LM2577MX-15/NOPB [TI]

6 A SWITCHING REGULATOR, 62 kHz SWITCHING FREQ-MAX, PDSO24;
LM2577MX-15/NOPB
型号: LM2577MX-15/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

6 A SWITCHING REGULATOR, 62 kHz SWITCHING FREQ-MAX, PDSO24

开关 光电二极管
文件: 总32页 (文件大小:1436K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
National Semiconductor is now part of  
Texas Instruments.  
Search http://www.ti.com/ for the latest technical  
information and details on our current products and services.  
April 2005  
LM1577/LM2577  
SIMPLE SWITCHER® Step-Up Voltage Regulator  
General Description  
Features  
n Requires few external components  
n NPN output switches 3.0A, can stand off 65V  
n Wide input voltage range: 3.5V to 40V  
n Current-mode operation for improved transient  
response, line regulation, and current limit  
n 52 kHz internal oscillator  
The LM1577/LM2577 are monolithic integrated circuits that  
provide all of the power and control functions for step-up  
(boost), flyback, and forward converter switching regulators.  
The device is available in three different output voltage  
versions: 12V, 15V, and adjustable.  
Requiring a minimum number of external components, these  
regulators are cost effective, and simple to use. Listed in this  
data sheet are a family of standard inductors and flyback  
transformers designed to work with these switching regula-  
tors.  
n Soft-start function reduces in-rush current during start-up  
n Output switch protected by current limit, under-voltage  
lockout, and thermal shutdown  
Included on the chip is a 3.0A NPN switch and its associated  
protection circuitry, consisting of current and thermal limiting,  
and undervoltage lockout. Other features include a 52 kHz  
fixed-frequency oscillator that requires no external compo-  
nents, a soft start mode to reduce in-rush current during  
start-up, and current mode control for improved rejection of  
input voltage and output load transients.  
Typical Applications  
n Simple boost regulator  
n Flyback and forward regulators  
n Multiple-output regulator  
Connection Diagrams  
Straight Leads  
5-Lead TO-220 (T)  
Bent, Staggered Leads  
5-Lead TO-220 (T)  
01146804  
Top View  
01146805  
Top View  
Order Number LM2577T-12, LM2577T-15,  
or LM2577T-ADJ  
Order Number LM2577T-12 Flow LB03, LM2577T-15  
Flow LB03, or LM2577T-ADJ Flow LB03  
See NS Package Number T05D  
See NS Package Number T05A  
SIMPLE SWITCHER® is a registered trademark of National Semiconductor Corporation.  
© 2005 National Semiconductor Corporation  
DS011468  
www.national.com  
Connection Diagrams (Continued)  
16-Lead DIP (N)  
24-Lead Surface Mount (M)  
01146806  
*No internal Connection  
Top View  
Order Number LM2577N-12, LM2577N-15,  
or LM2577N-ADJ  
See NS Package Number N16A  
01146807  
*No internal Connection  
Top View  
Order Number LM2577M-12, LM2577M-15,  
or LM2577M-ADJ  
See NS Package Number M24B  
TO-263 (S)  
5-Lead Surface-Mount Package  
01146833  
Side View  
Order Number LM2577S-12, LM2577S-15,  
or LM2577S-ADJ  
01146832  
See NS Package Number TS5B  
Top View  
4-Lead TO-3 (K)  
01146808  
Bottom View  
Order Number LM1577K-12/883, LM1577K-15/883,  
or LM1577K-ADJ/883  
See NS Package Number K04A  
www.national.com  
2
Ordering Information  
Temperature  
Range  
Package  
Type  
Output Voltage  
15V  
NSC  
Package  
Drawing  
M24B  
12V  
ADJ  
Package  
−40˚C TA +125˚C  
24-Pin Surface  
Mount  
LM2577M-12  
LM2577M-15  
LM2577M-ADJ  
SO  
16-Pin Molded DIP  
5-Lead Surface  
Mount  
LM2577N-12  
LM2577S-12  
LM2577N-15  
LM2577S-15  
LM2577N-ADJ  
LM2577S-ADJ  
N16A  
TS5B  
N
TO-263  
5-Straight Leads  
5-Bent Staggered  
Leads  
LM2577T-12  
LM2577T-12  
Flow LB03  
LM2577T-15  
LM2577T-15  
Flow LB03  
LM2577T-ADJ  
LM2577T-ADJ  
Flow LB03  
LM1577K-  
T05A  
T05D  
TO-220  
TO-220  
−55˚C TA +150˚C  
4-Pin TO-3  
LM1577K-12/883LM1577K-15/883  
K04A  
TO-3  
ADJ/883  
Typical Application  
01146801  
Note: Pin numbers shown are for TO-220 (T) package.  
3
www.national.com  
Absolute Maximum Ratings (Note 1)  
Minimum ESD Rating  
(C = 100 pF, R = 1.5 k)  
2 kV  
If Military/Aerospace specified devices are required,  
please contact the National Semiconductor Sales Office/  
Distributors for availability and specifications.  
Operating Ratings  
Supply Voltage  
Supply Voltage  
45V  
65V  
3.5V VIN 40V  
0V VSWITCH 60V  
ISWITCH 3.0A  
Output Switch Voltage  
Output Switch Current (Note 2)  
Power Dissipation  
Output Switch Voltage  
Output Switch Current  
Junction Temperature Range  
LM1577  
6.0A  
Internally Limited  
−65˚C to +150˚C  
Storage Temperature Range  
Lead Temperature  
−55˚C TJ +150˚C  
−40˚C TJ +125˚C  
LM2577  
(Soldering, 10 sec.)  
260˚C  
150˚C  
Maximum Junction Temperature  
Electrical Characteristics—LM1577-12, LM2577-12  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 5V, and ISWITCH = 0.  
LM1577-12 LM2577-12  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Limit  
(Limits)  
(Notes 3, 4)  
(Note 5)  
SYSTEM PARAMETERS Circuit of Figure 1 (Note 6)  
VOUT  
Output Voltage  
VIN = 5V to 10V  
12.0  
V
ILOAD = 100 mA to 800 mA  
(Note 3)  
11.60/11.40 11.60/11.40  
12.40/12.60 12.40/12.60  
V(min)  
V(max)  
mV  
Line Regulation  
Load Regulation  
Efficiency  
VIN = 3.5V to 10V  
20  
20  
ILOAD = 300 mA  
50/100  
50/100  
50/100  
50/100  
mV(max)  
mV  
VIN = 5V  
ILOAD = 100 mA to 800 mA  
VIN = 5V, ILOAD = 800 mA  
mV(max)  
%
η
80  
7.5  
25  
DEVICE PARAMETERS  
IS  
Input Supply Current  
VFEEDBACK = 14V (Switch Off)  
mA  
mA(max)  
mA  
10.0/14.0  
50/85  
10.0/14.0  
50/85  
ISWITCH = 2.0A  
VCOMP = 2.0V (Max Duty Cycle)  
ISWITCH = 100 mA  
