LM26LV-Q1 [TI]

汽车级、±3°C、1.6V-5.5V、出厂预设跳变点温度开关;
LM26LV-Q1
型号: LM26LV-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车级、±3°C、1.6V-5.5V、出厂预设跳变点温度开关

开关
文件: 总36页 (文件大小:1390K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
LM26LV and LM26LV-Q1 1.6-V, WSON-6 Factory Preset Temperature Switch and  
Temperature Sensor  
1 Features  
3 Description  
The LM26LV and LM26LV-Q1 are low-voltage,  
precision, dual-output, low-power temperature  
switches and temperature sensors. The temperature  
trip point (TTRIP) can be preset at the factory to any  
temperature in the range of 0°C to 150°C in 1°C  
1
Low 1.6-V Operation  
Low Quiescent Current  
Latching Function: Device Can Latch the Over  
Temperature Condition  
increments. Built-in temperature hysteresis (THYST  
keeps the output stable in an environment of  
temperature instability.  
)
Push-Pull and Open-Drain Temperature Switch  
Outputs  
Wide Trip Point Range of 0°C to 150°C  
In normal operation the LM26LV or LM26LV-Q1  
temperature switch outputs assert when the die  
temperature exceeds TTRIP. The temperature switch  
outputs will reset when the temperature falls below a  
Very Linear Analog VTEMP Temperature Sensor  
Output  
VTEMP Output Short-Circuit Protected  
temperature equal to (TTRIP  
THYST). The  
Accurate Over –50°C to 150°C Temperature  
Range  
OVERTEMP digital output, is active-high with a push-  
pull structure, while the OVERTEMP digital output, is  
active-low with an open-drain structure.  
Excellent Power Supply Noise Rejection  
LM26LVQISD-130 and LM26LVQISD-135 are  
AEC-Q100 Qualified and are Manufactured on an  
Automotive Grade Flow:  
The analog output, VTEMP, delivers an analog output  
voltage with Negative Temperature Coefficient (NTC).  
Driving the TRIP_TEST input high causes the digital  
outputs to be asserted for in-situ verification and  
causes the threshold voltage to appear at the VTEMP  
output pin, which could be used to verify the  
temperature trip point.  
Device Temperature Grade 0: –40°C to 150°C  
Ambient Operating Temperature Range  
Device HBM ESD Classification Level 3 A  
Device CDM ESD Classification Level C6  
Device MM ESD Classification Level M3  
The LM26LV's and LM26LV-Q1's low minimum  
supply voltage makes them ideal for 1.8-V system  
designs. The wide operating range, low supply  
2 Applications  
current, and excellent accuracy provide  
temperature switch solution for a wide range of  
commercial and industrial applications.  
a
Cell Phones and Wireless Transceivers  
Digital Cameras  
Battery Management Systems  
Automotive Applications  
Disk Drives  
Device Information(1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
LM26LV, LM26LV-Q1 WSON (6)  
2.20 mm × 2.50 mm  
Games and Appliances  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Redundant Protection and Monitoring  
Typical Transfer Characteristic  
V
V
Supply  
DD  
DD  
Analog  
(+1.6V to +5.5V)  
V
ADC Input  
TEMP  
Example: 2 to 3  
Battery Cells  
LM26LV  
Microcontroller  
OVERTEMP  
OVERTEMP  
TRIP TEST  
GND  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Table of Contents  
7.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 23  
8.1 Application Information............................................ 23  
8.2 Typical Application .................................................. 23  
Power Supply Recommendations...................... 25  
9.1 Power Supply Noise Immunity................................ 25  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings: LM26LV.............................................. 4  
6.3 ESD Ratings: LM26LV-Q1........................................ 4  
6.4 Recommended Operating Conditions....................... 4  
6.5 Thermal Information.................................................. 5  
6.6 Electrical Characteristics........................................... 5  
6.7 Switching Characteristics.......................................... 6  
6.8 Accuracy Characteristics........................................... 7  
6.9 Typical Characteristics.............................................. 9  
Detailed Description ............................................ 12  
7.1 Overview ................................................................. 12  
7.2 Functional Block Diagram ....................................... 12  
7.3 Feature Description................................................. 13  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
11 Device and Documentation Support ................. 27  
11.1 Documentation Support ........................................ 27  
11.2 Related Links ........................................................ 27  
11.3 Receiving Notification of Documentation Updates 27  
11.4 Community Resources.......................................... 27  
11.5 Trademarks........................................................... 27  
11.6 Electrostatic Discharge Caution............................ 27  
11.7 Glossary................................................................ 27  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 27  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision F (February 2013) to Revision G  
Page  
Added Device Information table, Pin Configuration and Functions section, Specifications section, ESD Ratings table,  
Thermal Information table, Switching Characteristics table, Detailed Description section, Application and  
Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation  
Support section, and Mechanical, Packaging, and Orderable Information section................................................................ 1  
Updated values in the Thermal Information table to align with JEDEC standards................................................................. 5  
Changes from Revision E (February 2013) to Revision F  
Page  
Changed layout of National Semiconductor Data Sheet to TI format .................................................................................... 1  
2
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
5 Pin Configuration and Functions  
NGF Package  
6-Pin WSON  
Top View  
TRIP_TEST  
GND  
1
6
VTEMP  
Thermal  
Pad  
2
3
5
4
OVERTEMP  
VDD  
OVERTEMP  
Not to scale  
Pin Functions  
PIN  
EQUIVALENT  
CIRCUIT  
TYPE  
DESCRIPTION  
NAME  
NO.  
GND  
2
GND Power supply ground  
V
DD  
Overtemperature switch output. Active high, push-pull.  
OVERTEMP  
5
O
Asserted when the measured temperature exceeds the trip point temperature or  
if TRIP_TEST = 1. This pin may be left open if not used.  
GND  
Overtemperature switch output. Active low, open-drain (See Determining the  
Pullup Resistor Value).  
Asserted when the measured temperature exceeds the trip point temperature or  
if TRIP_TEST = 1. This pin may be left open if not used.  
OVERTEMP  
3
O
GND  
V
DD  
TRIP_TEST pin. Active high input.  
If TRIP_TEST = 0 (Default) then: VTEMP = VTS, temperature sensor output  
voltage.  
If TRIP_TEST = 1 then: OVERTEMP and OVERTEMP outputs are asserted and  
VTEMP = VTRIP, temperature trip voltage.  
TRIP_TEST  
1
4
6
I
1 mA  
This pin may be left open if not used.  
GND  
VDD  
PWR Positive supply voltage  
V
DD  
V
SENSE  
VTEMP analog voltage output.  
