tdsu(DMM)  
tdh(DMM)  
Figure 5-18. DMMDATA Timing  
Copyright © 2019, Texas Instruments Incorporated  
Specifications  
53  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
5.10.13 JTAG Interface  
Table 5-24 and Table 5-25 assume the operating conditions stated in Table 5-23.  
Table 5-23. JTAG Timing Conditions  
MIN  
TYP  
MAX  
UNIT  
Input Conditions  
tR  
tF  
Input rise time  
Input fall time  
1
1
3
3
ns  
ns  
Output Conditions  
CLOAD Output load capacitance  
2
15  
pF  
Table 5-24. Timing Requirements for IEEE 1149.1 JTAG  
NO.  
MIN  
TYP  
MAX  
UNIT  
ns  
1
tc(TCK)  
Cycle time TCK  
66.66  
26.67  
26.67  
2.5  
1a  
1b  
tw(TCKH)  
Pulse duration TCK high (40% of tc)  
Pulse duration TCK low(40% of tc)  
Input setup time TDI valid to TCK high  
Input setup time TMS valid to TCK high  
Input hold time TDI valid from TCK high  
Input hold time TMS valid from TCK high  
ns  
tw(TCKL)  
ns  
tsu(TDI-TCK)  
tsu(TMS-TCK)  
th(TCK-TDI)  
th(TCK-TMS)  
ns  
3
4
2.5  
ns  
18  
ns  
18  
ns  
Table 5-25. Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG  
NO.  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
2
td(TCKL-TDOV)  
Delay time, TCK low to TDO valid  
0
25  
ns  
1
1a  
1b  
TCK  
TDO  
2
3
4
TDI/TMS  
SPRS91v_JTAG_01  
Figure 5-19. JTAG Timing  
54  
Specifications  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
 