mA(max)  
V
VUV  
Input Supply  
2.90  
Undervoltage Lockout  
2.70/2.65  
3.10/3.15  
2.70/2.65  
3.10/3.15  
V(min)  
V(max)  
kHz  
fO  
Oscillator Frequency  
Measured at Switch Pin  
ISWITCH = 100 mA  
52  
48/42  
56/62  
48/42  
56/62  
kHz(min)  
kHz(max)  
V
VREF  
Output Reference  
Voltage  
Measured at Feedback Pin  
VIN = 3.5V to 40V  
VCOMP = 1.0V  
12  
7
11.76/11.64 11.76/11.64  
12.24/12.36 12.24/12.36  
V(min)  
V(max)  
Output Reference  
VIN = 3.5V to 40V  
mV  
Voltage Line Regulator  
RFB  
GM  
Feedback Pin Input  
Resistance  
9.7  
kΩ  
Error Amp  
ICOMP = −30 µA to +30 µA  
VCOMP = 1.0V  
370  
µmho  
Transconductance  
225/145  
515/615  
225/145  
515/615  
µmho(min)  
µmho(max)  
www.national.com  
4
Electrical Characteristics—LM1577-12, LM2577-12 (Continued)  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 5V, and ISWITCH = 0.  
LM1577-12 LM2577-12  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Limit  
(Limits)  
(Notes 3, 4)  
(Note 5)  
DEVICE PARAMETERS  
AVOL  
Error Amp  
VCOMP = 1.1V to 1.9V  
RCOMP = 1.0 MΩ  
(Note 7)  
80  
V/V  
Voltage Gain  
50/25  
50/25  
V/V(min)  
Error Amplifier  
Output Swing  
Upper Limit  
2.4  
0.3  
200  
V
V(min)  
V
VFEEDBACK = 10.0V  
Lower Limit  
2.2/2.0  
2.2/2.0  
VFEEDBACK = 15.0V  
VFEEDBACK = 10.0V to 15.0V  
VCOMP = 1.0V  
0.40/0.55  
0.40/0.55  
V(max)  
µA  
Error Amplifier  
Output Current  
130/ 90  
130/ 90  
µA(min)  
µA(max)  
µA  
300/ 400  
300/ 400  
ISS  
Soft Start Current  
VFEEDBACK = 10.0V  
VCOMP = 0V  
5.0  
2.5/1.5  
7.5/9.5  
2.5/1.5  
7.5/9.5  
µA(min)  
µA(max)  
%
D
Maximum Duty Cycle  
VCOMP = 1.5V  
95  
ISWITCH = 100 mA  
93/90  
93/90  
%(min)  
A/V  
Switch  
12.5  
Transconductance  
IL  
Switch Leakage  
Current  
VSWITCH = 65V  
10  
0.5  
4.5  
µA  
µA(max)  
V
VFEEDBACK = 15V (Switch Off)  
ISWITCH = 2.0A  
300/600  
0.7/0.9  
300/600  
0.7/0.9  
VSAT  
Switch Saturation  
Voltage  
VCOMP = 2.0V (Max Duty Cycle)  
V(max)  
A
NPN Switch  
Current Limit  
3.7/3.0  
5.3/6.0  
3.7/3.0  
5.3/6.0  
A(min)  
A(max)  
Electrical Characteristics—LM1577-15, LM2577-15  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 5V, and ISWITCH = 0.  
LM1577-15 LM2577-15  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Limit  
(Limits)  
(Notes 3, 4)  
(Note 5)  
SYSTEM PARAMETERS Circuit of Figure 2 (Note 6)  
VOUT  
Output Voltage  
VIN = 5V to 12V  
15.0  
V
ILOAD = 100 mA to 600 mA  
(Note 3)  
14.50/14.25 14.50/14.25  
15.50/15.75 15.50/15.75  
V(min)  
V(max)  
mV  
Line Regulation  
Load Regulation  
Efficiency  
VIN = 3.5V to 12V  
20  
20  
80  
50/100  
50/100  
50/100  
50/100  
ILOAD = 300 mA  
mV(max)  
mV  
VIN = 5V  
ILOAD = 100 mA to 600 mA  
VIN = 5V, ILOAD = 600 mA  
mV(max)  
%
η
5
www.national.com  
Electrical Characteristics—LM1577-15, LM2577-15 (Continued)  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 5V, and ISWITCH = 0.  
LM1577-15 LM2577-15  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Limit  
(Limits)  
(Notes 3, 4)  
(Note 5)  
DEVICE PARAMETERS  
IS  
Input Supply Current  
VFEEDBACK = 18.0V  
(Switch Off)  
7.5  
25  
mA  
10.0/14.0  
50/85  
10.0/14.0  
50/85  
mA(max)  
mA  
ISWITCH = 2.0A  
VCOMP = 2.0V  
mA(max)  
(Max Duty Cycle)  
ISWITCH = 100 mA  
VUV  
Input Supply  
Undervoltage  
Lockout  
2.90  
52  
V
V(min)  
V(max)  
kHz  
2.70/2.65  
3.10/3.15  
2.70/2.65  
3.10/3.15  
fO  
Oscillator Frequency  
Measured at Switch Pin  
ISWITCH = 100 mA  
48/42  
56/62  
48/42  
56/62  
kHz(min)  
kHz(max)  
V
VREF  
Output Reference  
Voltage  
Measured at Feedback Pin  
VIN = 3.5V to 40V  
VCOMP = 1.0V  
15  
10  
14.70/14.55 14.70/14.55  
15.30/15.45 15.30/15.45  
V(min)  
V(max)  
mV  
Output Reference  
VIN = 3.5V to 40V  
Voltage Line Regulation  
RFB  
GM  
Feedback Pin Input  
Voltage Line Regulator  
Error Amp  
12.2  
300  
kΩ  
ICOMP = −30 µA to +30 µA  
VCOMP = 1.0V  
µmho  
µmho(min)  
µmho(max)  
V/V  
Transconductance  
170/110  
420/500  
170/110  
420/500  
AVOL  
Error Amp  
VCOMP = 1.1V to 1.9V  
RCOMP = 1.0 MΩ  
(Note 7)  
65  
Voltage Gain  
40/20  
40/20  
V/V(min)  
Error Amplifier  
Output Swing  
Upper Limit  
2.4  
0.3  
200  
V
V(min)  
V
VFEEDBACK = 12.0V  
Lower Limit  
2.2/2.0  
2.2/2.0  
VFEEDBACK = 18.0V  
VFEEDBACK = 12.0V to 18.0V  
VCOMP = 1.0V  
0.4/0.55  
0.40/0.55  
V(max)  
µA  
Error Amp  
Output Current  
130/ 90  
130/ 90  
µA(min)  
µA(max)  
µA  
300/ 400  
300/ 400  
ISS  
Soft Start Current  
VFEEDBACK = 12.0V  
VCOMP = 0V  
5.0  
2.5/1.5  
7.5/9.5  
2.5/1.5  
7.5/9.5  
µA(min)  
µA(max)  
%
D
Maximum Duty  
Cycle  
VCOMP = 1.5V  
95  
ISWITCH = 100 mA  
93/90  
93/90  
%(min)  
A/V  
Switch  
12.5  
Transconductance  
IL  
Switch Leakage  
Current  
VSWITCH = 65V  
VFEEDBACK = 18.0V  
(Switch Off)  
10  
µA  
300/600  
0.7/0.9  
300/600  
0.7/0.9  
µA(max)  
VSAT  
Switch Saturation  
Voltage  
ISWITCH = 2.0A  
VCOMP = 2.0V  
(Max Duty Cycle)  
0.5  
V
V(max)  
www.national.com  
6
Electrical Characteristics—LM1577-15, LM2577-15 (Continued)  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 5V, and ISWITCH = 0.  
LM1577-15 LM2577-15  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Limit  
(Limits)  
(Notes 3, 4)  
(Note 5)  
DEVICE PARAMETERS  
NPN Switch  
Current Limit  
VCOMP = 2.0V  
4.3  
A
3.7/3.0  
5.3/6.0  
3.7/3.0  
5.3/6.0  
A(min)  
A(max)  
Electrical Characteristics—LM1577-ADJ, LM2577-ADJ  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 5V, VFEEDBACK = VREF, and ISWITCH = 0.  
LM1577-ADJ LM2577-ADJ  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Limit  
(Limits)  
(Notes 3, 4)  
(Note 5)  
SYSTEM PARAMETERS Circuit of Figure 3 (Note 6)  