If TRIP_TEST = 0 then: VTEMP = VTS, temperature sensor output voltage.  
If TRIP_TEST = 1 then: VTEMP = VTRIP, temperature trip voltage.  
VTEMP  
O
This pin may be left open if not used.  
GND  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Pin Functions (continued)  
PIN  
EQUIVALENT  
CIRCUIT  
TYPE  
DESCRIPTION  
NAME  
NO.  
The best thermal conductivity between the device and the PCB is achieved by  
soldering the DAP of the package to the thermal pad on the PCB. The thermal  
pad can be a floating node. However, for improved noise immunity the thermal  
pad must be connected to the circuit GND node, preferably directly to pin 2  
(GND) of the device.  
Thermal Pad  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
–7  
MAX  
UNIT  
V
Supply voltage  
6
Voltage at OVERTEMP pin  
Voltage at OVERTEMP and VTEMP pins  
TRIP_TEST input voltage  
6
V
VDD + 0.5  
V
VDD + 0.5  
V
Output current, any output pin  
Input current at any pin(3)  
7
mA  
mA  
°C  
°C  
5
Maximum junction temperature, TJ(MAX)  
Storage temperature, Tstg  
155  
150  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) For soldering specifications, see Absolute Maximum Ratings for Soldering.  
(3) When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > VDD), the current at that pin must be limited to 5 mA.  
6.2 ESD Ratings: LM26LV  
VALUE  
±4500  
±1000  
±300  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine model (MM)(3)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Manufacturing with  
less than 500-V HBM is possible with the necessary precautions.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) The machine model (MM) is a 200-pF capacitor charged to the specified voltage then discharged directly into each pin.  
6.3 ESD Ratings: LM26LV-Q1  
VALUE  
±4500  
±1000  
±300  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
Machine model (MM)  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.4 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
V
VDD  
Supply voltage  
1.6  
5.5  
Supply current  
8
µA  
°C  
TA  
Specified ambient temperature  
–50  
150  
4
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
6.5 Thermal Information  
LM26LV and  
LM26LV-Q1  
THERMAL METRIC(1)  
UNIT  
NGF (WSON)  
6 PINS  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
100.7  
121.7  
70  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.1  
ψJB  
70.3  
15.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Electrical Characteristics  
Typical values apply for TA = TJ = 25°C; minimum and maximum limits apply for TA = TJ = –50°C to 150°C,  
VDD = 1.6 V to 5.5 V (unless otherwise noted).(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
GENERAL SPECIFICATIONS  
IS  
Quiescent power supply current  
Hysteresis  
OVERTEMP DIGITAL OUTPUT—ACTIVE HIGH, PUSH-PULL  
8
5
16  
µA  
°C  
4.5  
5.5  
V
V
V
V
V
V
DD 1.6 V, Source 340 µA  
VDD – 0.2  
VDD – 0.2  
VDD – 0.2  
VDD – 0.45  
VDD – 0.45  
VDD – 0.45  
DD 2 V, Source 498 µA  
DD 3.3 V, Source 780 µA  
DD 1.6 V, Source 600 µA  
DD 2 V, Source 980 µA  
DD 3.3 V, Source 1.6 mA  
VOH  
Logic High output voltage  
V
BOTH OVERTEMP AND OVERTEMP DIGITAL OUTPUTS  
V
V
V
V
V
V
DD 1.6 V, Source 385 µA  
0.2  
0.2  
DD 2 V, Source 500 µA  
DD 3.3 V, Source 730 µA  
DD 1.6 V, Source 690 µA  
DD 2 V, Source 1.05 mA  
DD 3.3 V, Source 1.62 mA  
0.2  
VOL  
Logic Low output voltage  
V
0.45  
0.45  
0.45  
OVERTEMP DIGITAL OUTPUT—ACTIVE LOW, OPEN DRAIN  
TA = 30°C  
0.001  
0.025  
1
1
Logic High output leakage  
IOH  
µA  
current(3)  
TA = 150°C  
(1) Limits are specified to TI's AOQL (Average Outgoing Quality Level).  
(2) Typical values apply for TJ = TA = 25°C and represent most likely parametric norm.  
(3) The 1-µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the  
current for every 15°C increase in temperature. For example, the 1-nA typical current at 25°C would increase to 16 nA at 85°C.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Electrical Characteristics (continued)  
Typical values apply for TA = TJ = 25°C; minimum and maximum limits apply for TA = TJ = –50°C to 150°C,  
VDD = 1.6 V to 5.5 V (unless otherwise noted).(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT  
Gain 1 (trip point = 0°C to 69°C)  
–5.1  
–7.7  
Gain 2 (trip point = 70°C to 109°C)  
Gain 3 (trip point = 110°C to 129°C)  
Gain 4 (trip point = 130°C to 150°C)  
Source 90 µA,  
VTEMP sensor gain  
mV/°C  
–10.3  
–12.8  
–1  
–1  
–0.1  
0.1  
VDD – VTEMP 200 mV  
1.6 V VDD < 1.8 V  
Sink 100 µA, VTEMP 260 mV  
1
mV  
VTEMP load regulation(4)  
Source 120 µA,  
–0.1  
VDD – VTEMP 200 mV  
VDD 1.8 V  
Sink 200 µA, VTEMP 260 mV  
0.1  
1
1
Source or sink = 100 µA  
Ω
0.29  
74  
mV  
µV/V  
dB  
pF  
Supply to VTEMP DC line  
regulation(5)  
VDD = 1.6 V to 5.5 V  
–82  
1100  
CL  
VTEMP output load capacitance  
Without series resistor. See Capacitive Loads.  
TRIP_TEST DIGITAL INPUT  
VIH  
VIL  
IIH  
Logic High threshold voltage  
VDD – 0.5  
V
Logic Low threshold voltage  
Logic High input current  
Logic Low input current(3)  
0.5  
1.5  
2.5  
1
µA  
µA  
IIL  
0.001  
(4) Source currents are flowing out of the LM26LV or LM26LV-Q1. Sink currents are flowing into the LM26LV or LM26LV-Q1.  
(5) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest  
supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Voltage Shift.  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Time from power ON to digital output enabled(1)  
Time from power ON to analog temperature valid(1) CL = 0 pF to 1100 pF  
TEST CONDITIONS  
MIN  
TYP  
1.1  
1
MAX UNIT  
tEN  
2.3  
2.9  
ms  
ms  
tVTEMP  
(1) Figure 1 and Figure 2 show the definitions of tEN and tVTEMP  
.