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
6 Detailed Description  
6.1 Overview  
The IWR1843 device includes the entire Millimeter Wave blocks and analog baseband signal chain for  
three transmitters and four receivers, as well as a customer-programmable MCU, Radar Hardware  
accelerator, and a DSP. This device is applicable as a radar-on-a-chip in use-cases with modest  
requirements for memory, processing capacity, and application code size. These could be cost-sensitive  
industrial radar-sensing applications. Examples are:  
Industrial-level sensing  
Industrial automation sensor fusion with radar  
Traffic intersection monitoring with radar  
Industrial radar-proximity monitoring  
People counting  
Gesturing  
6.2 Functional Block Diagram  
Serial Flash interface  
QSPI  
SPI  
Cortex R4F  
@ 200MHz  
LNA  
LNA  
LNA  
LNA  
IF  
IF  
IF  
IF  
ADC  
ADC  
ADC  
ADC  
Optional External  
MCU interface  
(User programmable)  
Digital  
Front-end  
PMIC control  
SPI / I2C  
DCAN  
Prog RAM  
(512kB*)  
Data RAM  
(192kB*)  
Boot  
ROM  
(Decimation  
filter chain)  
Primary communication  
interfaces (automotive)  
CAN-FD  
UARTs  
Radar Hardware Accelerator  
(FFT, Log mag, and others)  
DMA  
Master sub-system  
(Customer programmed)  
Test/  
Debug  
JTAG for debug/  
development  
ADC  
Buffer  
PA  
û-  
û-  
û-  
Mailbox  
High-speed ADC output  
interface (for recording)  
LVDS  
HIL  
Synth  
(20 GHz)  
Ramp  
Generator  
PA  
x4  
High-speed input for  
hardware-in-loop verification  
C674x DSP  
@ 400/600 MHz  
Radio (BIST)  
processor  
PA  
GPADC  
Osc.  
6
(For RF Calibration  
& Self-test œ TI  
programmed)  
L1P  
(32kB)  
L1D  
(32kB)  
L2 (256kB)  
Prog RAM  
& ROM  
Data  
RAM  
VMON  
Temp  
DMA  
CRC  
Radar Data Memory  
1024 kB*  
Radio processor  
sub-system  
(TI programmed)  
DSP sub-system  
(Customer programmed)  
RF/Analog sub-system  
* Up to 512kB of Radar Data Memory can be switched to the Master R4F program and data RAMs  
Figure 6-1. Functional Block Diagram  
Copyright © 2019, Texas Instruments Incorporated  
Detailed Description  
55  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
6.3 Subsystems  
6.3.1 RF and Analog Subsystem  
The RF and analog subsystem includes the RF and analog circuitry – namely, the synthesizer, PA, LNA,  
mixer, IF, and ADC. This subsystem also includes the crystal oscillator and temperature sensors. The  
three transmit channels can be operated up to a maximum of two at a time (simultaneously) for transmit  
beamforming purpose as required; whereas the four receive channels can all be operated simultaneously.  
56  
Detailed Description  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
6.3.1.1 Clock Subsystem  
The IWR1843 clock subsystem generates 76 to 81 GHz from an input reference of 40-MHz crystal. It has  
a built-in oscillator circuit followed by a clean-up PLL and a RF synthesizer circuit. The output of the RF  
synthesizer is then processed by an X4 multiplier to create the required frequency in the 76 to 81 GHz  
spectrum. The RF synthesizer output is modulated by the timing engine block to create the required  
waveforms for effective sensor operation.  
The clean-up PLL also provides a reference clock for the host processor after system wakeup.  
The clock subsystem also has built-in mechanisms for detecting the presence of a crystal and monitoring  
the quality of the generated clock.  
Figure 6-2 describes the clock subsystem.  
Self Test  
RF SYNTH  
Timing  
SYNC_OUT  
Engine  
Lock Detect  
SoC Clock  
Clean-  
Up PLL  
x4  
MULT  
XO/  
Slicer  
CLK Detect  
40 MHz  
Figure 6-2. Clock Subsystem  
Copyright © 2019, Texas Instruments Incorporated  
Detailed Description  
57  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
6.3.1.2 Transmit Subsystem  
The IWR1843 transmit subsystem consists of three parallel transmit chains, each with independent phase  
and amplitude control. All three transmitters can be used simultaneously. For IWR1843, additional phase  
shifters are associated with Tx channels, and these can programmed on a per chirp basis.  
Each transmit chain can deliver a maximum of 12 dBm at the antenna port on the PCB. The transmit  
chains also support programmable backoff for system optimization.  
Figure 6-3 describes the transmit subsystem.  
Loopback Path  
Fine Phase Shifter Control  
PCB  
6 bits  
12dBm  
@ 50 Ω  
û-  
LO  
0/180°  
(from Timing Engine)  
Self Test  
Figure 6-3. Transmit Subsystem (Per Channel)  
6.3.1.3 Receive Subsystem  
The IWR1843 receive subsystem consists of four parallel channels. A single receive channel consists of  
an LNA, mixer, IF filtering, A2D conversion, and decimation. All four receive channels can be operational  
at the same time an individual power-down option is also available for system optimization.  
Unlike conventional real-only receivers, the IWR1843 device supports a complex baseband architecture,  
which uses quadrature mixer and dual IF and ADC chains to provide complex I and Q outputs for each  
receiver channel. The IWR1843 is targeted for fast chirp systems. The band-pass IF chain has  
configurable lower cutoff frequencies above 175 kHz and can support bandwidths up to 10 MHz.  
Figure 6-4 describes the receive subsystem.  
Self Test  
DAC  
Loopback  
Path  
DSM  
PCB  
I
RSSI  
50 W  
GSG  
LO  
Q
DSM  
DAC  
Figure 6-4. Receive Subsystem (Per Channel)  
58  
Detailed Description  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
6.3.2 Processor Subsystem  
Unified  
128KB x 2  
ROM  
L2  
Cache/  
RAM  
TCM A 512KB  
Master  
R4F  
L1P  
32KB  
32KB  
EDMA  
DSP  
HIL  
JTAG  
CRC  
HIL  
TCM B 192KB  
L1d  
DSP Interconnect œ 128 bit @ 200 MHz  
Master Interconnect  
BSS Interconnect  
Data  
Handshake  
Memory  
CRC  
ADC Buffer  
Mail  
Box  
MSS  
DMA  
L3  
HWA  
32KB  
32KB Ping-Pong  
1024 KB  
(static sharing  
with R4F Space)  
Interconnect  
LVDS  
PWM,  
PMIC  
CLK  
CAN  
FD  
I2C  
QSPI  
UART  
CAN  
SPI  
Figure 6-5. Processor Subsystem  
Figure 6-5 shows the block diagram for customer programmable processor subsystems in the IWR1843  
device. At a high level there are two customer programmable subsystems, as shown separated by a  
dotted line in the diagram. Left hand side shows the DSP Subsystem which contains TI's high-  
performance C674x DSP, a hardware accelerator, a high-bandwidth interconnect for high performance  
(128-bit, 200MHz), and associated peripherals – four DMAs for data transfer,  
LVDS interface for Measurement data output, L3 Radar data cube memory, ADC buffers, CRC engine,  
and data handshake memory (additional memory provided on interconnect).  
The right side of the diagram shows the Master subsystem. Master subsystem as name suggests is the  
master of the device and controls all the device peripherals and house-keeping activities of the device.  
Master subsystem contains Cortex-R4F (Master R4F) processor and associated peripherals and house-  
keeping components such as DMAs, CRC and Peripherals (I2C, UART, SPIs, CAN, PMIC clocking  
module, PWM, and others) connected to Master Interconnect through Peripheral Central Resource (PCR  
interconnect).  
Details of the DSP CPU core can be found at http://www.ti.com/product/TMS320C6748.  
HIL module is shown in both the subsystems and can be used to perform the radar operations feeding the  
captured data from outside into the device without involving the RF subsystem. HIL on master SS is for  
controlling the configuration and HIL on DSPSS for high speed ADC data input to the device. Both HIL  
modules uses the same IOs on the device, one additional IO (DMM_MUX_IN) allows selecting either of  
the two.  
Copyright © 2019, Texas Instruments Incorporated  
Detailed Description  
59  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
6.3.3 Host Interface  
The host interface can be provided through a SPI, UART, or CAN-FD interface. In some cases the serial  
interface for industrial applications is transcoded to a different serial standard.  
The IWR1843 device communicates with the host radar processor over the following main interfaces:  
Reference Clock – Reference clock available for host processor after device wakeup  
Control – 4-port standard SPI (slave) for host control. All radio control commands (and response) flow  
through this interface.  
Reset – Active-low reset for device wakeup from host  
Host Interrupt - an indication that the mmwave sensor needs host interface  
Error – Used for notifying the host in case the radio controller detects a fault  
6.3.4 Master Subsystem Cortex-R4F Memory Map  
Table 6-1 shows the master subsystem, Cortex-R4F memory map.  
NOTE  
There are separate Cortex-R4F addresses and DMA MSS addresses for the master  
subsystem. See the Technical Reference Manual for a complete list.  
Table 6-1. Master Subsystem, Cortex-R4F Memory Map  
FRAME ADDRESS (HEX)  
NAME  
SIZE  
DESCRIPTION  
START  
CPU Tightly-Coupled Memories  
END  
TCMA ROM  
TCM RAM-A  
0x0000_0000  
0x0020_0000  
0x0001_FFFF  
128 KiB  
512 KiB  
Program ROM  
Data RAM  
0x0023_FFFF (or  
0x0027_FFFF)  
TCM RAM-B  
0x0800_0000  
0x0802_FFFF  
192 KB  
8 KB  
S/W Scratch Pad Memory  
SW_ Buffer  
0x0C20_0000  
0x0C20_1FFF  
S/W Scratchpad memory  
System Peripherals  
Mail Box  
MSS<->RADARSS  
0xF060_1000  
0xF060_2000  
0xF060_8000  
0xF060_17FF  
0xF060_27FF  
0xF060_80FF  
2 KB  
RADARSS to MSS mailbox memory space  
MSS to RADARSS mailbox memory space  
188 B  
MSS to RADARSS mailbox Configuration  
registers  
0xF060_8060  
0xF060_86FF  
RADARSS to MSS mailbox Configuration  
registers  
Mail Box  
MSS<->DSPSS  
0xF060_4000  
0xF060_5000  
0xF060_8400  
0xF060_8300  
0xF060_6000  
0xF060_7000  
0xF060_8200  
0xF060_47FF  
0xF060_57FF  
0xF060_84FF  
0xF060_83FF  
0xF060_67FF  
0xF060_7FFF  
0xF060_82FF  
2 KB  
DSPSS to MSS mailbox memory space  
MSS to DSPSS mailbox memory space  
188 B  
2 KB  
MSS to DSPSS mailbox Configuration registers  
DSPSS to MSS mailbox Configuration registers  
RADARSS to DSPSS mailbox memory space  
DSPSS to RADARSS mailbox memory space  
Mail Box  
RADARSS<-  
>DSPSS  
188 B  
RADARSS to DSPSS mailbox Configuration  
registers  
0xF060_8100  
0xF060_81FF  
DSPSS to RADARSS mailbox Configuration  
registers  
PRCM and Control  
Module  
0xFFFF_E100  
0xFFFF_FF00  
0xFFFF_EA00  
0xFFFF_F800  
0xFFFF_E2FF  
0xFFFF_FFFF  
0xFFFF_EBFF  
0xFFFF_FBFF  
756 B  
256 B  
512 KB  
352 B  
TOP Level Reset, Clock management registers  
MSS Reset, Clock management registers  
IO Mux module registers  
General-purpose control registers  
60  
Detailed Description  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Table 6-1. Master Subsystem, Cortex-R4F Memory Map (continued)  
FRAME ADDRESS (HEX)  
START END  
NAME  
SIZE  
DESCRIPTION  
GIO  
0xFFF7_BC00  
0xFFFF_F000  
0xFCFF_F800  
0xFCFF_F700  
0xFCFF_F600  
0xFFFF_FD00  
0xFFFF_FC00  
0xFFFF_EE00  
0xFFF7_BDFF  
0xFFFF_F3FF  
0xFCFF_FBFF  
0xFCFF_F7FF  
0xFCFF_F6FF  
0xFFFF_FEFF  
0xFFFF_FCFF  
0xFFFF_EEFF  
180 B  
GIO module configuration registers  
DMA-1 module configuration registers  
DMA-2 module configuration registers  
DMM-1 module configuration registers  
DMM-2 module configuration registers  
VIM module configuration registers  
RTI-A module configuration registers  
RTI-B module configuration registers  
DMA-1  
DMA-2  
DMM-1  
DMM-2  
VIM  
1 KB  
1 KB  
472 B  
472 B  
512 B  
192 B  
192 B  
RTI-A/WD  
RTI-B  
Serial Interfaces and Connectivity  
QSPI  
0xC000_0000  
0xC080_0000  
0xFFF7_F400  
0xFFF7_F600  
0xFFF7_E500  
0xFFF7_E700  
0xFFF7_DC00  
0xFFF7_C800  
0xFFF7_A000  
0xFFF7_D400  
0xC07F_FFFF  
0xC0FF_FFFF  
0xFFF7_F5FF  
0xFFF7_F7FF  
0xFFF7_E5FF  
0xFFF7_E7FF  
0xFFF7_DDFF  
0xFFF7_CFFF  
0xFFF7_A1FF  
0xFFF7_D4FF  
8 MB  
QSPI –flash memory space  
116 B  
512 B  
512 B  
148 B  
148 B  
512 B  
768 B  
452 B  
112 B  
QSPI module configuration registers  
MIBSPI-A module configuration registers  
MIBSPI-B module configuration registers  
SCI-A module configuration registers  
SCI-B module configuration registers  
CAN module configuration registers  
CAN-FD module configuration registers  
MCAN ECC module registers  
MIBSPI-A  
MIBSPI-B  
SCI-A  
SCI-B  
CAN  
CAN_FD(MCAN)  
I2C  
I2C module configuration registers  
Interconnects  
PCR-1  
0xFFF7_8000  
0xFCFF_1000  
0xFFF7_87FF  
0xFCFF_17FF  
1 KiB  
1 KiB  
PCR-1 interconnect configuration port  
PCR-2 interconnect configuration port  
PCR-2  
Safety Modules  
CRC  
0xFE00_0000  
0xFFFF_E400  
0xFFFF_E600  
0xFFFF_EC00  
0xFFFF_F400  
0xFFFF_F500  
0xFFFF_F600  
0xFEFF_FFFF  
0xFFFF_E5FF  
0xFFFF_E7FF  
0xFFFF_ECFF  
0xFFFF_F4FF  
