LF156 MD8 [TI]

Single, 40-V, 5-MHz, -55 to 125°C, FET-input operational amplifier | Y | 0 | -55 to 125;
LF156 MD8
型号: LF156 MD8
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Single, 40-V, 5-MHz, -55 to 125°C, FET-input operational amplifier | Y | 0 | -55 to 125

文件: 总24页 (文件大小:1099K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
National Semiconductor is now part of  
Texas Instruments.  
Search http://www.ti.com/ for the latest technical  
information and details on our current products and services.  
December 2001  
LF155/LF156/LF256/LF257/LF355/LF356/LF357  
JFET Input Operational Amplifiers  
n Logarithmic amplifiers  
n Photocell amplifiers  
These are the first monolithic JFET input operational ampli-  
n Sample and Hold circuits  
General Description  
fiers to incorporate well matched, high voltage JFETs on the  
Common Features  
same chip with standard bipolar transistors (BI-FET Tech-  
nology). These amplifiers feature low input bias and offset  
currents/low offset voltage and offset voltage drift, coupled  
with offset adjust which does not degrade drift or  
common-mode rejection. The devices are also designed for  
high slew rate, wide bandwidth, extremely fast settling time,  
low voltage and current noise and a low 1/f noise corner.  
n Low input bias current: 30pA  
n Low Input Offset Current: 3pA  
n High input impedance: 1012Ω  
n Low input noise current:  
n High common-mode rejection ratio: 100 dB  
n Large dc voltage gain: 106 dB  
Features  
Advantages  
Uncommon Features  
n Replace expensive hybrid and module FET op amps  
n Rugged JFETs allow blow-out free handling compared  
with MOSFET input devices  
n Excellent for low noise applications using either high or  
low source impedancevery low 1/f corner  
n Offset adjust does not degrade drift or common-mode  
rejection as in most monolithic amplifiers  
n New output stage allows use of large capacitive loads  
(5,000 pF) without stability problems  
LF155/ LF156/ LF257/  
Units  
LF355  
LF256/  
LF356  
1.5  
LF357  
(AV=5)  
1.5  
j
Extremely  
fast settling  
time to  
4
µs  
0.01%  
j
j
j
Fast slew  
rate  
5
12  
5
50  
20  
12  
V/µs  
MHz  
n Internal compensation and large differential input voltage  
capability  
Wide gain  
bandwidth  
Low input  
noise  
2.5  
20  
Applications  
n Precision high speed integrators  
n Fast D/A and A/D converters  
n High impedance buffers  
12  
voltage  
n Wideband, low noise, low drift amplifiers  
Simplified Schematic  
00564601  
*
3pF in LF357 series.  
BI-FET , BI-FET II are trademarks of National Semiconductor Corporation.  
© 2001 National Semiconductor Corporation  
DS005646  
www.national.com  
Absolute Maximum Ratings (Note 1)  
If Military/Aerospace specified devices are required, contact the National Semiconductor Sales Office/Distributors for  
availability and specifications.  
LF155/6  
LF256/7/LF356B  
LF355/6/7  
±
±
±
±
±
±
±
±
±
Supply Voltage  
22V  
40V  
20V  
22V  
40V  
20V  
18V  
30V  
16V  
Differential Input Voltage  
Input Voltage Range (Note 2)  
Output Short Circuit Duration  
TJMAX  
Continuous  
Continuous  
Continuous  
H-Package  
150˚C  
115˚C  
100˚C  
100˚C  
115˚C  
100˚C  
100˚C  
N-Package  
M-Package  
Power Dissipation at TA = 25˚C (Notes  
1, 8)  
H-Package (Still Air)  
H-Package (400 LF/Min Air Flow)  
N-Package  
560 mW  
400 mW  
1000 mW  
670 mW  
380 mW  
400 mW  
1000 mW  
670 mW  
380 mW  
1200 mW  
M-Package  
Thermal Resistance (Typical) θJA  
H-Package (Still Air)  
H-Package (400 LF/Min Air Flow)  
N-Package  
160˚C/W  
65˚C/W  
160˚C/W  
65˚C/W  
160˚C/W  
65˚C/W  
130˚C/W  
195˚C/W  
130˚C/W  
195˚C/W  
M-Package  
(Typical) θJC  
H-Package  
23˚C/W  
23˚C/W  
23˚C/W  
Storage Temperature Range  
Soldering Information (Lead Temp.)  
Metal Can Package  
Soldering (10 sec.)  
Dual-In-Line Package  
Soldering (10 sec.)  
Small Outline Package  
Vapor Phase (60 sec.)  
Infrared (15 sec.)  
−65˚C to +150˚C  
−65˚C to +150˚C  
−65˚C to +150˚C  
300˚C  
260˚C  
300˚C  
260˚C  
300˚C  
260˚C  
215˚C  
220˚C  
215˚C  
220˚C  
See AN-450 “Surface Mounting Methods and Their Effect on Product Reliability” for other methods of  
soldering surface mount devices.  
ESD tolerance  
(100 pF discharged through 1.5k)  
1000V  
1000V  
1000V  
DC Electrical Characteristics  
(Note 3)  
LF256/7  
LF356B  