6
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
6.8 Accuracy Characteristics  
(1)  
See  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
TRIP POINT ACCURACY  
Trip point accuracy(2)  
TA = 0°C to 150°C, VDD = 5 V  
–2.2  
2.2  
°C  
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT ACCURACY(3)  
TA = 20°C to 40°C, VDD = 1.6 V to 5.5 V  
TA = 0°C to 70°C, VDD = 1.6 V to 5.5 V  
TA = 0°C to 90°C, VDD = 1.6 V to 5.5 V  
TA = 0°C to 120°C, VDD = 1.6 V to 5.5 V  
TA = 0°C to 150°C, VDD = 1.6 V to 5.5 V  
TA = –50°C to 0°C, VDD = 1.7 V to 5.5 V  
TA = 20°C to 40°C, VDD = 1.8 V to 5.5 V  
TA = 0°C to 70°C, VDD = 1.9 V to 5.5 V  
TA = 0°C to 90°C, VDD = 1.9 V to 5.5 V  
TA = 0°C to 120°C, VDD = 1.9 V to 5.5 V  
TA = 0°C to 150°C, VDD = 1.9 V to 5.5 V  
TA = –50°C to 0°C, VDD = 2.3 V to 5.5 V  
TA = 20°C to 40°C, VDD = 2.3 V to 5.5 V  
TA = 0°C to 70°C, VDD = 2.5 V to 5.5 V  
TA = 0°C to 90°C, VDD = 2.5 V to 5.5 V  
TA = 0°C to 120°C, VDD = 2.5 V to 5.5 V  
TA = 0°C to 150°C, VDD = 2.5 V to 5.5 V  
TA = –50°C to 0°C, VDD = 3 V to 5.5 V  
TA = 20°C to 40°C, VDD = 2.7 V to 5.5 V  
TA = 0°C to 70°C, VDD = 3 V to 5.5 V  
TA = 0°C to 90°C, VDD = 3 V to 5.5 V  
TA = 0°C to 120°C, VDD = 3 V to 5.5 V  
TA = 0°C to 150°C, VDD = 3 V to 5.5 V  
TA = –50°C to 0°C, VDD = 3.6 V to 5.5 V  
–1.8  
–2  
1.8  
2
–2.1  
–2.2  
–2.3  
–1.7  
–1.8  
–2  
2.1  
2.2  
2.3  
1.7  
1.8  
2
Gain 1  
trip point = 0°C to 69°C  
–2.1  
–2.2  
–2.3  
–1.7  
–1.8  
–2  
2.1  
2.2  
2.3  
1.7  
1.8  
2
Gain 2  
trip point = 70°C to 109°C  
VTEMP temperature accuracy(2)  
°C  
–2.1  
–2.2  
–2.3  
–1.7  
–1.8  
–2  
2.1  
2.2  
2.3  
1.7  
1.8  
2
Gain 3  
trip point = 110°C to 129°C  
–2.1  
–2.2  
–2.3  
–1.7  
2.1  
2.2  
2.3  
1.7  
Gain 4  
trip point = 130°C to 150°C  
(1) Limits are specified to TI's AOQL (Average Outgoing Quality Level).  
(2) Accuracy is defined as the error between the measured and reference output voltages, tabulated in Table 1 at the specified conditions of  
supply gain setting, voltage, and temperature (°C). Accuracy limits include line regulation within the specified conditions. Accuracy limits  
do not include load regulation; they assume no DC load.  
(3) Changes in output due to self heating can be computed by multiplying the internal dissipation by the temperature thermal resistance.  
V
DD  
1.3V  
t
EN  
OVERTEMP  
Enabled  
Enabled  
OVERTEMP  
Figure 1. Definition of tEN  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
V
DD  
t
VTEMP  
Valid  
V
TEMP  
Figure 2. Definition of tVTEMP  
8
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
6.9 Typical Characteristics  
Figure 3. VTEMP Output Temperature Error vs Temperature  
Figure 4. Minimum Operating Temperature  
vs Supply Voltage  
Figure 5. Supply Current vs Temperature  
Figure 6. Supply Current vs Supply Voltage  
100-mV overhead  
TA = 80°C  
Sourcing current  
200-mV overhead  
TA = 80°C  
Sourcing Current  
(1)  
Figure 7. Load Regulation  
Figure 8. Load Regulation(1)  
(1) The curves shown represent typical performance under worst-case conditions. Performance improves with larger VTEMP, larger VDD, and  
lower temperatures.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Typical Characteristics (continued)  
400-mV overhead  
TA = 80°C  
Sourcing current  
1.72-V overhead TA = 150°C  
VDD = 2.4 V Sourcing current  
Figure 9. Load Regulation(1)  
Figure 10. Load Regulation(1)  
VDD = 1.6 V  
Sinking Current  
VDD = 1.8 V  
Sinking Current  
Figure 12. Load Regulation(1)  
Figure 11. Load Regulation(1)  
VDD = 2.4 V  
Sinking Current  
Figure 13. Load Regulation(1)  
Figure 14. Change in VTEMP vs Overhead Voltage  
(1) The curves shown represent typical performance under worst-case conditions. Performance improves with larger VTEMP, larger VDD, and  
lower temperatures.  
10  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
Typical Characteristics (continued)  
Gain 1 (Trip Points = 0°C tp 69°C)  
Figure 15. VTEMP Supply-Noise Rejection vs Frequency  
Figure 16. Line Regulation VTEMP vs Supply Voltage  
Gain 2 (Trip Points = 70°C to 109°C)  
Gain 3 (Trip Points = 110°C to 129°C)  
Figure 17. Line Regulation VTEMP vs Supply Voltage  
Figure 18. Line Regulation VTEMP vs Supply Voltage  
Gain 4 (Trip Points = 130°C to 150°C)  
Figure 19. Line Regulation VTEMP vs Supply Voltage  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
7 Detailed Description  
7.1 Overview  
The LM26LV and LM26LV-Q1 are precision, dual-output, temperature switches with analog temperature sensor  
output. The trip temperature (TTRIP) is factory selected by the order number. The VTEMP class AB analog output  
provides a voltage that is proportional to temperature. The LM26LV and LM26LV-Q1 include an internal  
reference DAC (TEMP THRESHOLD), analog temperature sensor and analog comparator. The reference DAC is  
connected to one of the comparator inputs. The reference DAC output voltage (VTRIP) is preprogrammed by TI.  
The result of the reference DAC voltage and the temperature sensor output comparison is provided on two  
output pins OVERTEMP and OVERTEMP.  
The VTEMP output has a programmable gain. The output gain has 4 possible settings as described in Table 1.  
The gain setting is dependent on the temperature trip point selected.  