VOUT  
Output Voltage  
VIN = 5V to 10V  
12.0  
V
V(min)  
V(max)  
mV  
ILOAD = 100 mA to 800 mA  
(Note 3)  
11.60/11.40  
12.40/12.60  
11.60/11.40  
12.40/12.60  
VOUT  
VIN  
/
/
Line Regulation  
Load Regulation  
Efficiency  
VIN = 3.5V to 10V  
ILOAD = 300 mA  
20  
20  
50/100  
50/100  
50/100  
50/100  
mV(max)  
mV  
VOUT  
VIN = 5V  
ILOAD  
ILOAD = 100 mA to 800 mA  
VIN = 5V, ILOAD = 800 mA  
mV(max)  
%
η
80  
DEVICE PARAMETERS  
IS  
Input Supply Current  
VFEEDBACK = 1.5V (Switch Off)  
7.5  
25  
mA  
mA(max)  
mA  
10.0/14.0  
50/85  
10.0/14.0  
50/85  
ISWITCH = 2.0A  
VCOMP = 2.0V (Max Duty Cycle)  
ISWITCH = 100 mA  
mA(max)  
V
VUV  
Input Supply  
2.90  
Undervoltage Lockout  
2.70/2.65  
3.10/3.15  
2.70/2.65  
3.10/3.15  
V(min)  
V(max)  
kHz  
fO  
Oscillator Frequency  
Measured at Switch Pin  
ISWITCH = 100 mA  
52  
48/42  
56/62  
48/42  
56/62  
kHz(min)  
kHz(max)  
V
VREF  
Reference  
Voltage  
Measured at Feedback Pin  
VIN = 3.5V to 40V  
VCOMP = 1.0V  
1.230  
0.5  
1.214/1.206  
1.246/1.254  
1.214/1.206  
1.246/1.254  
V(min)  
V(max)  
mV  
VREF  
VIN  
IB  
/
Reference Voltage  
Line Regulation  
Error Amp  
VIN = 3.5V to 40V  
VCOMP = 1.0V  
100  
nA  
Input Bias Current  
Error Amp  
300/800  
300/800  
nA(max)  
µmho  
GM  
ICOMP = −30 µA to +30 µA  
VCOMP = 1.0V  
3700  
Transconductance  
2400/1600  
4800/5800  
2400/1600  
4800/5800  
µmho(min)  
µmho(max)  
V/V  
AVOL  
Error Amp  
VCOMP = 1.1V to 1.9V  
800  
Voltage Gain  
RCOMP = 1.0 M(Note 7)  
500/250  
500/250  
V/V(min)  
7
www.national.com  
Electrical Characteristics—LM1577-ADJ, LM2577-ADJ (Continued)  
Specifications with standard type face are for TJ = 25˚C, and those in bold type face apply over full Operating Temperature  
Range. Unless otherwise specified, VIN = 5V, VFEEDBACK = VREF, and ISWITCH = 0.  
LM1577-ADJ LM2577-ADJ  
Units  
Symbol  
Parameter  
Conditions  
Typical  
Limit  
Limit  
(Limits)  
(Notes 3, 4)  
(Note 5)  
DEVICE PARAMETERS  
Error Amplifier  
Upper Limit  
2.4  
0.3  
200  
V
V(min)  
V
Output Swing  
VFEEDBACK = 1.0V  
Lower Limit  
2.2/2.0  
2.2/2.0  
VFEEDBACK = 1.5V  
VFEEDBACK = 1.0V to 1.5V  
VCOMP = 1.0V  
0.40/0.55  
0.40/0.55  
V(max)  
µA  
Error Amp  
Output Current  
130/ 90  
130/ 90  
µA(min)  
µA(max)  
µA  
300/ 400  
300/ 400  
ISS  
Soft Start Current  
VFEEDBACK = 1.0V  
VCOMP = 0V  
5.0  
2.5/1.5  
7.5/9.5  
2.5/1.5  
7.5/9.5  
µA(min)  
µA(max)  
%
D
Maximum Duty Cycle  
VCOMP = 1.5V  
95  
12.5  
10  
ISWITCH = 100 mA  
93/90  
93/90  
%(min)  
A/V  
ISWITCH  
VCOMP  
IL  
/
Switch  
Transconductance  
Switch Leakage  
Current  
VSWITCH = 65V  
µA  
µA(max)  
V
VFEEDBACK = 1.5V (Switch Off)  
ISWITCH = 2.0A  
300/600  
0.7/0.9  
300/600  
0.7/0.9  
VSAT  
Switch Saturation  
Voltage  
0.5  
4.3  
VCOMP = 2.0V (Max Duty Cycle)  
VCOMP = 2.0V  
V(max)  
A
NPN Switch  
Current Limit  
3.7/3.0  
5.3/6.0  
3.7/3.0  
5.3/6.0  
A(min)  
A(max)  
THERMAL PARAMETERS (All Versions)  
θJA  
θJC  
θJA  
θJC  
θJA  
Thermal Resistance  
K Package, Junction to Ambient  
K Package, Junction to Case  
T Package, Junction to Ambient  
T Package, Junction to Case  
N Package, Junction to  
Ambient (Note 8)  
35  
1.5  
65  
2
85  
˚C/W  
θJA  
θJA  
M Package, Junction  
100  
37  
to Ambient (Note 8)  
S Package, Junction to  
Ambient (Note 9)  
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate conditions the device is intended to  
be functional, but device parameter specifications may not be guaranteed under these conditions. For guaranteed specifications and test conditions, see the  
Electrical Characteristics.  
Note 2: Due to timing considerations of the LM1577/LM2577 current limit circuit, output current cannot be internally limited when the LM1577/LM2577 is used as  
a step-up regulator. To prevent damage to the switch, its current must be externally limited to 6.0A. However, output current is internally limited when the  
LM1577/LM2577 is used as a flyback or forward converter regulator in accordance to the Application Hints.  
Note 3: All limits guaranteed at room temperature (standard type face) and at temperature extremes (boldface type). All limits are used to calculate Outgoing Quality  
Level, and are 100% production tested.  
Note 4: A military RETS electrical test specification is available on request. At the time of printing, the LM1577K-12/883, LM1577K-15/883, and LM1577K-ADJ/883  
RETS specifications complied fully with the boldface limits in these columns. The LM1577K-12/883, LM1577K-15/883, and LM1577K-ADJ/883 may also be procured  
to Standard Military Drawing specifications.  
Note 5: All limits guaranteed at room temperature (standard type face) and at temperature extremes (boldface type). All room temperature limits are 100%  
production tested. All limits at temperature extremes are guaranteed via correlation using standard Statistical Quality Control (SQC) methods.  
Note 6: External components such as the diode, inductor, input and output capacitors can affect switching regulator performance. When the LM1577/LM2577 is  
used as shown in the Test Circuit, system performance will be as specified by the system parameters.  
Note 7: A 1.0 Mresistor is connected to the compensation pin (which is the error amplifier’s output) to ensure accuracy in measuring A  
. In actual applications,  
VOL  
this pin’s load resistance should be 10 M, resulting in A  
that is typically twice the guaranteed minimum limit.  
VOL  
www.national.com  
8
Electrical Characteristics—LM1577-ADJ, LM2577-ADJ (Continued)  
Note 8: Junction to ambient thermal resistance with approximately 1 square inch of pc board copper surrounding the leads. Additional copper area will lower thermal  
resistance further. See thermal model in “Switchers Made Simple” software.  
Note 9: If the TO-263 package is used, the thermal resistance can be reduced by increasing the PC board copper area thermally connected to the package. Using  
0.5 square inches of copper area, θ is 50˚C/W; with 1 square inch of copper area, θ is 37˚C/W; and with 1.6 or more square inches of copper area, θ is 32˚C/W.  
JA  
JA  
JA  
Typical Performance Characteristics  
Reference Voltage  
vs Temperature  
Reference Voltage  
vs Temperature  
01146834  
01146835  
01146837  
01146839  
Reference Voltage  
vs Temperature  
Reference Voltage  
vs Supply Voltage  
01146836  
Reference Voltage  
vs Supply Voltage  
Reference Voltage  
vs Supply Voltage  
01146838  
9
www.national.com  
Typical Performance Characteristics (Continued)  
Error Amp Transconductance  
vs Temperature  
Error Amp Transconductance  
vs Temperature  
01146840  
01146841  
Error Amp Transconductance  
vs Temperature  
Error Amp Voltage  
Gain vs Temperature  
01146843  
01146842  
Error Amp Voltage  
Error Amp Voltage  
Gain vs Temperature  
Gain vs Temperature  
01146844  
01146845  
www.national.com  
10  
Typical Performance Characteristics (Continued)  
Quiescent Current  
vs Temperature  
Quiescent Current  
vs Switch Current  
01146846  
01146847  
01146849  
01146851  
Current Limit  
vs Temperature  
Current Limit Response  
Time vs Overdrive  
01146848  
Switch Saturation Voltage  
vs Switch Current  
Switch Transconductance  
vs Temperature  
01146850  
11  
www.national.com  
Typical Performance Characteristics (Continued)  
Feedback Pin Bias  
Current vs Temperature  
Oscillator Frequency  
vs Temperature  
01146852  
01146853  
Maximum Power Dissipation  
(TO-263) (Note 9)  
01146831  
www.national.com  
12  
LM1577-12, LM2577-12 Test Circuit  
01146830  
L = 415-0930 (AIE)  
D = any manufacturer  
C
OUT  
= Sprague Type 673D  
Electrolytic 680 µF, 20V  
Note: Pin numbers shown are for TO-220 (T) package  
FIGURE 1. Circuit Used to Specify System Parameters for 12V Versions  
LM1577-15, LM2577-15 Test Circuit  
01146826  
L = 415-0930 (AIE)  
D = any manufacturer  
C
OUT  
= Sprague Type 673D  
Electrolytic 680 µF, 20V  
Note: Pin numbers shown are for TO-220 (T) package  
FIGURE 2. Circuit Used to Specify System Parameters for 15V Versions  
13  
www.national.com  
LM1577-ADJ, LM2577-ADJ Test Circuit  
01146809  
L = 415-0930 (AIE)  
D = any manufacturer  
C
OUT  
= Sprague Type 673D  
Electrolytic 680 µF, 20V  
R1 = 48.7k in series with 511(1%)  
R2 = 5.62k (1%)  
Note: Pin numbers shown are for TO-220 (T) package  
FIGURE 3. Circuit Used to Specify System Parameters for ADJ Versions  
Application Hints  
01146810  
Note: Pin numbers shown are for TO-220 (T) package  
*Resistors are internal to LM1577/LM2577 for 12V and 15V versions.  
FIGURE 4. LM1577/LM2577 Block Diagram and Boost Regulator Application  
www.national.com  
14  
Application Hints (Continued)  
STEP-UP (BOOST) REGULATOR  
Duty Cycle  
D
Figure 4 shows the LM1577-ADJ/LM2577-ADJ used as a  
Step-Up Regulator. This is a switching regulator used for  
producing an output voltage greater than the input supply  
voltage. The LM1577-12/LM2577-12 and LM1577-15/  
LM2577-15 can also be used for step-up regulators with 12V  
or 15V outputs (respectively), by tying the feedback pin  
directly to the regulator output.  
Average  
Inductor  
IIND(AVE)  
Current  
Inductor  
IIND  
Current Ripple  
Peak Inductor  
Current  
A basic explanation of how it works is as follows. The  
LM1577/LM2577 turns its output switch on and off at a  
frequency of 52 kHz, and this creates energy in the inductor  
(L). When the NPN switch turns on, the inductor current  
charges up at a rate of VIN/L, storing current in the inductor.  
When the switch turns off, the lower end of the inductor flies  
above VIN, discharging its current through diode (D) into the  
output capacitor (COUT) at a rate of (VOUT − VIN)/L. Thus,  
energy stored in the inductor during the switch on time is  
transferred to the output during the switch off time. The  
output voltage is controlled by the amount of energy trans-  
ferred which, in turn, is controlled by modulating the peak  
inductor current. This is done by feeding back a portion of  
the output voltage to the error amp, which amplifies the  
difference between the feedback voltage and a 1.230V ref-  
erence. The error amp output voltage is compared to a  
voltage proportional to the switch current (i.e., inductor cur-  
rent during the switch on time).  
IIND(PK)  
Peak Switch  
Current  
ISW(PK)  
Switch  
Voltage When VSW(OFF)  
VOUT + VF  
Off  
Diode  
Reverse  
VR  
VOUT − VSAT  
Voltage  
Average  
ID(AVE)  
ID(PK)  
ILOAD  
Diode Current  
Peak Diode  
Current  
Power  
The comparator terminates the switch on time when the two  
voltages are equal, thereby controlling the peak switch cur-  
rent to maintain a constant output voltage.  
Dissipation of  
LM1577/2577  
PD  
V
= Forward Biased Diode Voltage  
F
Voltage and current waveforms for this circuit are shown in  
Figure 5, and formulas for calculating them are given in  
Figure 6.  
I
= Output Load Current  
LOAD  
FIGURE 6. Step-Up Regulator Formulas  
STEP-UP REGULATOR DESIGN PROCEDURE  
The following design procedure can be used to select the  
appropriate external components for the circuit in Figure 4,  
based on these system requirements.  
Given:  
VIN (min) = Minimum input supply voltage  
VOUT = Regulated output voltage  
ILOAD(max) = Maximum output load current  
Before proceeding any further, determine if the LM1577/  
LM2577 can provide these values of VOUT and ILOAD(max)  
when operating with the minimum value of VIN. The upper  
limits for VOUT and ILOAD(max) are given by the following  
equations.  
VOUT 60V  
01146811  
and VOUT 10 x VIN(min)  
FIGURE 5. Step-Up Regulator Waveforms  
These limits must be greater than or equal to the values  
specified in this application.  
1. Inductor Selection (L)  
A. Voltage Options:  
1. For 12V or 15V output  
From Figure 7 (for 12V output) or Figure 8 (for 15V  
output), identify inductor code for region indicated by  
VIN (min) and ILOAD (max). The shaded region indicates con-  
15  
www.national.com  
1. Find the lowest value inductor that is greater than LMIN  
.
Application Hints (Continued)  
2. Find where ET intersects this inductor value to determine  
if it has an L or H prefix. If ET intersects both the L and H  
regions, select the inductor with an H prefix.  
ditions for which the LM1577/LM2577 output switch  
would be operating beyond its switch current rating. The  
minimum operating voltage for the LM1577/LM2577 is  
3.5V.  
From here, proceed to step C.  
2. For Adjustable version  
Preliminary calculations:  
The inductor selection is based on the calculation of the  
following three parameters:  
D(max), the maximum switch duty cycle (0 D 0.9):  
where VF = 0.5V for Schottky diodes and 0.8V for fast  
recovery diodes (typically);  
E T, the product of volts x time that charges the inductor:  
01146827  
FIGURE 7. LM2577-12 Inductor Selection Guide  
IIND,DC, the average inductor current under full load;  
B. Identify Inductor Value:  
1. From Figure 9, identify the inductor code for the  
region indicated by the intersection of ET and IIND,DC  
.
This code gives the inductor value in microhenries. The  
L or H prefix signifies whether the inductor is rated for a  
maximum ET of 90 Vµs (L) or 250 Vµs (H).  
<
2. If D 0.85, go on to step C. If D 0.85, then calculate  
the minimum inductance needed to ensure the switching  
regulator’s stability:  
01146828  
FIGURE 8. LM2577-15 Inductor Selection Guide  
If LMIN is smaller than the inductor value found in step B1, go  
on to step C. Otherwise, the inductor value found in step B1  
is too low; an appropriate inductor code should be obtained  
from the graph as follows:  
www.national.com  
16  
Application Hints (Continued)  
01146812  
Note: These charts assume that the inductor ripple current inductor is approximately 20% to 30% of the average inductor current (when the regulator is under  
full load). Greater ripple current causes higher peak switch currents and greater output ripple voltage; lower ripple current is achieved with larger-value  
inductors. The factor of 20 to 30% is chosen as a convenient balance between the two extremes.  
FIGURE 9. LM1577-ADJ/LM2577-ADJ Inductor Selection Graph  
C. Select an inductor from the table of Figure 10 which  
cross-references the inductor codes to the part numbers  
of three different manufacturers. Complete specifications  
for these inductors are available from the respective  
manufacturers. The inductors listed in this table have the  
following characteristics:  
AIE: ferrite, pot-core inductors; Benefits of this type are  
low electro-magnetic interference (EMI), small physical  
size, and very low power dissipation (core loss). Be  
careful not to operate these inductors too far beyond their  
maximum ratings for ET and peak current, as this will  
saturate the core.  
Pulse: powdered iron, toroid core inductors; Benefits are  
low EMI and ability to withstand ET and peak current  
above rated value better than ferrite cores.  
Renco: ferrite, bobbin-core inductors; Benefits are low  
cost and best ability to withstand ET and peak current  
above rated value. Be aware that these inductors gener-  
ate more EMI than the other types, and this may interfere  
with signals sensitive to noise.  
17  
www.national.com  
C. Calculate the minimum value of CC  
.
Application Hints (Continued)  
Inductor  
Code  
L47  
Manufacturer’s Part Number  
Schott  
Pulse  
Renco  
RL2442  
RL2443  
RL2444  
RL1954  
RL1953  
RL1952  
RL1951  
RL1950  
RL2445  
RL2446  
RL2447  
RL1961  
RL1960  
RL1959  
RL1958  
RL2448  
67126980  
67126990  
67127000  
67127010  
67127020  
67127030  
67127040  
67127050  
67127060  
67127070  
67127080  
67127090  
67127100  
67127110  
67127120  
67127130  
PE - 53112  
PE - 92114  
PE - 92108  
PE - 53113  
PE - 52626  
PE - 52627  
PE - 53114  
PE - 52629  
PE - 53115  
PE - 53116  
PE - 53117  
PE - 53118  
PE - 53119  
PE - 53120  
PE - 53121  
PE - 53122  
The compensation capacitor is also part of the soft start  
circuitry. When power to the regulator is turned on, the  
switch duty cycle is allowed to rise at a rate controlled by this  
capacitor (with no control on the duty cycle, it would imme-  
diately rise to 90%, drawing huge currents from the input  
power supply). In order to operate properly, the soft start  
circuit requires CC 0.22 µF.  
The value of the output filter capacitor is normally large  
enough to require the use of aluminum electrolytic capaci-  
tors. Figure 11 lists several different types that are recom-  
mended for switching regulators, and the following param-  
eters are used to select the proper capacitor.  
L68  
L100  
L150  
L220  
L330  
L470  
L680  
H150  
H220  
H330  
H470  
H680  
H1000  
H1500  
H2200  
Working Voltage (WVDC): Choose a capacitor with a work-  
ing voltage at least 20% higher than the regulator output  
voltage.  
Ripple Current: This is the maximum RMS value of current  
that charges the capacitor during each switching cycle. For  
step-up and flyback regulators, the formula for ripple current  
is  
Schott Corp., (612) 475-1173  
1000 Parkers Lake Rd., Wayzata, MN 55391  
Pulse Engineering, (619) 268-2400  
P.O. Box 12235, San Diego, CA 92112  
Renco Electronics Inc., (516) 586-5566  
60 Jeffryn Blvd. East, Deer Park, NY 11729  
Choose a capacitor that is rated at least 50% higher than this  
value at 52 kHz.  
FIGURE 10. Table of Standardized Inductors and  
Manufacturer’s Part Numbers  
Equivalent Series Resistance (ESR) : This is the primary  
cause of output ripple voltage, and it also affects the values  
of RC and CC needed to stabilize the regulator. As a result,  
the preceding calculations for CC and RC are only valid if  
ESR doesn’t exceed the maximum value specified by the  
following equations.  
2. Compensation Network (RC, CC) and Output Capacitor  
(COUT) Selection  
RC and CC form a pole-zero compensation network that  
stabilizes the regulator. The values of RC and CC are mainly  
dependant on the regulator voltage gain, ILOAD(max), L and  
COUT. The following procedure calculates values for RC, CC,  
and COUT that ensure regulator stability. Be aware that this  
procedure doesn’t necessarily result in RC and CC that pro-  
vide optimum compensation. In order to guarantee optimum  
compensation, one of the standard procedures for testing  
loop stability must be used, such as measuring VOUT tran-  
sient response when pulsing ILOAD (see Figure 15).  
Select a capacitor with ESR, at 52 kHz, that is less than or  
equal to the lower value calculated. Most electrolytic capaci-  
tors specify ESR at 120 Hz which is 15% to 30% higher than  
at 52 kHz. Also, be aware that ESR increases by a factor of  
2 when operating at −20˚C.  
A. First, calculate the maximum value for RC.  
In general, low values of ESR are achieved by using large  
value capacitors (C 470 µF), and capacitors with high  
WVDC, or by paralleling smaller-value capacitors.  
Select a resistor less than or equal to this value, and it  
should also be no greater than 3 k.  
B. Calculate the minimum value for COUT using the following  
The larger of these two values is the minimum value that  
ensures stability.  
www.national.com  
18  
Application Hints (Continued)  
3. Output Voltage Selection (R1 and R2)  
If the LM1577 is located far from the supply source filter  
capacitors, an additional large electrolytic capacitor (e.g.  
47 µF) is often required.  
This section is for applications using the LM1577-ADJ/  
LM2577-ADJ. Skip this section if the LM1577-12/LM2577-12  
or LM1577-15/LM2577-15 is being used.  
5. Diode Selection (D)  
The switching diode used in the boost regulator must with-  
stand a reverse voltage equal to the circuit output voltage,  
and must conduct the peak output current of the LM2577. A  
suitable diode must have a minimum reverse breakdown  
voltage greater than the circuit output voltage, and should be  
rated for average and peak current greater than ILOAD(max)  
and ID(PK). Schottky barrier diodes are often favored for use  
in switching regulators. Their low forward voltage drop allows  
higher regulator efficiency than if a (less expensive) fast  
recovery diode was used. See Figure 12 for recommended  
part numbers and voltage ratings of 1A and 3A diodes.  
With the LM1577-ADJ/LM2577-ADJ, the output voltage is  
given by  
VOUT = 1.23V (1 + R1/R2)  
Resistors R1 and R2 divide the output down so it can be  
compared with the LM1577-ADJ/LM2577-ADJ internal  
1.23V reference. For a given desired output voltage VOUT  
,
select R1 and R2 so that  
VOUT  
(max)  
20V  
Schottky  
Fast Recovery  
4. Input Capacitor Selection (CIN  
)
1A  
1N5817  
3A  
1A  
3A  
The switching action in the step-up regulator causes a trian-  
gular ripple current to be drawn from the supply source. This  
in turn causes noise to appear on the supply voltage. For  
proper operation of the LM1577, the input voltage should be  
decoupled. Bypassing the Input Voltage pin directly to  
ground with a good quality, low ESR, 0.1 µF capacitor (leads  
as short as possible) is normally sufficient.  
1N5820  
MBR120P MBR320P  
1N5818 1N5821  
MBR130P MBR330P  
30V  
40V  
11DQ03  
1N5819  
31DQ03  
1N5822  
MBR140P MBR340P  
Cornell Dublier Types 239, 250, 251, UFT,  
300, or 350  
11DQ04  
MBR150  
11DQ05  
31DQ04  
MBR350  
31DQ05  
1N4933  
MUR105  
1N4934  
HER102  
MUR110  
10DL1  
P.O. Box 128, Pickens, SC 29671  
(803) 878-6311  
50V  
Nichicon Types PF, PX, or PZ  
927 East Parkway,  
MR851  
30DL1  
100V  
Schaumburg, IL 60173  
MR831  
HER302  
(708) 843-7500  
Sprague Types 672D, 673D, or 674D  
Box 1, Sprague Road,  
FIGURE 12. Diode Selection Chart  
Lansing, NC 28643  
(919) 384-2551  
BOOST REGULATOR CIRCUIT EXAMPLE  
United Chemi-Con Types LX, SXF, or SXJ  
9801 West Higgins Road,  
Rosemont, IL 60018  
By adding a few external components (as shown in Figure  
13), the LM2577 can be used to produce a regulated output  
voltage that is greater than the applied input voltage. Typical  
performance of this regulator is shown in Figure 14 and  
Figure 15. The switching waveforms observed during the  
operation of this circuit are shown in Figure 16.  
(708) 696-2000  
FIGURE 11. Aluminum Electrolytic Capacitors  
Recommended for Switching Regulators  
19  
www.national.com  
Application Hints (Continued)  
01146813  
Note: Pin numbers shown are for TO-220 (T) package.  
FIGURE 13. Step-up Regulator Delivers 12V from a 5V Input  
01146814  
FIGURE 14. Line Regulation (Typical) of Step-Up Regulator of Figure 13  
01146816  
A: Switch pin voltage, 10 V/div  
01146815  
B: Switch pin current, 2 A/div  
C: Inductor current, 2 A/div  