Min Typ Max Min Typ Max Min Typ Max  
LF155/6  
LF355/6/7  
Symbol  
VOS  
Parameter  
Conditions  
Units  
Input Offset Voltage  
RS=50, TA=25˚C  
Over Temperature  
RS=50Ω  
3
5
7
3
5
3
10  
13  
mV  
mV  
6.5  
VOS/T  
Average TC of Input  
Offset Voltage  
5
5
5
µV/˚C  
TC/VOS Change in Average TC RS=50, (Note 4)  
µV/˚C  
per mV  
pA  
0.5  
3
0.5  
3
0.5  
3
with VOS Adjust  
IOS  
Input Offset Current  
TJ=25˚C, (Notes 3, 5)  
20  
20  
20  
1
50  
2
TJTHIGH  
nA  
www.national.com  
2
DC Electrical Characteristics (Continued)  
(Note 3)  
LF256/7  
LF356B  
LF155/6  
LF355/6/7  
Symbol  
IB  
Parameter  
Conditions  
Units  
Min Typ Max Min Typ Max Min Typ Max  
Input Bias Current  
TJ=25˚C, (Notes 3, 5)  
TJTHIGH  
30  
100  
50  
30  
100  
5
30  
200  
8
pA  
nA  
RIN  
Input Resistance  
Large Signal Voltage  
Gain  
TJ=25˚C  
1012  
200  
1012  
200  
1012  
200  
±
AVOL  
VS= 15V, TA=25˚C  
50  
25  
50  
25  
25  
15  
V/mV  
±
VO= 10V, RL=2k  
Over Temperature  
V/mV  
±
±
±
±
±
±
±
±
±
±
VO  
Output Voltage Swing  
VS= 15V, RL=10k  
12  
10  
13  
12  
12  
10  
13  
12  
12  
10  
13  
12  
V
V
V
V
±
±
±
±
VS= 15V, RL=2k  
±
±
15.1  
VCM  
Input Common-Mode  
Voltage Range  
VS= 15V  
+15.1  
−12  
+15.1  
−12  
±
±
11  
11  
+10  
80  
−12  
CMRR  
PSRR  
Common-Mode  
Rejection Ratio  
Supply Voltage  
Rejection Ratio  
85  
85  
100  
100  
85  
85  
100  
100  
100  
dB  
dB  
(Note 6)  
100  
80  
DC Electrical Characteristics  
±
TA = TJ = 25˚C, VS  
=
15V  
LF155  
Max  
LF355  
Max  
LF156/256/257/356B  
LF356  
Typ Max  
LF357  
Typ Max  
Parameter  
Units  
Typ  
Typ  
Typ  
Max  
Supply  
Current  
2
4
2
4
5
7
5
10  
5
10  
mA  
AC Electrical Characteristics  
±
15V  
TA = TJ = 25˚C, VS  
=
LF155/355  
LF156/256/  
356B  
LF156/256/356/  
LF257/357  
Typ  
LF356B  
Typ  
Symbol  
Parameter  
Slew Rate  
Conditions  
Units  
Typ  
Min  
SR  
LF155/6:  
AV=1,  
5
7.5  
12  
V/µs  
LF357: AV=5  
50  
20  
V/µs  
MHz  
µs  
GBW  
ts  
Gain Bandwidth Product  
Settling Time to 0.01%  
Equivalent Input Noise  
Voltage  
2.5  
4
5
(Note 7)  
1.5  
1.5  
en  
RS=100Ω  
f=100 Hz  
25  
20  
15  
12  
15  
12  
f=1000 Hz  
f=100 Hz  
f=1000 Hz  
in  
Equivalent Input Current  
Noise  
0.01  
0.01  
3
0.01  
0.01  
3
0.01  
0.01  
3
CIN  
Input Capacitance  
pF  
Notes for Electrical Characteristics  
Note 1: The maximum power dissipation for these devices must be derated at elevated temperatures and is dictated by T  
, θ , and the ambient temperature,  
JMAX JA  
T . The maximum available power dissipation at any temperature is P =(T  
−T )/θ or the 25˚C P  
, whichever is less.  
A
D
JMAX  
A
JA  
dMAX  
Note 2: Unless otherwise specified the absolute maximum negative input voltage is equal to the negative power supply voltage.  
Note 3: Unless otherwise stated, these test conditions apply:  
3
www.national.com  
Notes for Electrical Characteristics (Continued)  
LF155/156  
LF256/257  
LF356B  
LF355/6/7  
±
±
±
±
±
±
±
Supply Voltage, VS  
15V VS  
20V  
15V VS  
20V  
15V VS 20V  
VS= 15V  
TA  
−55˚C TA +125˚C  
−25˚C TA +85˚C  
0˚C TA +70˚C  
0˚C TA +70˚C  
THIGH  
+125˚C  
+85˚C  
+70˚C  
+70˚C  
and V , I and I  
are measured at V  
= 0.  
CM  
OS  
B
OS  
Note 4: The Temperature Coefficient of the adjusted input offset voltage changes only a small amount (0.5µV/˚C typically) for each mV of adjustment from its original  
unadjusted value. Common-mode rejection and open loop voltage gain are also unaffected by offset adjustment.  
Note 5: The input bias currents are junction leakage currents which approximately double for every 10˚C increase in the junction temperature, T . Due to limited  
J
production test time, the input bias currents measured are correlated to junction temperature. In normal operation the junction temperature rises above the ambient  
temperature as a result of internal power dissipation, Pd. T = T + θ Pd where θ is the thermal resistance from junction to ambient. Use of a heat sink is  
J
A
JA  
JA  
recommended if input bias current is to be kept to a minimum.  
Note 6: Supply Voltage Rejection is measured for both supply magnitudes increasing or decreasing simultaneously, in accordance with common practice.  
Note 7: Settling time is defined here, for a unity gain inverter connection using 2 kresistors for the LF155/6. It is the time required for the error voltage (the voltage  