Built-in temperature hysteresis (THYST) prevents the digital outputs from oscillating. The OVERTEMP and  
OVERTEMP activates when the die temperature exceeds TTRIP and releases when the temperature falls below a  
temperature equal to TTRIP minus THYST. OVERTEMP is active-high with a push-pull structure. OVERTEMP, is  
active-low with an open-drain structure. The comparator hysteresis is fixed at 5°C.  
Driving the TRIP-TEST high activates the digital outputs. A processor can check the logic level of the  
OVERTEMP or OVERTEMP, confirming that they changed to their active state. This allows for system  
production testing verification that the comparator and output circuitry are functional after system assembly.  
When the TRIP-TEST pin is high, the trip-level reference voltage appears at the VTEMP pin. Tying OVERTEMP to  
TRIP-TEST latches the output after it trips. It can be cleared by forcing TRIP-TEST low or powering off the  
LM26LV or LM26LV-Q1.  
7.2 Functional Block Diagram  
V
DD  
4
TRIP TEST = 0  
(Default)  
LM26LV  
6
3
V
TEMP  
TRIP TEST = 1  
OVERTEMP  
V
V
TRIP  
TS  
V
DD  
TEMP  
SENSOR  
TEMP  
5
THRESHOLD  
OVERTEMP  
1
2
GND  
TRIP  
TEST  
Copyright © 2016, Texas Instruments Incorporated  
12  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
7.3 Feature Description  
7.3.1 LM26LV and LM26LV-Q1 VTEMP vs Die Temperature Conversion Table  
The LM26LV and LM26LV-Q1 have one out of four possible factory-set gains, Gain 1 through Gain 4, depending  
on the range of the Temperature Trip Point. The VTEMP temperature sensor voltage, in millivolts, at each discrete  
die temperature over the complete operating temperature range, and for each of the four Temperature Trip Point  
ranges, is shown in Table 1. This table is the reference from which the LM26LV and LM26LV-Q1 accuracy  
specifications (listed in Accuracy Characteristics) are determined. This table can be used, for example, in a host  
processor look-up table. See The Second-Order Equation (Parabolic) for the parabolic equation used in the  
Conversion Table.  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table  
ANALOG OUTPUT VOLTAGE, VTEMP (mV)(1)  
DIE TEMPERATURE (°C)  
GAIN 1  
1312  
1307  
1302  
1297  
1292  
1287  
1282  
1277  
1272  
1267  
1262  
1257  
1252  
1247  
1242  
1237  
1232  
1227  
1222  
1217  
1212  
1207  
1202  
1197  
1192  
1187  
1182  
1177  
1172  
1167  
1162  
1157  
1152  
1147  
1142  
1137  
1132  
1127  
1122  
GAIN 2  
1967  
1960  
1952  
1945  
1937  
1930  
1922  
1915  
1908  
1900  
1893  
1885  
1878  
1870  
1863  
1855  
1848  
1840  
1833  
1825  
1818  
1810  
1803  
1795  
1788  
1780  
1773  
1765  
1757  
1750  
1742  
1735  
1727  
1720  
1712  
1705  
1697  
1690  
1682  
GAIN 3  
2623  
2613  
2603  
2593  
2583  
2573  
2563  
2553  
2543  
2533  
2523  
2513  
2503  
2493  
2483  
2473  
2463  
2453  
2443  
2433  
2423  
2413  
2403  
2393  
2383  
2373  
2363  
2353  
2343  
2333  
2323  
2313  
2303  
2293  
2283  
2272  
2262  
2252  
2242  
GAIN 4  
3278  
3266  
3253  
3241  
3229  
3216  
3204  
3191  
3179  
3166  
3154  
3141  
3129  
3116  
3104  
3091  
3079  
3066  
3054  
3041  
3029  
3016  
3004  
2991  
2979  
2966  
2954  
2941  
2929  
2916  
2903  
2891  
2878  
2866  
2853  
2841  
2828  
2815  
2803  
–50  
–49  
–48  
–47  
–46  
–45  
–44  
–43  
–42  
–41  
–40  
–39  
–38  
–37  
–36  
–35  
–34  
–33  
–32  
–31  
–30  
–29  
–28  
–27  
–26  
–25  
–24  
–23  
–22  
–21  
–20  
–19  
–18  
–17  
–16  
–15  
–14  
–13  
–12  
(1) VDD = 5 V. Values are bold for each gain's respective trip point range.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Feature Description (continued)  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table (continued)  
ANALOG OUTPUT VOLTAGE, VTEMP (mV)(1)  
DIE TEMPERATURE (°C)  
GAIN 1  
1116  
1111  
1106  
1101  
1096  
1091  
1086  
1081  
1076  
1071  
1066  
1061  
1056  
1051  
1046  
1041  
1035  
1030  
1025  
1020  
1015  
1010  
1005  
1000  
995  
GAIN 2  
1674  
1667  
1659  
1652  
1644  
1637  
1629  
1621  
1614  
1606  
1599  
1591  
1583  
1576  
1568  
1561  
1553  
1545  
1538  
1530  
1522  
1515  
1507  
1499  
1492  
1484  
1477  
1469  
1461  
1454  
1446  
1438  
1431  
1423  
1415  
1407  
1400  
1392  
1384  
1377  
1369  
1361  
1354  
1346  
1338  
1331  
1323  
1315  
1307  
GAIN 3  
2232  
2222  
2212  
2202  
2192  
2182  
2171  
2161  
2151  
2141  
2131  
2121  
2111  
2101  
2090  
2080  
2070  
2060  
2050  
2040  
2029  
2019  
2009  
1999  
1989  
1978  
1968  
1958  
1948  
1938  
1927  
1917  
1907  
1897  
1886  
1876  
1866  
1856  
1845  
1835  
1825  
1815  
1804  
1794  
1784  
1774  
1763  
1753  
1743  
GAIN 4  
2790  
2777  
2765  
2752  
2740  
2727  
2714  
2702  
2689  
2676  
2664  
2651  
2638  
2626  
2613  
2600  
2587  
2575  
2562  
2549  
2537  
2524  
2511  
2498  
2486  
2473  
2460  
2447  
2435  
2422  
2409  
2396  
2383  
2371  
2358  
2345  
2332  
2319  
2307  
2294  
2281  
2268  
2255  
2242  
2230  
2217  
2204  
2191  
2178  
–11  
–10  
–9  
–8  
–7  
–6  
–5  
–4  
–3  
–2  
–1  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
990  
985  
980  
974  
969  
964  
959  
954  
949  
944  
939  
934  
928  
923  
918  
913  
908  
903  
898  
892  
887  
882  
877  
872  
14  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
Feature Description (continued)  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table (continued)  
ANALOG OUTPUT VOLTAGE, VTEMP (mV)(1)  
DIE TEMPERATURE (°C)  
GAIN 1  
867  
862  
856  
851  
846  
841  
836  
831  
825  
820  
815  
810  
805  
800  
794  
789  
784  
779  
774  
769  
763  
758  
753  
748  
743  
737  
732  
727  
722  
717  
711  
