LM26LVCISD-085/NOPB [TI]

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150;
LM26LVCISD-085/NOPB
型号: LM26LVCISD-085/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150

开关 输出元件 传感器 换能器
文件: 总33页 (文件大小:1664K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
LM26LV/LM26LV-Q1 1.6 V, WSON-6 Factory Preset Temperature Switch and Temperature  
Sensor  
Check for Samples: LM26LV  
1
FEATURES  
DESCRIPTION  
The LM26LV/LM26LV-Q1 is a low-voltage, precision,  
dual-output, low-power temperature switch and  
temperature sensor. The temperature trip point  
2
Low 1.6V Operation  
Low Quiescent Current  
Latching Function: Device Can Latch the Over  
Temperature Condition  
(TTRIP  
temperature in the range of 0°C to 150°C in 1°C  
increments. Built-in temperature hysteresis (THYST  
) can be preset at the factory to any  
)
Push-Pull and Open-Drain Temperature Switch  
Outputs  
keeps the output stable in an environment of  
temperature instability.  
Wide Trip Point Range of 0°C to 150°C  
In normal operation the LM26LV/LM26LV-Q1  
temperature switch outputs assert when the die  
temperature exceeds TTRIP. The temperature switch  
outputs will reset when the temperature falls below a  
Very Linear Analog VTEMP Temperature Sensor  
Output  
VTEMP Output Short-Circuit Protected  
temperature equal to (TTRIP  
THYST). The  
Accurate Over 50°C to 150°C Temperature  
Range  
OVERTEMP digital output, is active-high with a push-  
pull structure, while the OVERTEMP digital output, is  
active-low with an open-drain structure.  
2.2 mm by 2.5 mm (typ) WSON-6 Package  
Excellent Power Supply Noise Rejection  
The analog output, VTEMP, delivers an analog output  
voltage with Negative Temperature Coefficient (NTC).  
LM26LVQISD–130 and LM26LVQISD-135 are  
AEC-Q100 Grade 0 Qualified and are  
Manufactured on an Automotive Grade Flow.  
For Other Trip Points, Contact Your Sales  
Office.  
Driving the TRIP TEST input high: (1) causes the  
digital outputs to be asserted for in-situ verification  
and, (2) causes the threshold voltage to appear at the  
VTEMP output pin, which could be used to verify the  
temperature trip point.  
APPLICATIONS  
The LM26LV/LM26LV-Q1's low minimum supply  
voltage makes it ideal for 1.8 Volt system designs. Its  
wide operating range, low supply current, and  
excellent accuracy provide a temperature switch  
solution for a wide range of commercial and industrial  
applications.  
Cell Phones and Wireless Transceivers  
Digital Cameras  
Battery Management  
Automotive  
Disk Drives  
Games and Appliances  
Key Specifications  
Supply Voltage  
1.6V to 5.5V  
Supply Current  
8 μA (typ)  
Accuracy, Trip Point Temperature  
0°C to 150°C  
0°C to 150°C  
0°C to 120°C  
50°C to 0°C  
±2.2°C  
±2.3°C  
Accuracy, VTEMP  
±2.2°C  
±1.7°C  
VTEMP Output Drive  
±100 μA  
Operating Temperature  
Hysteresis Temperature  
50°C to 150°C  
4.5°C to 5.5°C  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2013, Texas Instruments Incorporated  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
Connection Diagram  
TRIP  
TEST  
1
2
3
6
5
4
V
TEMP  
GND  
DAP  
OVERTEMP  
V
DD  
OVERTEMP  
Figure 1. WSON-6 (Top View)  
See Package Number NGF0006A  
Typical Transfer Characteristic  
Figure 2. VTEMP Analog Voltage vs Die Temperature  
Block Diagram  
V
DD  
4
TRIP TEST = 0  
(Default)  
LM26LV  
6
3
V
TEMP  
TRIP TEST = 1  
OVERTEMP  
V
V
TRIP  
TS  
V
DD  
TEMP  
SENSOR  
TEMP  
5
THRESHOLD  
OVERTEMP  
1
2
GND  
TRIP  
TEST  
2
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Pin Descriptions  
Pin  
No.  
Name  
Type  
Equivalent Circuit  
Description  
V
DD  
TRIP TEST pin. Active High input.  
If TRIP TEST = 0 (Default) then:  
VTEMP = VTS, Temperature Sensor Output Voltage  
If TRIP TEST = 1 then:  
OVERTEMP and OVERTEMP outputs are asserted and  
VTEMP = VTRIP, Temperature Trip Voltage.  
This pin may be left open if not used.  
TRIP  
TEST  
Digital  
Input  
1
1 mA  
GND  
V
DD  
Over Temperature Switch output  
Active High, Push-Pull  
Asserted when the measured temperature exceeds the Trip Point  
Temperature or if TRIP TEST = 1  
Digital  
Output  
5
OVERTEMP  
This pin may be left open if not used.  
GND  
Over Temperature Switch output  
Active Low, Open-drain (See Determining the Pull-up Resistor Value)  
Asserted when the measured temperature exceeds the Trip Point  
Temperature or if TRIP TEST = 1  
Digital  
Output  
3
6
OVERTEMP  
This pin may be left open if not used.  
GND  
V
DD  
V
SENSE  
VTEMP Analog Voltage Output  
If TRIP TEST = 0 then  
VTEMP = VTS, Temperature Sensor Output Voltage  
If TRIP TEST = 1 then  
Analog  
Output  
VTEMP  
VTEMP = VTRIP, Temperature Trip Voltage  
This pin may be left open if not used.  
GND  
4
2
VDD  
Power  
Positive Supply Voltage  
Power Supply Ground  
GND  
Ground  
The best thermal conductivity between the device and the PCB is achieved  
by soldering the DAP of the package to the thermal pad on the PCB. The  
thermal pad can be a floating node. However, for improved noise immunity  
the thermal pad should be connected to the circuit GND node, preferably  
directly to pin 2 (GND) of the device.  
DAP  
Die Attach Pad  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM26LV  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
Typical Application  
V
V
Supply  
DD  
DD  
Analog  
(+1.6V to +5.5V)  
V
ADC Input  
TEMP  
Example: 2 to 3  
Battery Cells  
LM26LV  
Microcontroller  
OVERTEMP  
OVERTEMP  
TRIP TEST  
GND  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)  
Supply Voltage  
0.3V to +6.0V  
0.3V to +6.0V  
0.3V to (VDD + 0.5V)  
0.3V to (VDD + 0.5V)  
±7 mA  
Voltage at OVERTEMP pin  
Voltage at OVERTEMP and VTEMP pins  
TRIP TEST Input Voltage  
Output Current, any output pin  
Input Current at any pin(2)  
Storage Temperature  
5 mA  
65°C to +150°C  
+155°C  
Maximum Junction Temperature, TJ(MAX)  
Human Body Model  
Machine Model  
4500V  
ESD Susceptibility(3)  
300V  
Charged Device Model  
1000V  
For soldering specifications: see product folder at www.ti.com and http://www.ti.com/lit/SNOA549  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see  
the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics  
may degrade when the device is not operated under the listed test conditions.  
(2) When the input voltage (VI) at any pin exceeds power supplies (VI < GND or VI > VDD), the current at that pin should be limited to 5mA.  
(3) The Human Body Model (HBM) is a 100pF capacitor charged to the specified voltage then discharged through a 1.5kΩ resistor into  
each pin. The Machine Model (MM) is a 200pF capacitor charged to the specified voltage then discharged directly into each pin. The  