A: Output Voltage Change, 100 mV/div. (AC-coupled)  
B: Load current, 0.2 A/div  
D: Output ripple voltage, 100 mV/div (AC-coupled)  
Horizontal: 5 µs/div  
Horizontal: 5 ms/div  
FIGURE 15. Load Transient Response of Step-Up  
FIGURE 16. Switching Waveforms of Step-Up  
Regulator of Figure 13  
Regulator of Figure 13  
www.national.com  
20  
A. First, calculate the maximum value for RC.  
Application Hints (Continued)  
FLYBACK REGULATOR  
A Flyback regulator can produce single or multiple output  
voltages that are lower or greater than the input supply  
voltage. Figure 18 shows the LM1577/LM2577 used as a  
flyback regulator with positive and negative regulated out-  
puts. Its operation is similar to a step-up regulator, except the  
output switch contols the primary current of a flyback trans-  
former. Note that the primary and secondary windings are  
out of phase, so no current flows through secondary when  
current flows through the primary. This allows the primary to  
charge up the transformer core when the switch is on. When  
the switch turns off, the core discharges by sending current  
through the secondary, and this produces voltage at the  
outputs. The output voltages are controlled by adjusting the  
peak primary current, as described in the step-up regulator  
section.  
Where ILOAD(max) is the sum of the load current (magni-  
tude) required from both outputs. Select a resistor less than  
or equal to this value, and no greater than 3 k.  
B. Calculate the minimum value for COUT (sum of COUT  
at both outputs) using the following two equations.  
Voltage and current waveforms for this circuit are shown in  
Figure 17, and formulas for calculating them are given in  
Figure 19.  
The larger of these two values must be used to ensure  
regulator stability.  
FLYBACK REGULATOR DESIGN PROCEDURE  
1. Transformer Selection  
A family of standardized flyback transformers is available for  
creating flyback regulators that produce dual output volt-  
ages, from 10V to 15V, as shown in Figure 18. Figure  
20lists these transformers with the input voltage, output  
voltages and maximum load current they are designed for.  
2. Compensation Network (CC, RC) and  
Output Capacitor (COUT) Selection  
As explained in the Step-Up Regulator Design Procedure,  
CC, RC and COUT must be selected as a group. The following  
procedure is for a dual output flyback regulator with equal  
turns ratios for each secondary (i.e., both output voltages  
have the same magnitude). The equations can be used for a  
01146817  
FIGURE 17. Flyback Regulator Waveforms  
single output regulator by changing ILOAD(max) to ILOAD(max)  
in the following equations.  
21  
www.national.com  
Application Hints (Continued)  
01146818  
T1 = Pulse Engineering, PE-65300  
D1, D2 = 1N5821  
FIGURE 18. LM1577-ADJ/LM2577-ADJ Flyback Regulator with Outputs  
www.national.com  
22  
Application Hints (Continued)  
Duty Cycle  
D
Primary Current Variation  
Peak Primary Current  
Switch Voltage when Off  
IP  
IP(PK)  
VSW(OFF)  
+
Diode Reverse Voltage  
Average Diode Current  
Peak Diode Current  
VR  
VOUT N (VIN VSAT  
)
ID(AVE)  
ILOAD  
ID(PK)  
Short Circuit Diode Current  
Power Dissipation of  
LM1577/LM2577  
PD  
01146878  
FIGURE 19. Flyback Regulator Formulas  
C. Calculate the minimum value of CC  
VOUT = 1.23V (1 + R1/R2)  
Resistors R1 and R2 divide the output voltage down so it can  
be compared with the LM1577-ADJ/LM2577-ADJ internal  
1.23V reference. For a desired output voltage VOUT, select  
R1 and R2 so that  
D. Calculate the maximum ESR of the +VOUT and −VOUT  
output capacitors in parallel.  
4. Diode Selection  
The switching diode in a flyback converter must withstand  
the reverse voltage specified by the following equation.  
This formula can also be used to calculate the maximum  
ESR of a single output regulator.  
At this point, refer to this same section in the Step-Up  
Regulator Design Procedurefor more information regard-  
ing the selection of COUT  
.
A suitable diode must have a reverse voltage rating greater  
than this. In addition it must be rated for more than the  
average and peak diode currents listed in Figure 19.  
3. Output Voltage Selection  
This section is for applications using the LM1577-ADJ/  
LM2577-ADJ. Skip this section if the LM1577-12/LM2577-12  
or LM1577-15/LM2577-15 is being used.  
5. Input Capacitor Selection  
The primary of a flyback transformer draws discontinuous  
pulses of current from the input supply. As a result, a flyback  
regulator generates more noise at the input supply than a  
With the LM1577-ADJ/LM2577-ADJ, the output voltage is  
given by  
23  
www.national.com  
ber consists of a fast recovery diode, and a parallel RC. The  
RC values are selected for switch clamp voltage (VCLAMP  
Application Hints (Continued)  
)
step-up regulator, and this requires a larger bypass capacitor  
to decouple the LM1577/LM2577 VIN pin from this noise. For  
most applications, a low ESR, 1.0 µF cap will be sufficient, if  
it is connected very close to the VIN and Ground pins.  
that is 5V to 10V greater than VSW(OFF). Use the following  
equations to calculate R and C;  
Transformer  
Type  
Input  
Dual  
Output  
Voltage  
10V  
Maximum  
Output  
Current  
325 mA  
275 mA  
225 mA  
700 mA  
575 mA  
500 mA  
800 mA  
700 mA  
575 mA  
900 mA  
825 mA  
700 mA  
Voltage  
LP = 100 µH  
N = 1  
5V  
1
2
3
5V  
12V  
Power dissipation (and power rating) of the resistor is;  
The fast recovery diode must have a reverse voltage rating  
5V  
15V  
10V  
10V  
10V  
12V  
12V  
12V  
15V  
15V  
15V  
10V  
12V  
LP = 200 µH  
N = 0.5  
15V  
10V  
greater than VCLAMP  
.
12V  
15V  
LP = 250 µH  
N = 0.5  
10V  
12V  
15V  
Transformer  
Manufacturers’ Part Numbers  
Type  
AIE  
Pulse  
Renco  
RL-2580  
RL-2581  
RL-2582  
1
2
3
326-0637  
330-0202  
330-0203  
PE-65300  
PE-65301  
PE-65302  
FIGURE 20. Flyback Transformer Selection Guide  
In addition to this bypass cap, a larger capacitor (47 µF)  
should be used where the flyback transformer connects to  
the input supply. This will attenuate noise which may inter-  
fere with other circuits connected to the same input supply  
voltage.  
01146819  
FIGURE 21. Snubber Circuit  
FLYBACK REGULATOR CIRCUIT EXAMPLE  
6. Snubber Circuit  
The circuit of Figure 22 produces 15V (at 225 mA each)  
from a single 5V input. The output regulation of this circuit is  
shown in Figure 23 and Figure 25, while the load transient  
response is shown in Figure 24 and Figure 26. Switching  
waveforms seen in this circuit are shown in Figure 27.  
A “snubber” circuit is required when operating from input  
voltages greater than 10V, or when using a transformer with  
LP 200 µH. This circuit clamps a voltage spike from the  
transformer primary that occurs immediately after the output  
switch turns off. Without it, the switch voltage may exceed  
the 65V maximum rating. As shown in Figure 21, the snub-  
www.national.com  
24  
Application Hints (Continued)  
01146820  
T1 = Pulse Engineering, PE-65300  
D1, D2 = 1N5821  
FIGURE 22. Flyback Regulator Easily Provides Dual Outputs  
01146823  
A: Output Voltage Change, 100 mV/div  
B: Output Current, 100 mA/div  
Horizontal: 10 ms/div  
01146821  
FIGURE 23. Line Regulation (Typical) of Flyback  
FIGURE 24. Load Transient Response of Flyback  
Regulator of Figure 22, +15V Output  
Regulator of Figure 22, +15V Output  
25  
www.national.com  
Application Hints (Continued)  
01146824  
A: Output Voltage Change, 100 mV/div  
B: Output Current, 100 mA/div  
Horizontal: 10 ms/div  
FIGURE 26. Load Transient Response of Flyback  
01146822  
Regulator of Figure 22, −15V Output  
FIGURE 25. Line Regulation (Typical) of Flyback  
Regulator of Figure 22, −15V Output  
01146825  
A: Switch pin voltage, 20 V/div  
B: Primary current, 2 A/div  
C: +15V Secondary current, 1 A/div  
D: +15V Output ripple voltage, 100 mV/div  
Horizontal: 5 µs/div  
FIGURE 27. Switching Waveforms of Flyback Regulator of Figure 22, Each Output Loaded with 60Ω  
www.national.com  
26  
Physical Dimensions inches (millimeters)  
unless otherwise noted  
TO-3 Metal Can Package (K)  
Order Number LM1577K-12/883, LM1577K-15/883, or LM1577K-ADJ/883  
NS Package Number K04A  
0.300 Wide SO Package (M)  
Order Number LM2577M-12, LM2577M-15 or LM2577M-ADJ  
NS Package Number M24B  
27  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
Molded Dual-In-Line Package (N)  
Order Number LM2577N-12, LM2577N-15, or LM2577N-ADJ  
NS Package Number N16A  
TO-220, Straight Leads (T)  
Order Number LM2577T-12, LM2577T-15, or LM2577T-ADJ  
NS Package Number TO5A  
www.national.com  
28  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
TO-220, Bent Staggered Leads (T)  
Order Number LM2577T-12 Flow LB03, LM2577T-15 Flow LB03, or LM2577T-ADJ Flow LB03  
NS Package Number T05D  
29  
www.national.com  
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)  
5-Lead TO-263 (S)  
Order Number LM2577S-12, LM2577S-15 or LM2577S-ADJ  
NS Package Number TS5B  
National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves  
the right at any time without notice to change said circuitry and specifications.  
For the most current product information visit us at www.national.com.  
LIFE SUPPORT POLICY  
NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS  
WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR  
CORPORATION. As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body, or  
(b) support or sustain life, and whose failure to perform when  
properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to result  
in a significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be reasonably  
expected to cause the failure of the life support device or  
system, or to affect its safety or effectiveness.  
BANNED SUBSTANCE COMPLIANCE  
National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products  
Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain  
no ‘‘Banned Substances’’ as defined in CSP-9-111S2.  
National Semiconductor  
Americas Customer  
Support Center  
National Semiconductor  
Europe Customer Support Center  
Fax: +49 (0) 180-530 85 86  
National Semiconductor  
Asia Pacific Customer  
Support Center  
National Semiconductor  
Japan Customer Support Center  
Fax: 81-3-5639-7507  
Email: new.feedback@nsc.com  
Tel: 1-800-272-9959  
Email: europe.support@nsc.com  
Deutsch Tel: +49 (0) 69 9508 6208  
English Tel: +44 (0) 870 24 0 2171  
Français Tel: +33 (0) 1 41 91 8790  
Email: ap.support@nsc.com  
Email: jpn.feedback@nsc.com  
www.national.com  
Tel: 81-3-5639-7560  

相关型号:

LM2577MX-ADJ

Current-Mode SMPS Controller
ETC

LM2577N-12

SIMPLE SWITCHER Step-Up Voltage Regulator
NSC

LM2577N-15

SIMPLE SWITCHER Step-Up Voltage Regulator
NSC

LM2577N-15/NOPB

IC,SMPS CONTROLLER,CURRENT-MODE,BIPOLAR,DIP,16PIN,PLASTIC
TI

LM2577N-ADJ

SIMPLE SWITCHER Step-Up Voltage Regulator
NSC

LM2577N-ADJ

SIMPLE SWITCHER® Step-Up Voltage Regulator
TI

LM2577N-ADJ/NOPB

SIMPLE SWITCHER® Step-Up Voltage Regulator
TI

LM2577S

SIMPLE SWITCHER® Step-Up Voltage Regulator
TI

LM2577S-12

SIMPLE SWITCHER Step-Up Voltage Regulator
NSC

LM2577S-12

SIMPLE SWITCHER® Step-Up Voltage Regulator
TI

LM2577S-12/NOPB

SIMPLE SWITCHER® Step-Up Voltage Regulator
TI

LM2577S-12X

暂无描述
NSC