706  
701  
696  
690  
685  
680  
675  
670  
664  
659  
654  
649  
643  
638  
633  
628  
622  
617  
GAIN 2  
1300  
1292  
1284  
1276  
1269  
1261  
1253  
1245  
1238  
1230  
1222  
1214  
1207  
1199  
1191  
1183  
1176  
1168  
1160  
1152  
1144  
1137  
1129  
1121  
1113  
1105  
1098  
1090  
1082  
1074  
1066  
1059  
1051  
1043  
1035  
1027  
1019  
1012  
1004  
996  
GAIN 3  
1732  
1722  
1712  
1701  
1691  
1681  
1670  
1660  
1650  
1639  
1629  
1619  
1608  
1598  
1588  
1577  
1567  
1557  
1546  
1536  
1525  
1515  
1505  
1494  
1484  
1473  
1463  
1453  
1442  
1432  
1421  
1411  
1400  
1390  
1380  
1369  
1359  
1348  
1338  
1327  
1317  
1306  
1296  
1285  
1275  
1264  
1254  
1243  
1233  
GAIN 4  
2165  
2152  
2139  
2127  
2114  
2101  
2088  
2075  
2062  
2049  
2036  
2023  
2010  
1997  
1984  
1971  
1958  
1946  
1933  
1920  
1907  
1894  
1881  
1868  
1855  
1842  
1829  
1816  
1803  
1790  
1776  
1763  
1750  
1737  
1724  
1711  
1698  
1685  
1672  
1659  
1646  
1633  
1620  
1607  
1593  
1580  
1567  
1554  
1541  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
988  
980  
972  
964  
957  
949  
941  
933  
925  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Feature Description (continued)  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table (continued)  
ANALOG OUTPUT VOLTAGE, VTEMP (mV)(1)  
DIE TEMPERATURE (°C)  
GAIN 1  
612  
607  
601  
596  
591  
586  
580  
575  
570  
564  
559  
554  
549  
543  
538  
533  
527  
522  
517  
512  
506  
501  
496  
490  
485  
480  
474  
469  
464  
459  
453  
448  
443  
437  
432  
427  
421  
416  
411  
405  
400  
395  
389  
384  
379  
373  
368  
362  
357  
GAIN 2  
917  
909  
901  
894  
886  
878  
870  
862  
854  
846  
838  
830  
822  
814  
807  
799  
791  
783  
775  
767  
759  
751  
743  
735  
727  
719  
711  
703  
695  
687  
679  
671  
663  
655  
647  
639  
631  
623  
615  
607  
599  
591  
583  
575  
567  
559  
551  
543  
535  
GAIN 3  
1222  
1212  
1201  
1191  
1180  
1170  
1159  
1149  
1138  
1128  
1117  
1106  
1096  
1085  
1075  
1064  
1054  
1043  
1032  
1022  
1011  
1001  
990  
GAIN 4  
1528  
1515  
1501  
1488  
1475  
1462  
1449  
1436  
1422  
1409  
1396  
1383  
1370  
1357  
1343  
1330  
1317  
1304  
1290  
1277  
1264  
1251  
1237  
1224  
1211  
1198  
1184  
1171  
1158  
1145  
1131  
1118  
1105  
1091  
1078  
1065  
1051  
1038  
1025  
1011  
998  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
979  
969  
958  
948  
937  
926  
916  
905  
894  
884  
873  
862  
852  
841  
831  
820  
809  
798  
788  
985  
777  
971  
766  
958  
756  
945  
745  
931  
734  
918  
724  
904  
713  
891  
16  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
Feature Description (continued)  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table (continued)  
ANALOG OUTPUT VOLTAGE, VTEMP (mV)(1)  
DIE TEMPERATURE (°C)  
GAIN 1  
352  
346  
341  
336  
330  
325  
320  
314  
309  
303  
298  
293  
287  
282  
277  
GAIN 2  
527  
519  
511  
503  
495  
487  
479  
471  
463  
455  
447  
438  
430  
422  
414  
GAIN 3  
702  
691  
681  
670  
659  
649  
638  
627  
616  
606  
595  
584  
573  
562  
552  
GAIN 4  
878  
864  
851  
837  
824  
811  
797  
784  
770  
757  
743  
730  
716  
703  
690  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
7.3.2 VTEMP vs Die Temperature Approximations  
The LM26LV's and LM26LV-Q1's VTEMP analog temperature output is very linear. Table 1 and the equation in  
The Second-Order Equation (Parabolic) represent the most accurate typical performance of the VTEMP voltage  
output versus temperature.  
7.3.2.1 The Second-Order Equation (Parabolic)  
The data from Table 1, or Equation 1, when plotted, has an umbrella-shaped parabolic curve. VTEMP is in mV.  
GAIN1: VTEMP = 907.9 - 5.132´(TDIE - 30°C) -1.08-3 ´(TDIE - 30°C)  
GAIN2 : VTEMP = 1361.4 - 7.701´(TDIE - 30°C) -1.6-3 ´(TDIE - 30°C)  
GAIN3 : VTEMP = 1814.6 -10.27 ´(TDIE - 30°C) - 2.12-3 ´(TDIE - 30°C)  
GAIN4 : VTEMP = 2268.1-12.838 ´(TDIE - 30°C) - 2.64-3 ´(TDIE - 30°C)  
(1)  
7.3.2.2 The First-Order Approximation (Linear)  
For a quicker approximation, although less accurate than the second-order, over the full operating temperature  
range the linear formula below can be used. Using Equation 2, with the constant and slope in the following set of  
equations, the best-fit VTEMP versus die temperature performance can be calculated with an approximation error  
less than 18 mV. VTEMP is in mV.  
GAIN1: VTEMP = 1060 - 5.18 ´ TDIE  
GAIN2 : VTEMP = 1590 - 7.77 ´ TDIE  
GAIN3 : VTEMP = 2119 -10.36´ TDIE  
GAIN4 : VTEMP = 2649 -12.94´ TDIE  
(2)  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM26LV LM26LV-Q1  
 
 
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
7.3.2.3 First-Order Approximation (Linear) Over Small Temperature Range  
For a linear approximation, a line can easily be calculated over the desired temperature range from Table 1 using  
the two-point equation:  
æ
ç
è
ö
V2 - V1  
V - V =  
´(T - T )  
1
÷
1
T2 - T1 ø  
where  
V is in mV  
T is in °C  
T1 and V1 are the coordinates of the lowest temperature  
T2 and V2 are the coordinates of the highest temperature  
(3)  
For example, to determine the equation of a line with GAIN4, with a temperature from 20°C to 50°C, proceed  
using Equation 4, Equation 5, and Equation 6:  
2010 mV - 2396 mV  
50°C - 20°C  
æ
ö
V - 2396 mV =  
´(T - 20°C)  
ç
÷
è
ø
(4)  
(5)  
(6)  
V – 2396 mV = –12.8 mV/°C × (T – 20°C)  
V = –12.8 mV/°C × (T – 20°C) + 2396 mV  
Using this method of linear approximation, the transfer function can be approximated for one or more  
temperature ranges of interest.  