Charged Device Model (CDM) is a specified circuit characterizing an ESD event that occurs when a device acquires charge through  
some triboelectric (frictional) or electrostatic induction processes and then abruptly touches a grounded object or surface.  
Operating Ratings(1)  
Specified Temperature Range:  
TMIN TA TMAX  
LM26LV/LM26LV-Q1  
50°C TA +150°C  
+1.6 V to +5.5 V  
152 °C/W  
Supply Voltage Range (VDD  
)
(2)  
Thermal Resistance (θJA  
)
WSON-6 (Package NGF0006A)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see  
the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics  
may degrade when the device is not operated under the listed test conditions.  
(2) The junction to ambient temperature resistance (θJA) is specified without a heat sink in still air.  
4
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Accuracy Characteristics Trip Point Accuracy  
Units  
(Limit)  
Parameter  
Conditions  
Limits(1)  
Trip Point Accuracy(2)  
0 150°C  
VDD = 5.0 V  
±2.2  
°C (max)  
(1) Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level).  
(2) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the  
specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the  
specified conditions. Accuracy limits do not include load regulation; they assume no DC load.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM26LV  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
Accuracy Characteristics VTEMP Analog Temperature Sensor Output Accuracy(1)  
There are four gains corresponding to each of the four Temperature Trip Point Ranges. Gain 1 is the sensor gain used for  
Temperature Trip Point 0 - 69°C. Likewise Gain 2 is for Trip Points 70 - 109 °C; Gain 3 for 110 - 129 °C; and Gain 4 for 130 -  
150 °C. These limits do not include DC load regulation. These stated accuracy limits are with reference to the values in the  
LM26LV/LM26LV-Q1 Conversion Table.  
Units  
(Limit)  
Parameter  
Conditions  
Limits(2)  
TA = 20°C to 40°C  
TA = 0°C to 70°C  
TA = 0°C to 90°C  
TA = 0°C to 120°C  
TA = 0°C to 150°C  
TA = 50°C to 0°C  
TA = 20°C to 40°C  
TA = 0°C to 70°C  
TA = 0°C to 90°C  
TA = 0°C to 120°C  
TA = 0°C to 150°C  
TA = 50°C to 0°C  
TA = 20°C to 40°C  
TA = 0°C to 70°C  
TA = 0°C to 90°C  
TA = 0°C to 120°C  
TA = 0°C to 150°C  
TA = 50°C to 0°C  
TA = 20°C to 40°C  
TA = 0°C to 70°C  
TA = 0°C to 90°C  
TA = 0°C to 120°C  
TA = 0°C to 150°C  
TA = 50°C to 0°C  
VDD = 1.6 to 5.5 V  
VDD = 1.6 to 5.5 V  
VDD = 1.6 to 5.5 V  
VDD = 1.6 to 5.5 V  
VDD = 1.6 to 5.5 V  
VDD = 1.7 to 5.5 V  
VDD = 1.8 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 1.9 to 5.5 V  
VDD = 2.3 to 5.5 V  
VDD = 2.3 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 2.5 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 2.7 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 3.0 to 5.5 V  
VDD = 3.6 to 5.5 V  
±1.8  
±2.0  
±2.1  
±2.2  
±2.3  
±1.7  
±1.8  
±2.0  
±2.1  
±2.2  
±2.3  
±1.7  
±1.8  
±2.0  
±2.1  
±2.2  
±2.3  
±1.7  
±1.8  
±2.0  
±2.1  
±2.2  
±2.3  
±1.7  
Gain 1: for Trip Point  
Range 0 - 69°C  
°C (max)  
Gain 2: for Trip Point  
Range 70 - 109°C  
°C (max)  
°C (max)  
°C (max)  
VTEMP Temperature  
Accuracy(3)  
Gain 3: for Trip Point  
Range 110 - 129°C  
Gain 4: for Trip Point  
Range 130 - 150°C  
(1) Changes in output due to self heating can be computed by multiplying the internal dissipation by the temperature resistance.  
(2) Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level).  
(3) Accuracy is defined as the error between the measured and reference output voltages, tabulated in the Conversion Table at the  
specified conditions of supply gain setting, voltage, and temperature (expressed in °C). Accuracy limits include line regulation within the  
specified conditions. Accuracy limits do not include load regulation; they assume no DC load.  
6
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Electrical Characteristics  
Unless otherwise noted, these specifications apply for +VDD = +1.6V to +5.5V. Boldface limits apply for TA = TJ = TMIN to  
TMAX ; all other limits TA = TJ = 25°C.  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
Typical(1)  
Limits(2)  
GENERAL SPECIFICATIONS  
Quiescent Power Supply  
IS  
8
5
16  
μA (max)  
Current  
5.5  
4.5  
°C (max)  
°C (min)  
Hysteresis  
OVERTEMP DIGITAL OUTPUT  
ACTIVE HIGH, PUSH-PULL  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
Source 340 μA  
Source 498 μA  
Source 780 μA  
Source 600 μA  
Source 980 μA  
Source 1.6 mA  
V
DD 0.2V  
V (min)  
V (min)  
VOH  
Logic "1" Output Voltage  
VDD 0.45V  
BOTH OVERTEMP and OVERTEMP DIGITAL OUTPUTS  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
VDD 1.6V  
VDD 2.0V  
VDD 3.3V  
Sink 385 μA  
Sink 500 μA  
Sink 730 μA  
Sink 690 μA  
Sink 1.05 mA  
Sink 1.62 mA  
0.2  
VOL  
Logic "0" Output Voltage  
V (max)  
0.45  
OVERTEMP DIGITAL OUTPUT  
Logic "1" Output Leakage  
ACTIVE LOW, OPEN DRAIN  
TA = 30 °C  
0.001  
0.025  
IOH  
1
μA (max)  
Current(3)  
TA = 150 °C  
VTEMP ANALOG TEMPERATURE SENSOR OUTPUT  
Gain 1: If Trip Point = 0 - 69°C  
5.1  
7.7  
mV/°C  
mV/°C  
mV/°C  
mV/°C  
Gain 2: If Trip Point = 70 - 109°C  
Gain 3: If Trip Point = 110 - 129°C  
Gain 4: If Trip Point = 130 - 150°C  
Source 90 μA  
VTEMP Sensor Gain  
10.3  
12.8  
0.1  
0.1  
1  
1
mV (max)  
mV (max)  
mV (max)  
mV (max)  
(VDD VTEMP) 200 mV  
Sink 100 μA  
TEMP 260 mV  
1.6V VDD < 1.8V  
V
VTEMP Load Regulation(4)  
Source 120 μA  
0.1  
0.1  
1  
1
(VDD VTEMP) 200 mV  
VDD 1.8V  
Sink 200 μA  
VTEMP 260 mV  
Source or Sink = 100 μA  
1
mV  
μV/V  
dB  
0.29  
74  
VDD Supply- to-VTEMP  
DC Line Regulation(5)  
VDD = +1.6V to +5.5V  
82  
VTEMP Output Load  
Capacitance  
CL  
Without series resistor. See CAPACITIVE LOADS  
1100  
pF (max)  
(1) Typicals are at TJ = TA = 25°C and represent most likely parametric norm.  
(2) Limits are guaranteed to TI's AOQL (Average Outgoing Quality Level).  
(3) The 1µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the  
current for every 15°C increase in temperature. For example, the 1nA typical current at 25°C would increase to 16nA at 85°C.  
(4) Source currents are flowing out of the LM26LV/LM26LV-Q1. Sink currents are flowing into the LM26LV/LM26LV-Q1.  
(5) Line regulation (DC) is calculated by subtracting the output voltage at the highest supply voltage from the output voltage at the lowest  
supply voltage. The typical DC line regulation specification does not include the output voltage shift discussed in Section 4.3.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM26LV  
 
