LDC1614RGHT [TI]

4 通道、28 位、高分辨率电感数字转换器 | RGH | 16 | -40 to 125;
LDC1614RGHT
型号: LDC1614RGHT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 通道、28 位、高分辨率电感数字转换器 | RGH | 16 | -40 to 125

转换器
文件: 总65页 (文件大小:1427K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
适用于电感感应的 LDC1612LDC1614 多通道 28 位电感数字转换器  
(LDC)  
1 特性  
3 说明  
1
易于使用 配置要求极低  
LDC1612 LDC1614 分别是用于电感感应解决方案  
2 通道和 4 通道 28 位电感数字转换器 (LDC)。由于  
具备多个通道且支持远程感应,LDC1612 和  
LDC1614 能以极低的成本和功耗实现高性能且可靠的  
电感感应。此类产品使用简便,仅需要传感器频率处于  
1kHz 10MHz 的范围内即可开始工作。由于支持的  
传感器频率范围 1kHz 10MHz 较宽,因此还支持使  
用非常小的 PCB 线圈,从而进一步降低感测解决方案  
的成本和尺寸。  
多达 4 个具有匹配传感器驱动器的通道  
多个通道支持环境和老化补偿  
大于 20cm 的远程传感器位置支持在严苛的环境下  
运行  
与中等分辨率和高分辨率选项引脚兼容:  
LDC1312/42/4 通道 12 LDC  
LDC1612/42/4 通道 28 LDC  
感应范围超过线圈直径的两倍  
支持 1kHz 10MHz 的宽传感器频率范围  
功耗:  
高分辨率通道可支持更大的感测范围,在两倍线圈直径  
范围外依然可保持良好的性能。良好匹配的通道支持差  
分与比率测量,因此,设计人员能够利用一个通道来补  
偿感测过程中的环境条件和老化条件,例如温度、湿度  
和机械漂移等。  
35µA(低功耗休眠模式)  
200nA(关断模式)  
2.7V 3.6V 工作电压  
多个基准时钟选项:  
得益于易用、低能耗、低系统成本等特性,这些产品有  
助于设计人员大幅提高现有传感解决方案的性能、可靠  
性和灵活性,并将全新的传感功能引入到了所有市场  
(尤其是消费品和工业应用)中的 产品。  
包含内部时钟,以降低系统成本  
支持 40MHz 外部时钟,以提高系统性能  
抗直流磁场和磁体干扰  
2 应用  
这些器件可以通过 I2C 接口轻松进行配置。双通道  
LDC1612 采用 WSON-12 封装,四通道 LDC1614 采  
WQFN-16 封装。  
消费类产品、电器和汽车中的旋钮  
家用电子产品、可穿戴设备、制造业和汽车中的按  
器件信息(1)  
制造业和电器中的键盘  
消费类产品中的滑动按钮  
工业和汽车中的金属探测  
POS EPOS  
器件型号  
LDC1612  
LDC1614  
封装  
WSON-12  
WQFN-16  
封装尺寸(标称值)  
4mm × 4mm  
4mm × 4mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图  
测量精度与目标距离间的关系  
3.3 V  
3.3 V  
LDC1612  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
MCU  
VDD  
CLKIN  
VDD  
SD  
40 MHz  
GPIO  
GPIO  
INTB  
IN0A  
IN0B  
Target  
Target  
Sensor 0  
Sensor 1  
Core  
GND  
IN1A  
IN1B  
SDA  
SCL  
I2  
C
I2  
C
Peripheral  
3.3 V  
ADDR  
GND  
0
20%  
40%  
60%  
80%  
100%  
D002  
Copyright © 2016, Texas Instruments Incorporated  
Sensing Range (Target Distance / SENSOR  
)
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNOSCY9  
 
 
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
目录  
7.6 Register Maps......................................................... 15  
Application and Implementation ........................ 34  
8.1 Application Information............................................ 34  
8.2 Typical Application ................................................. 49  
Power Supply Recommendations...................... 53  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings ............................................................ 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information ................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics - I2C................................. 7  
6.7 Typical Characteristics.............................................. 8  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 12  
7.5 Programming........................................................... 13  
8
9
10 Layout................................................................... 54  
10.1 Layout Guidelines ................................................. 54  
10.2 Layout Example .................................................... 54  
11 器件和文档支持 ..................................................... 55  
11.1 器件支持................................................................ 55  
11.2 文档支持................................................................ 55  
11.3 相关链接................................................................ 55  
11.4 接收文档更新通知 ................................................. 55  
11.5 社区资源................................................................ 55  
11.6 ....................................................................... 55  
11.7 静电放电警告......................................................... 56  
11.8 术语表 ................................................................... 56  
12 机械、封装和可订购信息....................................... 56  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2014) to Revision A  
Page  
Changed ESD values from 1000 to 2000 and from 250 to 750 on both packages................................................................ 5  
Added logic levels for ADDR, INTB, and SD pins.................................................................................................................. 6  
Changed description of clocking architecture for improved clarity. ..................................................................................... 11  
Changed register names and field names from CHx_NAME and NAME_CHx to NAMEx. ................................................ 15  
Added instructions on setting registers with both R and R/W fields..................................................................................... 15  
Changed register names from DATA_MSB_CHx to DATAx_MSB; DATA_LSB_CHx register names to DATAx_LSB,  
and CHx_ERR_YY field names to ERR_YYx. ..................................................................................................................... 16  
Changed ERR_AE field description on DATA_MSB_CH0, DATA_MSB_CH1, DATA_MSB_CH2 and  
DATA_MSB_CH3 tables....................................................................................................................................................... 16  
Changed register names from RCOUNT_CHx to RCOUNTx; and CHx_RCOUNT field names to RCOUNTx .................. 20  
Changed register names from OFFSET_CHx to OFFSETx; and CHx_OFFSET field names to OFFSETx ...................... 21  
Changed register names from SETTLECOUNT_CHx to SETTLECOUNTx; and CHx_SETTLECOUNT field names to  
SETTLECOUNTx ................................................................................................................................................................. 22  
Changed Address of SETTLECOUNT0 and SETTLECOUNT1 were not correct on table. ................................................ 23  
Changed register names from CLOCK_DIVIDERS_CHx to CLOCK_DIVIDERSx; CHx_FIN_DIVIDER field names to  
FIN_DIVIDERx, and CHx_FREF_DIVIDER field names to FREF_DIVIDERx. ................................................................... 24  
Changed CHx_UNREADCONV field names to UNREADCONVx ...................................................................................... 26  
Changed register names from DRIVE_CURRENT_CHx to DRIVE_CURRENTx; CHx_IDRIVE field names to  
IDRIVEx, and CHx_INIT_IDRIVE to INIT_IDRIVEx ............................................................................................................ 31  
Changed Application Information section for clarity, and provided additional information on device configuration and  
operation. ............................................................................................................................................................................. 34  
Changed Equations in the L-C Resonators section. ............................................................................................................ 35  
Changed RP to RS in Equation ............................................................................................................................................ 35  
Changed IDRIVEx values..................................................................................................................................................... 42  
Added instructions for using an oscilloscope to configure sensor drive current .................................................................. 44  
2
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
修订历史记录 (continued)  
Changed description of clocking architecture for improved clarity. ..................................................................................... 45  
Changed description of clocking usage for clarity. .............................................................................................................. 45  
Changed reference frequency limits from < to .................................................................................................................. 46  
Changed to a symbol in the Clock Configuration Requirements table. ............................................................................ 46  
Changed last bullet in the Design Requirements section. ................................................................................................... 49  
Copyright © 2014–2018, Texas Instruments Incorporated  
3
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
5 Pin Configuration and Functions  
DNT and RGH Packages  
Top View  
SCL  
SDA  
IN1B  
1
2
3
4
5
6
12  
11  
10  
9
SCL  
SDA  
1
2
3
4
12 IN1B  
11 IN1A  
10 IN0B  
IN1A  
IN0B  
IN0A  
GND  
VDD  
CLKIN  
ADDR  
INTB  
SD  
DAP  
DAP  
CLKIN  
ADDR  
9
IN0A  
8
7
LDC1612 WSON-12  
LDC1614 WQFN-16  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
SCL  
NO.  
1
I
I/O  
I
I2C Clock input. Open drain output; requires resistive pullup to logic high level.  
SDA  
2
I2C Data input/output. Open drain output; requires resistive pullup to logic high level.  
External Reference Clock input. Tie this pin to GND if internal oscillator is used.  
CLKIN  
ADDR  
3
I2C Address selection pin: when ADDR=L, I2C address = 0x2A, when ADDR=H, I2C address =  
0x2B. This input must not be allowed to float.  
4
5
6
I
O
I
INTB  
SD  
Configurable Interrupt output pin. Push-pull output; does not require pullup.  
Shutdown input: set SD = L for normal operation, set SD=H for inactive mode. This input must  
not be allowed to float.  
VDD  
GND  
IN0A  
IN0B  
IN1A  
IN1B  
IN2A  
IN2B  
IN3A  
IN3B  
DAP(2)  
7
8
P
G
A
Power Supply  
Ground  
9
External LC sensor 0 connection  
External LC sensor 0 connection  
External LC sensor 1 connection  
External LC sensor 1 connection  
External LC sensor 2 connection (LDC1614 only)  
External LC sensor 2 connection (LDC1614 only)  
External LC sensor 3 connection (LDC1614 only)  
External LC sensor 3 connection (LDC1614 only)  
Connect to Ground  
10  
11  
12  
13  
14  
15  
16  
DAP  
A
A
A
A
A
A
A
N/A  
(1) I = Input, O = Output, P=Power, G=Ground, A=Analog  
(2) There is an internal electrical connection between the exposed Die Attach Pad (DAP) and the GND pin of the device. Although the DAP  
can be left floating, for best performance the DAP should be connected to the same potential as the device's GND pin. Do not use the  
DAP as the primary ground for the device. The device GND pin must always be connected to ground.  
4
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
6 Specifications  
6.1 Absolute Maximum Ratings  
MIN  
MAX  
UNIT  
V
VDD  
Vi  
Supply Voltage Range  
5
VDD+0.3  
8
Voltage on any pin  
-0.3  
-8  
V
IA  
Input current on any INx pin  
Input current on any Digital pin  
Junction Temperature  
mA  
mA  
°C  
ID  
-5  
5
Tj  
-55  
-65  
150  
150  
Tstg  
Storage temperature range  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE  
UNIT  
LDC1612 in WSON-12 package  
V(ESD) Electrostatic discharge  
LDC1614 in WQFN-16 package  
V(ESD) Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
±2000  
±750  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(1)  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001  
±2000  
±750  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(1)  
(1) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V  
MIN  
2.7  
NOM  
MAX  
3.6  
UNIT  
V
VDD  
TA  
Supply Voltage  
Operating Temperature  
-40  
125  
°C  
6.4 Thermal Information  
LDC1612  
WSON (DNT)  
12 PINS  
50  
LDC1614  
THERMAL METRIC(1)  
WQFN (RGH)  
16 PINS  
38  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2014–2018, Texas Instruments Incorporated  
5
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
6.5 Electrical Characteristics  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V. See  
(1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN(3)  
TYP(4)  
MAX(3)  
UNIT  
POWER  
VDD  
Supply Voltage  
TA = -40°C to +125°C  
2.7  
3.6  
V
(6)  
IDD  
Supply Current (not including  
sensor current)(5)  
ƒCLKIN = 10 MHz  
2.1  
35  
mA  
µA  
µA  
IDDSL  
ISD  
Sleep Mode Supply Current(5)  
SLEEP_MODE_EN = b1  
SD = VDD  
60  
1
Shutdown Mode Supply  
Current(5)  
0.2  
SENSOR  
ISENSORMAX  
RP  
Sensor Maximum Current drive  
Sensor RP  
HIGH_CURRENT_DRV = b0  
DRIVE_CURRENTx = 0xF800  
1.5  
mA  
1
100  
10  
k  
IHDSENSORMAX  
High current sensor drive mode: HIGH_CURRENT_DRV = b1  
Sensor Maximum Current  
6
mA  
DRIVE_CURRENT0 = 0xF800  
Channel 0 only  
RP_HD_MIN  
ƒSENSOR  
Minimum sensor RP  
250  
Sensor Resonance Frequency  
TA = -40°C to +125°C  
0.001  
MHz  
VSENSORMAX  
Maximum oscillation amplitude  
(peak)  
1.8  
4
V
bits  
kSPS  
pF  
NBITS  
ƒCS  
Number of bits  
28  
Maximum Channel Sample Rate single active channel continuous  
conversion, SCL=400 kHz  
4.08  
CIN  
Sensor Pin input capacitance  
DIGITAL PIN LEVELS  
VIL  
Low voltage threshold (ADDR  
and SD)  
0.3*VDD  
V
V
VIH  
High voltage threshold (ADDR  
and SD)  
0.7*VDD  
VOL  
VOH  
INTB low voltage output level  
INTB high voltage output level  
3mA sink current  
0.4  
V
V
2.4  
2
REFERENCE CLOCK  
ƒCLKIN  
External Reference Clock Input  
Frequency (CLKIN)  
TA = -40°C to +125°C  
40  
MHz  
CLKINDUTY_MIN  
External Reference Clock  
minimum acceptable duty cycle  
(CLKIN)  
40%  
60%  
CLKINDUTY_MAX  
External Reference Clock  
maximum acceptable duty cycle  
(CLKIN)  
VCLKIN_LO  
VCLKIN_HI  
CLKIN low voltage threshold  
CLKIN high voltage threshold  
0.3*VDD  
V
V
0.7*VDD  
(1) Electrical Characteristics Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions  
result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical  
tables under conditions of internal self-heating where TJ > TA. Absolute Maximum Ratings indicate junction temperature limits beyond  
which the device may be permanently degraded, either mechanically or electrically.  
(2) Register values are represented as either binary (b is the prefix to the digits), or hexadecimal (0x is the prefix to the digits). Decimal  
values have no prefix.  
(3) Limits are ensured by testing, design, or statistical analysis at 25°C. Limits over the operating temperature range are ensured through  
correlations using statistical quality control (SQC) method.  
(4) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary  
over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on  
shipped production material.  
(5) I2C read/write communication and pull-up resistors current through SCL, SDA not included.  
(6) Sensor inductor: 2 layer, 32 turns/layer, 14 mm diameter, PCB inductor with L=19.4 µH, RP=5.7 kat 2 MHz Sensor capacitor: 330 pF  
1% COG/NP0 Target: Aluminum, 1.5 mm thickness Channel = Channel 0 (continuous mode) ƒCLKIN = 40 MHz, FIN_DIVIDER0 = b0000,  
FREF_DIVIDER0 = 0x0001, RCOUNT0 = 0xFFFF, SETTLECOUNT0 = 0x0100, RP_OVERRIDE = b1, AUTO_AMP_DIS = b1,  
DRIVE_CURRENT0 = 0x9800  
6
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Electrical Characteristics (continued)  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V. See (1)  
PARAMETER  
TEST CONDITIONS(2)  
MIN(3)  
TYP(4)  
MAX(3)  
UNIT  
ƒINTCLK  
TCf_int_μ  
Internal Reference Clock  
Frequency range  
35  
43.4  
55  
MHz  
Internal Reference Clock  
Temperature Coefficient mean  
-13  
ppm/°C  
TIMING CHARACTERISTICS  
tWAKEUP  
Wake-up Time from SD high-low  
transition to I2C readback  
2
ms  
ms  
tWD-TIMEOUT  
Sensor recovery time (after  
watchdog timeout)  
5.2  
6.6 Switching Characteristics - I2C  
Unless otherwise specified, all limits ensured for TA = 25°C, VDD = 3.3 V  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VOLTAGE LEVELS  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
0.7ˣVDD  
V
V
0.3ˣVDD  
VOL  
Output Low Voltage (3mA sink  
current)  
0.4  
V
V
HYS  
Hysteresis  
0.1ˣVDD  
I2C TIMING CHARACTERISTICS  
ƒSCL  
Clock Frequency  
Clock Low Time  
Clock High Time  
10  
1.3  
0.6  
400  
kHz  
μs  
tLOW  
tHIGH  
tHD;STA  
μs  
Hold Time (repeated) START  
condition  
After this period, the first clock  
pulse is generated  
0.6  
0.6  
μs  
μs  
tSU;STA  
Set-up time for a repeated START  
condition  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Data hold time  
0
100  
0.6  
μs  
ns  
μs  
Data setup time  
Set-up time for STOP condition  
Bus free time between a STOP  
and START condition  
1.3  
μs  
tVD;DAT  
tVD;ACK  
tSP  
Data valid time  
0.9  
0.9  
μs  
μs  
Data valid acknowledge time  
Pulse width of spikes that must be  
suppressed by the input filter(1)  
50  
ns  
(1) This parameter is specified by design and/or characterization and is not tested in production.  
SDA  
t
BUF  
t
t
f
LOW  
t
HD;STA  
t
r
t
t
SP  
t
f
r
SCL  
t
t
HD;STA  
SU;STA  
t
SU;STO  
t
HIGH  
t
t
SU;DAT  
HD;DAT  
STOP START  
START  
REPEATED  
START  
Figure 1. I2C Timing  
Copyright © 2014–2018, Texas Instruments Incorporated  
7
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
6.7 Typical Characteristics  
Common test conditions (unless specified otherwise): Sensor inductor: 2 layer, 32 turns/layer, 14 mm diameter, PCB inductor  
with L=19.4 µH, RP=5.7 kat 2 MHz; Sensor capacitor: 330 pF 1% COG/NP0; Target: Aluminum, 1.5 mm thickness; Channel  
= Channel 0 (continuous mode); ƒCLKIN = 40 MHz, FIN_DIVIDER0 = 0x1, FREF_DIVIDER0 = 0x001, RCOUNT0 = 0xFFFF,  
SETTLECOUNT0 = 0x0100, RP_OVERRIDE = 1, AUTO_AMP_DIS = 1, DRIVE_CURRENT0 = 0x9800  
3.25  
3.225  
3.2  
3.25  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
3.2  
3.175  
3.15  
3.125  
3.1  
3.15  
3.1  
-40°C  
-20°C  
0°C  
50°C  
85°C  
100°C  
125°C  
3.075  
3.05  
25°C  
3.05  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D003  
D004  
Includes 1.57 mA sensor coil current  
-40°C to +125°C  
Includes 1.57 mA sensor coil current  
Figure 2. Active Mode IDD vs. Temperature  
Figure 3. Active Mode IDD vs. VDD  
60  
55  
50  
45  
40  
35  
30  
25  
65  
60  
55  
50  
45  
40  
35  
30  
25  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D005  
D006  
-40°C to +125°C  
Figure 4. Sleep Mode IDD vs. Temperature  
Figure 5. Sleep Mode IDD vs. VDD  
1.4  
1.2  
1
1.6  
1.4  
1.2  
1
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D007  
D008  
-40°C to +125°C  
Figure 6. Shutdown Mode IDD vs. Temperature  
Figure 7. Shutdown Mode IDD vs. VDD  
8
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Typical Characteristics (continued)  
Common test conditions (unless specified otherwise): Sensor inductor: 2 layer, 32 turns/layer, 14 mm diameter, PCB inductor  
with L=19.4 µH, RP=5.7 kat 2 MHz; Sensor capacitor: 330 pF 1% COG/NP0; Target: Aluminum, 1.5 mm thickness; Channel  
= Channel 0 (continuous mode); ƒCLKIN = 40 MHz, FIN_DIVIDER0 = 0x1, FREF_DIVIDER0 = 0x001, RCOUNT0 = 0xFFFF,  
SETTLECOUNT0 = 0x0100, RP_OVERRIDE = 1, AUTO_AMP_DIS = 1, DRIVE_CURRENT0 = 0x9800  
43.4  
43.39  
43.38  
43.37  
43.36  
43.35  
43.34  
43.33  
43.32  
43.41  
VDD = 2.7 V  
VDD = 3 V  
VDD = 3.3 V  
VDD = 3.6 V  
-40°C  
-20°C  
0°C  
25°C  
50°C  
85°C  
100°C  
125°C  
43.4  
43.39  
43.38  
43.37  
43.36  
43.35  
43.34  
43.33  
43.32  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
2.7  
2.8  
2.9  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Temperature (°C)  
VDD (V)  
D009  
D010  
-40°C to +125°C  
Data based on 1 unit  
Figure 8. Internal Oscillator Frequency vs. Temperature  
Figure 9. Internal Oscillator Frequency vs. VDD  
Copyright © 2014–2018, Texas Instruments Incorporated  
9
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LDC1612/LDC1614 is an inductance-to-digital converter (LDC) that measures the oscillation frequency of  
multiple LC resonators. The device outputs a digital value that is proportional to frequency, with 28 bits of  
measurement resolution. This frequency measurement can be converted to an equivalent inductance, or mapped  
to the movement of an conductive object. The LDC1612/LDC1614 supports a wide range of inductance and  
capacitor combinations with oscillation frequencies varying from 1 kHz to 10 MHz with equivalent parallel  
resistances as low as 1.0 kΩ. The device includes a stable internal reference to reduce overall system cost, while  
also providing the option to drive a clean external oscillator for improved measurement noise. The conversion  
time of the LDC1612/LDC1614 is configurable per channel, where longer conversion times provide higher  
effective resolution.  
The LDC1612/LDC1614 is configured through a 400-kbit/s I2C bus and includes the ADDR input pin to select an  
address. The power supply of the device ranges from 2.7 V to 3.6 V. The only external components necessary  
for operation are the supply bypassing capacitors and I2C pull-ups.  
7.2 Functional Block Diagram  
40 MHz  
40 MHz  
CLKIN  
CLKIN  
VDD  
SD  
VDD  
SD  
fREF  
fREF  
INTB  
INTB  
IN0A  
IN0B  
IN0A  
IN0B  
Resonant  
Circuit  
Driver  
Resonant  
Circuit  
Driver  
Core  
I2C  
Core  
I2C  
fIN  
fIN  
IN3A  
IN3B  
IN1A  
IN1B  
Resonant  
Circuit  
Driver  
Resonant  
Circuit  
Driver  
SDA  
SCL  
SDA  
SCL  
ADDR  
ADDR  
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 10. Block Diagrams for the LDC1612 (Left) and LDC1614 (Right)  
The LDC1612/LDC1614 is composed of front-end resonant circuit drivers, followed by a multiplexer that  
sequences through the active channels, connecting them to the core that measures and digitizes the sensor  
frequency (ƒSENSOR). The core uses a reference frequency (ƒREF) to measure the sensor frequency. ƒREF is  
derived from either the internal reference clock (oscillator), or an externally supplied clock. The digitized output  
for each channel is proportional to the ratio of ƒSENSORREF. The I2C interface is used to support device  
configuration and to transmit the digitized frequency values to a host processor. The LDC can be placed in an  
inactive shutdown mode to reduce current consumption by setting the SD pin to VDD. The INTB pin may be  
configured to notify the host of changes in system status.  
7.3 Feature Description  
7.3.1 Multi-Channel and Single Channel Operation  
The LDC1612/LDC1614 provides flexibility in channel sampling. It can continuously convert on any available  
single channel or automatically sequence conversions across multiple channels. When operated in multi-channel  
mode, the LDC sequentially samples the selected channels. In single channel mode, the LDC continuously  
samples only the selected channel.  
10  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Feature Description (continued)  
At the end of each conversion in single channel mode, or after converting all selected channels when in multi-  
channel mode, the LDC1612/LDC1614 can be configured to assert the INTB pin to indicate completion of the  
conversion.  
Refer to Multi-Channel and Single Channel Operation for details on the LDC1612/LDC1614 channel functionality  
and configuration.  
7.3.2 Adjustable Conversion Time  
The LDC1612/LDC1614 conversion provides a tradeoff between measurement resolution and conversion  
interval. Longer conversion intervals have higher measurement resolution. The conversion interval can be  
configured from 3.2 µs to >26.2 ms with 16 bits of resolution. Note that it is possible to configure the conversion  
interval to be shorter than the time required to read back the DATAx registers. The LDC1612/LDC1614 supports  
per-channel adjustment of the conversion interval by setting the RCOUNTx register.  
Refer to Sensor Conversion Time for details on the LDC1612/LDC1614 configuration and details on the setting  
conversion interval.  
7.3.3 Sensor Startup and Glitch Configuration  
For minimum noise, the sensor measurement should be performed after the sensor amplitude has stabilized. The  
LDC1612/LDC1614 provides an adjustable sensor startup timing per channel. The timing can be varied from 1.2  
µs to >26.2 ms by setting the SETTLECOUNTx register. Sensors with lower resonant frequencies or higher Qs  
may require additional time to stabilize.  
Refer to Settling Time for details on the LDC1612/LDC1614 configuration and details on the setting conversion  
interval.  
The LDC1612/LDC1614 can be configured with a faster sensor activation, or to use a lower current sensor  
activation. Refer to Sensor Activation for details on this capability.  
The LDC1612/LDC1614 provides an internal filter to attenuate interference from external noise sources. Refer to  
Input Deglitch Filter for information on configuration on the deglitch filter.  
7.3.4 Reference Clock  
Optimum LDC1612/LDC1614 performance requires a clean reference clock. This reference frequency is  
equivalent to the reference voltage of an Analog-to-Digital converter. The LDC1612/LDC1614 provide an internal  
reference oscillator with a typical frequency of 43 MHz. This internal oscillator has good stability, with a typical  
temperature coefficient of -13 ppm/°C. For applications requiring higher resolution or improved performance  
across temperature, an external reference frequency can be applied to the CLKIN input.  
The LDC1612/LDC1614 provide digital dividers for the ƒCLK and the sensor inputs to adjust the effective  
frequency measured by the LDC core. For most systems, the maximum permitted reference frequency provides  
the best performance. The dividers provide flexibility in system design so that the full range of sensor frequencies  
can be supported with a wide range of ƒCLK. Each channel has a dedicated divider configuration.  
Refer to Reference Clock for details on clocking requirements, configuration, and divider setup.  
7.3.5 Sensor Current Drive Control  
The lossy characteristic of the sensors used for inductive sensing require injection of energy to maintain a  
constant sensor amplitude. The LDC1612/LDC1614 provides this energy by driving an AC current matching the  
sensor resonant frequency across the LC sensor. To achieve optimum performance, it is necessary to set the  
current drive so that the sensor amplitude is within the range of 1.2 VP to 1.8 VP. Each channel current drive is  
set independently between 16 µA and 1.6 mA by setting the corresponding IDRIVEx register field. The  
LDC1612/LDC1614 can also automatically determine the appropriate sensor current drive, and even dynamically  
adjust the sensor current by use of the RP_OVERRIDE_EN function.  
Refer to Sensor Current Drive Configuration for detailed information on configuration of the sensor drive.  
Copyright © 2014–2018, Texas Instruments Incorporated  
11  
 
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Feature Description (continued)  
7.3.6 Device Status Monitoring  
The LDC1612/LDC1614 can monitor attached sensors and can report on device status and sensor status via the  
I2C interface. Reported conditions include:  
Sensor Amplitude outside of optimum range  
Sensor unable to oscillate  
New conversion data available  
Conversion errors  
Use of this monitoring functionality can alert the system MCU of unexpected conditions such as sensor damage.  
Refer to Device Status Registers for more information.  
7.4 Device Functional Modes  
7.4.1 Startup Mode  
When the LDC powers up, it enters into Sleep Mode and will wait for configuration. Once the device is  
configured, exit Sleep Mode and begin conversions by setting CONFIG.SLEEP_MODE_EN to b0.  
It is recommended to configure the LDC while in Sleep Mode. If a setting on the LDC needs to be changed,  
return the device to Sleep Mode, change the appropriate register, and then exit Sleep Mode.  
7.4.2 Sleep Mode (Configuration Mode)  
Sleep Mode is entered by setting the CONFIG.SLEEP_MODE_EN register field to 1. While in this mode, the  
device configuration is retained, but the device does not perform conversions. To enter Normal mode to perform  
conversions, set the CONFIG.SLEEP_MODE_EN register field to 0. After setting CONFIG.SLEEP_MODE_EN to  
b0, sensor activation for the first conversion will begin after 16,384÷ƒINT elapses. Refer to Clocking Architecture  
for more information on the device timing.  
While in Sleep Mode the I2C interface is functional so that register reads and writes can be performed. Entering  
Sleep Mode will clear all conversion results, any error conditions, and de-assert the INTB pin.  
For applications which do not require continuous conversions, returning the device to Sleep mode after  
completion and readback of the desired number of conversions can provide power consumption savings. Refer  
to the TI Applications Note Power Reduction Techniques for the LDC131x/161x for Inductive Sensing for more  
information.  
7.4.3 Normal (Conversion) Mode  
When operating in the normal (conversion) mode, the LDC is repeatedly sampling the frequency of the sensor(s)  
and generating sample outputs for the active channel(s) based on the device configuration.  
7.4.4 Shutdown Mode  
When the SD pin is set to high, the LDC will enter Shutdown Mode. Shutdown Mode is the lowest power state.  
To exit Shutdown Mode and enter Sleep Mode, set the SD pin to low. Entering Shutdown Mode will return all  
registers to their default state.  
While in Shutdown Mode, no conversions are performed. In addition, entering Shutdown Mode will clear any  
error condition and de-assert the INTB pin (when de-asserted, INTB will be actively driven high). While the  
device is in Shutdown Mode, is not possible to read to or write from the device via the I2C interface.  
It is permitted to change the ADDR pin setting while in Shutdown Mode.  
7.4.4.1 Reset  
The device can be reset by writing to RESET_DEV.RESET_DEV. Any active conversion will stop and all  
registers will return to their default values. This register bit will always return 0b when read.  
12  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.5 Programming  
The LDC1612/4 device uses an I2C interface to access control and data registers. The recommended  
configuration procedure is to put the device into Sleep Mode, set the appropriate registers, and then enter  
Normal Mode. Conversion results must be read while the device is in Normal Mode. Setting the device into  
Shutdown mode will reset the device configuration.  
7.5.1 I2C Interface Specifications  
The LDC1612/4 use I2C for register access with a maximum speed of 400 kbit/s. The device registers are 16 bits  
wide, and so a repeated start is used to access the 2nd byte of data. This sequence follows the standard I2C 7bit  
slave address followed by an 8 bit pointer register byte to set the register address. Refer to Figure 11 and  
Figure 12 for proper protocol diagrams. The device does not use I2C clock stretching.  
When the ADDR pin is set low, the device I2C address is 0x2A; when the ADDR pin is set high, the I2C address  
is 0x2B. The ADDR pin setting can be changed while the device is in Shutdown Mode to select the alternate I2C  
address.  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
R7 R6 R5 R4 R3 R2 R1 R0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register  
Address  
1
9
1
9
SCL  
SDA  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Ack by  
Slave  
Ack by Stop by  
Slave  
Master  
Frame 3  
Data MSB from  
Master  
Frame 4  
Data LSB from  
Master  
Figure 11. I2C Write Register Sequence  
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
R7 R6 R5 R4 R3 R2 R1 R0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Slave  
Frame 1  
Serial Bus Address Byte  
from Master  
Frame 2  
Slave Register  
Address  
1
9
1
9
1
9
SCL  
SDA  
A6 A5 A4 A3 A2 A1 A0 R/W  
D15 D14 D13 D12 D11 D10 D9 D8  
D7 D6 D5 D4 D3 D2 D1 D0  
Start by  
Master  
Ack by  
Slave  
Ack by  
Master  
Nack by Stop by  
Master Master  
Frame 3  
Serial Bus Address Byte  
from Master  
Frame 4  
Data MSB from  
Slave  
Frame 5  
Data LSB from  
Slave  
Figure 12. I2C Read Register Sequence  
Copyright © 2014–2018, Texas Instruments Incorporated  
13  
 
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Programming (continued)  
7.5.2 Pulses on I2C  
The I2C interface of the LDC is designed to operate with the standard I2C transactions detailed in the I2C  
specification; however it is not suitable for use in an I2C system which supports early termination of transactions.  
A STOP condition or other early termination occurring before the normal end of a transaction (ACK) is not  
supported and may corrupt that transaction and/or the following transaction. The device is also sensitive to any  
(extraneous) pulse on SDA during the SCL low period of the first bit position of the i2c_address byte. To ensure  
proper LDC operation, the master device should not transmit this type of waveform. An example of an  
unsupported I2C waveform is shown in Figure 13. Any such pulses should not have a duration which exceeds  
the device tSP specification.  
AVOID SDA PULSE  
AFTER START  
SDA  
SCL  
START  
ADDR  
Figure 13. Example of SDA Pulse Between I2C START and ADDR Which Must be Avoided by the I2C  
Master  
7.5.3 Multi Register Data Readback  
The LDC1612/LDC1614 conversion data spans 2 registers. To avoid multi-conversion data corruption, the device  
uses an internal shadow register to hold conversion results for each channel. When a conversion completes, the  
corresponding internal shadow register is updated with the new conversion result. When the DATAx_MSB  
register is read, the contents of both the DATAx_MSB and DATAx_LSB registers are updated with the new  
conversion data.  
Therefore, to correctly retrieve the conversion results for a given channel, the proper sequence is to first read the  
DATAx_MSB register, and then read the DATAx_LSB register.  
14  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6 Register Maps  
7.6.1 Register List  
Fields indicated with Reserved must be written only with indicated value, otherwise improper device operation  
may occur. The R/W column indicates the Read-Write status of the corresponding field. A ‘R/W’ entry indicates  
read and write capability, a ‘R’ indicates read-only, and a ‘W’ indicates write-only.  
For registers with R and R/W fields, write the reset value to the field when setting the R/W fields.  
Figure 14. Register List  
ADDRESS  
0x00  
NAME  
DATA0_MSB  
DEFAULT VALUE  
0x0000  
DESCRIPTION  
Channel 0 MSB Conversion Result and Error Status  
0x01  
DATA0_LSB  
0x0000  
Channel 0 LSB Conversion Result. Must be read after Register address  
0x00.  
0x02  
0x03  
DATA1_MSB  
DATA1_LSB  
0x0000  
0x0000  
Channel 1 MSB Conversion Result and Error Status.  
Channel 1 LSB Conversion Result. Must be read after Register address  
0x02.  
0x04  
0x05  
DATA2_MSB  
DATA2_LSB  
0x0000  
0x0000  
Channel 2 MSB Conversion Result and Error Status. (LDC1614 only)  
Channel 2 LSB Conversion Result. Must be read after Register address  
0x04.(LDC1614 only)  
0x06  
0x07  
DATA3_MSB  
DATA3_LSB  
0x0000  
0x0000  
Channel 3 MSB Conversion Result and Error Status. (LDC1614 only)  
Channel 3 LSB Conversion Result. Must be read after Register address  
0x06. (LDC1614 only)  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1E  
0x1F  
0x20  
0x21  
0x7E  
0x7F  
RCOUNT0  
0x0080  
0x0080  
0x0080  
0x0080  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x2801  
0x020F  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
Reference Count setting for Channel 0  
Reference Count setting for Channel 1  
Reference Count setting for Channel 2. (LDC1614 only)  
Reference Count setting for Channel 3.(LDC1614 only)  
Offset value for Channel 0  
RCOUNT1  
RCOUNT2  
RCOUNT3  
OFFSET0  
OFFSET1  
Offset value for Channel 1  
OFFSET2  
Offset value for Channel 2 (LDC1614 only)  
Offset value for Channel 3 (LDC1614 only)  
Channel 0 Settling Reference Count  
OFFSET3  
SETTLECOUNT0  
SETTLECOUNT1  
SETTLECOUNT2  
SETTLECOUNT3  
CLOCK_DIVIDERS0  
CLOCK_DIVIDERS1  
CLOCK_DIVIDERS2  
CLOCK_DIVIDERS3  
STATUS  
Channel 1 Settling Reference Count  
Channel 2 Settling Reference Count (LDC1614 only)  
Channel 3 Settling Reference Count (LDC1614 only)  
Reference and Sensor Divider settings for Channel 0  
Reference and Sensor Divider settings for Channel 1  
Reference and Sensor Divider settings for Channel 2 (LDC1614 only)  
Reference and Sensor Divider settings for Channel 3 (LDC1614 only)  
Device Status Report  
ERROR_CONFIG  
CONFIG  
Error Reporting Configuration  
Conversion Configuration  
MUX_CONFIG  
RESET_DEV  
Channel Multiplexing Configuration  
Reset Device  
DRIVE_CURRENT0  
DRIVE_CURRENT1  
DRIVE_CURRENT2  
DRIVE_CURRENT3  
Channel 0 sensor current drive configuration  
Channel 1 sensor current drive configuration  
Channel 2 sensor current drive configuration (LDC1614 only)  
Channel 3 sensor current drive configuration (LDC1614 only)  
Manufacturer ID  
MANUFACTURER_ID 0x5449  
DEVICE_ID 0x3055  
Device ID  
Copyright © 2014–2018, Texas Instruments Incorporated  
15  
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.2 Address 0x00, DATA0_MSB  
Figure 15. Address 0x00, DATA0_MSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
ERR_UR0  
ERR_OR0  
ERR_WD0  
ERR_AE0  
DATA0 [27:16]  
7
6
5
4
3
2
DATA [27:16]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 1. Address 0x00, DATA0_MSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ERR_UR0  
R
0
Channel 0 Conversion Under-range Error Flag  
Cleared by reading the register  
14  
13  
ERR_OR0  
ERR_WD0  
ERR_AE0  
R
R
R
R
0
0
0
Channel 0 Conversion Over-range Error Flag.  
Cleared by reading the register  
Channel 0 Conversion Watchdog Timeout Error Flag  
Cleared by reading the register  
12  
Channel 0 Conversion Amplitude Error Flag  
Cleared by reading the register.  
11:0  
DATA0[27:16]  
0000 0000 Channel 0 MSB Conversion Result (MSB)  
0000  
7.6.3 Address 0x01, DATA0_LSB  
Figure 16. Address 0x01, DATA0_LSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA0 [15:0]  
7
6
5
4
3
2
DATA0 15:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 2. Address 0x01 DATA0_LSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DATA0[15:0]  
R
0x0000  
Channel 0 LSB Conversion Result (LSB)  
This register must be read after DATA0_MSB to ensure data  
coherency.  
16  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6.4 Address 0x02, DATA1_MSB  
Figure 17. Address 0x02, DATA1_MSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
ERR_UR1  
ERR_OR1  
ERR_WD1  
ERR_AE1  
DATA1[27:16]  
7
6
5
4
3
2
DATA1[27:16]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 3. Address 0x02, DATA1_MSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ERR_UR1  
R
0
Channel 1 Conversion Under-range Error Flag  
Cleared by reading the bit.  
14  
13  
ERR_OR1  
ERR_WD1  
ERR_AE1  
R
R
R
R
0
Channel 1 Conversion Over-range Error Flag  
Cleared by reading the bit.  
0
Channel 1 Conversion Watchdog Timeout Error Flag  
Cleared by reading the bit.  
12  
0
Channel 1 Conversion Amplitude Error Flag  
Cleared by reading the bit.  
11:0  
DATA1[27:16]  
0x000  
Channel 1 MSB Conversion Result (MSB)  
7.6.5 Address 0x03, DATA1_LSB  
Figure 18. Address 0x03, DATA1_LSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA1 [15:0]  
7
6
5
4
3
2
DATA1 [15:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 4. Address 0x03, DATA1_LSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DATA1[15:0]  
R
0x0000  
Channel 1 LSB Conversion Result (LSB)  
This register must be read after DATA1_MSB to ensure data  
coherency.  
Copyright © 2014–2018, Texas Instruments Incorporated  
17  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.6 Address 0x04, DATA2_MSB (LDC1614 only)  
Figure 19. Address 0x04, DATA2_MSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
ERR_UR2  
ERR_OR2  
ERR_WD2  
ERR_AE2  
DATA2 [27:16]  
7
6
5
4
3
2
DATA2 [27:16]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 5. Address 0x04, DATA2_MSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ERR_UR2  
R
0
Channel 2 Conversion Under-range Error Flag  
Cleared by reading the bit.  
14  
13  
ERR_OR2  
ERR_WD2  
ERR_AE2  
R
R
R
R
0
Channel 2 Conversion Over-range Error Flag  
Cleared by reading the bit.  
0
Channel 2 Conversion Watchdog Timeout Error Flag  
Cleared by reading the bit.  
12  
0
Channel 2 Conversion Amplitude Error Flag  
Cleared by reading the bit.  
11:0  
DATA2[27:16]  
0x000  
Channel 2 MSB Conversion Result (MSB)  
7.6.7 Address 0x05, DATA2_LSB (LDC1614 only)  
Figure 20. Address 0x05, DATA2_LSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA2 [15:0]  
7
6
5
4
3
2
DATA2 [15:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 6. Address 0x05 DATA2_LSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DATA2[15:0]  
R
0x0000  
Channel 2 LSB Conversion Result (LSB)  
This register must be read after DATA_MSB2 to ensure data  
coherency.  
18  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6.8 Address 0x06, DATA3_MSB (LDC1614 only)  
Figure 21. Address 0x06, DATA3_MSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
ERR_UR3  
ERR_OR3  
ERR_WD3  
ERR_AE3  
DATA3 [27:16]  
7
6
5
4
3
2
DATA3 [27:16]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 7. Address 0x06, DATA3_MSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
ERR_UR3  
R
0
Channel 3 Conversion Under-range Error Flag  
Cleared by reading the bit.  
14  
13  
ERR_OR3  
ERR_WD3  
ERR_AE3  
R
R
R
R
0
Channel 3 Conversion Over-range Error Flag  
Cleared by reading the bit.  
0
Channel 3 Conversion Watchdog Timeout Error Flag  
Cleared by reading the bit.  
12  
0
Channel 3 Conversion Amplitude Error Flag  
Cleared by reading the bit.  
11:0  
DATA3 [27:16]  
0x000  
Channel 3 MSB Conversion Result (MSB)  
7.6.9 Address 0x07, DATA3_LSB (LDC1614 only)  
Figure 22. Address 0x07, DATA3_LSB  
15  
14  
13  
12  
11  
10  
9
1
8
0
DATA3[15:0]  
7
6
5
4
3
2
DATA3[15:0]  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 8. Address 0x07 DATA3_LSB Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
DATA3[15:0]  
R
0x0000  
Channel 3 LSB Conversion Result (LSB)  
This register must be read after DATA_MSB3 to ensure data  
coherency.  
Copyright © 2014–2018, Texas Instruments Incorporated  
19  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.10 Address 0x08, RCOUNT0  
Figure 23. Address 0x08, RCOUNT0  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RCOUNT0  
RCOUNT0  
4
3
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 9. Address 0x08, RCOUNT0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
RCOUNT0  
R/W  
0x0080  
Channel 0 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC0) = (RCOUNT0×16)/ƒREF0  
7.6.11 Address 0x09, RCOUNT1  
Figure 24. Address 0x09, RCOUNT1  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RCOUNT1  
4
3
RCOUNT1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 10. Address 0x09, RCOUNT1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
RCOUNT1  
R/W  
0x0080  
Channel 1 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC1)= (RCOUNT1×16)/ƒREF1  
7.6.12 Address 0x0A, RCOUNT2 (LDC1614 only)  
Figure 25. Address 0x0A, RCOUNT2  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
RCOUNT2  
7
6
5
4
3
RCOUNT2  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 11. Address 0x0A, RCOUNT2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
RCOUNT2  
R/W  
0x0080  
Channel 2 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC2)= (RCOUNT2ˣ16)/ƒREF2  
20  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6.13 Address 0x0B, RCOUNT3 (LDC1614 only)  
Figure 26. Address 0x0B, RCOUNT3  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
RCOUNT3  
RCOUNT3  
4
3
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 12. Address 0x0B, RCOUNT3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
RCOUNT3  
R/W  
0x0080  
Channel 3 Reference Count Conversion Interval Time  
0x0000-0x0004: Reserved  
0x0005-0xFFFF: Conversion Time (tC3)= (RCOUNT3ˣ16)/ƒREF3  
7.6.14 Address 0x0C, OFFSET0  
Figure 27. Address 0x0C, OFFSET0  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
OFFSET0  
4
3
OFFSET0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 13. OFFSET0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
OFFSET0  
R/W  
0x0000  
Channel 0 Conversion Offset  
ƒOFFSET0 = (OFFSET0÷216)׃REF0  
7.6.15 Address 0x0D, OFFSET1  
Figure 28. Address 0x0D, OFFSET1  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
OFFSET1  
4
3
OFFSET1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 14. Address 0x0D, OFFSET1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
OFFSET1  
R/W  
0x0000  
Channel 1 Conversion Offset  
ƒOFFSET1 = (OFFSET1÷216)׃REF1  
Copyright © 2014–2018, Texas Instruments Incorporated  
21  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.16 Address 0x0E, OFFSET2 (LDC1614 only)  
Figure 29. Address 0x0E, OFFSET2  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
OFFSET2  
OFFSET2  
4
3
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 15. Address 0x0E, OFFSET2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
OFFSET2  
R/W  
0x0000  
Channel 2 Conversion Offset  
ƒOFFSET_2 = (OFFSET2÷216)׃REF2  
7.6.17 Address 0x0F, OFFSET3 (LDC1614 only)  
Figure 30. Address 0x0F, OFFSET3  
15  
14  
13  
12  
11  
10  
2
9
1
8
0
OFFSET3  
7
6
5
4
3
OFFSET3  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 16. Address 0x0F, OFFSET3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
OFFSET3  
R/W  
0x0000  
Channel 3 Conversion Offset  
ƒOFFSET3 = (OFFSET3÷216)׃REF3  
7.6.18 Address 0x10, SETTLECOUNT0  
Figure 31. Address 0x10, SETTLECOUNT0  
15  
14  
13  
12  
11  
10  
9
1
8
0
SETTLECOUNT0  
7
6
5
4
3
2
SETTLECOUNT0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 17. Address 0x10, SETTLECOUNT0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
SETTLECOUNT0  
R/W  
0x0000  
Channel 0 Conversion Settling  
The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 0.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled.  
0x0000: Settle Time (tS0)= 32 ÷ ƒREF0  
0x0001: Settle Time (tS0)= 32 ÷ ƒREF0  
0x0002 - 0xFFFF: Settle Time (tS0)= (SETTLECOUNT0ˣ16) ÷  
ƒREF0  
22  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6.19 Address 0x11, SETTLECOUNT1  
Figure 32. Address 0x11, SETTLECOUNT1  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
SETTLECOUNT1  
5
4
3
2
SETTLECOUNT1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 18. Address 0x11, SETTLECOUNT1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
SETTLECOUNT1  
R/W  
0x0000  
Channel 1 Conversion Settling  
The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on a Channel 1.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled.  
0x0000: Settle Time (tS1)= 32 ÷ ƒREF1  
0x0001: Settle Time (tS1)= 32 ÷ ƒREF1  
0x0002 - 0xFFFF: Settle Time (tS1)= (SETTLECOUNT1ˣ16) ÷  
ƒREF1  
7.6.20 Address 0x12, SETTLECOUNT2 (LDC1614 only)  
Figure 33. Address 0x12, SETTLECOUNT2  
15  
14  
13  
12  
11  
10  
9
1
8
0
SETTLECOUNT2  
7
6
5
4
3
2
SETTLECOUNT2  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 19. Address 0x12, SETTLECOUNT2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
SETTLECOUNT2  
R/W  
0x0000  
Channel 2 Conversion Settling  
The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 2.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled.  
0x0000: Settle Time (tS2)= 32 ÷ ƒREF2  
0x0001: Settle Time (tS2)= 32 ÷ ƒREF2  
0x0002 - 0xFFFF: Settle Time (tS2)= (SETTLECOUNT2ˣ16) ÷  
ƒREF2  
Copyright © 2014–2018, Texas Instruments Incorporated  
23  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.21 Address 0x13, SETTLECOUNT3 (LDC1614 only)  
Figure 34. Address 0x13, SETTLECOUNT3  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
0
SETTLECOUNT3  
5
4
3
2
SETTLECOUNT3  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 20. Address 0x13, SETTLECOUNT3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
SETTLECOUNT3  
R/W  
0x0000  
Channel 3 Conversion Settling  
The LDC will use this settling time to allow the LC sensor to  
stabilize before initiation of a conversion on Channel 3.  
If the amplitude has not settled prior to the conversion start, an  
Amplitude error will be generated if reporting of this type of error  
is enabled  
0x0000: Settle Time (tS3)= 32 ÷ ƒREF3  
0x0001: Settle Time (tS3)= 32 ÷ ƒREF3  
0x0002 - 0xFFFF: Settle Time (tS3)= (SETTLECOUNT3ˣ16) ÷  
ƒREF3  
7.6.22 Address 0x14, CLOCK_DIVIDERS0  
Figure 35. Address 0x14, CLOCK_DIVIDERS0  
15  
14  
13  
12  
11  
10  
9
8
0
FIN_DIVIDER0  
RESERVED  
FREF_DIVIDER0  
7
6
5
4
3
2
1
FREF_DIVIDER0  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 21. Address 0x14, CLOCK_DIVIDERS0 Field Descriptions  
Bit  
15:12  
11:10  
9:0  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
0000  
Channel 0 Input Divider  
Sets the divider for Channel 0 input. Must be set to 2 if the  
Sensor frequency is 8.75MHz  
b0000: Reserved. Do not use.  
FIN_DIVIDER0 b0001:  
FIN_DIVIDER0  
RESERVED  
FREF_DIVIDER0  
ƒin0 = ƒSENSOR0/FIN_DIVIDER0  
00  
Reserved. Set to b00.  
0x000  
Channel 0 Reference Divider  
Sets the divider for Channel 0 reference. Use this to scale the  
maximum conversion frequency.  
0x000: Reserved. Do not use.  
FREF_DIVIDER0 0x001:  
ƒREF0 = ƒCLK/FREF_DIVIDER0  
24  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6.23 Address 0x15, CLOCK_DIVIDERS1  
Figure 36. Address 0x15, CLOCK_DIVIDERS1  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
FIN_DIVIDER1  
RESERVED  
FREF_DIVIDER1  
5
4
3
2
1
FREF_DIVIDER1  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 22. Address 0x15, CLOCK_DIVIDERS1 Field Descriptions  
Bit  
15:12  
11:10  
9:0  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
0000  
Channel 1 Input Divider  
Sets the divider for Channel 1 input. Used when the Sensor  
frequency is greater than the maximum FIN  
b0000: Reserved. Do not use.  
FIN_DIVIDER1 b0001:  
.
FIN_DIVIDER1  
RESERVED  
FREF_DIVIDER1  
ƒin1 = ƒSENSOR1÷FIN_DIVIDER1  
00  
Reserved. Set to b00.  
0x000  
Channel 1 Reference Divider  
Sets the divider for Channel 1 reference. Use this to scale the  
maximum conversion frequency.  
0x000: Reserved. Do not use.  
FREF_DIVIDER1 0x001:  
ƒREF1 = ƒCLK÷FREF_DIVIDER1  
7.6.24 Address 0x16, CLOCK_DIVIDERS2 (LDC1614 only)  
Figure 37. Address 0x16, CLOCK_DIVIDERS2  
15  
14  
13  
12  
11  
10  
9
8
0
FIN_DIVIDER2  
RESERVED  
FREF_DIVIDER2  
7
6
5
4
3
2
1
FREF_DIVIDER2  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 23. Address 0x16, CLOCK_DIVIDERS2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:12  
FIN_DIVIDER2  
R/W  
0000  
Channel 2 Input Divider  
Sets the divider for Channel 2 input. Must be set to 2 if the  
Sensor frequency is 8.75MHz.  
b0000: Reserved. Do not use.  
FIN_DIVIDER2 b0001:  
ƒIN2 = ƒSENSOR2÷FIN_DIVIDER2  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00.  
FREF_DIVIDER2  
0x000  
Channel 2 Reference Divider  
Sets the divider for Channel 2 reference. Use this to scale the  
maximum conversion frequency.  
0x000: Reserved. Do not use.  
FREF_DIVIDER2 0x001:  
ƒREF2 = ƒCLK÷FREF_DIVIDER2  
Copyright © 2014–2018, Texas Instruments Incorporated  
25  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.25 Address 0x17, CLOCK_DIVIDERS3 (LDC1614 only)  
Figure 38. Address 0x17, CLOCK_DIVIDERS3  
15  
7
14  
6
13  
12  
11  
10  
9
1
8
FIN_DIVIDER3  
RESERVED  
FREF_DIVIDER3  
5
4
3
2
0
FREF_DIVIDER3  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 24. Address 0x17, CLOCK_DIVIDERS3  
Bit  
Field  
Type  
Reset  
Description  
15:12  
FIN_DIVIDER3  
R/W  
0000  
Channel 3 Input Divider  
Sets the divider for Channel 3 input. Must be set to 2 if the  
Sensor frequency is 8.75MHz.  
b0000: Reserved. Do not use.  
FIN_DIVIDER3 b0001:  
ƒIN3 = ƒSENSOR3÷FIN_DIVIDER3  
11:10  
9:0  
RESERVED  
R/W  
R/W  
00  
Reserved. Set to b00.  
FREF_DIVIDER3  
0x000  
Channel 3 Reference Divider  
Sets the divider for Channel 3 reference. Use this to scale the  
maximum conversion frequency.  
0x000: reserved  
FREF_DIVIDER3 0x001:  
ƒREF3 = ƒCLK÷FREF_DIVIDER3  
7.6.26 Address 0x18, STATUS  
Figure 39. Address 0x18, STATUS  
15  
7
14  
13  
12  
11  
10  
9
8
ERR_CHAN  
ERR_UR  
ERR_OR  
ERR_WD  
ERR_AHE  
ERR_ALE  
ERR_ZC  
6
5
4
3
2
1
0
RESERVED  
DRDY  
RESERVED  
UNREADCON UNREADCONV UNREADCONV UNREADCONV  
V0  
1
2
3
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 25. Address 0x18, STATUS Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
ERR_CHAN  
R
00  
Error Channel  
Indicates which channel has generated a Flag or Error. Once  
flagged, any reported error is latched and maintained until either  
the STATUS register or the DATAx_MSB register corresponding  
to the Error Channel is read.  
b00: Channel 0 is source of flag or error.  
b01: Channel 1 is source of flag or error.  
b10: Channel 2 is source of flag or error (LDC1614 only).  
b11: Channel 3 is source of flag or error (LDC1614 only).  
13  
12  
ERR_UR  
ERR_OR  
R
R
0
0
Conversion Under-range Error  
b0: No Conversion Under-range error was recorded since the  
last read of the STATUS register.  
b1: An active channel has generated a Conversion Under-range  
error. Refer to STATUS.ERR_CHAN field to determine which  
channel is the source of this error.  
Conversion Over-range Error  
b0: No Conversion Over-range error was recorded since the last  
read of the STATUS register.  
b1: An active channel has generated a Conversion Over-range  
error. Refer to STATUS.ERR_CHAN field to determine which  
channel is the source of this error.  
26  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Table 25. Address 0x18, STATUS Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
11  
ERR_WD  
ERR_AHE  
R
0
Watchdog Timeout Error  
b0: No Watchdog Timeout error was recorded since the last  
read of the STATUS register.  
b1: An active channel has generated a Watchdog Timeout error.  
Refer to STATUS.ERR_CHAN field to determine which channel  
is the source of this error.  
10  
R
0
Sensor Amplitude High Error  
b0: No Amplitude High error was recorded since the last read of  
the STATUS register.  
b1: An active channel has generated an Amplitude High error -  
this occurs when the sensor amplitude is above a nominal 1.8 V.  
It is recommended to reduce the corresponding sensor IDRIVEx  
setting. Refer to STATUS.ERR_CHAN field to determine which  
channel is the source of this error.  
9
8
ERR_ALE  
ERR_ZC  
R
R
0
0
Sensor Amplitude Low Error  
b0: No Amplitude Low error was recorded since the last read of  
the STATUS register.  
b1: An active channel has generated an Amplitude Low error -  
this occurs when the sensor amplitude is below a nominal 1.2 V.  
Refer to STATUS.ERR_CHAN field to determine which channel  
is the source of this error.  
Zero Count Error  
b0: No Zero Count error was recorded since the last read of the  
STATUS register.  
b1: An active channel has generated a Zero Count error. Refer  
to STATUS.ERR_CHAN field to determine which channel is the  
source of this error.  
7
6
Reserved  
DRDY  
R
R
0
0
Reserved. Reads 0.  
Data Ready Flag  
b0: No new conversion result was recorded in the STATUS  
register.  
b1: A new conversion result is ready. When in Single Channel  
Conversion, this indicates a single conversion is available. When  
in sequential mode, this indicates that a new conversion result  
for all active channels is now available.  
5:4  
3
Reserved  
R
R
00  
0
Reserved. Reads 00b.  
UNREADCONV0  
Channel 0 Unread Conversion  
b0: No unread conversion is present for Channel 0.  
b1: An unread conversion is present for Channel 0.  
Read Registers DATA0_MSB and DATA0_LSB to retrieve  
conversion results.  
2
1
0
UNREADCONV1  
UNREADCONV2  
UNREADCONV3  
R
R
R
0
0
0
Channel 1 Unread Conversion  
b0: No unread conversion is present for Channel 1.  
b1: An unread conversion is present for Channel 1.  
Read Registers DATA1_MSB and DATA1_LSB to retrieve  
conversion results.  
Channel 2 Unread Conversion  
b0: No unread conversion is present for Channel 2.  
b1: An unread conversion is present for Channel 2.  
Read Registers DATA2_MSB and DATA2_LSB to retrieve  
conversion results (LDC1614 only)  
Channel 3 Unread Conversion  
b0: No unread conversion is present for Channel 3.  
b1: An unread conversion is present for Channel 3.  
Read Registers DATA3_MSB and DATA3_LSB to retrieve  
conversion results (LDC1614 only)  
Copyright © 2014–2018, Texas Instruments Incorporated  
27  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.27 Address 0x19, ERROR_CONFIG  
Figure 40. Address 0x19, ERROR_CONFIG  
15  
14  
13  
12  
11  
10  
9
8
UR_ERR2OUT OR_ERR2OUT  
WD_  
AH_ERR2OUT AL_ERR2OUT  
RESERVED  
ERR2OUT  
7
6
5
4
3
2
1
0
UR_ERR2INT  
OR_ERR2INT WD_ERR2INT  
AH_ERR2INT  
AL_ERR2INT  
ZC_ERR2INT  
Reserved  
DRDY_2INT  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 26. Address 0x19, ERROR_CONFIG  
Bit  
Field  
Type  
Reset  
Description  
15  
UR_ERR2OUT  
R/W  
0
Under-range Error to Output Register  
b0: Do not report Under-range errors in the DATAx_MSB  
registers.  
b1: Report Under-range errors in the DATAx_MSB.ERR_URx  
register field corresponding to the channel that generated the  
error.  
14  
13  
12  
11  
OR_ERR2OUT  
WD_ ERR2OUT  
AH_ERR2OUT  
AL_ERR2OUT  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Over-range Error to Output Register  
b0: Do not report Over-range errors in the DATAx_MSB  
registers.  
b1: Report Over-range errors in the DATAx_MSB.ERR_ORx  
register field corresponding to the channel that generated the  
error.  
Watchdog Timeout Error to Output Register  
b0: Do not report Watchdog Timeout errors in the DATAx_MSB  
registers.  
b1: Report Watchdog Timeout errors in the  
DATAx_MSB.ERR_WDx register field corresponding to the  
channel that generated the error.  
Amplitude High Error to Output Register  
b0:Do not report Amplitude High errors in the DATAx_MSB  
registers.  
b1: Report Amplitude High errors in the DATAx_MSB.ERR_AEx  
register field corresponding to the channel that generated the  
error.  
Amplitude Low Error to Output Register  
b0: Do not report Amplitude High errors in the DATAx_MSB  
registers.  
b1: Report Amplitude High errors in the DATAx_MSB.ERR_AEx  
register field corresponding to the channel that generated the  
error.  
10:8  
7
Reserved  
R/W  
R/W  
00  
0
Reserved. Set to b00.  
UR_ERR2INT  
Under-range Error to INTB  
b0: Do not report Under-range errors by asserting INTB pin and  
STATUS register.  
b1: Report Under-range errors by asserting INTB pin and  
updating STATUS.ERR_UR register field.  
6
5
4
OR_ERR2INT  
WD_ERR2INT  
AH_ERR2INT  
R/W  
R/W  
R/W  
0
0
0
Over-range Error to INTB  
b0: Do not report Over-range errors by asserting INTB pin and  
STATUS register.  
b1: Report Over-range errors by asserting INTB pin and  
updating STATUS.ERR_OR register field.  
Watchdog Timeout Error to INTB  
b0: Do not report Watchdog errors by asserting INTB pin and  
STATUS register.  
b1: Report Watchdog Timeout errors by asserting INTB pin and  
updating STATUS.ERR_WD register field.  
Amplitude High Error to INTB  
b0: Do not report Amplitude High errors by asserting INTB pin  
and STATUS register.  
b1: Report Amplitude High errors by asserting INTB pin and  
updating STATUS.ERR_AHE register field.  
28  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Table 26. Address 0x19, ERROR_CONFIG (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
AL_ERR2INT  
R/W  
0
Amplitude Low Error to INTB  
b0: Do not report Amplitude Low errors by asserting INTB pin  
and STATUS register.  
b1: Report Amplitude Low errors by asserting INTB pin and  
updating STATUS.ERR_ALE register field.  
2
ZC_ERR2INT  
R/W  
0
Zero Count Error to INTB  
b0: Do not report Zero Count errors by asserting INTB pin and  
STATUS register.  
b1: Report Zero Count errors by asserting INTB pin and  
updating STATUS. ERR_ZC register field.  
1
0
Reserved  
R/W  
R/W  
0
0
Reserved. Set to b0.  
DRDY_2INT  
Data Ready Flag to INTB  
b0: Do not report Data Ready Flag by asserting INTB pin and  
STATUS register.  
b1: Report Data Ready Flag by asserting INTB pin and updating  
STATUS. DRDY register field.  
7.6.28 Address 0x1A, CONFIG  
Figure 41. Address 0x1A, CONFIG  
15  
14  
6
13  
12  
11  
10  
9
8
ACTIVE_CHAN  
SLEEP_MODE RP_OVERRID SENSOR_ACTI AUTO_AMP_DI REF_CLK_SR  
RESERVED  
_EN  
5
E_EN  
4
VATE_SEL  
3
S
2
C
1
7
0
INTB_DIS  
HIGH_CURRE  
NT_DRV  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 27. Address 0x1A, CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:14  
ACTIVE_CHAN  
R/W  
00  
Active Channel Selection  
Selects channel for continuous conversions when  
MUX_CONFIG.AUTOSCAN_EN is 0.  
b00: Perform continuous conversions on Channel 0  
b01: Perform continuous conversions on Channel 1  
b10: Perform continuous conversions on Channel 2 (LDC1614  
only)  
b11: Perform continuous conversions on Channel 3 (LDC1614  
only)  
13  
12  
SLEEP_MODE_EN  
RP_OVERRIDE_EN  
R/W  
R/W  
1
0
Sleep Mode Enable  
Enter or exit low power Sleep Mode.  
b0: Device is active.  
b1: Device is in Sleep Mode.  
Sensor RP Override Enable  
Provides control over Sensor current drive used during the  
conversion time for Ch. x, based on the programmed value in  
the IDRIVEx field. Refer to Automatic IDRIVE Setting with  
RP_OVERRIDE_EN for details.  
b0: Override off  
b1: RP Override on  
11  
SENSOR_ACTIVATE_SEL  
R/W  
1
Sensor Activation Mode Selection  
Set the mode for sensor initialization. Refer to Sensor Activation  
for details.  
b0: Full Current Activation Mode – the LDC will drive maximum  
sensor current for a shorter sensor activation time.  
b1: Low Power Activation Mode – the LDC uses the value  
programmed in DRIVE_CURRENTx during sensor activation to  
minimize power consumption.  
Copyright © 2014–2018, Texas Instruments Incorporated  
29  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Table 27. Address 0x1A, CONFIG Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
10  
AUTO_AMP_DIS  
R/W  
0
Automatic Sensor Amplitude Correction Disable  
Setting this bit will disable the automatic Amplitude correction  
algorithm and stop the updating of the INIT_IDRIVEx field.  
b0: Automatic Amplitude correction enabled.  
b1: Automatic Amplitude correction is disabled. Recommended  
for precision applications.  
9
REF_CLK_SRC  
R/W  
0
Select Reference Frequency Source  
b0: Use Internal oscillator as reference frequency.  
b1: Reference frequency is provided from CLKIN pin.  
8
7
RESERVED  
INTB_DIS  
R/W  
R/W  
0
0
Reserved. Set to b0.  
INTB Disable  
b0: INTB pin will be asserted when status register updates.  
b1: INTB pin will not be asserted when status register updates. If  
this mode is selected, the INTB pin level will be high.  
6
HIGH_CURRENT_DRV  
R/W  
0
High Current Sensor Drive  
b0: The LDC will drive all channels with normal sensor current  
(1.5mA max).  
b1: The LDC will drive channel 0 with current >1.5mA.  
This mode is not supported if AUTOSCAN_EN = b1 (multi-  
channel mode).  
5:0  
RESERVED  
R/W  
00 0001  
Reserved. Set to b00’0001.  
7.6.29 Address 0x1B, MUX_CONFIG  
Figure 42. Address 0x1B, MUX_CONFIG  
15  
14  
13  
12  
11  
10  
9
8
0
AUTOSCAN_E  
N
RR_SEQUENCE  
RESERVED  
7
6
5
4
3
2
1
RESERVED  
DEGLITCH  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 28. Address 0x1B, MUX_CONFIG Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
AUTOSCAN_EN  
R/W  
0
Auto-Scan Mode Enable  
b0: Continuous conversion on the single channel selected by  
CONFIG.ACTIVE_CHAN register field.  
b1: Auto-Scan conversions as selected by  
MUX_CONFIG.RR_SEQUENCE register field.  
14:13  
RR_SEQUENCE  
R/W  
00  
Auto-Scan Sequence Configuration  
Configure multiplexing channel sequence. The LDC will perform  
a single conversion on each channel in the sequence selected,  
and then restart the sequence continuously.  
b00: Ch0, Ch1  
b01: Ch0, Ch1, Ch2 (LDC1614 only)  
b10: Ch0, Ch1, Ch2, Ch3 (LDC1614 only)  
b11: Ch0, Ch1  
12:3  
2:0  
RESERVED  
DEGLITCH  
R/W  
R/W  
00 0100  
0001  
Reserved. Set to 00 0100 0001.  
111  
Input Deglitch Filter Bandwidth  
Select the lowest setting that exceeds the maximum sensor  
oscillation frequency.  
b001: 1.0 MHz  
b100: 3.3 MHz  
b101: 10 MHz  
b111: 33 MHz  
30  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6.30 Address 0x1C, RESET_DEV  
Figure 43. Address 0x1C, RESET_DEV  
15  
14  
6
13  
12  
11  
10  
9
1
8
0
RESET_DEV  
RESERVED  
7
5
4
3
2
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 29. Address 0x1C, RESET_DEV Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15  
RESET_DEV  
R/W  
0
Device Reset  
Write b1 to reset the device. Will always readback 0.  
14:0  
RESERVED  
R/W  
0x0000  
Reserved. Set to b000 0000 0000 0000.  
7.6.31 Address 0x1E, DRIVE_CURRENT0  
Figure 44. Address 0x1E, DRIVE_CURRENT0  
15  
14  
13  
12  
11  
10  
9
8
0
IDRIVE0  
INIT_IDRIVE0  
7
6
5
4
3
2
1
INIT_IDRIVE0  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 30. Address 0x1E, DRIVE_CURRENT0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IDRIVE0  
R/W  
0 0000  
Channel 0 L-C Sensor Drive Current  
This field sets the Sensor Drive Current used during the settling  
+ conversion time of Channel 0 sensor.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
5:0  
INIT_IDRIVE0  
RESERVED  
R
0 0000  
Channel 0 Sensor Current Drive  
This field stores the Initial Drive Current measured during the  
initial Amplitude Calibration phase. It is updated after each  
Amplitude Correction phase of the sensor conversion if  
AUTO_AMP_DIS=0.  
When writing to DRIVE_CURRENT0, set this field to b0 0000.  
R/W  
00 0000  
Reserved. Set to b00 0000  
Copyright © 2014–2018, Texas Instruments Incorporated  
31  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
7.6.32 Address 0x1F, DRIVE_CURRENT1  
Figure 45. Address 0x1F, DRIVE_CURRENT1  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
IDRIVE1  
INIT_IDRIVE1  
5
4
3
2
1
INIT_IDRIVE1  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 31. Address 0x1F, DRIVE_CURRENT1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IDRIVE1  
R/W  
0 0000  
Channel 1 L-C Sensor Drive Current  
This field sets the Sensor Drive Current used during the settling  
+ conversion time of Channel 0 sensor.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
INIT_IDRIVE1  
R
0 0000  
Channel 1 Sensor Current Drive  
This field stores the Initial Drive Current calculated during the  
initial Amplitude Calibration phase. It is updated after each  
Amplitude Correction phase of the sensor conversion if  
AUTO_AMP_DIS=0.  
When writing to DRIVE_CURRENT1, set this field to b0 0000.  
5:0  
RESERVED  
-
00 0000  
Reserved  
7.6.33 Address 0x20, DRIVE_CURRENT2 (LDC1614 only)  
Figure 46. Address 0x20, DRIVE_CURRENT2  
15  
14  
13  
12  
11  
10  
9
8
0
IDRIVE2  
INIT_IDRIVE2  
7
6
5
4
3
2
1
INIT_IDRIVE2  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. Address 0x20, DRIVE_CURRENT2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IDRIVE2  
R/W  
0 0000  
Channel 2 L-C Sensor Drive Current  
This field sets the Sensor Drive Current used during the settling  
+ conversion time of Channel 0 sensor.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
5:0  
INIT_IDRIVE2  
RESERVED  
R
0 0000  
Channel 2 Sensor Current Drive  
This field stores the Initial Drive Current calculated during the  
initial Amplitude Calibration phase. It is updated after each  
Amplitude Correction phase of the sensor conversion if  
AUTO_AMP_DIS=0.  
When writing to DRIVE_CURRENT2, set this field to b0 0000.  
00 0000  
Reserved  
32  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
7.6.34 Address 0x21, DRIVE_CURRENT3 (LDC1614 only)  
Figure 47. Address 0x21, DRIVE_CURRENT3  
15  
7
14  
6
13  
12  
11  
10  
9
8
0
IDRIVE3  
INIT_IDRIVE3  
5
4
3
2
1
INIT_IDRIVE3  
RESERVED  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. DRIVE_CURRENT3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:11  
IDRIVE3  
R/W  
0 0000  
Channel 3 L-C Sensor Drive Current  
This field sets the Sensor Drive Current used during the settling  
+ conversion time of Channel 0 sensor.  
RP_OVERRIDE_EN bit must be set to 1.  
10:6  
INIT_IDRIVE3  
R
0 0000  
Channel 3 Sensor Current Drive  
This field stores the Initial Drive Current calculated during the  
initial Amplitude Calibration phase.It is updated after each  
Amplitude Correction phase of the sensor conversion if  
AUTO_AMP_DIS =0.  
When writing to DRIVE_CURRENT3, set this field to b0 0000.  
5:0  
RESERVED  
00 0000  
Reserved  
7.6.35 Address 0x7E, MANUFACTURER_ID  
Table 34. Address 0x7E, MANUFACTURER_ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
15:0  
MANUFACTURER_ID  
R
0101 0100 Manufacturer ID = 0x5449  
0100 1001  
7.6.36 Address 0x7F, DEVICE_ID  
Figure 48. Address 0x7F, DEVICE_ID  
15  
7
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
DEVICE_ID  
4
3
DEVICE_ID  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. Address 0x7F, DEVICE_ID Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:0  
DEVICE_ID  
R
0011 0000 Device ID = 0x3055  
0101 0101  
Copyright © 2014–2018, Texas Instruments Incorporated  
33  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Conductive Objects in a Time-Varying EM Field  
An AC current flowing through an inductor will generate an AC magnetic field. If a conductive material, such as a  
metal object, is brought into the vicinity of the inductor, the magnetic field will induce a circulating current (eddy  
current) on the surface of the conductor.  
Conductive  
Target  
Eddy  
d
Current  
Figure 49. Conductor in AC Magnetic Field  
The eddy current is a function of the distance, size, and composition of the conductor. The eddy current  
generates its own magnetic field, which opposes the original field generated by the sensor inductor. This effect is  
equivalent to a set of coupled inductors, where the sensor inductor is the primary winding and the eddy current in  
the target object represents the secondary inductor. The coupling between the inductors is a function of the  
sensor inductor, and the resistivity, distance, size, and shape of the conductive target. The resistance and  
inductance of the secondary winding caused by the eddy current can be modeled as a distance dependent  
resistive and inductive component on the primary side (coil). Figure 49 shows a simplified circuit model of the  
sensor and the target as coupled coils.  
8.1.2 L-C Resonators  
An EM field can be generated using an L-C resonator, or L-C tank. One topology for an L-C tank is a parallel R-  
L-C construction, as shown in Figure 50.  
34  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Application Information (continued)  
Distance-dependent coupling  
M(d)  
Eddy  
Current  
CPAR  
Distance (d)  
Target Resistance  
Coil Series  
Resistance (Rs)  
I
RP(d)  
L(d)  
CPAR + CTANK  
Parallel Electrical  
Model, L-C Tank  
Copyright © 2016, Texas Instruments Incorporated  
Figure 50. Electrical Model of the L-C Tank Sensor  
A resonant oscillator can be constructed by combining a frequency selective circuit (resonator) with a gain block  
in a closed loop. The criteria for oscillation are: (1) loop gain > 1, and (2) closed loop phase shift of 2π radians.  
The R-L-C resonator provides the frequency selectivity and contributes to the phase shift. At the resonance  
frequency, the impedance of the reactive components (L and C) cancels, leaving only RP, the lossy (resistive)  
element in the circuit. The voltage amplitude is maximized at this frequency. The RP can be used to determine  
the sensor drive current for a given oscillation amplitude. A lower RP requires a larger sensor current to maintain  
a constant oscillation amplitude. The sensor oscillation frequency is given by:  
1
1
Q2  
5 *10-9  
1
ƒSENSOR  
=
* 1-  
-
ö
2p LC  
Q LC  
2p LC  
where:  
C is the sensor capacitance (CSENSOR + CPARASITIC  
)
L is the sensor inductance  
Q is the quality factor of the resonator. Q can be calculated by:  
(1)  
C
L
Q = RP  
where:  
RP is the AC parallel resistance of the LC resonator at the operating frequency.  
(2)  
35  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Application Information (continued)  
Texas Instruments' WEBENCH design tool can be used for coil design, in which the parameter values for RP, L  
and C are calculated. See http://www.ti.com/webench.  
RP is a function of target distance, target material, and sensor characteristics. Figure 51 shows an example of RP  
variation based on the distance between the sensor and the target. The graph represents a 14 mm diameter  
PCB coil (23 turns, 4 mil trace width, 4 mil spacing between traces, 1 oz. copper thickness, on FR4 material).  
This curve is a typical response where the target distance scales based on the sensor size and the sensor RP  
scales based on the free-space of the inductor.  
18  
16  
14  
12  
10  
8
6
4
2
0
0
1
2
3
4
5
6
7
8
Distance (mm)  
Figure 51. Example RP vs. Distance with a 14 mm PCB Coil and 2 mm Thick Stainless Steel Target  
It is important to configure the sensor current drive so that the sensor will still oscillate at the minimum RP value  
(which typically occurs with maximum target interaction). As an example, if the closest target distance in a  
system with the response shown in Figure 51 is 1mm, then the sensor current drive needs to support a RP value  
is 5 k. Both the minimum and maximum RP conditions should have oscillation amplitudes that are within the  
device operating range. See section Sensor Current Drive Control for details on setting the current drive.  
The inductance that is measured by the LDC is:  
1
L(d) = Linf -M(d) =  
(2p* ƒSENSOR )2 *C  
where:  
L(d) is the measured sensor inductance, for a distance d between the sensor coil and target  
Linf is the inductance of the sensing coil without a conductive target (target at infinite distance)  
M(d) is the mutual inductance  
ƒSENSOR = sensor oscillation frequency for a distance d between the sensor coil and target  
C = CSENSOR + CPARASITIC  
(3)  
Figure 52 shows an example of variation in sensor frequency and inductance as a function of distance for a 14  
mm diameter PCB coil (23 turns, 4 mil trace width, 4 mil spacing between traces, 1 oz copper thickness, FR4  
material). The frequency and inductance graphs will scale based on the sensor free-space characteristics, and  
the target distance scales based on the sensor diameter.  
36  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Application Information (continued)  
4
24  
Target D = 0.5 x coil  
Target D = 1 x coil •  
3.5  
3
21  
18  
15  
12  
9
2.5  
2
1.5  
1
Sensor Frequency (MHz)  
Inductance (µH)  
6
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
Target Distance D (mm)  
D011  
Figure 52. Example Sensor Frequency, Inductance vs. Target Distance  
with 14 mm PCB Coil and 1.5 mm Thick Aluminum Target  
The Texas Instruments Application Notes LDC Sensor Design and LDC Target Design provide more information  
on construction of sensors and targets charactersitics to consider based on system requirements.  
8.1.3 Multi-Channel and Single Channel Operation  
The multi-channel package of the LDC enables the user to save board space and support flexible system design.  
For example, temperature drift can often cause a shift in component values, resulting in a shift in resonant  
frequency of the sensor. Using a second sensor as a reference or in a differential configuration provides the  
capability to cancel out temperature shifts and other environmental variations. When operated in multi-channel  
mode, the LDC sequentially samples the selected channels - only one channel is active at any time while the  
other selected channels are held in an inactive state. In single channel mode, the LDC samples a single channel,  
which is selectable. Refer to Inactive Channel Sensor Connections for more details on inactive channels.  
Inactive channels have the corresponding INAx and INBx pins tied to ground. The following table shows the  
registers and values that are used to configure either multi-channel or single channel modes.  
Channel 0  
Sensor  
Activation  
Channel 0  
Conversion  
Channel  
switch delay Sensor  
Activation  
Channel 1  
Channel 1  
Conversion  
Channel  
switch delay Sensor  
Activation  
Channel 0  
Channel 0  
Channel 1  
Figure 53. Multi-Channel Mode Sequencing  
Copyright © 2014–2018, Texas Instruments Incorporated  
37  
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Application Information (continued)  
Active Channel  
Sensor Signal  
Sensor  
Activation  
Conversion  
Conversion  
Conversion  
Amplitude  
Correction  
Amplitude  
Correction  
Amplitude  
Correction  
Figure 54. Single-Channel Mode Sequencing  
Table 36. Single and Multi-Channel Configuration Registers  
MODE  
REGISTER  
FIELD  
VALUE(1)  
00 = chan 0  
01 = chan 1  
10 = chan 2  
11 = chan 3  
CONFIG, addr 0x1A  
ACTIVE_CHAN [15:14]  
Single channel  
0 = continuous conversion on a  
single channel (default)  
MUX_CONFIG addr 0x1B  
MUX_CONFIG addr 0x1B  
AUTOSCAN_EN [15]  
AUTOSCAN_EN [15]  
1 = continuous conversion on  
multiple channels  
00 = Ch0, Ch 1  
Multi-channel  
MUX_CONFIG addr 0x1B  
RR_SEQUENCE [14:13]  
01 = Ch0, Ch 1, Ch 2  
10 = Ch0, CH1, Ch2, Ch3  
(1) Channels 2 and 3 are only available for LDC1614  
The digitized sensor measurement for each channel (DATAx) represents the ratio of the sensor frequency to the  
reference frequency.  
With FREF_DIVIDERx and FIN_DIVIDERx set to 1, the sensor frequency can be calculated from:  
DATAx * ƒREFx  
ƒsensor  
=
228  
(4)  
The following table illustrates the registers that contain the fixed point sample values for each channel. The  
conversion result for each channel, DATAx, can be calculated with:  
DATAx = DATAx_MSB×65536 + DATAx_LSB  
(5)  
Table 37. LDC1612/1614 Sample Data Registers  
CHANNEL(1) REGISTER(2)  
FIELD NAME [ BITS(S) ]  
DATA0 [27:16]  
DATA0 [15:0]  
VALUE(3)(4)  
0
1
2
3
DATA0_MSB, addr 0x00  
12 MSBs of the 28 bit conversion for Channel 0  
16 LSBs of the 28 bit conversion for Channel 0  
12 MSBs of the 28 bit conversion for Channel 1  
16 LSBs of the 28 bit conversion for Channel 1  
12 MSBs of the 28 bit conversion for Channel 2  
16 LSBs of the 28 bit conversion for Channel 2  
12 MSBs of the 28 bit conversion for Channel 3  
16 LSBs of the 28 bit conversion for Channel 0  
DATA0_LSB addr 0x01  
DATA1_MSB, addr 0x02  
DATA1_LSB, addr 0x03  
DATA1_MSB, addr 0x04  
DATA1_LSB, addr 0x05  
DATA1_MSB, addr 0x06  
DATA1_LSB, addr 0x07  
DATA1 [27:16]  
DATA1 [15:0]  
DATA2 [27:16]  
DATA2 [15:0]  
DATA3 [27:16]  
DATA3 [15:0]  
(1) Channels 2 and 3 available only in LDC1614.  
(2) The DATAx_MSB register must always be read prior to the DATAx_LSB register of the same channel to ensure data coherency.  
(3) A DATAx value of 0x000'0000 indicates an under-range condition for LDC1612/LDC1614 corresponding channel  
(4) A DATAx value of 0xFFF'FFFF indicates an over-range condition for LDC1612/LDC1614 corresponding channel  
38  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
8.1.3.1 Data Offset  
An offset value may be subtracted from each DATA value to compensate for a frequency offset or maximize the  
dynamic range of the sample data. The offset values should be < ƒSENSORx_MIN / ƒREFx. Otherwise, the offset  
might be so large that it masks the LSBs which are changing.  
Table 38. Frequency Offset Registers  
CHANNEL  
REGISTER  
OFFSET0, addr 0x0C  
FIELD  
VALUE  
0
1
2
3
OFFSET0 [15:0 ]  
OFFSET1 [15:0 ]  
OFFSET2 [15:0 ]  
OFFSET3 [15:0 ]  
ƒOFFSET0 = OFFSET0 × (ƒREF0÷216  
ƒOFFSET1 = OFFSET1 × (ƒREF1÷216  
ƒOFFSET2 = OFFSET2 × (ƒREF2÷216  
ƒOFFSET3 = OFFSET3 × (ƒREF3÷216  
)
)
)
)
OFFSET1, addr 0x0D  
OFFSET2, addr 0x0E  
OFFSET3, addr 0x0F  
The sensor frequency can be determined by:  
DATAx CHx_OFFSET  
ƒSENSORx = CHx_FIN_DIVIDER * ƒREFx  
+
«
÷
228  
216  
where:  
DATAx = Channel x Conversion results from the DATAx_MSB and DATAx_LSB registers  
OFFSETx = Offset value set in the OFFSETx register  
(6)  
8.1.4 Sensor Conversion Time  
The LDC1612/LDC1614 provides a configurable conversion time by setting an internal register. The conversion  
interval can be configured across a range of 1.2 µs to >26.2 ms with 16 bits of resolution. Note that it is possible  
to configure the conversion interval to be significantly shorter than the time required to readback the DATAx  
registers; when configured in this manner, older conversions for a channel are overwritten when new conversion  
data is completed for each channel. The conversion interval is set in multiples of the reference clock period by  
setting the RCOUNTx register value. The conversion time for any channel x is:  
tCx = (RCOUNTx × 16 + 4) /fREFx  
(7)  
In general, a longer conversion time will provide a higher resolution inductance measurement. The maximum  
setting, 0xFFFF, is required for full resolution. The reference count value should be chosen to support both the  
required sample rate and the necessary resolution. Refer to the TI Application Note Optimizing L Measurement  
Resolution for the LDC161x and LDC1101 for more information.  
Table 39. Conversion Time Configuration Registers, Channels 0 - 3(1)  
CHANNEL  
REGISTER  
RCOUNT0, addr 0x08  
FIELD  
CONVERSION TIME  
(RCOUNT0×16)/fREF0  
0
1
2
3
RCOUNT0 [15:0]  
RCOUNT1 [15:0]  
RCOUNT2 [15:0]  
RCOUNT3 [15:0]  
RCOUNT1, addr 0x09  
RCOUNT2, addr 0x0A  
RCOUNT3, addr 0x0B  
(RCOUNT1×16)/fREF1  
(RCOUNT2×16)/fREF2  
(RCOUNT3×16)/fREF3  
(1) Channels 2 and 3 are available only for LDC1614.  
The typical channel switch delay time between the end of conversion and the beginning of sensor activation of  
the subsequent channel is:  
Channel Switch Delay = 692 ns + 5 / fref  
(8)  
The deterministic conversion time of the LDC allows data polling at a fixed interval. A data ready flag (DRDY)  
can assert the INTB pin for use in interrupt driven system designs (see the STATUS register description in  
Register Maps).  
Copyright © 2014–2018, Texas Instruments Incorporated  
39  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
8.1.4.1 Settling Time  
When the LDC sequences through the channels in multi-channel mode, the dwell time interval for each channel  
is the sum of 3 parts: sensor activation time + conversion time + channel switch delay.  
The sensor activation time is the amount of settling time required for the sensor oscillation amplitude to stabilize,  
as shown in Figure 53. The settling wait time is programmable and should be set to a value that is long enough  
to allow stable oscillation. The settling wait time for channel x is given by:  
tSx = (SETTLECOUNTx ×16)/ƒREFx  
(9)  
Table 40 illustrates the registers and values for configuring the settling time for each channel.  
Table 40. Settling Time Register Configuration  
CHANNEL(1)  
REGISTER  
FIELD  
CONVERSION TIME(2)  
0
1
2
3
SETTLECOUNT0, addr 0x10  
SETTLECOUNT1, addr 0x11  
SETTLECOUNT2, addr 0x12  
SETTLECOUNT3, addr 0x13  
SETTLECOUNT0 ['15:0]  
SETTLECOUNT1 [15:0]  
SETTLECOUNT2 [15:0]  
SETTLECOUNT3 [15:0]  
(SETTLECOUNT0×16)/fREF0  
(SETTLECOUNT1×16)/fREF1  
(SETTLECOUNT2×16)/fREF2  
(SETTLECOUNT3×16)/fREF3  
(1) Channels 2 and 3 are available only in the LDC1614.  
(2) ƒREFx is the reference frequency configured for the channel.  
The SETTLECOUNTx for any channel x must satisfy:  
SETTLECOUNTx QSENSORx × ƒREFx / (16 × ƒSENSORx  
)
where:  
ƒSENSORx = Sensor Frequency of Channel x  
ƒREFx = Reference frequency for Channel x  
QSENSORx = Quality factor of the sensor on Channel x. The sensor Q can be calculated with:  
(10)  
(11)  
C
L
Q = RP  
Round the result to the next highest integer (for example, if Equation 10 recommends a minimum value of 6.08,  
program the register to 7 or higher).  
L, RP and C values can be obtained by using Texas Instrument’s WEBENCH® for the coil design.  
8.1.4.2 Sensor Activation  
The LDC1612/LDC1614 provides option to either reduce the sensor activation time or to reduce the device  
current consumption during the sensor activation time.  
This can reduce the sensor activation time for higher-Q sensors by driving the maximum sensor drive current  
during the sensor settling time. The maximum sensor drive current is nominally 1.56 mA. Sensors already  
configured to use the maximum drive current setting (IDRIVEx = b11111) will see no change in operation based  
on this setting.  
This mode is selected by setting SENSOR_ACTIVATE_SEL to 0.  
40  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Full Current Activation  
settle time  
Low Power Activation settle  
time  
Sensor Amplitude  
Time  
Figure 55. Sensor Full Current Activation vs. Low Power Activation  
8.1.5 Sensor Current Drive Configuration  
The registers listed in Table 41 are used to control the sensor drive current so that the sensor signal amplitude is  
within the optimum range of 1.2 VP to 1.8 VP (sensor amplitudes outside this optimum range can be reported in  
the status register - refer to Device Status Registers ). The device can still convert with sensor amplitudes lower  
than 0.6 VP, however the conversion noise will increase with lower sensor amplitudes. Below 0.6 VP the sensor  
oscillations may not be stable or may completely stop and the LDC will stop converting. If the current drive  
results in the oscillation amplitude greater than 1.8 V, the internal ESD clamping circuit will become active. This  
may cause the sensor frequency to shift so that the output values no longer represent a valid system state.  
Figure 56 shows the block diagram of the sensor driver. Each channel has an independent setting for the IDRIVE  
current used to set the sensor oscillation amplitude.  
IDRIVE  
Sensor 0  
IN0A  
Chan 0  
Driver  
IN0B  
Sensor 1  
IN1A  
Chan 1  
Driver  
IN1B  
Measurement Core  
Sensor 2  
IN2A  
IN2B  
Chan 2  
Driver  
Sensor 3  
IN3A  
IN3B  
Chan 3  
Driver  
Figure 56. LDC1614 Sensor Driver Block Diagram  
Copyright © 2014–2018, Texas Instruments Incorporated  
41  
 
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Table 41. Current Drive Control Registers  
CHANNEL(1)  
REGISTER  
CONFIG, addr 0x1A  
FIELD [ BIT(S) ]  
VALUE  
SENSOR_ACTIVATE_SEL [11]  
Sets current drive for sensor activation.  
Recommended value is b0 (Full Current  
mode).  
All  
RP_OVERRIDE_EN [12]  
AUTO_AMP_DIS [10]  
Set to b1 for normal operation (RP  
Override enabled)  
Disables Automatic amplitude correction.  
Set to b1 for normal operation (disabled)  
CONFIG, addr 0x1A  
HIGH_CURRENT_DRV [6]  
b0 = normal current drive (1.5 mA)  
b1 = Increased current drive (> 1.5 mA)  
for Ch 0 in single channel mode only.  
Cannot be used in multi-channel mode.  
0
0
DRIVE_CURRENT0, addr 0x1E  
IDRIVE0 [15:11]  
Drive current used during the settling and  
conversion time for Ch. 0 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
INIT_IDRIVE0 [10:6]  
IDRIVE1 [15:11]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
DRIVE_CURRENT1, addr 0x1F  
DRIVE_CURRENT2, addr 0x20  
DRIVE_CURRENT3, addr 0x21  
Drive current used during the settling and  
conversion time for Ch. 1 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
1
2
3
INIT_IDRIVE1 [10:6]  
IDRIVE2 [15:11]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
Drive current used during the settling and  
conversion time for Ch. 2 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
INIT_IDRIVE2 [10:6]  
IDRIVE3 [15:11]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
Drive current used during the settling and  
conversion time for Ch. 3 (auto-amplitude  
correction must be disabled and RP over  
ride=1 )  
INIT_IDRIVE3 [10:6]  
Initial drive current stored during auto-  
calibration. Not used for normal operation.  
(1) Channels 2 and 3 are available for LDC1614 only.  
If the RP value of the sensor attached to Channel x is known, Table 42 can be used to select the 5-bit value to be  
programmed into the IDRIVEx field for the channel. If the measured RP (at maximum spacing between the  
sensor and the target) falls between two of the table values, use the current drive value associated with the lower  
RP from the table. All channels that use an identical sensor/target configuration can use the same IDRIVEx  
value. The appropriate sensor drive current can be calculated with:  
IDRIVE = πVP ÷ 4RP  
(12)  
Table 42. Optimum Sensor RP Ranges for Sensor IDRIVEx Setting.  
IDRIVEx Register Field Value  
Nominal Sensor  
Current (µA)  
Minimum Sensor RP Maximum Sensor RP  
(kΩ)  
60.0  
51.8  
44.6  
38.4  
33.7  
29.5  
23.6  
20.5  
18.1  
(kΩ)  
90.0  
77.6  
66.9  
57.6  
49.7  
42.8  
36.9  
31.8  
27.4  
0
1
2
3
4
5
6
7
8
b00000  
b00001  
b00010  
b00011  
b00100  
b00101  
b00110  
b00111  
b01000  
16  
18  
20  
23  
28  
32  
40  
46  
52  
42  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Table 42. Optimum Sensor RP Ranges for Sensor IDRIVEx Setting. (continued)  
IDRIVEx Register Field Value  
Nominal Sensor  
Current (µA)  
Minimum Sensor RP Maximum Sensor RP  
(kΩ)  
16.1  
13.1  
11.5  
9.92  
8.57  
7.42  
6.46  
5.58  
4.83  
4.45  
3.86  
3.17  
2.76  
2.22  
1.93  
1.71  
1.48  
1.24  
1.07  
0.93  
0.80  
0.70  
0.60  
(kΩ)  
23.6  
20.4  
17.6  
15.1  
13.0  
11.2  
9.69  
8.35  
7.20  
6.21  
5.35  
4.61  
3.97  
3.42  
2.95  
2.54  
2.19  
1.89  
1.63  
1.40  
1.21  
1.05  
0.90  
9
b01001  
59  
72  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
b01010  
b01011  
b01100  
b01101  
b01110  
b01111  
b10000  
b10001  
b10010  
b10011  
b10100  
b10101  
b10110  
b10111  
b11000  
b11001  
b11010  
b11011  
b11100  
b11101  
b11110  
b11111  
82  
95  
110  
127  
146  
169  
195  
212  
244  
297  
342  
424  
489  
551  
635  
763  
880  
1017  
1173  
1355  
1563  
Sensors with RP greater than 90 kΩ can be driven by placing a 100 kΩ resistor in parallel with the sensor  
inductor to reduce the effective RP.  
Sensors which have a wide range of RP may require more than one current drive setting across the range of  
operation - the current would need to be dynamically set based on the target position. Note that some high-  
resolution applications will experience an output code offset when the current drive is changed. Another  
approach for systems which have a wide range of RP is to place a discrete resistor in parallel with the inductor to  
limit the range of RP variation in the system. This will also reduce the sensor Q, and so may not be feasible for  
some implementations.  
8.1.5.1 Inactive Channel Sensor Connections  
The LDC1612/LDC1614 ties the INAx and INBx pins for all channels to ground by ~10 Ω except for the active  
channel; in Sleep and Shutdown modes there are no active channels and so all channels are tied to ground. By  
grounding the channels, potential interactions between sensors are minimized. For multi-channel sequencing,  
only the active channel is driven with the IDRIVE current during the conversion time; once the conversion for the  
specific channel completes, the sensor is tied to ground to shut off the sensor, and the next sensor is activated.  
For systems which do not use all sensor channels, it is acceptable to leave the unused INAx and INBx pins No-  
Connect.  
Copyright © 2014–2018, Texas Instruments Incorporated  
43  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
8.1.5.2 Automatic IDRIVE Setting with RP_OVERRIDE_EN  
The LDC1612/LDC1614 can automatically determine the appropriate sensor current drive when entering Active  
Mode. For the majority of applications, it is recommended to program a fixed current drive for consistent  
measurement performance. The automatic sensor amplitude setting is useful for initial system prototyping if the  
sensor amplitude is unknown. When this function is enabled, the LDC attempts to find the IDRIVEx setting which  
results in a sensor amplitude between 1.2 VP and 1.8VP. For systems which have a large variation in target  
interaction, the LDC1612/LDC1614 may select a current drive setting which has poorer repeatability over the  
range of target interactions. In addition, measurement repeatability will be poorer with different sensor current  
drives. To enable the automatic sensor amplitude, set RP_OVERRIDE to b0.  
The following sequence uses auto-calibration to configure sensor drive current for a sensor with an unknown RP:  
1. Set target at the maximum planned operating distance from the sensor.  
2. Place the device into SLEEP mode by setting CONFIG.SLEEP_MODE_EN to b0.  
3. Program the desired values of SETTLECOUNT and RCOUNT values for the channel.  
4. Enable auto-calibration by setting RP_OVERRIDE_EN to b0.  
5. Take the device out of SLEEP mode by setting CONFIG.SLEEP_MODE_EN to b1.  
6. Allow the device to perform at least one measurement, with the target stable (fixed) at the maximum  
operating range.  
7. Read the channel current drive value from the appropriate DRIVE_CURRENTx register (addresses 0x1e,  
0x1f, 0x20, or 0x21), in the INIT_DRIVEx field (bits 10:6). Save this value.  
8. During startup for normal operating mode, write the value saved from the INIT_DRIVEx bit field into the  
IDRIVEx bit field (bits 15:11).  
9. During normal operating mode, the RP_OVERRIDE_EN should be set to b1 for a fixed current drive.  
If the current drive results in the oscillation amplitude greater than 1.8 V, the internal ESD clamping circuit will  
become active. This may cause the sensor frequency to shift so that the output values no longer represent a  
valid system state. If the current drive is set at a lower value, the SNR performance of the system will decrease,  
and at near zero target range, oscillations may completely stop, and the output sample values will be all zeroes.  
If there are significant differences in the sensor construction for different channels, then this process should be  
repeated for each channel.  
8.1.5.3 Determining Sensor IDRIVE for an Unknown Sensor RP Using an Oscilloscope  
If the sensor RP is not known, probing the sensor amplitude with an oscilloscope can be used set IDRIVEx.  
An iterative process of adjusting the drive current setting while monitoring the signal amplitude on INAx or INBx  
to ground is sufficient. Simply move the sensor target to the farthest planned operating distance from the sensor,  
and measure the channel amplitude after the amplitude has stabilized. If the sensor amplitude is less than 1.5  
VP, increase the channel IDRIVE setting. If the sensor amplitude settles to greater than 1.75 VP, decrease the  
channel IDRIVE setting. If there are significant differences in the sensor construction for different channels, then  
this process should be repeated for each channel.  
8.1.5.4 Sensor Auto-Calibration Mode  
The LDC includes a sensor current Auto-calibration mode which can be dynamically set the sensor drive current.  
The auto-amplitude correction attempts to maintain the sensor oscillation amplitude between 1.2V and 1.8V by  
adjusting the sensor drive current between conversions.  
This functionality is enabled by setting AUTO_AMP_DIS to b0, and applies to all active channels. The  
INIT_IDRIVEx register field will be updated with the current drive value as the sensor current drive setting  
changes. The value of the INIT_IDRIVEx register field matches the setting of the IDRIVEx register field. For  
example, an INIT_IDRIVEx field with b10001 corresponds to a current drive of 195 µA.  
When auto-amplitude correction is active, the output data may experience offsets in the channel output code due  
to adjustments in drive current. Due to these offsets, Auto-amplitude correction is generally not recommended for  
use in high precision applications.  
44  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
8.1.5.5 Channel 0 High Current Drive  
Channel 0 provides a high sensor current drive mode to drive sensor coils with a typical drive current >3.5 mA.  
This feature can be used to drive sensors with an RP lower than 350 . Set the HIGH_CURRENT_DRV field to  
b1 to enable this mode. This drive mode is only available on Channel 0, and can only be enabled in single  
channel mode (AUTOSCAN_EN = 0).  
8.1.6 Clocking Architecture  
Optimum LDC1612/LDC1614 performance requires a clean reference clock with a limited frequency range. The  
device provides digital dividers for the ƒCLK and the sensor inputs to adjust the effective frequency. For most  
systems, the maximum permitted reference frequency provides the best performance. The dividers provide  
flexibility in system design so that the full range of sensor frequencies can be supported with available fCLK. Each  
channel has a dedicated divider configuration.  
Figure 57 shows the clock dividers and multiplexers of the LDC.  
IN0A  
CH0  
Driver  
÷ FIN_DIVIDER0  
(0x14)  
fIN0  
fSENSOR0  
Sensor 0  
Sensor 1  
IN0B  
IN1A  
CH1  
Driver  
÷ FIN_DIVIDER1  
(0x15)  
fSENSOR1  
fIN1  
IN1B  
fIN  
IN2A(1)  
CH2  
Driver  
÷ FIN_DIVIDER2(1)  
(0x16)  
(1)  
Sensor 2(1)  
Sensor 3(1)  
fIN2  
IN2B(1)  
IN3A(1)  
CH3  
Driver  
÷ FIN_DIVIDER3(1)  
(0x17)  
(1)  
fIN3  
IN3B(1)  
CLKIN  
Data  
Output  
Measurement  
Core  
CONFIG (0x1A)  
MUX_CONFIG (0x1B)  
fCLKIN  
÷ FREF_DIVIDER0  
(0x14)  
fREF0  
fINT  
Int. Osc.  
÷ FREF_DIVIDER1  
(0x15)  
fREF1  
REF_CLK_SRC  
(0x1A)  
fREF  
÷
(1)  
FREF_DIVIDER2(1)  
(0x16)  
fREF2  
÷
(1)  
FREF_DIVIDER3(1)  
(0x17)  
fREF3  
Figure 57. Clocking Diagram  
(1) LDC1614 only  
In Figure 57, the key clocks are ƒINx, ƒREFx, and ƒCLK. ƒCLK is selected from either the internal clock source or  
external clock source (CLKIN). The frequency measurement reference clock, ƒREF, is derived from the ƒCLK  
source.  
The internal oscillator (ƒINT) is highly stable across temperature and is suitable for applications when the  
maximum performance of the LDC1612/4 is not needed or when an external oscillator is not available. For  
precision applications, it is recommended to use an external oscillator for the reference clock; the external  
oscillator should offer the stability and accuracy requirements suitable for the application. Note that some internal  
functions, such as watchdog timers, always use ƒINT for timing.  
The ƒINx clock is derived from sensor frequency for channel x, ƒSENSORx. ƒREFx and ƒINx must meet the  
requirements listed in Table 43, depending on whether ƒCLK (reference clock) is the internal or external clock.  
Copyright © 2014–2018, Texas Instruments Incorporated  
45  
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Table 43. Clock Frequency Requirements  
VALID  
SETTLECOUNTx  
SETTINGS  
REFERENCE  
SOURCE  
VALID ƒREFx  
RANGE  
VALID ƒINx  
RANGE  
SET  
VALID RCOUNTx  
SETTINGS  
MODE(1)  
FIN_DIVIDERx to  
Multi-Channel  
Internal  
ƒREFx 55 MHz  
ƒREFx 40 MHz  
ƒREFx 35 MHz  
External  
(2)  
< ƒREFx /4  
b0001  
> 3  
> 8  
Single-Channel  
Either external or  
internal  
(1) Channels 2 and 3 are only available for LDC1614  
(2) If ƒSENSOR 8.75 MHz, then FIN_DIVIDERx must be 2  
Table 44 shows the clock configuration registers. Each input channel has a dedicated configuration which can be  
set independently.  
Table 44. Clock Configuration Registers  
CHANNEL(1)  
CLOCK  
REGISTER  
FIELD  
VALUE  
ƒCLK = Reference CONFIG, addr 0x1A  
Clock Source  
REF_CLK_SRC [9]  
b0 = internal oscillator is used as the  
reference clock  
b1 = external clock source is used as the  
reference clock  
All  
ƒREF0  
ƒREF1  
ƒREF2  
ƒREF3  
ƒIN0  
CLOCK_DIVIDERS0,  
addr 0x14  
FREF_DIVIDER0 [9:0]  
FREF_DIVIDER1 [9:0]  
FREF_DIVIDER2 [9:0]  
FREF_DIVIDER3 [9:0]  
FIN_DIVIDER0 [15:12]  
FIN_DIVIDER1 [15:12]  
FIN_DIVIDER2 [15:12]  
FIN_DIVIDER3 [15:12]  
ƒREF0 = ƒCLK / FREF_DIVIDER0  
ƒREF1 = ƒCLK / FREF_DIVIDER1  
ƒREF2 = ƒCLK / FREF_DIVIDER2  
ƒREF3 = ƒCLK / FREF_DIVIDER3  
ƒIN0 = ƒSENSOR0 / FIN_DIVIDER0  
ƒIN1 = ƒSENSOR1 / FIN_DIVIDER1  
ƒIN2 = ƒSENSOR2 / FIN_DIVIDER2  
ƒIN3 = ƒSENSOR3 / FIN_DIVIDER3  
0
1
2
3
0
1
2
3
CLOCK_DIVIDERS1,  
addr 0x15  
CLOCK_DIVIDERS2,  
addr 0x16  
CLOCK_DIVIDERS3,  
addr 0x17  
CLOCK_DIVIDERS0,  
addr 0x14  
ƒIN1  
CLOCK_DIVIDERS1,  
addr 0x15  
ƒIN2  
CLOCK_DIVIDERS2,  
addr 0x16  
ƒIN3  
CLOCK_DIVIDERS3,  
addr 0x17  
(1) Channels 2 and 3 are only available for LDC1614  
8.1.7 Input Deglitch Filter  
The input deglitch filter suppresses EMI and ringing above the sensor frequency. It does not impact the  
conversion result as long as its bandwidth is configured to be above the maximum sensor frequency. The input  
deglitch filter can be configured in MUX_CONFIG.DEGLITCH register field as shown in Table 45. This setting  
applies to all channels. For optimal performance, it is recommended to select the lowest setting that exceeds the  
highest sensor oscillation frequency for all selected channels. For example, if the maximum sensor frequency is  
2.8 MHz, choose MUX_CONFIG.DEGLITCH = b100 (3.3 MHz).  
Table 45. Input Deglitch Filter Register  
CHANNEL(1)  
ALL  
MUX_CONFIG.DEGLITCH REGISTER VALUE  
DEGLITCH FREQUENCY  
1.0 MHz  
b001  
b100  
b101  
b011  
ALL  
3.3 MHz  
ALL  
10 MHz  
ALL  
33 MHz  
(1) Channels 2 and 3 are available for LDC1614 only.  
46  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
8.1.8 Device Status Registers  
The LDC1612/LDC1614 can monitor and report on conversion results and the status of attached sensors using  
the registers listed in Table 46.  
Table 46. Status Registers  
CHANNEL(1)  
REGISTER  
FIELDS [ BIT(S) ]  
VALUES  
Refer to Register Maps section  
for a description of the individual  
status bits.  
12 fields are available that  
contain various status bits [ 15:0 ]  
All  
STATUS, addr 0x18  
12 fields are available that are  
Refer to Register Maps section  
All  
ERROR_CONFIG, addr 0x19  
used to configure error reporting [ for a description of the individual  
15:0 ] error configuration bits.  
(1) Channels 2 and 3 are available for LDC1614 only.  
See the STATUS (Table 25) and ERROR_CONFIG (Table 26) register descriptions in the Register Map section.  
These registers can be configured to trigger an interrupt on the INTB pin for certain events. The following  
conditions must be met:  
1. The error or status register must be unmasked by enabling the appropriate register bit in the  
ERROR_CONFIG register.  
2. The INTB function must be enabled by setting CONFIG.INTB_DIS to 0.  
When a bit field in the STATUS register is set, the entire STATUS register content is held until read or until the  
DATAx_MSB register is read. Reading also de-asserts INTB. After first starting conversions in active mode, the  
first read of STATUS should performed be after assertion of INTB.  
Interrupts are cleared by one of the following events:  
1. Entering Sleep Mode  
2. Power-on reset (POR)  
3. Device enters Shutdown Mode (SD is asserted)  
4. S/W reset  
5. I2C read of the STATUS register: Reading the STATUS register will clear any error status bit set in STATUS  
along with the ERR_CHAN field and de-assert INTB  
Setting register CONFIG.INTB_DIS to b1 disables the INTB function and holds the INTB pin high.  
The TI Application Note LDC1312, LDC1314, LDC1612, LDC1614 Sensor Status Monitoring provides detailed  
information on sensor status reporting.  
8.1.9 Multi-Channel Data Readback  
When in multi-channel mode, the LDC1612/LDC1614 alternates conversions on all selected channels. After each  
channel conversion completes, the conversion results for that channel overwrites the previous conversion results  
with the new data. Note that the LDC1612/LDC1614 conversion data spans 2 registers. To avoid multi-  
conversion data corruption, the conversion results are stored in an internal buffer after every conversion, but the  
I2C DATAx field is only updated to reflect new data when the DATAx_MSB register is read.  
When the device completes a conversion on the last channel in the selected group, the device will pull INTB low  
if DRDY2INT is set to 1. At this time, the conversion results should be retrieved via the I2C bus.  
If the device is put into Sleep mode or Shutdown mode, all DATAx_MSB and DATAx_LSB registers are cleared  
of conversion data.  
Copyright © 2014–2018, Texas Instruments Incorporated  
47  
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Results of Delays in reading after INTB assertion  
Channel 0  
Conversion N  
Channel 1  
Conversion N  
Channel 0  
Conversion N+1  
Channel 1  
Conversion N+1  
Channel 0  
Channel 1  
Case 1: No Data Loss  
INTB  
I2C  
I2C Transaction #2 reads:  
Channel 0 conversion N  
Channel 1 conversion N  
I2C transaction #1: read  
I2C read  
#2  
Data N-1  
& INTB deassert  
Case 2: Data Loss  
INTB  
I2C  
I2C Transaction #2 reads:  
Channel 0 conversion N+1  
Channel 1 conversion N  
I2C transaction #1: read  
Data N-1  
I2C read  
#2  
Channel 0 Conversion N was overwritten  
when conversion N+1 for Channel 0  
completed  
& INTB deassert  
Case 3: Data Loss  
INTB  
I2C  
I2C Transaction #2 reads:  
Channel 0 conversion N+1  
Channel 1 conversion N+1  
I2C transaction #1: read  
Data N-1  
I2C read  
#2  
Channel 0 Conversion N was overwritten when  
Conversion N+1 completed  
& INTB deassert  
Channel 1 Conversion N is overwritten when  
Conversion N+1 completed  
Time  
INTB assert  
INTB assert with  
completion of Conversion complete and available in  
N-1 Register 0x00  
Chan 0 conversion N  
Chan 0 conversion N+1  
complete and available in  
Register 0x00  
Chan 1 conversion N  
complete and available in  
Register 0x02  
Figure 58. Data Readback Timing  
The STATUS register (Address 0x18) flags UNREADCONVx monitor the accesses to the DATAx registers.  
When the DATAx_MSB register is read, the DATAx_LSB register is updated with the corresponding LSB  
conversion data, and the UNREADCONVx flag is cleared. If the DATAx_LSB register alone is read, it will not  
update and will continuously return data corresponding to the last DATAx_MSB register read.  
As shown in Figure 58 , if the I2C data readback is delayed, then it is possible to lose older, unread conversion  
results. Monitoring the UNREADCONVx flags are useful to assess whether data loss is occurring.  
A delayed read of previous conversion results can produce the condition in which reading the STATUS register  
immediately after INTB asserts shows that Channel 0 has no unread data (where the UNREADCONV0 flag is 0),  
but other channels do have unread data indicated by the corresponding UNREADCONVx flags.  
48  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
8.2 Typical Application  
8.2.1 System Sensing Functionality  
Inductive sensing provides a wide range of system advantages that no other technology can provide - contact-  
less measurement, resistance to dirt/dust/water, immunity to external magnets, remote sensor positioning,  
inexpensive and robust sensors, and extremely high resolution measurement of relative movement.  
The LDC1612/LDC1614 can be used to sense a wide range of applications for measuring a variety of target  
movement:  
Angular Measurement: refer to 1-Degree Dial Reference Design for an example implementation.  
Linear Position Sensing: details on sensor and target construction are available in LDC1612/LDC1614 Linear  
Position Sensing Application Note. For absolute positioning needs, it is recommended to use a differential 2  
channel construction.  
Inductive Touch-on-Metal buttons: refer to TI Applications Note Inductive Sensing Touch-On-Metal Buttons  
Design Guide for system design information and 16 Button Inductive Touch Stainless Steel Keypad  
Reference Design for an example system implementation.  
8.2.2 Example Application  
Example of a multi-channel implementation using the LDC1612. This example is representative of an axial  
displacement application, in which the target movement is perpendicular to the plane of the coil. The second  
channel can be used to sense proximity of a second target, or it can be used for environmental compensation by  
connecting a reference coil.  
3.3 V  
3.3 V  
LDC1612  
MCU  
VDD  
CLKIN  
VDD  
40 MHz  
SD  
GPIO  
INTB  
GPIO  
IN0A  
IN0B  
Target  
Sensor 0  
Core  
GND  
IN1A  
SDA  
I2C  
Peripheral  
Target  
I2C  
IN1B  
SCL  
3.3 V  
ADDR  
Sensor 1  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 59. Example Multi-Channel Application - LDC1612  
8.2.3 Design Requirements  
Design example in which Sensor 0 is used for proximity measurement and Sensor 1 is used for temperature  
compensation. WEBENCH coil designer tool used to create sensor. System measurement requirements:  
Target distance = 1.0 mm  
Distance resolution = 0.2 µm  
Target diameter = 10 mm  
Target material = stainless steel (SS416)  
Number of PCB layers for the coil = 2  
The application requires 500 SPS ( TSAMPLE = 2.00 ms)  
Copyright © 2014–2018, Texas Instruments Incorporated  
49  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
Typical Application (continued)  
8.2.4 Detailed Design Procedure  
The target distance, resolution and diameter are used as inputs to WEBENCH to design the sensor coil, The  
resulting coil design is a 2 layer coil, with an area of 2.5 cm2, diameter of 17.7 mm, and 39 turns. The values  
for RP, L and C are: RP = 6.6 kΩ, L = 43.9 µH, C = 100 pF.  
Using the L and C to determine ƒSENSOR = 1/2π(LC) = 1/2π(43.9*10-6 * 100*10-12) = 2.4 MHz  
With a system reference clock of 40 MHz applied to the CLKIN pin allows flexibility for setting the internal  
clock frequencies. The sensor coil is connected to channel 0 (IN0A and IN0B pins).  
After powering on the LDC, it will be in Sleep Mode. Program the registers as follows (this example sets  
registers for channel 0 only; channel 1 registers can use equivalent configuration):  
1. Set the dividers for Channel 0.  
a. Because the sensor frequency is less than 8.75 MHz, the sensor divider can be set to 1, which means  
setting field FIN_DIVIDER0 to 0x1. By default, ƒIN0 = ƒSENSOR = 2.4 MHz.  
b. The design constraint for ƒREF0 is > 4 × ƒSENSOR. The 40 MHz reference frequency satisfies this  
constraint, so the reference divider can be set to 1. This is done by setting the FREF_DIVIDER0 field to  
0x01.  
c. The combined value for Chan. 0 divider register (0x14) is 0x1002.  
2. Program the settling time for Channel 0. The calculated Q of the coil is 10 (see Multi-Channel and Single  
Channel Operation).  
a. SETTLECOUNT0 Q × fREF0 / (16 × fSENSOR0) 5.2, rounded up to 6. To provide margin to account for  
system tolerances, a higher value of 10 is chosen.  
b. Register 0x10 should be programmed to a minimum of 10.  
c. The settle time is: (10 x 16)/20,000,000 = 8 µs  
d. The value for SETTLECOUNT0 register (0x10) is 0x000A.  
3. The channel switching delay is ~1 μs for fREF = 20 MHz (see Multi-Channel and Single Channel Operation)  
4. Set the conversion time by the programming the reference count for Channel 0. The budget for the  
conversion time is : TSAMPLE – settling time – channel switching delay = 1000 – 8 – 1 = 991 µs  
a. To determine the conversion time register value, use the following equation and solve for RCOUNT0:  
Conversion Time (tC0)= (RCOUNT0ˣ16)/fREF0  
.
b. This results in RCOUNT0 having a value of 1238 decimal (rounded down)  
c. Set the RCOUNT0 register (0x08) to 0x04D6.  
5. Use the default values for the ERROR_CONFIG register (address 0x19). By default, no interrupts are  
enabled  
6. Sensor drive current: to set the IDRIVE0 field value, read the value from Figure 55 using RP = 6.6 kΩ. In this  
case IDRIVE0 value should be set to 18 (decimal). The INIT_DRIVE0 current field should be set to 0x00.  
The combined value for the DRIVE_CURRENT0 register (addr 0x1E) is 0x9000.  
7. Program the MUX_CONFIG register  
a. Set the AUTOSCAN_EN to b1 bit to enable sequential mode  
b. Set RR_SEQUENCE to b00 to enable data conversion on two channels (channel 0, channel 1)  
c. Set DEGLITCH to b100 to set the input deglitch filter bandwidth to 3.3MHz, the lowest setting that  
exceeds the oscillation tank frequency.  
d. The combined value for the MUX_CONFIG register (address 0x1B) is 0x820C  
8. Finally, program the CONFIG register as follows:  
a. Set the ACTIVE_CHAN field to b00 to select channel 0.  
b. Set SLEEP_MODE_EN field to b0 to enable conversion.  
c. Set RP_OVERRIDE_EN to b1 to disable auto-calibration.  
d. Set SENSOR_ACTIVATE_SEL = b0, for full current drive during sensor activation  
e. Set the AUTO_AMP_DIS field to b1 to disable auto-amplitude correction  
f. Set the REF_CLK_SRC field to b1 to use the external clock source.  
g. Set the other fields to their default values.  
50  
Copyright © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
Typical Application (continued)  
h. The combined value for the CONFIG register (address 0x1A) is 0x1601.  
We then read the conversion results for channel 0 and channel 1 every 1.00 ms from register addresses  
0x00 to 0x03.  
8.2.5 Recommended Initial Register Configuration Values  
Based on the example configuration in section Detailed Design Procedure, the following register write sequence  
is recommended:  
Table 47. Recommended Initial Register Configuration Values (Single-Channel Operation)  
ADDRESS  
VALUE  
REGISTER NAME  
COMMENTS  
0x08  
0x04D6  
RCOUNT0  
Reference count calculated from timing requirements (1 kSPS) and  
resolution requirements  
0x10  
0x14  
0x19  
0x1B  
0x000A  
0x1002  
0x0000  
0x020C  
SETTLECOUNT0  
Minimum settling time for chosen sensor  
CLOCK_DIVIDERS0 FIN_DIVIDER0 = 1, FREF_DIVIDER0 = 2  
ERROR_CONFIG  
MUX_CONFIG  
Can be changed from default to report status and error conditions  
Enable Channel 0 in continuous mode, set Input deglitch bandwidth to  
3.3MHz  
0x1E  
0x1A  
0x9000  
0x1601  
DRIVE_CURRENT0 Sets sensor drive current on channel 0  
CONFIG Select active channel = ch 0, disable auto-amplitude correction and auto-  
calibration, enable full current drive during sensor activation, select  
external clock source, wake up device to start conversion. This register  
write must occur last because device configuration is not permitted while  
the LDC is in active mode.  
Table 48. Recommended Initial Register Configuration Values (Multi-Channel Operation)  
ADDRESS  
VALUE  
REGISTER NAME  
COMMENTS  
0x08  
0x04D6  
RCOUNT0  
Reference count calculated from timing requirements (1  
kSPS) and resolution requirements  
0x09  
0x04D6  
RCOUNT1  
Reference count calculated from timing requirements (1  
kSPS) and resolution requirements  
0x10  
0x11  
0x14  
0x15  
0x19  
0x000A  
0x000A  
0x1002  
0x1002  
0x0000  
SETTLECOUNT0  
SETTLECOUNT1  
CLOCK_DIVIDERS0  
CLOCK_DIVIDERS_1  
ERROR_CONFIG  
Minimum settling time for chosen sensor  
Minimum settling time for chosen sensor  
FIN_DIVIDER0 = 1, FREF_DIVIDER0 = 2  
FIN_DIVIDER1 = 1, FREF_DIVIDER1 = 2  
Can be changed from default to report status and error  
conditions  
0x1B  
0x820C  
MUX_CONFIG  
Enable Ch 0 and Ch 1 (sequential mode), set Input deglitch  
bandwidth to 3.3MHz  
0x1E  
0x1F  
0x1A  
0x9000  
0x9000  
0x1601  
DRIVE_CURRENT0  
DRIVE_CURRENT1  
CONFIG  
Sets sensor drive current on ch 0  
Sets sensor drive current on ch 1  
Disable auto-amplitude correction and auto-calibration,  
enable full current drive during sensor activation, select  
external clock source, wake up device to start conversion.  
This register write must occur last because device  
configuration is not permitted while the LDC is in active  
mode.  
Copyright © 2014–2018, Texas Instruments Incorporated  
51  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
8.2.6 Application Curves  
Common Test Conditions (unless specified otherwise):  
Sensor inductor: 2 layer, 32 turns/layer, 14mm diameter, PCB inductor with L=19.4 µH, RP=5.7 kat 2 MHz  
Sensor capacitor: 330 pF 1% COG/NP0  
Target: Aluminum, 1.5 mm thickness  
Channel = Channel 0 (continuous mode)  
ƒCLKIN = 40 MHz, FIN_DIVIDERx = 0x01, FREF_DIVIDERx = 0x001  
RCOUNT0 = 0xFFFF, SETTLECOUNT0 = 0x0100  
RP_OVERRIDE = 1, AUTO_AMP_DIS = 1, DRIVE_CURRENT0 = 0x9800  
2.4E+7  
2.2E+7  
2E+7  
160  
140  
120  
100  
80  
Ref Count = 0xFFFF  
Ref Count = 0x0FFF  
Ref Count = 0x00FF  
Ref Count = 0x000F  
Ref Count = 0x0004  
Target D = 1 x coil  
Target D = 2 x coil •  
Target D = 2 x coil •  
Target D = 1 x coil •  
1.8E+7  
1.6E+7  
1.4E+7  
1.2E+7  
60  
40  
20  
0
0
5
10  
15  
20  
25  
30  
0
40%  
80%  
120%  
160%  
200%  
Target Distance D (mm)  
Target Distance / SENSOR  
D014  
D021  
Figure 60. Output Code vs. Target Distance (0 to 30mm)  
Figure 61. Measurement Precision in Distance vs. Target  
Distance (0 to 30mm)  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%  
Target Distance / SENSOR  
D022  
Figure 62. Measurement Precision in Distance vs. Target Distance (0 to 10mm)  
52  
Copyright © 2014–2018, Texas Instruments Incorporated  
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
8.2.7 Inductor Self-Resonant Frequency  
Every inductor has a distributed parasitic capacitance, which is dependent on construction and geometry. At the  
Self-Resonant Frequency (SRF), the reactance of the inductor cancels the reactance of the parasitic  
capacitance. Above the SRF, the inductor will electrically appear to be a capacitor. Because the parasitic  
capacitance is not well-controlled or stable, it is recommended that: ƒSENSOR < 0.8 × fSR  
.
175.0  
150.0  
125.0  
100.0  
75.0  
50.0  
25.0  
0.0  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
Frequency (MHz)  
Figure 63. Example Coil Inductance vs. Frequency  
In Figure 63, the inductor has a SRF at 6.38 MHz; therefore the inductor should not be operated above 0.8×6.38  
MHz, or 5.1 MHz.  
9 Power Supply Recommendations  
The LDC requires a voltage supply within 2.7 V and 3.6 V. A multilayer ceramic X7R bypass capacitor of 1 μF  
between the VDD and GND pins is recommended. If the supply is located more than a few inches from the  
LDC, additional capacitance may be required in addition to the ceramic bypass capacitor. A ceramic capacitor  
with a value of 10 μF is a typical choice.  
The optimum placement of bypass capacitors is closest to the VDD and GND terminals of the device. Care  
should be taken to minimize the loop area formed by the bypass capacitor connection, the VDD pin, and the  
GND pin of the IC. See Figure 64 for a layout example.  
Copyright © 2014–2018, Texas Instruments Incorporated  
53  
 
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
10 Layout  
10.1 Layout Guidelines  
Avoid long traces between the sensor and the LDC - higher frequency sensors may need to be placed closer to  
the device to minimize noise. The INAx and INBx traces should be routed as differential pairs - run the traces in  
parallel and close together. Lower trace impedances (even well below 100 Ω) are acceptable, as they reduce any  
parasitic inductance.  
The sensor capacitor should be placed close to the inductor to minimize the sensor RP.  
Do not place filled planes underneath or between the sensor layers. If the sensor is placed in a plane, there  
should be a gap of at least 20% of a sensor diameter between the plane and the outermost coil of the sensor.  
There should not be any continuous ring of conductors encircling the sensor. This can be managed with a small  
cut in the conductor.  
Refer to the TI Application Note LDC Sensor Design for more information on sensor design and optimization.  
10.2 Layout Example  
Figure 64 shows an example layout for the LDC1612, including a pair of sensor.  
Figure 64. Example PCB Layout  
54  
版权 © 2014–2018, Texas Instruments Incorporated  
 
LDC1612, LDC1614  
www.ti.com.cn  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
11 器件和文档支持  
11.1 器件支持  
11.1.1 开发支持  
相关链接如下:  
德州仪器 (TI) WEBENCH 工具:http://www.ti.com.cn/webench  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
LDC1000 温度补偿》SNAA212  
LDC 传感器设计》SNOA930  
LDC1612/LDC1614 线性位置感应应用手册》SNOA931  
《优化 LDC1312 LDC1314 L 测量分辨率》SNOA945  
《针对电感感应的 LDC131x/161x 功率降低技术》SNOA949  
《优化 LDC161x LDC1101L 测量分辨率》SNOA950  
《电感感应触摸金属按钮设计指南》SNOA951  
LDC 目标设计》SNOA957  
LDC1312LDC1314LDC1612LDC1614 传感器状态监控》SNOA959  
16 按钮电感式触控不锈钢键盘参考设计》  
32 位电感感应编码器旋钮参考设计  
16 按钮电感式键盘参考设计》  
1 度转盘参考设计》  
11.3 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件以及申请样片或购买产品的快速访问  
链接。  
49. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具和软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
LDC1612  
LDC1614  
11.4 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册后,即可每  
周定期收到已更改的产品信息。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.5 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.6 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
版权 © 2014–2018, Texas Instruments Incorporated  
55  
LDC1612, LDC1614  
ZHCSDM9A DECEMBER 2014REVISED MARCH 2018  
www.ti.com.cn  
11.7 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.8 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,也  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请参阅左侧的导航栏。  
56  
版权 © 2014–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jul-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LDC1612DNTR  
LDC1612DNTT  
LDC1614RGHR  
LDC1614RGHT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WQFN  
WQFN  
DNT  
DNT  
RGH  
RGH  
12  
12  
16  
16  
4500 RoHS & Green  
250 RoHS & Green  
4500 RoHS & Green  
250 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LDC1612  
Samples  
Samples  
Samples  
Samples  
NIPDAU | SN  
LDC1612  
LDC1614  
LDC1614  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
6-Jul-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LDC1612, LDC1614 :  
Automotive : LDC1612-Q1, LDC1614-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LDC1612DNTR  
LDC1612DNTT  
LDC1614RGHR  
LDC1614RGHT  
WSON  
WSON  
WQFN  
WQFN  
DNT  
DNT  
RGH  
RGH  
12  
12  
16  
16  
4500  
250  
330.0  
178.0  
330.0  
178.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
4.3  
1.3  
1.3  
1.3  
1.3  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
4500  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LDC1612DNTR  
LDC1612DNTT  
LDC1614RGHR  
LDC1614RGHT  
WSON  
WSON  
WQFN  
WQFN  
DNT  
DNT  
RGH  
RGH  
12  
12  
16  
16  
4500  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
4500  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DNT0012B  
WSON - 0.8 mm max height  
SCALE 3.000  
PLASTIC SMALL OUTLINE - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
0.8  
0.7  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
(0.1) TYP  
2.6 0.1  
6
7
2X  
2.5  
3
0.1  
10X 0.5  
12  
1
0.3  
0.2  
12X  
0.1  
C A B  
C
0.5  
0.3  
PIN 1 ID  
(45 X 0.25)  
12X  
0.05  
4214928/C 10/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(2.6)  
SYMM  
12X (0.6)  
1
12  
12X (0.25)  
(1.25)  
SYMM  
(3)  
10X (0.5)  
7
6
(R0.05) TYP  
(
0.2) VIA  
TYP  
(1.05)  
(3.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214928/C 10/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DNT0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
SYMM  
METAL  
TYP  
(0.68)  
12X (0.6)  
1
12  
12X (0.25)  
(0.76)  
SYMM  
10X (0.5)  
4X  
(1.31)  
(R0.05) TYP  
6
7
4X (1.15)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
77% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4214928/C 10/2021  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LDC1800

Electric Fuse, Time Delay Blow, 1800A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

LDC181G9525Q-370

Directional Coupler, 1920MHz Min, 1980MHz Max, 0.22dB Insertion Loss-Max
MURATA

LDC182G4510B-325

Directional Coupler, 2400MHz Min, 2500MHz Max, 0.74dB Insertion Loss-Max,
MURATA

LDC18836M32Q-370

Directional Coupler, 824MHz Min, 849MHz Max, 0.17dB Insertion Loss-Max
MURATA

LDC18897M20Q-361

Directional Coupler, 880MHz Min, 915MHz Max, 0.22dB Insertion Loss-Max
MURATA

LDC18906M17B-325

Directional Coupler, 887MHz Min, 925MHz Max, 0.25dB Insertion Loss-Max,
MURATA

LDC1900

Electric Fuse, Time Delay Blow, 1900A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

LDC200

Electric Fuse
LITTELFUSE

LDC2000

Electric Fuse, Time Delay Blow, 2000A, 600VAC, 600VDC, 200000A (IR), Inline/holder,
LITTELFUSE

LDC20B030F1600

90 Degree Hybrid Coupler, 1500MHz Min, 1700MHz Max, 3.8dB Insertion Loss-Max
MURATA

LDC20B030F1850

90 Degree Hybrid Coupler, 1700MHz Min, 2000MHz Max, 3.8dB Insertion Loss-Max
MURATA

LDC20B030F2250

90 Degree Hybrid Coupler, 2000MHz Min, 2500MHz Max, 3.9dB Insertion Loss-Max,
MURATA