7.3.3 OVERTEMP and OVERTEMP Digital Outputs  
The OVERTEMP active high, push-pull output and the OVERTEMP active low, open-drain output both assert at  
the same time whenever the die temperature reaches the factory preset temperature trip point. They also assert  
simultaneously whenever the TRIP_TEST pin is set high. Both outputs deassert when the die temperature goes  
below the temperature trip point hysteresis. These two types of digital outputs enable the user the flexibility to  
choose the type of output that is most suitable for his design.  
Either the OVERTEMP or the OVERTEMP digital output pins can be left open if not used.  
7.3.3.1 OVERTEMP Open-Drain Digital Output  
The OVERTEMP active low, open-drain digital output, if used, requires a pullup resistor between this pin and  
VDD. The following section shows how to determine the pullup resistor value.  
7.3.3.1.1 Determining the Pullup Resistor Value  
V
DD  
i
T
R
Pull-Up  
V
OUT  
OVERTEMP  
Digital Input  
i
L
i
sink  
18  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
 
 
 
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
The pullup resistor value is calculated at the condition of maximum total current, IT, through the resistor. The total  
current is:  
IT = IL + ISINK  
where  
IT is the maximum total current through the pullup resistor at VOL  
IL is the load current, which is very low for typical digital inputs.  
.
(7)  
The pullup resistor maximum value can be found by using Equation 8.  
VDD(MAX) - VOL  
=
RPULLUP  
IT  
where  
VDD(MAX) is the maximum power supply voltage to be used in the customer's system.  
VOUT is the Voltage at the OVERTEMP pin. Use VOL for calculating the pullup resistor.  
(8)  
7.3.3.1.1.1 Example Calculation  
Suppose, for this example, a VDD of 3.3 V ± 0.3 V, a CMOS digital input as a load, a VOL of 0.2 V.  
For VOL of 0.2 V the electrical specification for OVERTEMP shows a maximum ISINK of 385 µA.  
Let IL = 1 µA, then IT is about 386 µA maximum. If 35 µA is selected as the current limit then IT for the  
calculation becomes 35 µA.  
VDD(MAX) is 3.3 V + 0.3 V = 3.6 V, then calculate the pullup resistor as RPULLUP = (3.6 – 0.2) / 35 µA = 97 kΩ.  
Based on this calculated value, select the closest resistor value in the tolerance family used.  
In this example, if 5% resistor values are used, then the next closest value is 100 kΩ.  
7.3.4 TRIP_TEST Digital Input  
The TRIP_TEST pin simply provides a means to test the OVERTEMP and OVERTEMP digital outputs  
electronically by causing them to assert, at any operating temperature, as a result of forcing the TRIP_TEST pin  
high.  
When the TRIP_TEST pin is pulled high the VTEMP pin is at the VTRIP voltage.  
If not used, the TRIP_TEST pin may either be left open or grounded.  
7.3.5 VTEMP Analog Temperature Sensor Output  
The VTEMP push-pull output provides the ability to sink and source significant current. This is beneficial when, for  
example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications  
the source current is required to quickly charge the input capacitor of the ADC. See Application and  
Implementation for more discussion of this topic. The LM26LV and LM26LV-Q1 are ideal for applications which  
require strong source or sink current.  
7.3.5.1 Noise Considerations  
The LM26LV's and LM26LV-Q1's supply-noise rejection (the ratio of the AC signal on VTEMP to the AC signal on  
VDD) was measured during bench tests. The device's typical attenuation is shown in Typical Characteristics. A  
load capacitor on the output can help to filter noise.  
For operation in very noisy environments, some bypass capacitance must be present on the supply within  
approximately 2 inches of the LM26LV or LM26LV-Q1.  
7.3.5.2 Capacitive Loads  
The VTEMP Output handles capacitive loading well. In an extremely noisy environment, or when driving a switched  
sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any  
precautions, the VTEMP can drive a capacitive load less than or equal to 1100 pF as shown in Figure 20. For  
capacitive loads greater than 1100 pF, a series resistor is required on the output, as shown in Figure 21, to  
maintain stable conditions.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
V
DD  
V
TEMP  
LM26LV  
GND  
OPTIONAL  
BYPASS  
CAPACITANCE  
C
LOAD  
Ç 1100 pF  
Figure 20. LM26LV or LM26LV-Q1 No Decoupling Required for Capacitive Loads Less Than 1100 pF.  
V
DD  
R
S
V
TEMP  
LM26LV  
GND  
OPTIONAL  
BYPASS  
CAPACITANCE  
C
>
LOAD  
1100 pF  
Figure 21. LM26LV or LM26LV-Q1 With Series Resistor for Capacitive Loading Greater Than 1100 pF  
Table 2. Minimum Series Resistence for Capacitive  
Loads  
CLOAD  
1.1 nF to 99 nF  
100 nF to 999 nF  
1 µF  
MINIMUM RS  
3 kΩ  
1.5 kΩ  
800 Ω  
7.3.5.3 Voltage Shift  
The LM26LV and LM26LV-Q1 are very linear over temperature and supply voltage range. Due to the intrinsic  
behavior of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is  
ramped over the operating range of the device. The location of the shift is determined by the relative levels of  
VDD and VTEMP. The shift typically occurs when VDD – VTEMP = 1 V.  
This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VTEMP  
.
Because the shift takes place over a wide temperature change of 5°C to 20°C, VTEMP is always monotonic. The  
accuracy specifications Accuracy Characteristics already includes this possible shift.  
20  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
7.4 Device Functional Modes  
The LM26LV and LM26LV-Q1 have several modes of operation as detailed in the following drawings.  
V
DD  
V
DD  
4
4
100k  
OVERTEMP  
1
5
6
3
OVERTEMP  
1
3
6
NC  
NC  
Asserts when T  
NC  
> T  
TRIP  
DIE  
Asserts when T  
> T  
TRIP  
DIE  
LM26LV  
LM26LV  
NC  
See text.  
See text.  