0xFFFF_F5FF  
0xFFFF_F6FF  
16 KiB  
464 B  
284 B  
44 B  
CRC module configuration registers  
PBIST module configuration registers  
STC module configuration registers  
DCC-A module configuration registers  
DCC-B module configuration registers  
ESM module configuration registers  
CCMR4 module configuration registers  
PBIST  
STC  
DCC-A  
DCC-B  
44 B  
ESM  
156 B  
136 B  
CCMR4  
Security Modules  
Crypto  
0xFD00_0000  
0XFDFF_FFFF  
3 KiB  
Crypto module configuration registers  
Other Subsystems  
DSS_TPTC0  
DSS_REG  
DSS_TPTC1  
DSS_REG2  
DSS_TPCC0  
DSS_RTIA/WDT  
DSS_SCI  
0x5000 0000  
0x5000 0400  
0x5000 0800  
0x5000 0C00  
0x5001 0000  
0x5002 0000  
0x5003 0000  
0x5004 0000  
0x5007 0000  
0x5009 0000  
0x5009 0400  
0x500A 0000  
0x500D 0000  
0x5000 0317  
0x5000 075F  
0x5000 0B17  
0x5000 0EA3  
0x5001 3FFF  
0x5002 00BF  
0x5003 0093  
0x5004 011B  
0x5007 0233  
0x5009 0317  
0x5009 0717  
0x500A 3FFF  
0x500D 005B  
792 B  
864 B  
792 B  
676 B  
16 KB  
192 B  
148 B  
284 B  
564 B  
792 B  
792 B  
16 KB  
92 B  
TPTC0 module configuration space  
DSPSS control module registers  
TPTC1 module configuration space  
DSPSS control module registers  
TPCC0 module configuration space  
DSS_RTIA/WDT configuration space  
SCI memory space  
DSS_STC  
DSS_CBUFF  
DSS_TPTC2  
DSS_TPTC3  
DSS_TPCC1  
DSS_ESM  
STC module configuration space  
Common Buffer module configuration registers  
TPTC2 module configuration space  
TPTC3 module configuration space  
TPCC1 module configuration space  
ESM module configuration registers  
Copyright © 2019, Texas Instruments Incorporated  
Detailed Description  
61  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 6-1. Master Subsystem, Cortex-R4F Memory Map (continued)  
FRAME ADDRESS (HEX)  
START END  
NAME  
DSS_RTIB  
SIZE  
DESCRIPTION  
0x500F 0000  
0x5100 0000  
0x500F 00BF  
0x511F FFFF  
192 B  
RTI-B module configuration registers  
L3 shared memory space  
DSS_L3RAM  
Shared memory  
2 MB(1)  
32 KB  
DSS_ADCBUF  
Buffer  
0x5200 0000  
0x5200 7FFF  
ADC buffer memory space  
DSS_CBUFF_FIFO 0x5202 0000  
DSS_HSRAM1 0x5208 0000  
0x5202 3FFF  
0x5208 7FFF  
0x577F FFFF  
16 KB  
32 KB  
128 KB  
Common buffer FIFO space  
Handshake memory space  
L2 RAM space  
DSS_DSP_L2_UMA 0x577E 0000  
P1  
DSS_DSP_L2_UMA 0x5780 0000  
P0  
0x5781 FFFF  
128 KB  
L2 RAM space  
DSS_DSP_L1P  
DSS_DSP_L1D  
0x57E0 0000  
0x57F0 0000  
0x57E0 7FFF  
0x57F0 7FFF  
32 KB  
32 KB  
L1 program memory space  
L1 data memory space  
Peripheral Memories (System and Nonsystem)  
CAN RAM  
0xFF1E_0000  
0xFF50_0000  
0xFFF8_0000  
0xFCF8 1000  
0xFFF8_2000  
0xFF0C_0000  
0xFF0C_0200  
0xFF0E_0000  
0xFF1F_FFFF  
0xFF51_FFFF  
0xFFF8_0FFF  
0xFCF8_0FFF  
0xFFF8_2FFF  
0xFF0C_01FF  
0xFF0C_03FF  
0xFF0E_01FF  
0xFF0E_03FF  
128 KB  
68 KB  
4 KB  
CAN RAM memory space  
CAN-FD RAM  
DMA1 RAM  
CAN-FD RAM memory space  
DMA1 RAM memory space  
DMA2 RAM  
4 KB  
DMA2 RAM memory space  
VIM RAM  
2 KB  
VIM RAM memory space  
MIBSPIB-TX RAM  
MIBSPIB-RX RAM  
MIBSPIA-TX RAM  
0.5 KB  
0.5 KB  
0.5 KB  
0.5 KB  
MIBSPIB-TX RAM memory space  
MIBSPIB-RX RAM memory space  
MIBSPIA-TX RAM memory space  
MIBSPIA- RX RAM memory space  
MIBSPIA- RX RAM 0xFF0E_0200  
Debug Modules  
Debug subsystem  
0xFFA0_0000  
0xFFAF_FFFF  
244 KB  
Debug subsystem memory space and registers  
(1) 768 KB memory within 2 MB memory space  
6.3.5 DSP Subsystem Memory Map  
Table 6-2 shows the DSP C674x memory map.  
Table 6-2. DSP C674x Memory Map  
Name  
Frame Address (Hex)  
End  
Size  
Description  
Start  
DSP Memories  
DSP_L1D  
0x00F0_0000  
0x00E0_0000  
0x00F0_7FFF  
32 KiB  
32 KiB  
L1 data memory space  
DSP_L1P  
0x00E0_7FFF  
L1 program memory  
space  
DSP_L2_UMAP0  
DSP_L2_UMAP1  
EDMA  
0x0080_0000  
0x007E_0000  
0x0081_FFFF  
0x007F_FFFF  
128 KiB  
128 KiB  
L2 RAM space  
L2 RAM space  
TPCC0  
0x0201_0000  
0x020A_0000  
0x0200 0000  
0x0200 0800  
0x0201_3FFF  
0x020A_3FFF  
0x0200 03FF  
0x0200 0BFF  
16 KiB  
16 KiB  
1 KiB  
TPCC0 module  
configuration space  
TPCC1  
TPTC0  
TPTC1  
TPCC1 module  
configuration space  
TPTC0 module  
configuration space  
1 KiB  
TPTC1 module  
configuration space  
62  
Detailed Description  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
Name  
SWRS228 SEPTEMBER 2019  
Table 6-2. DSP C674x Memory Map (continued)  
Frame Address (Hex)  
End  
Size  
Description  
Start  
TPTC2  
TPTC3  
0x0209_0000  
0x0209_03FF  
1 KiB  
1 KiB  
TPTC2 module  
configuration space  
0x0209_0400  
0x0209_07FF  
TPTC3 module  
configuration space  
Control Registers  
DSS_REG  
0x0200_0400  
0x0200_0C00  
0x0200_07FF  
0x0200_0FFF  
864 B  
624 B  
DSPSS control module  
registers  
DSS_REG2  
DSPSS control module  
registers  
System Memories  
ADC Buffer  
0x2100_0000  
0x2102_0000  
0x2100_7FFC  
0x2102_3FFC  
32 KiB  
16 KiB  
ADC buffer memory space  
CBUFF-FIFO  
Common buffer FIFO  
space  
L3-Shared memory  
HS-RAM  
0x2000_0000  
0x2108_0000  
0x201F_FFFF  
0x2108_7FFC  
2 MB  
L3 shared memory space  
32 KiB  
Handshake memory  
space  
System Peripherals  
RTI-A/WD  
0x0202_0000  
0x020F_0000  
0x0207_0000  
0x5060_1000  
0x5060_2000  
0x0460_8000  
0x0202_00FF  
0x020F_00FF  
0x0207_03FF  
0x5060_17FF  
0x5060_27FF  
0x0460_80FF  
192 B  
192 B  
564 B  
2 KiB  
RTI-A module  
configuration registers  
RTI-B  
RTI-B module  
configuration registers  
CBUFF  
Common Buffer module  
Configuration registers  
Mail Box  
MSS<->RADARSS  
RADARSS to MSS  
mailbox memory space  
MSS to RADARSS  
mailbox memory space  
188 B  
MSS to RADARSS  
mailbox Configuration  
registers  
0x0460_8060  
0x0460_86FF  
RADARSS to MSS  
mailbox Configuration  
registers  
Mail Box  
MSS<->DSPSS  
0x5060_4000  
0x5060_5000  
0x0460_8400  
0x0460_8300  
0x5060_6000  
0x5060_7000  
0x0460_8200  
0x5060_47FF  
0x5060_57FF  
0x0460_84FF  
0x0460_83FF  
0x5060_67FF  
0x5060_7FFF  
0x0460_82FF  
2 KiB  
188 B  
2 KiB  
188 B  
DSPSS to MSS mailbox  
memory space  
MSS to DSPSS mailbox  
memory space  
MSS to DSPSS mailbox  
Configuration registers  
DSPSS to MSS mailbox  
Configuration registers  
Mail Box  
RADARSS<->DSPSS  
RADARSS to DSPSS  
mailbox memory space  
DSPSS to RADARSS  
mailbox memory space  
RADARSS to DSPSS  
mailbox Configuration  
registers  
0x0460_8100  