at the inverting input pin on the amplifier) to settle to within 0.01% of its final value from the time a 10V step input is applied to the inverter. For the LF357, A = −5,  
V
the feedback resistor from output to input is 2kand the output step is 10V (See Settling Time Test Circuit).  
Note 8: Max. Power Dissipation is defined by the package characteristics. Operating the part near the Max. Power Dissipation may cause the part to operate outside  
guaranteed limits.  
Typical DC Performance Characteristics Curves are for LF155 and LF156 unless otherwise  
specified.  
Input Bias Current  
Input Bias Current  
00564638  
00564637  
Input Bias Current  
Voltage Swing  
00564640  
00564639  
www.national.com  
4
Typical DC Performance Characteristics Curves are for LF155 and LF156 unless otherwise  
specified. (Continued)  
Supply Current  
Supply Current  
00564642  
00564641  
Negative Current Limit  
Positive Current Limit  
00564643  
00564644  
Positive Common-Mode  
Input Voltage Limit  
Negative Common-Mode  
Input Voltage Limit  
00564645  
00564646  
5
www.national.com  
Typical DC Performance Characteristics Curves are for LF155 and LF156 unless otherwise  
specified. (Continued)  
Open Loop Voltage Gain  
Output Voltage Swing  
00564648  
00564647  
Typical AC Performance Characteristics  
Gain Bandwidth  
Gain Bandwidth  
00564650  
00564649  
Normalized Slew Rate  
Output Impedance  
00564651  
00564652  
www.national.com  
6
Typical AC Performance Characteristics (Continued)  
Output Impedance  
LF155 Small Signal Pulse Response, AV = +1  
00564605  
00564653  
LF156 Small Signal Pulse Response, AV = +1  
LF155 Large Signal Pulse Response, AV = +1  
00564608  
00564606  
LF156 Large Signal Puls  
Response, AV = +1  
Inverter Settling Time  
00564609  
00564655  
7
www.national.com  
Typical AC Performance Characteristics (Continued)  
Inverter Settling Time  
Open Loop Frequency Response  
00564656  
00564657  
Bode Plot  
Bode Plot  
00564658  
00564659  
Bode Plot  
Common-Mode Rejection Ratio  
00564660  
00564661  
www.national.com  
8
Typical AC Performance Characteristics (Continued)  
Power Supply Rejection Ratio  
Power Supply Rejection Ratio  
00564662  
00564663  
Undistorted Output Voltage Swing  
Equivalent Input Noise Voltage  
00564664  
00564665  
Equivalent Input Noise  
Voltage (Expanded Scale)  
00564666  
9
www.national.com  
Detailed Schematic  
00564613  
*
C = 3pF in LF357 series.  
Connection Diagrams (Top Views)  
Metal Can Package (H)  
Dual-In-Line Package (M and N)  
00564614  
Order Number LF155H, LF156H, LF256H, LF257H,  
LF356BH, LF356H, or LF357H  
00564629  
Order Number LF356M, LF356MX, LF355N, or LF356N  
See NS Package Number M08A or N08E  
See NS Package Number H08C  
*
Available per JM38510/11401 or JM38510/11402  
Application Hints  
These are op amps with JFET input devices. These JFETs  
have large reverse breakdown voltages from gate to source  
and drain eliminating the need for clamps across the inputs.  
Therefore large differential input voltages can easily be ac-  
commodated without a large increase in input current. The  
maximum differential input voltage is independent of the  
supply voltages. However, neither of the input voltages  
should be allowed to exceed the negative supply as this will  
cause large currents to flow which can result in a destroyed  
unit.  
Exceeding the negative common-mode limit on either input  
will force the output to a high state, potentially causing a  
www.national.com  
10  
Application Hints (Continued)  
Typical Circuit Connections  
reversal of phase to the output. Exceeding the negative  
common-mode limit on both inputs will force the amplifier  
output to a high state. In neither case does a latch occur  
since raising the input back within the common-mode range  
again puts the input stage and thus the amplifier in a normal  
operating mode.  
VOS Adjustment  
Exceeding the positive common-mode limit on a single input  
will not change the phase of the output however, if both  
inputs exceed the limit, the output of the amplifier will be  
forced to a high state.  
These amplifiers will operate with the common-mode input  
voltage equal to the positive supply. In fact, the  
common-mode voltage can exceed the positive supply by  
approximately 100 mV independent of supply voltage and  