5
NC  
NC  
2
2
GND  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2016, Texas Instruments Incorporated  
Figure 22. Temperature Switch Using Push-Pull  
Output  
Figure 23. Temperature Switch Using Open-Drain  
Output  
V
4
DD  
100k  
3
TRIP TEST  
1
OVERTEMP  
6
LM26LV  
NC  
OVERTEMP  
5
2
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 24. TRIP_TEST Digital Output Test Circuit  
The TRIP_TEST pin, normally used to check the operation of the OVERTEMP and OVERTEMP pins, may be  
used to latch the outputs whenever the temperature exceeds the programmed limit and causes the digital outputs  
to assert. As shown in Figure 25, when OVERTEMP goes high the TRIP_TEST input is also pulled high and  
causes OVERTEMP output to latch high and the OVERTEMP output to latch low. The latch can be released by  
either momentarily pulling the TRIP_TEST pin low (GND), or by toggling the power supply to the device. The  
resistor limits the current out of the OVERTEMP output pin.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Device Functional Modes (continued)  
V
DD  
100k  
4
TRIP TEST  
1
5
6
OVERTEMP  
LM26LV  
NC  
RESET  
Momentary  
OVERTEMP  
3
2
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 25. Latch Circuit Using OVERTEMP Output  
Alternately, the circuit in Figure 25 the 100 kΩ can be replaced with a short and the momentary reset switch may  
be removed. In this configuration, when OVERTEMP goes active high, it drives TRIP_TEST high. THRIP TEST  
high causes OVERTEMP to stay high. It is therefore latched. To release the latch, power down, then power up  
the LM26LV or LM26LV-Q1. The LM26LV and LM26LV-Q1 always come up in a released condition.  
22  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 ADC Input Considerations  
The LM26LV and LM26LV-Q1 have an analog temperature sensor output VTEMP that can be directly connected to  
an ADC (Analog-to-Digital Converter) input. Most CMOS ADCs found in microcontrollers and ASICs have a  
sampled data comparator input structure. When the ADC charges the sampling cap, it requires instantaneous  
charge from the output of the analog source such as the LM26LV or LM26LV-Q1 temperature sensor. This  
requirement is easily accommodated by the addition of a capacitor (CFILTER). The size of CFILTER depends on the  
size of the sampling capacitor and the sampling frequency. Because not all ADCs have identical input stages, the  
charge requirements vary. This general ADC application is shown as an example only.  
SAR Analog-to-Digital Converter  
Reset  
+1.6V to +5.5V  
Input  
Pin  
LM26LV  
Sample  
R
IN  
4
6
5
V
V
DD  
TEMP  
C
BP  
C
PIN  
C
C
TRIP  
TEST  
FILTER  
1
2
SAMPLE  
OT  
3
OT  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 26. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage  
8.2 Typical Application  
V
V
Supply  
DD  
DD  
Analog  
(+1.6V to +5.5V)  
V
ADC Input  
TEMP  
Example: 2 to 3  
Battery Cells  
LM26LV  
Microcontroller  
OVERTEMP  
OVERTEMP  
TRIP TEST  
GND  
Copyright © 2016, Texas Instruments Incorporated  
Figure 27. Typical Application Schematic  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
Typical Application (continued)  
8.2.1 Design Requirements  
For this design example, use the parameters listed in Table 3 as the input parameters.  
Table 3. Design Parameters  
PARAMETER  
EXAMPLE VALUE  
Temperature  
Accuracy  
VDD  
0°C to 150°C (LM26LV), –40°C to 85°C for microcontroller  
±2.3°C (Gain1, TA = 0°C to 150°C)  
3.3 V  
8 µA  
IDD  
8.2.2 Detailed Design Procedure  
The LM26LV and LM26LV-Q1 come with a factory preset trip point. See Mechanical, Packaging, and Orderable  
Information for available trip point options. Figure 27 shows the device's OVERTEMP output driving a  
microcontroller interrupt input to indicate an overtemperature event. In addition to the OVERTEMP output, a  
OVERTEMP output is available for use depending on the interrupt polarity of the microcontroller's interrupt pin. A  
VTEMP analog output is available to drive the microcontroller ADC input allowing the microcontroller to  
determine the sensing temperature of the LM26LV or LM26LV-Q1. The TRIP_TEST input is connected to a  
microcontroller output pin allowing the microcontroller to run on the fly electrical conductivity testing. For normal  
operation TRIP_TEST must be driven low by the microcontroller output. If no testing is required, the TRIP_TEST  
pin may be continuously grounded.  
8.2.3 Application Curves  
VTEMP Output  
(Temp. of Leads)  
Trip Point  
Trip Point - Hysteresis  
OVERTEMP  
OVERTEMP  
Figure 28. VTEMP Analog Output Temperature Error  
Figure 29. Switch Output Function  
24  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
 
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
9 Power Supply Recommendations  
Bypass capacitors are optional, and maybe required if the supply line is extremely noisy at high frequencies. TI  
recommends that a local supply decoupling capacitor be used to reduce noise. For noisy environments, TI  
recommends a 100-nF supply decoupling capacitor placed closed across the VDD and GND pins of the LM26LV  
or LM26LV-Q1.  
9.1 Power Supply Noise Immunity  
The LM26LV and LM26LV-Q1 are virtually immune from false triggers on the OVERTEMP and OVERTEMP  
digital outputs due to noise on the power supply. Test have been conducted showing that, with the die  
temperature within 0.5°C of the temperature trip point, and the severe test of a 3 V***pp square wave "***noise"  
signal injected on the VDD line, with VDD from 2 V to 5 V, there were no false triggers.  
10 Layout  
10.1 Layout Guidelines  
10.1.1 Mounting and Temperature Conductivity  
The LM26LV or LM26LV-Q1 can be applied easily in the same way as other integrated-circuit temperature  
sensors. The devices can be glued or cemented to a surface.  
The best thermal conductivity between the device and the PCB is achieved by soldering the DAP of the package  
to the thermal pad on the PCB. The temperatures of the lands and traces to the other leads of the LM26LV and  
LM26LV-Q1 also affect the temperature reading.  
Alternatively, the LM26LV or LM26LV-Q1 can be mounted inside a sealed-end metal tube, and can then be  
dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM26LV or LM26LV-Q1 and  
accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is  
especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates  
a short circuit from the VTEMP output to ground or VDD, the VTEMP output from the LM26LV or LM26LV-Q1 is not  
correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.  