0x020D_0000  
0x0460_81FF  
DSPSS to RADARSS  
mailbox Configuration  
registers  
Safety Modules  
ESM  
92 B  
ESM module  
Configuration registers  
Copyright © 2019, Texas Instruments Incorporated  
Detailed Description  
63  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
Table 6-2. DSP C674x Memory Map (continued)  
Name  
Frame Address (Hex)  
End  
Size  
Description  
Start  
CRC  
STC  
0x2200_0000  
0x2200_03FF  
1 KiB  
284 B  
CRC module  
Configuration registers  
0x0204_0000  
0x0203_0000  
0x0204_01FF  
0x0203_00FF  
STC module Configuration  
registers  
Nonsystem Peripherals  
SCI  
148 B  
SCI module Configuration  
registers  
6.3.6 Hardware Accelerator  
The Radar Hardware Accelerator (HWA) is an IP that enables off-loading the burden of certain frequently  
used computations in FMCW radar signal processing from the main processor. FMCW radar signal  
processing involves the use of FFT and Log-Magnitude computations to obtain a radar image across the  
range, velocity, and angle dimensions. Some of the frequently used functions in FMCW radar signal  
processing can be done within the radar hardware accelerator, while still retaining the flexibility of  
implementing other proprietary algorithms in the main processor. See the Radar Hardware Accelerator  
User's Guide for a functional description and features of this module and see the Technical Reference  
Manual for a complete list of register and memory map.  
6.4 Other Subsystems  
6.4.1 ADC Channels (Service) for User Application  
The IWR1843 device includes provision for an ADC service for user application, where the  
GPADC engine present inside the device can be used to measure up to six external voltages. The ADC1,  
ADC2, ADC3, ADC4, ADC5, and ADC6 pins are used for this purpose.  
ADC itself is controlled by TI firmware running inside the BIST subsystem and access to it for  
customer’s external voltage monitoring purpose is via ‘monitoring API’ calls routed to the BIST  
subsystem. This API could be linked with the user application running on the Master R4.  
BIST subsystem firmware will internally schedule these measurements along with other RF and Analog  
monitoring operations. The API allows configuring the settling time (number of ADC samples to skip)  
and number of consecutive samples to take. At the end of a frame, the minimum, maximum and  
average of the readings will be reported for each of the monitored voltages.  
GPADC Specifications:  
625 Ksps SAR ADC  
0 to 1.8V input range  
10-bit resolution  
For 5 out of the 6 inputs, an optional internal buffer is available. Without the buffer, the ADC has a  
switched capacitor input load modeled with 5pF of sampling capacitance and 12pF parasitic  
capacitance (GPADC channel 6, the internal buffer is not available).  
64  
Detailed Description  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
5
ANALOG TEST 1-4,  
ANAMUX  
GPADC  
5
VSENSE  
A. GPADC structures are used for measuring the output of internal temperature sensors. The accuracy of these  
measurements is ±7ºC.  
Figure 6-6. ADC Path  
Table 6-3. GP-ADC Parameter  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TYP  
1.8  
UNIT  
V
ADC supply  
ADC unbuffered input voltage range  
ADC buffered input voltage range(1)  
ADC resolution  
0 – 1.8  
0.4 – 1.3  
10  
V
V
bits  
LSB  
LSB  
LSB  
LSB  
Ksps  
ns  
ADC offset error  
±5  
ADC gain error  
±5  
ADC DNL  
–1/+2.5  
±2.5  
625  
400  
10  
ADC INL  
ADC sample rate(2)  
ADC sampling time(2)  
ADC internal cap  
pF  
ADC buffer input capacitance  
ADC input leakage current  
2
pF  
3
uA  
(1) Outside of given range, the buffer output will become nonlinear.  
(2) ADC itself is controlled by TI firmware running inside the BIST subsystem. For more details please refer to the API calls.  
Copyright © 2019, Texas Instruments Incorporated  
Detailed Description  
65  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
7 Monitoring and Diagnostics  
7.1 Monitoring and Diagnostic Mechanisms  
Table 7-1 is a list of the main monitoring and diagnostic mechanisms available in the IWR1843.  
Table 7-1. Monitoring and Diagnostic Mechanisms for IWR1843  
NO  
FEATURE  
DESCRIPTION  
IWR1843 architecture supports various temperature sensors all across the device (next to  
power hungry modules such as PAs, DSP, etc.) which is monitored during the inter-frame  
period.(1)  
1
Temperature Sensors  
Provision to detect ADC saturation du;e to excessive incoming signal level and/or  
interference.  
2
RX saturation detect  
(1) Monitoring is done by the TI's code running on BIST R4F. There are two modes in which it could be configured to report the temperature  
sensed via API by customer application.  
Report the temperature sensed after every N frames  
Report the condition once the temperature crosses programmed threshold.  
It is completely up to customer SW to decide on the appropriate action based on the message from BIST R4Fvia Mailbox.  
66  
Monitoring and Diagnostics  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
7.1.1 Error Signaling Module  
When a diagnostic detects a fault, the error must be indicated. IWR1843 architecture provides aggregation  
of fault indication from internal diagnostic mechanisms using a peripheral logic known as the error  
signaling module (ESM). The ESM provides mechanisms to classify faults by severity and allows  
programmable error response. Below is the high level block diagram for ESM module.  
Low Priority  
Low Priority  
Interrupt  
Interrupy  
Handing  
Error Group 1  
Interrupt Enable  
High Priority  
Interrupt  
Handing  
High Priority  
Interrupy  
Interrupt Priority  
Error Group 2  
Error Group 3  
Nerror Enable  
Error Signal  
Handling  
Device Output  
Pin  
Figure 7-1. ESM Module Diagram  
Copyright © 2019, Texas Instruments Incorporated  
Monitoring and Diagnostics  
67  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
8 Applications, Implementation, and Layout  
NOTE  
Information in the following Applications section is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI's customers are responsible for  
determining suitability of components for their purposes. Customers should validate and test  
their design implementation to confirm system functionality.  
8.1 Application Information  
The IWR1843 can be a radar sensor, or can be combined with an MSP432, or for LVDS processing with a  
LVDS to DSP subsystem for more advanced applications. Some applications are:  
Liquid and solid level sensing for process sensors or industrial automation  
Industrial proximity sensing, non-contact sensing for security, traffic monitoring, and industrial  
transportation  
Sensor fusion of camera and radar instruments for security, factory automation, robotics  
Sensor fusion with multiple camera and radar instruments for object identification, manipulation, and  
flight avoidance for security, robotics, material handling, or drone devices  
People counting  
Gesturing  
Motion detection  
40-MHz  
Crystal  
Power  
Management  
QSPI Flash  
POWER  
SPI  
UART Tx/Rx  
CAN  
Integrated MCU  
ARM Cortex-R4F  
Antenna  
Structure  
RX1  
RX2  
RX3  
RX4  
mmWave/  
Radar  
Front End  
TX1  
TX2  
TX3  
Integrated DSP  
TI C674x  
IWR1843  
Figure 8-1. Autonomous Sensor For Industrial Applications  
8.2 Reference Schematic  
Figure 8-2 shows the reference schematic for the IWR1843 device.  
68  
Applications, Implementation, and Layout  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
DUT REFERENCE  
AR_1P0_RF1  
U2B  
AR_VOUT_PA  
AR_1V4_APLL  
G5  
H5  
J5  
A1  
A3  
A5  
A7  
A9  
A13  
A15  
B1  
B3  
B5  
B7  
B9  
B14  
C1  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C14  
E1  
E2  
E3  
F3  
G1  
G2  
G3  
H3  
J1  
VIN_13RF1  
VIN_13RF1  
VIN_13RF1  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
VSSA  
AR_1P0_RF2  
U2A  
C2  
D2  
VIN_13RF2  
VIN_13RF2  
AR_1V4_SYNTH  
AR_1V8  
M2  
K2  
H2  
F2  
B4  
B6  
B8  
A2  
B2  
RX1  
RX2  
RX3  
RX4  
TX1  
TX2  
TX3  
RX1  
RX2  
RX3  
RX4  
TX1  
TX2  
TX3  
VOUT_PA  
VOUT_PA  
B11  
B12  
VIN_18CLK  
VIN_18VCO  
50 OHMS RF TRACES  
A10  
B13  
VOUT_14APLL  
F5  
K5  
VOUT_14SYNTH  
VIN_18BB  
VIN_18BB  
AR_3V3  
AR_1V24  
J14  
K15  
K14  
J15  
L14  
L15  
M14  
M15  
LVDS_TXP[0]  
LVDS_TXM[1]  
LVDS_TXP[1]  
LVDS_TXM[0]  
LVDS_CLKP  
AR_LVDS_0_P  
A14  
B15  
C15  
N8  
G15  
AR_OSC_CLKOUT  
AR_XTALP  
OSC_CLKOUT  
CLKP  
AR_LVDS_1_N  
VIN_SRAM  
AR_LVDS_1_P  
100 OHMS  
DIFFERENTIAL TRACES  
F15  
R10  
AR_XTALM  
CLKM  
AR_LVDS_0_N  
VIOIN  
VIOIN  
AR_MCUCLKOUT  
MCU_CLKOUT  
PMIC_CLKOUT  
AR_LVDS_CLK_P  
AR_LVDS_CLK_N  
AR_LVDS_FRCLK_P  
AR_LVDS_FRCLK_N  
AR_1V8  
P9  
AR_PMIC_CLKOUT_SOP2  
LVDS_CLKM  
LVDS_FRCLKP  
LVDS_FRCLKM  
R9  
VIOIN_18  
P1  
P2  
AR_ANATEST1  
AR_ANATEST2  
AR_ANATEST3  
AR_ANATEST4  
AR_ANAMUX  
AR_VSENSE  
GPADC_1  
GPADC_2  
GPADC_3  
GPADC_4  
GPADC_5  
GPADC_6  
AR_1V24  
D15  
VIOIN_18DIFF  
P3  
R3  
N9  
N7  
N6  
RESET  
AR_NRST  
R2  
H15  
N11  
P15  
R6  
WARM_RESET  
AR_WARMRST  
AR_NERRIN  
AR_NERR_OUT  
VDDIN  
VDDIN  
VDDIN  
VDDIN  
OPENDRAIN SIGNALS  
PLACE ONBOARD  
PULLUPS  
VPP_1P7  
C13  
D14  
ERROR_IN  
ERROR_OUT  
H13  
J13  
K13  
N5  
N4  
AR_GPIO_0  
AR_GPIO_1  
AR_GPIO_2  
GPIO[0]  
GPIO[1]  
GPIO[2]  
RS232_TX  
RS232_RX  
AR_RS232TX  
AR_RS232RX  
C8  
L13  
P14  
VPP  
0.1µF  
R12  
P11  
R13  
N12  
R14  
P12  
QSPI_CLK  
QSPI_CS  
QSPI[0]  
AR_QSPI_SCLK  
AR_QSPI_CS  
AR_QSPI_D0  
AR_QSPI_D1  
AR_QSPI_D2  
AR_QSPI_D3  
VNWA  
R4  
P5  
R5  
P6  
R7  
P7  
R8  
P8  
J2  
AR_DP0  
AR_DP1  
AR_DP2  
AR_DP3  
AR_DP4  
AR_DP5  
AR_DP6  
AR_DP7  
DP0  
DP1  
DP2  
DP3  
DP4  
DP5  
DP6  
DP7  
E5  
E6  
J3  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
GND  
K3  
L1  
QSPI[1]  
E8  
QSPI[2]  
E10  
E11  
F9  
L2  
QSPI[3]  
L3  
P10  
R11  
N13  
N10  
M3  
N1  
N2  
N3  
R1  
TCK  
TDI  
AR_TCK  
F11  
G6  
G7  
G8  
G10  
H7  
H9  
H11  
J6  
AR_TDI  
TDO  
TMS  
AR_TDO_SOP0  
AR_TMS  
E14  
D13  
E13  
E15  
AR_MISO1  
AR_MOSI1  
AR_SPICLK1  
AR_CS1  
MISO_1  
MOSI_1  
P13  
SPI_CLK_1  
SPI_CS_1  
SPI_HOST_INTR_1  
AR_HOSTINTR1  
P4  
K9  
SYNC_IN  
AR_SYNC_IN  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
R47  
R81  
0
0
G14  
F13  
F14  
H14  
G13  
K10  
K11  
L5  
AR_SCL  
MISO_2  
SYNC_OUT  
AR_SYNC_OUT_SOP1  
AR_VBGAP  
AR_SDA  
MOSI_2  
B10  
J7  
AR_MSS_LOGGER  
AR_BSS_LOGGER  
SPI_CLK_2  
SPI_CS_2  
VBGAP  
J8  
L6  
J10  
K7  
L8  
N15  
N14  
L10  
R15  
AR_DMM_CLK  
DMM_CLK  
K8  
AR_DMM_SYNC  
DMM_SYNC  
IWR1843ABL  
IWR1843ABL  
GND  
GND  
Pullups/Pulldowns  
+3.3VD  
QSPI FLASH REFERENCE  
3V3_REF  
AR_HOSTINTR1  
R37  
0
R16  
10.0k  
R15  
10.0k  
R14  
10.0k  
R91  
10.0k  
R171  
2.94k  
R170  
2.94k  
R13  
10.0k  
3V3_REF  
AR_NERRIN  
C1  
1uF  
C2  
Net Class  
i
C15  
C9  
0.1uF  
AR_WARMRST  
AR_CS1  
R38  
47.5k  
4.7pF  
Y1  
4.7pF  
3V3_REF  
AR_SCL  
GND  
AR_SDA  
GND  
AR_NERR_OUT  
U1  
GND  
Net Class  
i
8
VCC  
R43  
10.0k  
GND  
GND  
1
6
5
2
3
7
CS  
SCLK  
SI/SIO0  
SO/SIO1  
9
4
WP/SIO2  
EP  
GND  
HOLD/SIO3  
R98  
AR_PMIC_CLKOUT_SOP2  
AR_SYNC_OUT_SOP1  
AR_TDO_SOP0  
3V3_REF  
MX25V1635FZNQ  
10.0k  
GND  
R113  
R41  
10.0k  
SOP lines to be driven via 10K series  
10.0k  
prior to bootup to ensure bootup in the desired mode  
R89  
10.0k  
DECOUPLING CAPS REFERENCE  
BB SUPPLY  
AR_1V8  
DIFF SUPPLY  
AR_1V8  
1P8V IO SUPPLY  
AR_1V8  
VCOLDO SUPPLY  
AR_1V8  
VCLK SUPPLY  
AR_1V8  
AR_VBGAP  
DIG SUPPLY  
AR_1V24  
VNWA SUPPLY  
AR_1V24  
SRAM SUPPLY  
AR_1V24  
AR_1V4_APLL  
C56  
C13  
1uF  
C39  
C51  
C52  
C53  
C48  
C12  
C90  
C17  
0.22µF  
C6  
C4  
C89  
C3  
C7  
C101  
0.22µF 0.22µF 10uF  
0.22µF  
0.22µF  
0.22µF  
0.22µF 10uF  
0.1uF  
0.1uF  
2.2uF  
0.22µF  
0.22µF  
0.01uF  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
RF1 SUPPLY  
AR_1P0_RF1  
RF2 SUPPLY  
AR_1P0_RF2  
3V3IO SUPPLY  
AR_3V3  
GND  
AR_VOUT_PA  
AR_1V4_SYNTH  
AR_1P0_RF2  
AR_VOUT_PA  
C47  
C45  
10uF  
C57  
C58  
C5  
0.22µF  
C84  
C87  
C14  
1uF  
C10  
C65  
C83  
10uF  
0.22µF  
0.22µF  
10uF  
0.22µF  
2.2uF  
R137  
0
0.22µF  
10uF  
GND  
GND  
GND  
GND  
GND  
Figure 8-2. IWR1843 Reference Schematic  
Copyright © 2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
69  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
8.3 Layout  
The top layer routing, top layer closeup, and bottom layer routing are shown in Figure 8-3, Figure 8-4, and  
Figure 8-5, respectively.  
8.3.1 Layout Guidelines  
Figure 8-3. Top Layer Routing  
Figure 8-4. Top Layer Routing Closeup  
70  
Applications, Implementation, and Layout  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
 
 
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
Figure 8-5. Bottom Layer Routing  
Copyright © 2019, Texas Instruments Incorporated  
Applications, Implementation, and Layout  
71  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
8.3.2 Stackup Details  
1
2
0.689  
Rogers 4835 4.000  
1.260  
2.067  
4.000  
1.260  
100.000  
73.000  
Rogers 4835 4mil coreH/1 Low Pro  
3.480  
Iteq IT180A Prepreg 1080  
Iteq IT180A Prepreg 1080  
Dielectric  
Dielectric  
4.195  
4.195  
2.830  
2.830  
3.700  
3.700  
3
4
1.260  
28.000  
1.260  
1.260  
28.000  
1.260  
69.000  
48.000  
Iteq IT180A 28 mil core 1/1  
FR4  
4.280  
Iteq IT180A Prepreg 1080  
Iteq IT180A Prepreg 1080  
Dielectric  
Dielectric  
4.195  
4.195  
2.691  
2.691  
3.700  
3.700  
5
6
1.260  
4.000  
0.689  
1.260  
4.000  
2.067  
72.000  
Iteq IT180A 4 mil core 1/H  
FR4  
3.790  
100.000  
72  
Applications, Implementation, and Layout  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
9 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the  
device, generate code, and develop solutions follow.  
9.1 Device Nomenclature  
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all  
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)  
(for example, IWR1843). Texas Instruments recommends two of three possible prefix designators for its  
support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development  
from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).  
Device development evolutionary flow:  
X
Experimental device that is not necessarily representative of the final device's electrical  
specifications and may not use production assembly flow.  
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet  
final electrical specifications.  
null  
Production version of the silicon die that is fully qualified.  
Support tool development evolutionary flow:  
TMDX  
Development-support product that has not yet completed Texas Instruments internal  
qualification testing.  
TMDS  
Fully-qualified development-support product.  
X and P devices and TMDX development-support tools are shipped against the following disclaimer:  
"Developmental product is intended for internal evaluation purposes."  
Production devices and TMDS development-support tools have been characterized fully, and the quality  
and reliability of the device have been demonstrated fully. TI's standard warranty applies.  
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production  
devices. Texas Instruments recommends that these devices not be used in any production system  
because their expected end-use failure rate still is undefined. Only qualified production devices are to be  
used.  
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the  
package type (for example, ), the temperature range (for example, blank is the default commercial  
temperature range). Figure 9-1 provides a legend for reading the complete device name for any IWR1843  
device.  
For orderable part numbers of IWR1843 devices in the ABL0161 package types, see the Package Option  
Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.  
For additional description of the device nomenclature markings on the die, see the IWR1843 Device  
Errata.  
Copyright © 2019, Texas Instruments Incorporated  
Device and Documentation Support  
73  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
1
8
43  
A
Q
IWR  
G
ABL  
Qualification  
Blank= no special qual  
Tray or Tape & Reel  
Prefix  
IWR = Industrial  
Generation  
1 = 76 GHz to 81 GHz  
Variant  
R = Tape & Reel  
Blank = Tray  
2 = FE  
4 = FE + FFT + MCU  
6 = FE + MCU + DSP  
Package  
ABL = BGA  
Security  
8 = FE + FFT + MCU + DSP + 2MB  
Num RX/TX Channels  
G = General  
S = Secure  
RX = 1,2,3,4  
TX = 1,2,3  
Silicon PG Revision  
blank = Rev1.0  
A = Rev2.0  
Features  
blank = baseline  
Safety Level  
Q = Quality Manage  
Figure 9-1. Device Nomenclature  
9.2 Tools and Software  
Models  
IWR1843 BSDL model Boundary scan database of testable input and output pins for IEEE 1149.1 of the  
specific device.  
IWR1843 IBIS model IO buffer information model for the IO buffers of the device. For simulation on a  
circuit board, see IBIS Open Forum.  
Software Tools  
Code Composer Studio™ (CCS) Integrated Development Environment (IDE)  
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller  
and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop  
and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project  
build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user  
interface taking the user through each step of the application development flow. Familiar tools and  
interfaces allow users to get started faster than ever before. Code Composer Studio combines the  
advantages of the Eclipse software framework with advanced embedded debug capabilities from TI  
resulting in a compelling feature-rich development environment for embedded developers.  
UniFlash Standalone Flash Tool  
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or  
scripting interface.  
9.3 Documentation Support  
To receive notification of documentation updates—including silicon errata—go to the product folder for  
your device on ti.com (IWR1843). In the upper right corner, click the "Alert me" button. This registers you  
to receive a weekly digest of product information that has changed (if any). For change details, check the  
revision history of any revised document.  
The current documentation that describes the DSP, related peripherals, and other technical collateral  
follows.  
Errata  
74  
Device and Documentation Support  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
IWR1843 device errata Describes known advisories, limitations, and cautions on silicon and provides  
workarounds.  
Copyright © 2019, Texas Instruments Incorporated  
Device and Documentation Support  
75  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
9.4 Support Resources  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design  
help—straight from the experts. Search existing answers or ask your own question to get the quick design  
help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications  
and do not necessarily reflect TI's views; see TI's Terms of Use.  
9.5 Trademarks  
E2E is a trademark of Texas Instruments.  
ARM, Cortex are registered trademarks of ARM Limited.  
9.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
9.7 Glossary  
TI Glossary This glossary lists and explains terms, acronyms, and definitions.  
76  
Device and Documentation Support  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
10 Mechanical, Packaging, and Orderable Information  
10.1 Packaging Information  
The following pages include mechanical, packaging, and orderable information. This information is the  
most current data available for the designated devices. This data is subject to change without notice and  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
CAUTION  
The following package information is subject to change without notice.  
Copyright © 2019, Texas Instruments Incorporated  
Mechanical, Packaging, and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
77  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
PACKAGE OUTLINE  
ABL0161B  
FCBGA - 1.17 mm max height  
SCALE 1.400  
PLASTIC BALL GRID ARRAY  
10.5  
10.3  
B
A
BALL A1 CORNER  
10.5  
10.3  
1.17 MAX  
C
SEATING PLANE  
0.1 C  
BALL TYP  
0.37  
0.27  
TYP  
9.1 TYP  
PKG  
(0.65) TYP  
(0.65) TYP  
R
P
N
M
L
K
J
PKG  
H
G
F
9.1  
TYP  
E
D
C
0.45  
161X  
0.35  
0.15  
0.08  
C A B  
C
B
A
0.65 TYP  
BALL A1 CORNER  
1
3
4
5
6
7
8
9 10 11  
12 13 14 15  
2
0.65 TYP  
4223365/A 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
78  
Mechanical, Packaging, and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
Copyright © 2019, Texas Instruments Incorporated  
IWR1843  
www.ti.com  
SWRS228 SEPTEMBER 2019  
EXAMPLE BOARD LAYOUT  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
8
9
1
2
3
4
5
6
7
10 11  
12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
LAND PATTERN EXAMPLE  
SCALE:10X  
0.05 MAX  
0.05 MIN  
METAL UNDER  
SOLDER MASK  
( 0.32)  
METAL  
(
0.32)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
SOLDER MASK  
DEFINED  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223365/A 10/2016  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
For information, see Texas Instruments literature number SPRAA99 (www.ti.com/lit/spraa99).  
www.ti.com  
Copyright © 2019, Texas Instruments Incorporated  
Mechanical, Packaging, and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
79  
IWR1843  
SWRS228 SEPTEMBER 2019  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ABL0161B  
FCBGA - 1.17 mm max height  
PLASTIC BALL GRID ARRAY  
(0.65) TYP  
161X ( 0.32)  
8
9
1
2
3
4
5
6
7
10 11  
12 13 14 15  
A
B
C
(0.65) TYP  
D
E
F
G
H
J
PKG  
K
L
M
N
P
R
PKG  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4223365/A 10/2016  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
80  
Mechanical, Packaging, and Orderable Information  
Submit Documentation Feedback  
Product Folder Links: IWR1843  
Copyright © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
IWR1843ABGABL  
ACTIVE  
FCCSP  
FCCSP  
ABL  
161  
161  
176  
TBD  
Call TI  
Call TI  
-40 to 105  
IWR1843  
IG  
502A  
D
502AD ABL  
IWR1843AQGABL  
IWR1843AQGABLR  
ACTIVE  
ACTIVE  
ABL  
ABL  
176  
RoHS & Green  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
-40 to 105  
-40 to 105  
IWR1843  
QG  
(502A, 502AD)  
D
(502AD ABL, 502A  
D ABL)  
FCCSP  
161  
1000 RoHS & Green  
Level-3-260C-168 HR  
IWR1843  
QG  
(502A, 502AD)  
D
(502AD ABL, 502A  
D ABL)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Dec-2021  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

IWR1843_V01

IWR1843 Single-Chip 76- to 81-GHz FMCW mmWave Sensor
TI

IWR6443

集成 MCU 和硬件加速器的 60GHz 至 64GHz 单芯片毫米波传感器
TI

IWR6443AQGABL

集成 MCU 和硬件加速器的 60GHz 至 64GHz 单芯片毫米波传感器 | ABL | 161 | -40 to 105
TI

IWR6443AQGABLR

集成 MCU 和硬件加速器的 60GHz 至 64GHz 单芯片毫米波传感器 | ABL | 161 | -40 to 105
TI

IWR6843

集成有处理功能的 60GHz 至 64GHz 单芯片智能毫米波传感器
TI

IWR6843ABGABL

IWR6843, IWR6443 Single-Chip 60- to 64-GHz mmWave Sensor
TI

IWR6843ABGABLR

IWR6843, IWR6443 Single-Chip 60- to 64-GHz mmWave Sensor
TI

IWR6843AOP

IWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

IWR6843AOP_V01

IWR6843AOP Single-Chip 60- to 64-GHz mmWave Sensor Antennas-On-Package (AOP)
TI

IWR6843AQGABL

IWR6843, IWR6443 Single-Chip 60- to 64-GHz mmWave Sensor
TI

IWR6843AQGABLR

IWR6843, IWR6443 Single-Chip 60- to 64-GHz mmWave Sensor
TI

IWR6843AQSABL

IWR6843, IWR6443 Single-Chip 60- to 64-GHz mmWave Sensor
TI