over the full operating temperature range. The positive sup-  
ply can therefore be used as a reference on an input as, for  
example, in a supply current monitor and/or limiter.  
00564667  
VOS is adjusted with a 25k potentiometer  
The potentiometer wiper is connected to V+  
Precautions should be taken to ensure that the power supply  
for the integrated circuit never becomes reversed in polarity  
or that the unit is not inadvertently installed backwards in a  
socket as an unlimited current surge through the resulting  
forward diode within the IC could cause fusing of the internal  
conductors and result in a destroyed unit.  
For potentiometers with temperature coefficient of 100  
ppm/˚C or less the additional drift with adjust is 0.5µV/  
˚C/mV of adjustment  
±
Typical overall drift: 5µV/˚C (0.5µV/˚C/mV of adj.)  
Driving Capacitive Loads  
All of the bias currents in these amplifiers are set by FET  
current sources. The drain currents for the amplifiers are  
therefore essentially independent of supply voltage.  
As with most amplifiers, care should be taken with lead  
dress, component placement and supply decoupling in order  
to ensure stability. For example, resistors from the output to  
an input should be placed with the body close to the input to  
minimize “pickup” and maximize the frequency of the feed-  
back pole by minimizing the capacitance from the input to  
ground.  
00564668  
A feedback pole is created when the feedback around any  
amplifier is resistive. The parallel resistance and capacitance  
from the input of the device (usually the inverting input) to AC  
ground set the frequency of the pole. In many instances the  
frequency of this pole is much greater than the expected 3dB  
frequency of the closed loop gain and consequently there is  
negligible effect on stability margin. However, if the feedback  
pole is less than approximately six times the expected 3 dB  
frequency a lead capacitor should be placed from the output  
to the input of the op amp. The value of the added capacitor  
should be such that the RC time constant of this capacitor  
and the resistance it parallels is greater than or equal to the  
original feedback pole time constant.  
*
LF155/6 R = 5k  
LF357 R = 1.25k  
Due to a unique output stage design, these amplifiers  
have the ability to drive large capacitive loads and still  
maintain stability. CL(MAX) . 0.01µF.  
Overshoot 20%  
Settling time (ts) . 5µs  
LF357. A Large Power BW Amplifier  
00564615  
For distortion 1% and a 20 Vp-p V  
swing, power bandwidth is:  
OUT  
500kHz.  
11  
www.national.com  
Typical Applications  
Settling Time Test Circuit  
00564616  
Settling time is tested with the LF155/6 connected as unity gain inverter and LF357 connected for AV = −5  
FET used to isolate the probe capacitance  
Output = 10V step  
AV = −5 for LF357  
Large Signal Inverter Output, VOUT (from Settling Time Circuit)  
LF355  
LF357  
00564619  
00564617  
LF356  
00564618  
www.national.com  
12  
Typical Applications (Continued)  
Low Drift Adjustable Voltage Reference  
00564620  
±
VOUT/T = 0.002%/˚C  
All resistors and potentiometers should be wire-wound  
P1: drift adjust  
P2: VOUT adjust  
Use LF155 for  
j
j
j
Low IB  
Low drift  
Low supply current  
Fast Logarithmic Converter  
00564621  
Dynamic range: 100µA Ii 1mA (5 decades), |VO| = 1V/decade  
Transient response: 3µs for Ii = 1 decade  
C1, C2, R2, R3: added dynamic compensation  
VOS adjust the LF156 to minimize quiescent error  
RT: Tel Labs type Q81 + 0.3%/˚C  
13  
www.national.com  
Typical Applications (Continued)  
Precision Current Monitor  
00564631  
VO = 5 R1/R2 (V/mA of IS)  
R1, R2, R3: 0.1% resistors  
Use LF155 for  
j
j
j
j
Common-mode range to supply range  
Low IB  
Low VOS  
Low Supply Current  
8-Bit D/A Converter with Symmetrical Offset Binary Operation  
00564632  
±
R1, R2 should be matched within 0.05%  
Full-scale response time: 3µs  
EO  
B1 B2 B3 B4 B5 B6 B7 B8  
Comments  
Positive Full-Scale  
(+) Zero-Scale  
+9.920  
+0.040  
−0.040  
−9.920  
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
(−) Zero-Scale  
Negative Full-Scale  
www.national.com  
14  
Typical Applications (Continued)  
Wide BW Low Noise, Low Drift Amplifier  
00564670  
Parasitic input capacitance C1 . (3pF for LF155, LF156 and LF357 plus any additional layout capacitance) interacts with  
feedback elements and creates undesirable high frequency pole. To compensate add C2 such that: R2 C2 . R1 C1.  
Boosting the LF156 with a Current Amplifier  
00564673  
IOUT(MAX).150mA (will drive RL100)  
No additional phase shift added by the current amplifier  
15  
www.national.com  
Typical Applications (Continued)  
3 Decades VCO  
00564624  
R1, R4 matched. Linearity 0.1% over 2 decades.  
Isolating Large Capacitive Loads  
00564622  
Overshoot 6%  
ts 10µs  
When driving large CL, the VOUT slew rate determined by CL and IOUT(MAX)  
:
www.national.com  
16  
Typical Applications (Continued)  
Low Drift Peak Detector  
00564623  
By adding D1 and Rf, VD1=0 during hold mode. Leakage of D2 provided by feedback path through Rf.  
Leakage of circuit is essentially Ib (LF155, LF156) plus capacitor leakage of Cp.  
Diode D3 clamps VOUT (A1) to VIN−VD3 to improve speed and to limit reverse bias of D2.  
1
<<  
Maximum input frequency should be  
2πRfCD2 where CD2 is the shunt capacitance of D2.  
Non-Inverting Unity Gain Operation for LF157  
00564675  
Inverting Unity Gain for LF157  
00564625  
17  
www.national.com  
Typical Applications (Continued)  
High Impedance, Low Drift Instrumentation Amplifier  
00564626  
System VOS adjusted via A2 VOS adjust  
Trim R3 to boost up CMRR to 120 dB. Instrumentation amplifier resistor array recommended for best accuracy and lowest drift  
www.national.com  
18  
Typical Applications (Continued)  
Fast Sample and Hold  
00564633  
Both amplifiers (A1, A2) have feedback loops individually closed with stable responses (overshoot negligible)  
Acquisition time TA, estimated by:  
LF156 develops full Sr output capability for VIN 1V  
Addition of SW2 improves accuracy by putting the voltage drop across SW1 inside the feedback loop  
Overall accuracy of system determined by the accuracy of both amplifiers, A1 and A2  
19  
www.national.com  
Typical Applications (Continued)  
High Accuracy Sample and Hold  
00564627  
By closing the loop through A2, the VOUT accuracy will be determined uniquely by A1.  
No VOS adjust required for A2.  
TA can be estimated by same considerations as previously but, because of the added  
propagation delay in the feedback loop (A2) the overshoot is not negligible.  
Overall system slower than fast sample and hold  
R1, CC: additional compensation  
Use LF156 for  
j
j
Fast settling time  
Low VOS  
High Q Band Pass Filter  
00564628  
By adding positive feedback (R2)  
Q increases to 40  
fBP = 100 kHz  
Clean layout recommended  
Response to a 1Vp-p tone burst: 300µs  
www.national.com  
20  
Typical Applications (Continued)  
High Q Notch Filter  
00564634  
2R1 = R = 10MΩ  
2C = C1 = 300pF  
Capacitors should be matched to obtain high Q  
>
fNOTCH = 120 Hz, notch = −55 dB, Q 100  
Use LF155 for  
j
j
Low IB  
Low supply current  
21  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted  
Metal Can Package (H)  
Order Number LF155H, LF156H, LF256H, LF257H, LF356BH, LF356H or LF357H  
NS Package Number H08C  
Small Outline Package (M)  
Order Number LF356M or LF356MX  
NS Package Number M08A  
www.national.com  
22  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
Molded Dual-In-Line Package (N)  
Order Number LF356N  
NS Package Number N08E  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL  
COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant  
into the body, or (b) support or sustain life, and  
whose failure to perform when properly used in  
accordance with instructions for use provided in the  
labeling, can be reasonably expected to result in a  
significant injury to the user.  
2. A critical component is any component of a life  
support device or system whose failure to perform  
can be reasonably expected to cause the failure of  
the life support device or system, or to affect its  
safety or effectiveness.  
National Semiconductor  
Corporation  
Americas  
National Semiconductor  
Europe  
National Semiconductor  
Asia Pacific Customer  
Response Group  
Tel: 65-2544466  
Fax: 65-2504466  
National Semiconductor  
Japan Ltd.  
Tel: 81-3-5639-7560  
Fax: 81-3-5639-7507  
Fax: +49 (0) 180-530 85 86  
Email: support@nsc.com  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
www.national.com  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.  

相关型号:

LF156-LF256-LF356

WIDE BANDWIDTH SINGLE J-FET OPERATIONAL AMPLIFIERS
STMICROELECTR

LF156-X/883

Operational Amplifier
ETC

LF156A

JFET-Input Operational Amplifiers Low Supply Current High Speed
Linear

LF156A

Series Monolithic JFET Input Operational Amplifiers
NSC

LF156ACG

IC,OP-AMP,SINGLE,BIPOLAR/JFET,LLCC,20PIN,CERAMIC
STMICROELECTR

LF156AD

Operational Amplifier, 1 Func, 2500uV Offset-Max, BIPolar, CDIP8, CERAMIC, DIP-8
RAYTHEON

LF156AH

Series Monolithic JFET Input Operational Amplifiers
NSC

LF156AH

JFET-Input Operational Amplifiers Low Supply Current High Speed
Linear

LF156AH

LF156AH
RENESAS

LF156AH

Operational Amplifier, 1 Func, 2500uV Offset-Max, BIPolar, MBCY8, METAL CAN, TO-99, 8 PIN
RAYTHEON

LF156AH

IC,OP-AMP,SINGLE,BIPOLAR/JFET,CAN,8PIN,METAL
STMICROELECTR

LF156AH-MIL

IC,OP-AMP,SINGLE,BIPOLAR/JFET,CAN,8PIN,METAL
NSC