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
Electrical Characteristics (continued)  
Unless otherwise noted, these specifications apply for +VDD = +1.6V to +5.5V. Boldface limits apply for TA = TJ = TMIN to  
TMAX ; all other limits TA = TJ = 25°C.  
Units  
(Limit)  
Symbol  
Parameter  
Conditions  
Typical(1)  
Limits(2)  
TRIP TEST DIGITAL INPUT  
VIH  
VIL  
Logic "1" Threshold Voltage  
V
DD0.5  
V (min)  
V (max)  
μA (max)  
μA (max)  
Logic "0" Threshold Voltage  
Logic "1" Input Current  
Logic "0" Input Current(6)  
0.5  
IIH  
1.5  
2.5  
IIL  
0.001  
1
TIMING  
Time from Power On to Digital  
Output Enabled. See definition  
below.  
tEN  
tV  
1.1  
1.0  
2.3  
2.9  
ms (max)  
ms (max)  
Time from Power On to Analog VTEMP CL = 0 pF to 1100 pF  
Temperature Valid. See  
definition below.  
(6) The 1µA limit is based on a testing limitation and does not reflect the actual performance of the part. Expect to see a doubling of the  
current for every 15°C increase in temperature. For example, the 1nA typical current at 25°C would increase to 16nA at 85°C.  
V
DD  
1.3V  
t
EN  
OVERTEMP  
OVERTEMP  
Enabled  
Enabled  
V
DD  
t
VTEMP  
Valid  
V
TEMP  
Figure 3. Definitions of tEN and tV  
8
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Typical Performance Characteristics  
VTEMP Output Temperature Error  
Minimum Operating Temperature  
vs.  
vs.  
Temperature  
Supply Voltage  
Figure 4.  
Figure 5.  
Supply Current  
vs.  
Temperature  
Supply Current  
vs.  
Supply Voltage  
Figure 6.  
Figure 7.  
Load Regulation, 100 mV Overhead  
T = 80°C Sourcing Current(1)  
Load Regulation, 200 mV Overhead  
T = 80°C Sourcing Current(1)  
Figure 8.  
Figure 9.  
(1) The curves shown represent typical performance under worst-case conditions. Performance improves with larger overhead (VDD  
VTEMP), larger VDD, and lower temperatures.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM26LV  
 
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Load Regulation, 1.72V Overhead  
Load Regulation, 400 mV Overhead  
T = 80°C Sourcing Current(1)  
T = 150°C, VDD = 2.4V  
Sourcing Current(1)  
Figure 10.  
Figure 11.  
Load Regulation, VDD = 1.6V  
Sinking Current(2)  
Load Regulation, VDD = 1.8V  
Sinking Current(2)  
Figure 12.  
Figure 13.  
Change in VTEMP  
vs.  
Overhead Voltage  
Load Regulation, VDD = 2.4V  
Sinking Current(3)  
Figure 14.  
Figure 15.  
(2) The curves shown represent typical performance under worst-case conditions. Performance improves with larger VTEMP, larger VDD and  
lower temperatures.  
(3) The curves shown represent typical performance under worst-case conditions. Performance improves with larger VTEMP, larger VDD and  
lower temperatures.  
10  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Typical Performance Characteristics (continued)  
VTEMP Supply-Noise Rejection  
Line Regulation  
VTEMP vs. Supply Voltage  
Gain 1: For Trip Points 0 - 69°C  
vs.  
Frequency  
Figure 16.  
Figure 17.  
Line Regulation VTEMP vs. Supply Voltage  
Gain 2: For Trip Points 70 - 109°C  
Line Regulation VTEMP vs. Supply Voltage  
Gain 3: For Trip Points 110 - 129°C  
Figure 18.  
Figure 19.  
Line Regulation VTEMP vs. Supply Voltage  
Gain 4: For Trip Points 130 - 150°C  
Figure 20.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM26LV  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
LM26LV/LM26LV-Q1 VTEMP VS DIE TEMPERATURE CONVERSION TABLE  
The LM26LV/LM26LV-Q1 has one out of four possible factory-set gains, Gain 1 through Gain 4, depending on  
the range of the Temperature Trip Point. The VTEMP temperature sensor voltage, in millivolts, at each discrete die  
temperature over the complete operating temperature range, and for each of the four Temperature Trip Point  
ranges, is shown in the Conversion Table. This table is the reference from which the LM26LV/LM26LV-Q1  
accuracy specifications (listed in the Electrical Characteristics section) are determined. This table can be used,  
for example, in a host processor look-up table. See The Second-Order Equation (Parabolic) for the parabolic  
equation used in the Conversion Table.  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table(1)  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
Gain 1: for  
Gain 2: for  
Gain 3: for  
Gain 4: for  
TTRIP = 130-150°C  
°C  
TTRIP = 0-69°C  
TTRIP = 70-109°C  
TTRIP = 110-129°C  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1312  
1307  
1302  
1297  
1292  
1287  
1282  
1277  
1272  
1267  
1262  
1257  
1252  
1247  
1242  
1237  
1232  
1227  
1222  
1217  
1212  
1207  
1202  
1197  
1192  
1187  
1182  
1177  
1172  
1167  
1162  
1157  
1152  
1147  
1967  
1960  
1952  
1945  
1937  
1930  
1922  
1915  
1908  
1900  
1893  
1885  
1878  
1870  
1863  
1855  
1848  
1840  
1833  
1825  
1818  
1810  
1803  
1795  
1788  
1780  
1773  
1765  
1757  
1750  
1742  
1735  
1727  
1720  
2623  
2613  
2603  
2593  
2583  
2573  
2563  
2553  
2543  
2533  
2523  
2513  
2503  
2493  
2483  
2473  
2463  
2453  
2443  
2433  
2423  
2413  
2403  
2393  
2383  
2373  
2363  
2353  
2343  
2333  
2323  
2313  
2303  
2293  
3278  
3266  
3253  
3241  
3229  
3216  
3204  
3191  
3179  
3166  
3154  
3141  
3129  
3116  
3104  
3091  
3079  
3066  
3054  
3041  
3029  
3016  
3004  
2991  
2979  
2966  
2954  
2941  
2929  
2916  
2903  
2891  
2878  
2866  
(1) The VTEMP temperature sensor output voltage, in mV, vs Die Temperature, in °C, for each of the four gains corresponding to each of the  
four Temperature Trip Point Ranges. Gain 1 is the sensor gain used for Temperature Trip Point 0 - 69°C. Likewise Gain 2 is for Trip  
Points 70 - 109 °C; Gain 3 for 110 - 129 °C; and Gain 4 for 130 - 150 °C. VDD = 5.0V. The values in bold font are for the Trip Point  
range.  
12  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
 
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table(1) (continued)  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
Gain 1: for  
Gain 2: for  
Gain 3: for  
Gain 4: for  
TTRIP = 130-150°C  
°C  
TTRIP = 0-69°C  
TTRIP = 70-109°C  
TTRIP = 110-129°C  
16  
15  
14  
13  
12  
11  
10  
9  
8  
7  
6  
5  
4  
3  
2  
1  
0
1142  
1137  
1132  
1127  
1122  
1116  
1111  
1106  
1101  
1096  
1091  
1086  
1081  
1076  
1071  
1066  
1061  
1056  
1051  
1046  
1041  
1035  
1030  
1025  
1020  
1015  
1010  
1005  
1000  
995  
1712  
1705  
1697  
1690  
1682  
1674  
1667  
1659  
1652  
1644  
1637  
1629  
1621  
1614  
1606  
1599  
1591  
1583  
1576  
1568  
1561  
1553  
1545  
1538  
1530  
1522  
1515  
1507  
1499  
1492  
1484  
1477  
1469  
1461  
1454  
1446  
1438  
1431  
1423  
1415  
1407  
1400  
1392  
1384  
1377  
1369  
2283  
2272  
2262  
2252  
2242  
2232  
2222  
2212  
2202  
2192  
2182  
2171  
2161  
2151  
2141  
2131  
2121  
2111  
2101  
2090  
2080  
2070  
2060  
2050  
2040  
2029  
2019  
2009  
1999  
1989  
1978  
1968  
1958  
1948  
1938  
1927  
1917  
1907  
1897  
1886  
1876  
1866  
1856  
1845  
1835  
1825  
2853  
2841  
2828  
2815  
2803  
2790  
2777  
2765  
2752  
2740  
2727  
2714  
2702  
2689  
2676  
2664  
2651  
2638  
2626  
2613  
2600  
2587  
2575  
2562  
2549  
2537  
2524  
2511  
2498  
2486  
2473  
2460  
2447  
2435  
2422  
2409  
2396  
2383  
2371  
2358  
2345  
2332  
2319  
2307  
2294  
2281  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
990  
985  
980  
974  
969  
964  
959  
954  
949  
944  
939  
934  
928  
923  
918  
913  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM26LV  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table(1) (continued)  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
Gain 1: for  
Gain 2: for  
Gain 3: for  
Gain 4: for  
TTRIP = 130-150°C  
°C  
TTRIP = 0-69°C  
TTRIP = 70-109°C  
TTRIP = 110-129°C  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
908  
903  
898  
892  
887  
882  
877  
872  
867  
862  
856  
851  
846  
841  
836  
831  
825  
820  
815  
810  
805  
800  
794  
789  
784  
779  
774  
769  
763  
758  
753  
748  
743  
737  
732  
727  
722  
717  
711  
706  
701  
696  
690  
685  
680  
675  
1361  
1354  
1346  
1338  
1331  
1323  
1315  
1307  
1300  
1292  
1284  
1276  
1269  
1261  
1253  
1245  
1238  
1230  
1222  
1214  
1207  
1199  
1191  
1183  
1176  
1168  
1160  
1152  
1144  
1137  
1129  
1121  
1113  
1105  
1098  
1090  
1082  
1074  
1066  
1059  
1051  
1043  
1035  
1027  
1019  
1012  
1815  
1804  
1794  
1784  
1774  
1763  
1753  
1743  
1732  
1722  
1712  
1701  
1691  
1681  
1670  
1660  
1650  
1639  
1629  
1619  
1608  
1598  
1588  
1577  
1567  
1557  
1546  
1536  
1525  
1515  
1505  
1494  
1484  
1473  
1463  
1453  
1442  
1432  
1421  
1411  
1400  
1390  
1380  
1369  
1359  
1348  
2268  
2255  
2242  
2230  
2217  
2204  
2191  
2178  
2165  
2152  
2139  
2127  
2114  
2101  
2088  
2075  
2062  
2049  
2036  
2023  
2010  
1997  
1984  
1971  
1958  
1946  
1933  
1920  
1907  
1894  
1881  
1868  
1855  
1842  
1829  
1816  
1803  
1790  
1776  
1763  
1750  
1737  
1724  
1711  
1698  
1685  
14  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table(1) (continued)  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
Gain 1: for  
Gain 2: for  
Gain 3: for  
Gain 4: for  
TTRIP = 130-150°C  
°C  
TTRIP = 0-69°C  
TTRIP = 70-109°C  
TTRIP = 110-129°C  
76  
77  
670  
664  
659  
654  
649  
643  
638  
633  
628  
622  
617  
612  
607  
601  
596  
591  
586  
580  
575  
570  
564  
559  
554  
549  
543  
538  
533  
527  
522  
517  
512  
506  
501  
496  
490  
485  
480  
474  
469  
464  
459  
453  
448  
443  
437  
432  
1004  
996  
988  
980  
972  
964  
957  
949  
941  
933  
925  
917  
909  
901  
894  
886  
878  
870  
862  
854  
846  
838  
830  
822  
814  
807  
799  
791  
783  
775  
767  
759  
751  
743  
735  
727  
719  
711  
703  
695  
687  
679  
671  
663  
655  
647  
1338  
1327  
1317  
1306  
1296  
1285  
1275  
1264  
1254  
1243  
1233  
1222  
1212  
1201  
1191  
1180  
1170  
1159  
1149  
1138  
1128  
1117  
1106  
1096  
1085  
1075  
1064  
1054  
1043  
1032  
1022  
1011  
1001  
990  
1672  
1659  
1646  
1633  
1620  
1607  
1593  
1580  
1567  
1554  
1541  
1528  
1515  
1501  
1488  
1475  
1462  
1449  
1436  
1422  
1409  
1396  
1383  
1370  
1357  
1343  
1330  
1317  
1304  
1290  
1277  
1264  
1251  
1237  
1224  
1211  
1198  
1184  
1171  
1158  
1145  
1131  
1118  
1105  
1091  
1078  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
979  
969  
958  
948  
937  
926  
916  
905  
894  
884  
873  
862  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM26LV  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
Table 1. VTEMP Temperature Sensor Output Voltage vs Die Temperature Conversion Table(1) (continued)  
VTEMP, Analog Output Voltage, mV  
Die Temp.,  
Gain 1: for  
Gain 2: for  
Gain 3: for  
Gain 4: for  
TTRIP = 130-150°C  
°C  
TTRIP = 0-69°C  
TTRIP = 70-109°C  
TTRIP = 110-129°C  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
427  
421  
416  
411  
405  
400  
395  
389  
384  
379  
373  
368  
362  
357  
352  
346  
341  
336  
330  
325  
320  
314  
309  
303  
298  
293  
287  
282  
277  
639  
631  
623  
615  
607  
599  
591  
583  
575  
567  
559  
551  
543  
535  
527  
519  
511  
503  
495  
487  
479  
471  
463  
455  
447  
438  
430  
422  
414  
852  
841  
831  
820  
809  
798  
788  
777  
766  
756  
745  
734  
724  
713  
702  
691  
681  
670  
659  
649  
638  
627  
616  
606  
595  
584  
573  
562  
552  
1065  
1051  
1038  
1025  
1011  
998  
985  
971  
958  
945  
931  
918  
904  
891  
878  
864  
851  
837  
824  
811  
797  
784  
770  
757  
743  
730  
716  
703  
690  
VTEMP vs DIE TEMPERATURE APPROXIMATIONS  
The LM26LV/LM26LV-Q1's VTEMP analog temperature output is very linear. The Conversion Table above and the  
equation in the Section The Second-Order Equation (Parabolic) represent the most accurate typical performance  
of the VTEMP voltage output vs Temperature.  
The Second-Order Equation (Parabolic)  
The data from the Conversion Table, or the equation below, when plotted, has an umbrella-shaped parabolic  
curve. VTEMP is in mV.  
GAIN1: VTEMP = 907.9 - 5.132 x (TDIE - 30°C) - 1.08e-3 x (T DIE - 30°C) 2  
GAIN2: VTEMP = 1361.4 - 7.701 x (TDIE - 30°C) - 1.60e-3 x (T DIE - 30°C) 2  
GAIN3: VTEMP = 1814.6 - 10.270 x (TDIE - 30°C) - 2.12e-3 x (T DIE - 30°C) 2  
GAIN4: VTEMP = 2268.1 - 12.838 x (TDIE - 30°C) - 2.64e-3 x (T DIE - 30°C) 2  
(1)  
16  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
 
 
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
The First-Order Approximation (Linear)  
For a quicker approximation, although less accurate than the second-order, over the full operating temperature  
range the linear formula below can be used. Using this formula, with the constant and slope in the following set  
of equations, the best-fit VTEMP vs Die Temperature performance can be calculated with an approximation error  
less than 18 mV. VTEMP is in mV.  
GAIN1: VTEMP = 1060 - 5.18 x TDIE  
GAIN2: VTEMP = 1590 - 7.77 x TDIE  
GAIN3: VTEMP = 2119 - 10.36 x TDIE  
GAIN4: VTEMP = 2649 - 12.94 x TDIE  
(2)  
First-Order Approximation (Linear) over Small Temperature Range  
For a linear approximation, a line can easily be calculated over the desired temperature range from the  
Conversion Table using the two-point equation:  
V2 - V1  
ì
V - V1 =  
(T - T1)  
T2 - T1  
(3)  
Where V is in mV, T is in °C, T1 and V1 are the coordinates of the lowest temperature, T2 and V2 are the  
coordinates of the highest temperature.  
For example, if we want to determine the equation of a line with Gain 4, over a temperature range of 20°C to  
50°C, we would proceed as follows:  
2010 mV - 2396 mV  
x
V - 2396 mV =  
(T - 20°C)  
50°C - 20°C  
(4)  
(5)  
(6)  
x
(-12.8 mV/°C) (T - 20°C)  
V - 2396 mV =  
x
(-12.8 mV/°C) (T-20°C) + 2396 mV  
V =  
Using this method of linear approximation, the transfer function can be approximated for one or more  
temperature ranges of interest.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM26LV  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
OVERTEMP and OVERTEMP Digital Outputs  
The OVERTEMP Active High, Push-Pull Output and the OVERTEMP Active Low, Open-Drain Output both assert  
at the same time whenever the Die Temperature reaches the factory preset Temperature Trip Point. They also  
assert simultaneously whenever the TRIP TEST pin is set high. Both outputs de-assert when the die temperature  
goes below the Temperature Trip Point - Hysteresis. These two types of digital outputs enable the user the  
flexibility to choose the type of output that is most suitable for his design.  
Either the OVERTEMP or the OVERTEMP Digital Output pins can be left open if not used.  
OVERTEMP OPEN-DRAIN DIGITAL OUTPUT  
The OVERTEMP Active Low, Open-Drain Digital Output, if used, requires a pull-up resistor between this pin and  
VDD. The following section shows how to determine the pull-up resistor value.  
Determining the Pull-up Resistor Value  
V
DD  
i
T
R
Pull-Up  
V
OUT  
OVERTEMP  
Digital Input  
i
L
i
sink  
The Pull-up resistor value is calculated at the condition of maximum total current, iT, through the resistor. The  
total current is:  
iT = iL + isink  
(7)  
where,  
iT  
iL  
iT is the maximum total current through the Pull-up Resistor at VOL  
iL is the load current, which is very low for typical digital inputs.  
.
VOUT VOUT is the Voltage at the OVERTEMP pin. Use VOL for calculating the Pull-up resistor.  
VDD(Max) VDD(Max) is the maximum power supply voltage to be used in the customer's system.  
The pull-up resistor maximum value can be found by using the following formula:  
Rpull-up = VDD (Max) œ VOL  
iT  
(8)  
EXAMPLE CALCULATION  
Suppose we have, for our example, a VDD of 3.3 V ± 0.3V, a CMOS digital input as a load, a VOL of 0.2 V.  
1. We see that for VOL of 0.2 V the electrical specification for OVERTEMP shows a maximim isink of 385 µA.  
2. Let iL= 1 µA, then iT is about 386 µA max. If we select 35 µA as the current limit then iT for the calculation  
becomes 35 µA  
3. We notice that VDD(Max) is 3.3V + 0.3V = 3.6V and then calculate the pull-up resistor as RPull-up = (3.6  
0.2)/35 µA = 97k  
4. Based on this calculated value, we select the closest resistor value in the tolerance family we are using.  
In our example, if we are using 5% resistor values, then the next closest value is 100 kΩ.  
18  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
NOISE IMMUNITY  
The LM26LV/LM26LV-Q1 is virtually immune from false triggers on the OVERTEMP and OVERTEMP digital  
outputs due to noise on the power supply. Test have been conducted showing that, with the die temperature  
within 0.5°C of the temperature trip point, and the severe test of a 3 Vpp square wave "noise" signal injected on  
the VDD line, over the VDD range of 2V to 5V, there were no false triggers.  
TRIP TEST Digital Input  
The TRIP TEST pin simply provides a means to test the OVERTEMP and OVERTEMP digital outputs  
electronically by causing them to assert, at any operating temperature, as a result of forcing the TRIP TEST pin  
high.  
When the TRIP TEST pin is pulled high the VTEMP pin will be at the VTRIP voltage.  
If not used, the TRIP TEST pin may either be left open or grounded.  
VTEMP Analog Temperature Sensor Output  
The VTEMP push-pull output provides the ability to sink and source significant current. This is beneficial when, for  
example, driving dynamic loads like an input stage on an analog-to-digital converter (ADC). In these applications  
the source current is required to quickly charge the input capacitor of the ADC. See the Applications Circuits  
section for more discussion of this topic. The LM26LV/LM26LV-Q1 is ideal for this and other applications which  
require strong source or sink current.  
NOISE CONSIDERATIONS  
The LM26LV/LM26LV-Q1's supply-noise rejection (the ratio of the AC signal on VTEMP to the AC signal on VDD  
)
was measured during bench tests. It's typical attenuation is shown in the Typical Performance Characteristics  
section. A load capacitor on the output can help to filter noise.  
For operation in very noisy environments, some bypass capacitance should be present on the supply within  
approximately 2 inches of the LM26LV/LM26LV-Q1.  
CAPACITIVE LOADS  
The VTEMP Output handles capacitive loading well. In an extremely noisy environment, or when driving a switched  
sampling input on an ADC, it may be necessary to add some filtering to minimize noise coupling. Without any  
precautions, the VTEMP can drive a capacitive load less than or equal to 1100 pF as shown in Figure 21. For  
capacitive loads greater than 1100 pF, a series resistor is required on the output, as shown in Figure 22, to  
maintain stable conditions.  
V
DD  
V
TEMP  
LM26LV  
GND  
OPTIONAL  
BYPASS  
CAPACITANCE  
C
LOAD  
Ç 1100 pF  
Figure 21. LM26LV/LM26LV-Q1 No Decoupling Required for Capacitive Loads Less than 1100pF.  
V
DD  
R
S
V
TEMP  
LM26LV  
GND  
OPTIONAL  
BYPASS  
CAPACITANCE  
C
>
LOAD  
1100 pF  
Figure 22. LM26LV/LM26LV-Q1 with series resistor for capacitive loading greater than 1100pF  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM26LV  
 
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
CLOAD  
1.1 nF to 99 nF  
100 nF to 999 nF  
1 μF  
Minimum RS  
3 kΩ  
1.5 kΩ  
800 Ω  
VOLTAGE SHIFT  
The LM26LV/LM26LV-Q1 is very linear over temperature and supply voltage range. Due to the intrinsic behavior  
of an NMOS/PMOS rail-to-rail buffer, a slight shift in the output can occur when the supply voltage is ramped  
over the operating range of the device. The location of the shift is determined by the relative levels of VDD and  
VTEMP. The shift typically occurs when VDD VTEMP = 1.0V.  
This slight shift (a few millivolts) takes place over a wide change (approximately 200 mV) in VDD or VTEMP. Since  
the shift takes place over a wide temperature change of 5°C to 20°C, VTEMP is always monotonic. The accuracy  
specifications in the Electrical Characteristics table already includes this possible shift.  
Mounting and Temperature Conductivity  
The LM26LV/LM26LV-Q1 can be applied easily in the same way as other integrated-circuit temperature sensors.  
It can be glued or cemented to a surface.  
The best thermal conductivity between the device and the PCB is achieved by soldering the DAP of the package  
to the thermal pad on the PCB. The temperatures of the lands and traces to the other leads of the  
LM26LV/LM26LV-Q1 will also affect the temperature reading.  
Alternatively, the LM26LV/LM26LV-Q1 can be mounted inside a sealed-end metal tube, and can then be dipped  
into a bath or screwed into a threaded hole in a tank. As with any IC, the LM26LV/LM26LV-Q1 and  
accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is  
especially true if the circuit may operate at cold temperatures where condensation can occur. If moisture creates  
a short circuit from the VTEMP output to ground or VDD, the VTEMP output from the LM26LV/LM26LV-Q1 will not be  
correct. Printed-circuit coatings are often used to ensure that moisture cannot corrode the leads or circuit traces.  
The thermal resistance junction-to-ambient (θJA) is the parameter used to calculate the rise of a device junction  
temperature due to its power dissipation. The equation used to calculate the rise in the LM26LV/LM26LV-Q1's  
die temperature is  
TJ = TA + qJA (VDDIQ) + (VDD - VTEMP) IL  
[
]
(9)  
where TA is the ambient temperature, IQ is the quiescent current, IL is the load current on the output, and VO is  
the output voltage. For example, in an application where TA = 30 °C, VDD = 5 V, IDD = 9 μA, Gain 4, VTEMP = 2231  
mV, and IL = 2 μA, the junction temperature would be 30.021 °C, showing a self-heating error of only 0.021°C.  
Since the LM26LV/LM26LV-Q1's junction temperature is the actual temperature being measured, care should be  
taken to minimize the load current that the VTEMP output is required to drive. If The OVERTEMP output is used  
with a 100 k pull-up resistor, and this output is asserted (low), then for this example the additional contribution is  
[(152° C/W)x(5V)2/100k] = 0.038°C for a total self-heating error of 0.059°C. Table 2 shows the thermal resistance  
of the LM26LV/LM26LV-Q1.  
Table 2. LM26LV/LM26LV-Q1 Thermal Resistance  
Device Number  
NS Package Number  
Thermal Resistance (θJA)  
LM26LVCSID/LM26LVQCISD  
NGF0006A  
152° C/W  
20  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
 
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
Applications Circuits  
V
DD  
4
1
5
6
3
OVERTEMP  
NC  
Asserts when T  
> T  
TRIP  
DIE  
LM26LV  
NC  
See text.  
NC  
2
GND  
Figure 23. Temperature Switch Using Push-Pull Output  
V
DD  
4
100k  
OVERTEMP  
1
3
6
NC  
Asserts when T  
> T  
TRIP  
DIE  
LM26LV  
NC  
See text.  
5
NC  
2
GND  
Figure 24. Temperature Switch Using Open-Drain Output  
SAR Analog-to-Digital Converter  
Reset  
+1.6V to +5.5V  
Input  
Pin  
LM26LV  
Sample  
R
IN  
4
6
5
V
V
DD  
TEMP  
C
BP  
C
PIN  
C
C
TRIP  
TEST  
FILTER  
1
2
SAMPLE  
OT  
3
OT  
GND  
Figure 25. Suggested Connection to a Sampling Analog-to-Digital Converter Input Stage  
Most CMOS ADCs found in microcontrollers and ASICs have a sampled data comparator input structure. When  
the ADC charges the sampling cap, it requires instantaneous charge from the output of the analog source such  
as the LM26LV/LM26LV-Q1 temperature sensor and many op amps. This requirement is easily accommodated  
by the addition of a capacitor (CFILTER). The size of CFILTER depends on the size of the sampling capacitor and the  
sampling frequency. Since not all ADCs have identical input stages, the charge requirements will vary. This  
general ADC application is shown as an example only.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM26LV  
LM26LV  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
www.ti.com  
V
TEMP  
V+  
R3  
V
V
T1  
R4  
T2  
R1  
V
T
(High = overtemp alarm)  
4.1V  
+
V
OUT  
V
OUT  
U1  
LM4040  
U3  
0.1 mF  
-
R2  
(4.1)R2  
V
V
=
=
T1  
R1 + R2||R3  
V
TEMP  
LM26LV  
U2  
V
DD  
(4.1)R2  
T2  
R2 + R1||R3  
Figure 26. Celsius Temperature Switch  
V
DD  
100k  
4
3
6
TRIP TEST  
1
OVERTEMP  
LM26LV  
NC  
OVERTEMP  
5
2
GND  
Figure 27. TRIP TEST Digital Output Test Circuit  
V
DD  
100k  
4
TRIP TEST  
1
OVERTEMP  
5
6
LM26LV  
NC  
RESET  
Momentary  
OVERTEMP  
3
2
GND  
Figure 28. Latch Circuit using OVERTEMP Output  
The TRIP TEST pin, normally used to check the operation of the OVERTEMP and OVERTEMP pins, may be  
used to latch the outputs whenever the temperature exceeds the programmed limit and causes the digital outputs  
to assert. As shown in Figure 28, when OVERTEMP goes high the TRIP TEST input is also pulled high and  
causes OVERTEMP output to latch high and the OVERTEMP output to latch low. The latch can be released by  
either momentarily pulling the TRIP TEST pin low (GND), or by toggling the power supply to the device. The  
resistor limits the current out of the OVERTEMP output pin.  
22  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM26LV  
 
 
LM26LV  
www.ti.com  
SNIS144F JULY 2007REVISED FEBRUARY 2013  
REVISION HISTORY  
Changes from Revision E (February 2013) to Revision F  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 22  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM26LV  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2013  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
LM26LVCISD-050/NOPB  
LM26LVCISD-060/NOPB  
LM26LVCISD-065/NOPB  
LM26LVCISD-070/NOPB  
LM26LVCISD-075/NOPB  
LM26LVCISD-080/NOPB  
LM26LVCISD-085/NOPB  
LM26LVCISD-090/NOPB  
LM26LVCISD-095/NOPB  
LM26LVCISD-100/NOPB  
LM26LVCISD-105/NOPB  
LM26LVCISD-110/NOPB  
LM26LVCISD-115/NOPB  
LM26LVCISD-120/NOPB  
LM26LVCISD-125/NOPB  
LM26LVCISD-130/NOPB  
LM26LVCISD-135/NOPB  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
050  
060  
065  
070  
075  
080  
085  
090  
095  
100  
105  
110  
115  
120  
125  
130  
135  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
0 to 150  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
LM26LVCISD-140/NOPB  
LM26LVCISD-145/NOPB  
LM26LVCISD-150/NOPB  
LM26LVCISDX-050/NOPB  
LM26LVCISDX-060/NOPB  
LM26LVCISDX-065/NOPB  
LM26LVCISDX-070/NOPB  
LM26LVCISDX-075/NOPB  
LM26LVCISDX-080/NOPB  
LM26LVCISDX-085/NOPB  
LM26LVCISDX-090/NOPB  
LM26LVCISDX-095/NOPB  
LM26LVCISDX-100/NOPB  
LM26LVCISDX-105/NOPB  
LM26LVCISDX-110/NOPB  
LM26LVCISDX-115/NOPB  
LM26LVCISDX-120/NOPB  
LM26LVCISDX-125/NOPB  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
140  
145  
150  
050  
060  
065  
070  
075  
080  
085  
090  
095  
100  
105  
110  
115  
120  
125  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
1000  
1000  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2013  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 150  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
LM26LVCISDX-130/NOPB  
LM26LVCISDX-135/NOPB  
LM26LVCISDX-140/NOPB  
LM26LVCISDX-145/NOPB  
LM26LVCISDX-150/NOPB  
LM26LVQISD-130/NOPB  
LM26LVQISD-135/NOPB  
LM26LVQISDX-130/NOPB  
LM26LVQISDX-135/NOPB  
ACTIVE  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
6
6
6
6
6
6
6
6
6
4500  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
130  
135  
140  
145  
150  
Q30  
Q35  
Q30  
Q35  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
4500  
4500  
4500  
4500  
1000  
1000  
4500  
4500  
Green (RoHS  
& no Sb/Br)  
0 to 150  
Green (RoHS  
& no Sb/Br)  
0 to 150  
Green (RoHS  
& no Sb/Br)  
0 to 150  
Green (RoHS  
& no Sb/Br)  
0 to 150  
Green (RoHS  
& no Sb/Br)  
-40 to 150  
-40 to 150  
-40 to 150  
-40 to 150  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-May-2013  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM26LV, LM26LV-Q1 :  
Catalog: LM26LV  
Automotive: LM26LV-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 4  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Mar-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM26LVCISD-050/NOPB WSON  
LM26LVCISD-060/NOPB WSON  
LM26LVCISD-065/NOPB WSON  
LM26LVCISD-070/NOPB WSON  
LM26LVCISD-075/NOPB WSON  
LM26LVCISD-080/NOPB WSON  
LM26LVCISD-085/NOPB WSON  
LM26LVCISD-090/NOPB WSON  
LM26LVCISD-095/NOPB WSON  
LM26LVCISD-100/NOPB WSON  
LM26LVCISD-105/NOPB WSON  
LM26LVCISD-110/NOPB WSON  
LM26LVCISD-115/NOPB WSON  
LM26LVCISD-120/NOPB WSON  
LM26LVCISD-125/NOPB WSON  
LM26LVCISD-130/NOPB WSON  
LM26LVCISD-135/NOPB WSON  
LM26LVCISD-140/NOPB WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Mar-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM26LVCISD-145/NOPB WSON  
LM26LVCISD-150/NOPB WSON  
LM26LVCISDX-050/NOPB WSON  
LM26LVCISDX-060/NOPB WSON  
LM26LVCISDX-065/NOPB WSON  
LM26LVCISDX-070/NOPB WSON  
LM26LVCISDX-075/NOPB WSON  
LM26LVCISDX-080/NOPB WSON  
LM26LVCISDX-085/NOPB WSON  
LM26LVCISDX-090/NOPB WSON  
LM26LVCISDX-095/NOPB WSON  
LM26LVCISDX-100/NOPB WSON  
LM26LVCISDX-105/NOPB WSON  
LM26LVCISDX-110/NOPB WSON  
LM26LVCISDX-115/NOPB WSON  
LM26LVCISDX-120/NOPB WSON  
LM26LVCISDX-125/NOPB WSON  
LM26LVCISDX-130/NOPB WSON  
LM26LVCISDX-135/NOPB WSON  
LM26LVCISDX-140/NOPB WSON  
LM26LVCISDX-145/NOPB WSON  
LM26LVCISDX-150/NOPB WSON  
LM26LVQISD-130/NOPB WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
1000  
4500  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
178.0  
330.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.8  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LM26LVQISDX-130/NOP WSON  
B
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Mar-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM26LVCISD-050/NOPB  
LM26LVCISD-060/NOPB  
LM26LVCISD-065/NOPB  
LM26LVCISD-070/NOPB  
LM26LVCISD-075/NOPB  
LM26LVCISD-080/NOPB  
LM26LVCISD-085/NOPB  
LM26LVCISD-090/NOPB  
LM26LVCISD-095/NOPB  
LM26LVCISD-100/NOPB  
LM26LVCISD-105/NOPB  
LM26LVCISD-110/NOPB  
LM26LVCISD-115/NOPB  
LM26LVCISD-120/NOPB  
LM26LVCISD-125/NOPB  
LM26LVCISD-130/NOPB  
LM26LVCISD-135/NOPB  
LM26LVCISD-140/NOPB  
LM26LVCISD-145/NOPB  
LM26LVCISD-150/NOPB  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
21-Mar-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM26LVCISDX-050/NOPB  
LM26LVCISDX-060/NOPB  
LM26LVCISDX-065/NOPB  
LM26LVCISDX-070/NOPB  
LM26LVCISDX-075/NOPB  
LM26LVCISDX-080/NOPB  
LM26LVCISDX-085/NOPB  
LM26LVCISDX-090/NOPB  
LM26LVCISDX-095/NOPB  
LM26LVCISDX-100/NOPB  
LM26LVCISDX-105/NOPB  
LM26LVCISDX-110/NOPB  
LM26LVCISDX-115/NOPB  
LM26LVCISDX-120/NOPB  
LM26LVCISDX-125/NOPB  
LM26LVCISDX-130/NOPB  
LM26LVCISDX-135/NOPB  
LM26LVCISDX-140/NOPB  
LM26LVCISDX-145/NOPB  
LM26LVCISDX-150/NOPB  
LM26LVQISD-130/NOPB  
LM26LVQISDX-130/NOPB  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
WSON  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
NGF  
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
4500  
1000  
4500  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
210.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
367.0  
185.0  
367.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 4  
MECHANICAL DATA  
NGF0006A  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM26LVCISD-090

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-090/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-095

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-095/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-100

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-100/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-105

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-105/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-110

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-110/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI

LM26LVCISD-115

1.6 V, LLP-6 Factory Preset Temperature Switch and Temperature Sensor
NSC

LM26LVCISD-115/NOPB

具有模拟输出的 ±3°C 1.6V 至 5.5V、出厂预设跳变点温度开关 | NGF | 6 | -40 to 150
TI