The thermal resistance junction-to-ambient (RθJA) is the parameter used to calculate the rise of a device junction  
temperature due to its power dissipation. The equation used to calculate the rise in the LM26LV's and LM26LV-  
Q1's die temperature is  
TJ = TA + RqJA ´ (VDD ´IQ ) + (VDD - VTEMP )´IL  
(
)
where  
TA is the ambient temperature  
IQ is the quiescent current  
IL is the load current on the output  
VO is the output voltage  
(9)  
For example, in an application where TA = 30°C, VDD = 5 V, IDD = 9 µA, Gain 4, VTEMP = 2231 mV, and IL = 2 µA,  
the junction temperature would be 30.021°C, showing a self-heating error of only 0.021°C. Because the  
LM26LV's and LM26LV-Q1's junction temperature is the actual temperature being measured, minimize the load  
current that the VTEMP output is required to drive. If OVERTEMP is used with a 100k pullup resistor, and is  
asserted (low), then for this example the additional contribution is (152°C/W) × (5 V)2 / 100 kΩ = 0.038°C for a  
total self-heating error of 0.059°C. Thermal Information shows the thermal resistance of the LM26LV and  
LM26LV-Q1.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
www.ti.com  
10.2 Layout Example  
Optional thermal VIA to ground plane  
and back side of board for thermal  
conductivity path  
VIA to power plane  
VIA to ground plane  
R is optional maybe directly  
connected to GND if TRIP TEST not used  
TRIP TEST  
VTEMP  
GND  
OVERTEMP  
VDD  
OVERTEMP  
0.1 µ F  
Figure 30. Typical Layout Example  
Optional thermal VIA to ground plane  
and back side of board for thermal  
conductivity path  
VIA to power plane  
VIA to ground plane  
TRIP TEST  
GND  
VTEMP  
OVERTEMP  
VDD  
OVERTEMP  
0.1 µ F  
Figure 31. Latching Layout Example  
26  
Submit Documentation Feedback  
Copyright © 2007–2016, Texas Instruments Incorporated  
Product Folder Links: LM26LV LM26LV-Q1  
LM26LV, LM26LV-Q1  
www.ti.com  
SNIS144G JULY 2007REVISED SEPTEMBER 2016  
11 Device and Documentation Support  
11.1 Documentation Support  
11.1.1 Related Documentation  
For related documentation see the following:  
Absolute Maximum Ratings for Soldering (SNOA549)  
11.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 4. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LM26LV  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
LM26LV-Q1  
11.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
11.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2007–2016, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM26LV LM26LV-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM26LVCISD-050/NOPB  
LM26LVCISD-060/NOPB  
LM26LVCISD-065/NOPB  
LM26LVCISD-070/NOPB  
LM26LVCISD-075/NOPB  
LM26LVCISD-080/NOPB  
LM26LVCISD-085/NOPB  
LM26LVCISD-090/NOPB  
LM26LVCISD-095/NOPB  
LM26LVCISD-100/NOPB  
LM26LVCISD-105/NOPB  
LM26LVCISD-110/NOPB  
LM26LVCISD-115/NOPB  
LM26LVCISD-120/NOPB  
LM26LVCISD-125/NOPB  
LM26LVCISD-135/NOPB  
LM26LVCISD-140/NOPB  
LM26LVCISD-145/NOPB  
LM26LVCISD-150/NOPB  
LM26LVCISDX-060/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
1000 RoHS & Green  
4500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
050  
060  
065  
070  
075  
080  
085  
090  
095  
100  
105  
110  
115  
120  
125  
135  
140  
145  
150  
060  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM26LVCISDX-120/NOPB  
LM26LVQISD-130/NOPB  
LM26LVQISDX-130/NOPB  
LM26LVQISDX-135/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
4500 RoHS & Green  
1000 RoHS & Green  
4500 RoHS & Green  
4500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
120  
Q30  
Q30  
Q35  
SN  
SN  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM26LV, LM26LV-Q1 :  
Catalog: LM26LV  
Automotive: LM26LV-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM26LVCISD-050/NOPB WSON  
LM26LVCISD-060/NOPB WSON  
LM26LVCISD-065/NOPB WSON  
LM26LVCISD-070/NOPB WSON  
LM26LVCISD-075/NOPB WSON  
LM26LVCISD-080/NOPB WSON  
LM26LVCISD-085/NOPB WSON  
LM26LVCISD-090/NOPB WSON  
LM26LVCISD-095/NOPB WSON  
LM26LVCISD-100/NOPB WSON  
LM26LVCISD-105/NOPB WSON  
LM26LVCISD-110/NOPB WSON  
LM26LVCISD-115/NOPB WSON  
LM26LVCISD-120/NOPB WSON  
LM26LVCISD-125/NOPB WSON  
LM26LVCISD-135/NOPB WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM26LVCISD-140/NOPB WSON  
LM26LVCISD-145/NOPB WSON  
LM26LVCISD-150/NOPB WSON  
LM26LVCISDX-060/NOPB WSON  
LM26LVCISDX-120/NOPB WSON  
LM26LVQISD-130/NOPB WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
1000  
1000  
1000  
4500  
4500  
1000  
4500  
178.0  
178.0  
178.0  
330.0  
330.0  
178.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LM26LVQISDX-130/  
NOPB  
WSON  
LM26LVQISDX-135/  
NOPB  
WSON  
NGF  
6
4500  
330.0  
12.4  
2.8  
2.5  
1.0  
8.0  
12.0  
Q1  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM26LVCISD-050/NOPB  
LM26LVCISD-060/NOPB  
LM26LVCISD-065/NOPB  
LM26LVCISD-070/NOPB  
LM26LVCISD-075/NOPB  
LM26LVCISD-080/NOPB  
LM26LVCISD-085/NOPB  
LM26LVCISD-090/NOPB  
LM26LVCISD-095/NOPB  
LM26LVCISD-100/NOPB  
LM26LVCISD-105/NOPB  
LM26LVCISD-110/NOPB  
LM26LVCISD-115/NOPB  
LM26LVCISD-120/NOPB  
LM26LVCISD-125/NOPB  
LM26LVCISD-135/NOPB  
LM26LVCISD-140/NOPB  
LM26LVCISD-145/NOPB  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM26LVCISD-150/NOPB  
LM26LVCISDX-060/NOPB  
LM26LVCISDX-120/NOPB  
LM26LVQISD-130/NOPB  
LM26LVQISDX-130/NOPB  
LM26LVQISDX-135/NOPB  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
1000  
4500  
4500  
1000  
4500  
4500  
210.0  
367.0  
367.0  
210.0  
367.0  
367.0  
185.0  
367.0  
367.0  
185.0  
367.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 4  
MECHANICAL DATA  
NGF0006A  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LM26LVCISD

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-050

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-050/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-060

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-060/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-065

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-065/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-070

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-070/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-075

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-075/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-080

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC