LM27762DSSR [TI]

具有集成 LDO 的低噪声正负输出电荷泵 | DSS | 12 | -40 to 85;
LM27762DSSR
型号: LM27762DSSR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 LDO 的低噪声正负输出电荷泵 | DSS | 12 | -40 to 85

泵 光电二极管
文件: 总29页 (文件大小:1591K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
LM27762 集成低噪声正负输出的  
电荷泵和 LDO  
1 特性  
3 说明  
1
可生成低噪声、可调节的 1.5V 5V 的正电源电压  
LM27762 提供 ±1.5V ±5V 可调节、超低噪声正负  
-5V -1.5V 的负电源电压  
输入电压范围为 2.7V 5.5V  
±250mA 输出电流  
输出。输入电压范围为 2.7V 5.5V,输出电流高达 ±  
250mALM27762 的工作电流仅为 390µA并且关断电  
流的典型值为 0.5µA,因此可为功率放大器、数模转换  
(DAC) 偏置以及其他大电流、低噪声、负电压应用  
提供理想性能。该器件采用小型解决方案尺寸,所需外  
部组件很少。  
反向电荷泵紧接一个负电压低压降稳压器 (LDO)  
2MHz 固定频率、低噪声运行  
2.5逆变器输出阻抗,VIN = 5V  
电流为 100mA 时的负电压 LDO 压降电压为  
30mVVOUT = -5V  
负电压由经过稳压的反相电荷泵生成,该电荷泵紧接一  
个低噪声、负电压 LDOLM27762 器件的反相电荷泵  
2MHz(典型值)开关频率下运行,可减少输出阻抗  
和电压纹波。正电压由低噪声正电压 LDO 的输入生  
成。  
电流为 100mA 时的正电压 LDO 压降电压为  
45mVVOUT = 5V  
390µA 静态电流(典型值)  
关断时的静态电流降至 0.5µA(典型值)  
电流限制和热保护  
LM27762 的正负电压输出配有专用使能输入。为满足  
特定的系统电源排序需要,这些输出支持独立的正负电  
源轨时序。使能输入也可短接在一起并与输入电压相  
连。LM27762 具有可选的电源正常功能。  
电源正常引脚(低电平有效)  
使用 LM27762 并借助 WEBENCH® 电源设计器创  
建定制设计  
器件信息(1)  
2 应用  
器件型号  
LM27762  
封装  
封装尺寸(标称值)  
高保真 (Hi-Fi) 音频耳机放大器  
WSON (12)  
2.00mm x 3.00mm  
运算放大器电源偏置  
为数据转换器供电  
无线通信系统  
接口电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
空白  
手持式仪表  
简化电路原理图  
2.7 V to 5.5 V  
CP  
VIN  
CCP  
1.5 V to 5 V  
R1  
OUT+  
CVIN  
RPU  
FB+  
COUT+  
PGOOD  
C1-  
LM27762  
R2  
R4  
GND  
C1  
C1+  
EN+  
COUT-  
FB-  
R3  
OUT-  
-1.5 V to -5 V  
EN-  
Copyright © 2016, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVSAF7  
 
 
 
 
 
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 8  
7.1 Overview ................................................................... 8  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
8
9
10 Layout................................................................... 17  
10.1 Layout Guidelines ................................................. 17  
10.2 Layout Example .................................................... 18  
11 器件和文档支持 ..................................................... 19  
11.1 器件支持................................................................ 19  
11.2 接收文档更新通知 ................................................. 19  
11.3 社区资源................................................................ 19  
11.4 ....................................................................... 19  
11.5 静电放电警告......................................................... 19  
11.6 Glossary................................................................ 19  
12 机械、封装和可订购信息....................................... 20  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (September 2016) to Revision B  
Page  
已添加 添加了 WEBENCH 链接 ............................................................................................................................................ 1  
Changes from Original (July 2016) to Revision A  
Page  
已更改 标题中的开关电容充电泵.................................................................................................................................... 1  
已更改 可生成低噪声、可调节的 ±1.5V ±5V 正负电源电压可生成低噪声、可调节的 1.5V 5V 的正电源电压  
-5V -1.5V 的负电源电压特性........................................................................................................................... 1  
2
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
5 Pin Configuration and Functions  
DSS Package  
12-Pin WSON With Thermal Pad  
Top View  
1
12  
11  
10  
9
2
3
4
5
6
8
7
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
C1+  
C1–  
CP  
NUMBER  
10  
9
Power  
Power  
Power  
Input  
Positive terminal for C1  
Negative terminal for C1  
5
Negative unregulated output voltage  
EN+  
EN–  
FB+  
12  
8
Enable input for the positive LDO, Active high  
Input  
Enable input for the charge pump and negative LDO, Active high  
2
Power  
Feedback input. Connect FB+ to an external resistor divider between OUT+ and  
GND. DO NOT leave unconnected.  
FB–  
7
Power  
Feedback input. Connect FB– to an external resistor divider between OUT– and  
GND. DO NOT leave unconnected.  
GND  
4
11  
6
Ground  
Power  
Power  
Output  
Ground  
OUT+  
OUT–  
PGOOD  
Regulated positive output voltage  
Regulated negative output voltage  
1
Power Good flag; open drain; Logic 0 = power good, Logic 1 = power not good.  
Connect to ground if not used.  
VIN  
3
Power  
Positive power supply input  
Thermal Pad  
Ground  
Ground. DO NOT leave unconnected.  
Copyright © 2016–2017, Texas Instruments Incorporated  
3
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
MAX  
5.8  
VIN  
300  
1
UNIT  
V
VIN to GND or GND to VOUT  
EN+, EN-  
GND 0.3  
V
CPOUT, OUT+ and OUT- , continuous output current  
OUT+, OUT- short-circuit duration to GND(3)  
Continuous power dissipation(4)  
mA  
s
Internally limited  
(4)  
TJMAX  
150  
5.5  
°C  
V
Operating input voltage, VIN  
2.7  
0
Operating output current, IOUT  
Operating ambient temperature, TA  
Operating junction temperature, TJ  
Storage temperature, Tstg  
250  
85  
mA  
°C  
°C  
°C  
–40  
–40  
–65  
125  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the TI Sales Office/Distributors for availability and specifications.  
(3) OUT may be shorted to GND for one second without damage. However, shorting OUT to VIN may damage the device and must be  
avoided. Also, for temperatures above TA = 85°C, VOUT must not be shorted to GND or VIN or device may be damaged.  
(4) Internal thermal shutdown circuitry protects the device from damage.  
6.2 ESD Ratings  
VALUE  
±1000  
±250  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
85  
UNIT  
Operating ambient temperature, TA  
Operating junction temperature, TJ  
–40  
–40  
°C  
°C  
125  
6.4 Thermal Information  
LM27762  
THERMAL METRIC(1)  
DSS (WSON)  
12 PINS  
62.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
54.7  
25.6  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.8  
ψJB  
25.6  
RθJC(bot)  
9.2  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
4
Copyright © 2016–2017, Texas Instruments Incorporated  
 
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
6.5 Electrical Characteristics  
Typical limits apply for TA = 25°C; minimum and maximum limits apply over the full temperature range. Unless otherwise  
specified VIN = 5 V, CIN = COUT+ = COUT– = 2.2 μF, C1 = 1 μF, CPOUT = 4.7 μF.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Open circuit, no load, EN+, EN–  
connected to VIN.  
IQ  
Supply current  
390  
µA  
(1)  
ISD  
Shutdown supply current  
Switching frequency  
0.5  
2
5
µA  
MHz  
Ω
ƒSW  
VIN = 3.6 V  
1.7  
2.3  
RNEG  
VLDO–  
PSRR  
VN–  
Output resistance to CPOUT  
LDO dropout voltage  
VIN = 5.5 V, IL = 100 mA  
IL = 100 mA, VOUT– = 5 V  
IL = 100 mA, VOUT– = 1.8 V, 10 kHz  
IL = 80 mA, 10 Hz to 100 kHz  
2.5  
30  
mV  
dB  
Power supply rejection ratio, OUT–  
Output noise voltage  
50  
22  
µVRMS  
V
VFB–  
Feedback pin reference voltage  
Adjustable output voltage  
Load regulation  
–1.238  
–5  
–1.22  
–1.202  
–1.5  
5.5 V VIN 2.7 V  
V
VOUT–  
0 to 250 mA, VOUT = –1.8 V  
5 V VIN 2.7 V, IL = 50 mA  
IL = 100 mA, VOUT = 5 V  
34  
1.5  
45  
µV/mA  
mV/V  
mV  
dB  
Line regulation  
VLDO+  
PSRR  
VN+  
LDO dropout voltage  
Power supply rejection ratio, OUT+  
Output noise voltage  
IL = 100 mA, VOUT+ = 1.8 V, 10 kHz  
IL = 80 mA, 10 Hz to 100 kHz  
43  
22  
µVRMS  
V
VFB+  
Feedback pin reference voltage  
Adjustable output voltage  
Load regulation  
1.182  
1.5  
1.2  
1.218  
5
5.5 V VIN 2.7 V  
V
VOUT+  
0 to 250 mA, VOUT = 1.8 V  
5 V VIN 2.7 V, IL = 50 mA  
5.5 V VIN 2.7 V  
11  
µV/mA  
mV/V  
V
Line regulation  
1.9  
VIH  
VIL  
Enable pin input voltage high  
Enable pin input voltage low  
1.2  
5.5 V VIN 2.7 V  
0.4  
V
(1) When VIN = 5.5V charge pump may enter PWM mode in hot conditions.  
版权 © 2016–2017, Texas Instruments Incorporated  
5
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
5
4.5  
4
3
2.8  
2.6  
2.4  
2.2  
2
VOUT+  
VOUT-  
VOUT-  
VOUT+  
3.5  
3
2.5  
2
1.8  
1.6  
1.4  
1.2  
1
1.5  
1
0.5  
0
25  
50  
75 100 125 150 175 200 225 250  
Output Current (mA)  
2.8  
3
3.2  
3.4  
3.6  
3.8  
4
4.2  
Input Voltage (V)  
D014  
D022  
VIN = 3.7 V  
VOUT = ±3 V  
VOUT = ±3 V  
IOUT = ±100 mA  
1. Output Voltage Ripple vs Output Current  
2. Output Voltage Ripple vs Input Voltage  
500  
100  
120  
100  
80  
60  
40  
20  
0
85°C  
25°C  
-40°C  
VOUT+  
VOUT-  
10  
1
0.001  
0.01  
0.1  
0.5  
0
25  
50  
75 100 125 150 175 200 225 250  
Output Current (mA)  
IOUT(A)  
D016  
D015  
VIN = 5.5 V  
VOUT = ± 3.3 V  
4. Charge Pump Output Resistance vs Output Current  
3. LDO Dropout Voltage vs Output Current  
-3.1  
-3.125  
-3.15  
3.31  
0 mA  
50 mA  
100 mA  
0 mA  
50 mA  
100 mA  
3.305  
3.3  
-3.175  
-3.2  
3.295  
3.29  
-3.225  
-3.25  
-3.275  
-3.3  
3.285  
3.28  
-3.325  
-3.35  
-3.375  
3.275  
3.25 3.5 3.75  
4
4.25 4.5 4.75  
Input Voltage (V)  
5
5.25 5.5  
3.25 3.5 3.75  
4
4.25 4.5 4.75  
Input Voltage (V)  
5
5.25 5.5  
D017  
D018  
VOUT = –3.3 V  
VOUT = 3.3 V  
5. Line Regulation for OUT-  
6. Line Regulation for OUT+  
6
版权 © 2016–2017, Texas Instruments Incorporated  
 
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
Typical Characteristics (接下页)  
-3.29  
-3.3  
3.35  
3.34  
3.33  
3.32  
3.31  
3.3  
-40 °C  
+25 °C  
+85 °C  
-40 °C  
+25 °C  
+85 °C  
-3.31  
-3.32  
-3.33  
-3.34  
-3.35  
-3.36  
-3.37  
-3.38  
-3.39  
-3.4  
3.29  
3.28  
3.27  
3.26  
3.25  
0
30  
60  
90  
120 150 180 210 240 270  
0
25  
50  
75 100 125 150 175 200 225 250  
Output Current (mA)  
Output Current (mA)  
D019  
D020  
VIN = 4.3 V  
VOUT = –3.3 V  
VIN = 4.3 V  
VOUT = 3.3 V  
7. Load Regulation for OUT-  
8. Load Regulation for OUT+  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VOUT = -3.3V  
VOUT= -5V  
0
25  
50  
75 100 125 150 175 200 225 250  
Output Current (mA)  
D021  
VIN = 5.5 V  
10. Start-Up  
9. Efficiency for OUT–  
11. Shutdown  
版权 © 2016–2017, Texas Instruments Incorporated  
7
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM27762 low-noise inverting charge pump with both positive and negative LDOs delivers very low-noise  
adjustable positive and negative outputs between ±1.5 V and ±5 V. The output voltage levels of the positive and  
negative LDO are independently controllable with external resistors. Input voltage range of LM27762 is from 2.7  
V to 5.5 V. Five low-cost capacitors are used in this circuit to provide up to ±250 mA of output current. The  
LM27762 operates at 2-MHz (typical) switching frequency to reduce output resistance and voltage ripple. With an  
typical operating current of only 390 µA and 0.5-µA typical shutdown current, the LM27762 provides ideal  
performance for power amplifiers and DAC bias and other high-current, low-noise negative voltage needs.  
The LM27762 device has an enable input (EN+) for the positive LDO and another enable input (EN–) for the  
negative charge pump and LDO. This supports independent timing for the positive and negative rails in system  
power sequence. Enable inputs can be also shorted together and connected to VIN. When LDO is disabled,  
output of the positive LDO has 50-kpulldown to ground, and output of the negative LDO has 50-kpullup to  
ground. The LM27762 has power good monitoring for OUT+ and OUT– outputs. The PGOOD pin is an open-  
drain output and requires an external pullup resistor. When Power Good feature is not used, PGOOD pin can be  
connected to ground.  
8
版权 © 2016–2017, Texas Instruments Incorporated  
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
7.2 Functional Block Diagram  
Current Limit  
VIN  
C1+  
Switch Array  
Switch  
Drivers  
2-MHz Oscillator  
C1-  
CP  
EN-  
GND  
Reference  
LPF  
EN-  
PU  
OUT-  
FB-  
Negative  
Bandgap  
LPF  
LDO  
Power Good  
Monitoring  
PGOOD  
Current  
Limit  
EN+  
LPF  
EN+  
PD  
OUT+  
FB+  
Positive  
Bandgap  
LPF  
LDO  
Copyright © 2016, Texas Instruments Incorporated  
版权 © 2016–2017, Texas Instruments Incorporated  
9
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Undervoltage Lockout  
The LM27762 has an internal comparator that monitors the voltage at VIN and forces the device into shutdown if  
the input voltage drops to 2.4 V. If the input voltage rises above 2.6 V, the LM27762 resumes normal operation.  
7.3.2 Input Current Limit  
The LM27762 contains current limit circuitry that protects the device in the event of excessive input current  
and/or output shorts to ground. The charge pump and positive LDO both have 500 mA (typical) input current limit  
when the output is shorted directly to ground. When the LM27762 is current limiting, power dissipation in the  
device is likely to be quite high. In this event, thermal cycling is expected.  
7.3.3 PFM Operation  
To minimize quiescent current during light load operation, the LM27762 allows PFM or pulse-skipping operation.  
By allowing the charge pump to switch less when the output current is low, the quiescent current drawn from the  
power source is minimized. The frequency of pulsed operation is not limited and can drop into the sub-2-kHz  
range when unloaded. As the load increases, the frequency of pulsing increases until it transitions to constant  
frequency. The fundamental switching frequency in the LM27762 is 2 MHz.  
7.3.4 Output Discharge  
In shutdown, the LM27762 actively pulls down on the outputs (OUT+, OUT–) of the device until the output  
voltage reaches GND.  
7.3.5 Power Good Output (PGOOD)  
The LM27762 has monitoring for the OUT+ and OUT– output voltage levels and open-drain PGOOD output.  
1. PGOOD (Active Low) Operation  
EN+  
Low  
High  
High  
Low  
Low  
High  
High  
High  
EN–  
Low  
Low  
Low  
High  
High  
High  
High  
High  
OUT+  
OUT–  
PGOOD  
High  
High  
Low  
Don't care  
Don't care  
< 95% of target value  
> 95% of target value  
Don't care  
Don't care  
Don't care  
< 95% of target value  
> 95% of target value  
Don't care  
High  
Low  
Don't care  
< 95% of target value  
Don't care  
High  
High  
Low  
< 95% of target value  
> 95% of target value  
> 95% of target value  
7.3.6 Thermal Shutdown  
The LM27762 implements a thermal shutdown mechanism to protect the device from damage due to  
overheating. When the junction temperature rises to 150°C (typical), the device switches into shutdown mode.  
The LM27762 releases thermal shutdown when the junction temperature is reduced to 130°C (typical).  
Thermal shutdown is most often triggered by self-heating, which occurs when there is excessive power  
dissipation in the device and/or insufficient thermal dissipation. The LM27762 device power dissipation increases  
with increased output current and input voltage. When self-heating brings on thermal shutdown, thermal cycling  
is the typical result. Thermal cycling is the repeating process where the part self-heats, enters thermal shutdown  
(where internal power dissipation is practically zero), cools, turns on, and then heats up again to the thermal  
shutdown threshold. Thermal cycling is recognized by a pulsing output voltage and can be stopped by reducing  
the internal power dissipation (reduce input voltage and/or output current) or the ambient temperature. If thermal  
cycling occurs under desired operating conditions, thermal dissipation performance must be improved to  
accommodate the power dissipation of the device.  
10  
版权 © 2016–2017, Texas Instruments Incorporated  
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
When enable pins (EN+, EN–) are low, both positive and negative outputs of LM27762 are disabled, and the  
device is in shutdown mode reducing the quiescent current to minimum level. In shutdown, the outputs of the  
LM27762 are pulled to ground (internal 50 kbetween each OUT pin and ground).  
7.4.2 Enable Mode  
Applying a voltage greater than 1.2 V to the EN+ pin enables the positive LDO. Applying a voltage greater than  
1.2 V to the EN– pin enables the negative CP and LDO. When enabled, the positive and negative output  
voltages are equal to levels set by external resistors. Care must be taken to both the positive LDO and the  
inverting charge pump followed by negative LDO have enough headroom. Power Good ouput PGOOD indicates  
the status of OUT+ and OUT– voltage levels.  
版权 © 2016–2017, Texas Instruments Incorporated  
11  
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
8 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM27762 input voltage range is from 2.7 V to 5.5 V. The positive LDO provides a positive voltage  
configurable with external gain setting resistors R1, R2. The low-noise charge-pump voltage converter inverts the  
input voltage V to a negative output voltage. Charge pump is followed by the negative LDO which regulates a  
negative output voltage configurable with external gain setting resistors R3, R4. Output voltage range is ± 1.5 V to  
± 5 V. When selecting input (VIN) and output (OUT+, OUT-) voltages ranges, headroom required by the charge  
pump and LDOs must to be considered. Charge-pump minimum headroom can be estimated based on the  
maximum load current and charge pump output resistance.  
The device uses five low-cost capacitors to provide up to 250 mA of output current. The LM27762 operates at a  
2-MHz oscillator frequency to reduce charge-pump output resistance and voltage ripple under heavy loads.  
When using the optional open-drain PGOOD feature, connect a 10-kpullup resistor (RPU) to VIN. Connect pin  
to ground if PGOOD is not used.  
8.2 Typical Application  
2.7 V to 5.5 V  
CP  
VIN  
CCP  
1.5 V to 5 V  
R1  
OUT+  
CVIN  
RPU  
COUT+  
FB+  
PGOOD  
C1-  
LM27762  
R2  
R4  
GND  
C1  
C1+  
EN+  
COUT-  
FB-  
R3  
OUT-  
-1.5 V to -5 V  
EN-  
Copyright © 2016, Texas Instruments Incorporated  
12. LM27762 Typical Application  
12  
版权 © 2016–2017, Texas Instruments Incorporated  
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
Typical Application (接下页)  
8.2.1 Design Requirements  
The following example describes powering an amplifier driving high impedance headphones. Input voltage is  
from a smart-phone battery. Amplifier is driving 2-VRMS to 600-stereo headphones.  
2. Application Example Design Parameters  
DESIGN PARAMETER  
Input voltage  
Output voltage  
Output current  
CVIN, COUT+, COUT–  
CCP  
EXAMPLE VALUE  
3.3 V to 4.2 V  
±3 V  
10 mA (LM27762 capability 250 mA maximum)  
2.2 μF  
4.7 μF  
RPU  
10 k(optional, connect PGOOD pin to ground if feature is not used)  
8.2.2 Detailed Design Procedure  
8.2.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM27762 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance.  
Run thermal simulations to understand board thermal performance.  
Export customized schematic and layout into popular CAD formats.  
Print PDF reports for the design, and share the design with colleagues.  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
8.2.2.2 Positive Low-Dropout Linear Regulator and OUT+ Voltage Setting  
LM27762 features a low-dropout, linear positive voltage regulator (LDO). The LDO output is rated for a current of  
250 mA. This LDO allows the device to provide a very low noise output, low output voltage ripple, high PSRR,  
and low line or load transient response.  
The positive output voltage of the LM27762 is externally configurable. The value of R1 and R2 determines the  
output voltage setting. The output voltage can be calculated using 公式 1:  
VOUT = 1.2 V × (R1 + R2) / R2  
(1)  
The value for R2 must be no less than 50 kΩ.  
8.2.2.3 Charge-Pump Voltage Inverter  
The main application of the LM27762 is to generate a regulated negative supply voltage. The voltage inverter  
circuit uses only three external capacitors, and the LDO regulator circuit uses one additional output capacitor.  
The voltage inverter portion of the LM27761 contains four large CMOS switches which are switched in sequence  
to invert the input supply voltage. Energy transfer and storage are provided by external capacitors. 13 shows  
the voltage switches S2 and S4 are open. In the second time interval, S1 and S3 are open; at the same time, S2  
and S4 are closed, and C1 is charging CCP. After a number of cycles, the voltage across CCP is pumped into VIN.  
Because the anode of CCP is connected to ground, the output at the cathode of CCP equals –(VIN) when there is  
no load current. When a load is added, the output voltage drop is determined by the parasitic resistance (RDSON  
of the MOSFET switches and the equivalent series resistance (ESR) of the capacitors) and the charge transfer  
loss between the capacitors.  
版权 © 2016–2017, Texas Instruments Incorporated  
13  
 
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
S1  
C1+  
S2  
VIN  
CIN  
GND  
C1  
CCPOUT  
GND  
S3  
S4  
C1-  
CP  
OSC.  
2 MHz  
+
PFM COMP  
VIN  
Copyright © 2016, Texas Instruments Incorporated  
13. Voltage Inverting Principle  
The output characteristic of this circuit can be approximated by an ideal voltage source in series with a  
resistance. The voltage source equals –(VIN). The output resistance ROUT is a function of the ON resistance of  
the internal MOSFET switches, the oscillator frequency, the capacitance, and the ESR of C1 and CCP. Because  
the switching current charging and discharging C1 is approximately twice as the output current, the effect of the  
ESR of the pumping capacitor C1 is multiplied by four in the output resistance. The charge-pump output capacitor  
CCP is charging and discharging at a current approximately equal to the output current; therefore, its ESR only  
counts once in the output resistance. A good approximation of charge-pump ROUT is shown in 公式 2:  
ROUT = (2 × RSW) + [1 / (ƒSW × C1)] + (4 × ESRC1) + ESRCCP  
where  
RSW is the sum of the ON resistance of the internal MOSFET switches shown in 13.  
(2)  
High capacitance and low-ESR ceramic capacitors reduce the output resistance.  
8.2.2.4 Negative Low-Dropout Linear Regulator and OUT– Voltage Setting  
At the output of the inverting charge-pump the LM27762 features a low-dropout, linear negative voltage regulator  
(LDO). The LDO output is rated for a current of 250 mA. This negative LDO allows the device to provide a very  
low noise output, low output voltage ripple, high PSRR, and low line or load transient response.  
The negative output voltage of the LM27762 is externally configurable. The value of R3 and R4 determines the  
output voltage setting. The output voltage can be calculated using 公式 1:  
VOUT = –1.22 V × (R3 + R4) / R4  
(3)  
The value for R4 must be no less than 50 kΩ.  
8.2.2.5 External Capacitor Selection  
The LM27762 requires 5 external capacitors for proper operation. Surface-mount multi-layer ceramic capacitors  
are recommended. These capacitors are small, inexpensive, and have very low ESR (15 mΩ typical). Tantalum  
capacitors, OS-CON capacitors, and aluminum electrolytic capacitors generally are not recommended for use  
with the LM27762 due to their high ESR compared to ceramic capacitors.  
For most applications, ceramic capacitors with an X7R or X5R temperature characteristic are preferable for use  
with the LM27762. These capacitors have tight capacitance tolerances (as good as ±10%) and hold their value  
over temperature (X7R: ±15% over –55°C to +125°C; X5R ±15% over –55°C to +85°C).  
14  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
Using capacitors with a Y5V or Z5U temperature characteristic is generally not recommended for the LM27762.  
These capacitors typically have wide capacitance tolerance (80%, ….20%) and vary significantly over  
temperature (Y5V: 22%, –82% over –30°C to +85°C range; Z5U: 22%, –56% over 10°C to 85°C range). Under  
some conditions a 1-µF-rated Y5V or Z5U capacitor could have a capacitance as low as 0.1 µF. Such  
detrimental deviation is likely to cause Y5V and Z5U capacitors to fail to meet the minimum capacitance  
requirements of the LM27762.  
Net capacitance of a ceramic capacitor decreases with increased DC bias. This degradation can result in lower-  
than-expected capacitance on the input and/or output, resulting in higher ripple voltages and currents. Using  
capacitors at DC bias voltages significantly below the capacitor voltage rating usually minimizes DC bias effects.  
Consult capacitor manufacturers for information on capacitor DC bias characteristics.  
Capacitance characteristics can vary quite dramatically with different application conditions, capacitor types, and  
capacitor manufacturers. TI strongly recommends that the LM27762 circuit be evaluated thoroughly early in the  
design-in process with the mass-production capacitor of choice. This helps ensure that any such variability in  
capacitance does not negatively impact circuit performance.  
8.2.2.5.1 Charge-Pump Output Capacitor  
In typical applications, Texas Instruments recommends a 4.7-µF low-ESR ceramic charge-pump output capacitor  
(CCP). Different output capacitance values can be used to reduce charge pump ripple, shrink the solution size,  
and/or cut the cost of the solution. However, changing the output capacitor may also require changing the flying  
capacitor or input capacitor to maintain good overall circuit performance.  
In higher-current applications, a 10-µF, 10-V low-ESR ceramic output capacitor is recommended. If a small  
output capacitor is used, the output ripple can become large during the transition between PFM mode and  
constant switching. To prevent toggling, a 2-µF capacitance is recommended. For example, 10-µF, 10-V output  
capacitor in a 0402 case size typically has only 2-µF capacitance when biased to 5 V.  
8.2.2.5.2 Input Capacitor  
The input capacitor (C2) is a reservoir of charge that aids in a quick transfer of charge from the supply to the  
flying capacitors during the charge phase of operation. The input capacitor helps to keep the input voltage from  
drooping at the start of the charge phase when the flying capacitors are connected to the input. It also filters  
noise on the input pin, keeping this noise out of the sensitive internal analog circuitry that is biased off the input  
line.  
Input capacitance has a dominant and first-order effect on the input ripple magnitude. Increasing (decreasing) the  
input capacitance results in a proportional decrease (increase) in input voltage ripple. Input voltage, output  
current, and flying capacitance also affects input ripple levels to some degree.  
In typical applications, a 4.7-µF low-ESR ceramic capacitor is recommended on the input. When operating near  
the maximum load of 250 mA, after taking into the DC bias derating, a minimum recommended input capacitance  
is 2 µF or larger. Different input capacitance values can be used to reduce ripple, shrink the solution size, and/or  
cut the cost of the solution.  
8.2.2.5.3 Flying Capacitor  
The flying capacitor (C1) transfers charge from the input to the output. Flying capacitance can impact both output  
current capability and ripple magnitudes. If flying capacitance is too small, the LM27762 may not be able to  
regulate the output voltage when load currents are high. On the other hand, if the flying capacitance is too large,  
the flying capacitor might overwhelm the input and charge pump output capacitors, resulting in increased input  
and output ripple.  
In typical high-current applications, 0.47-µF or 1-µF 10-V low-ESR ceramic capacitors are recommended for the  
flying capacitors. Polarized capacitors (tantalum, aluminum, electrolytic, etc.) must not be used for the flying  
capacitor, as they could become reverse-biased during LM27762 operation.  
8.2.2.5.4 LDO Output Capacitor  
The LDO output capacitor (COUT+, COUT-) value and the ESR affect stability, output ripple, output noise, PSRR  
and transient response. The LM27762 only requires the use of a 2.2-µF ceramic output capacitor for stable  
operation. For typical applications, a 2.2-µF ceramic output capacitor located close to the output is sufficient.  
版权 © 2016–2017, Texas Instruments Incorporated  
15  
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
8.2.2.6 Power Dissipation  
The allowed power dissipation for any package is a measure of the ability of the device to pass heat from the  
junctions of the device to the heatsink and the ambient environment. Thus, the power dissipation is dependent  
on the ambient temperature and the thermal resistance across the various interfaces between the die junction  
and ambient air.  
The maximum allowable power dissipation can be calculated by 公式 4:  
PD-MAX = (TJ-MAX – TA) / RθJA  
(4)  
The actual power being dissipated in the device can be represented by 公式 5:  
PD = PIN – POUT = VIN × (–IOUT– + IOUT+ + IQ) – (VOUT+ × IOUT+ + VOUT– × IOUT–  
)
(5)  
公式 4 and 公式 5 establish the relationship between the maximum power dissipation allowed due to thermal  
consideration, the voltage drop across the device, and the continuous current capability of the device. These  
equations must be used to determine the optimum operating conditions for the device in a given application.  
In lower power dissipation applications the maximum ambient temperature (TA-MAX) may be increased. In higher  
power dissipation applications the maximum ambient temperature(TA-MAX) may have to be derated. TA-MAX can be  
calculated using 公式 6:  
TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX  
)
where  
TJ-MAX-OP = maximum operating junction temperature (125°C)  
PD-MAX = the maximum allowable power dissipation  
RθJA = junction-to-ambient thermal resistance of the package  
(6)  
Alternately, if TA-MAX cannot be derated, the power dissipation value must be reduced. This can be accomplished  
by reducing the input voltage as long as the minimum VIN is not violated, or by reducing the output current, or  
some combination of the two.  
8.2.3 Application Curves  
Refer also to Typical Characteristics  
0
-5  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
VIN=3.7V,IOUT=100mA  
VIN=3.7V,IOUT=10mA  
VIN=3.3V,IOUT=10mA  
VIN= 3.7V, IOUT=100mA  
VIN= 3.3V, IOUT=100mA  
VIN= 3.7V, IOUT=10mA  
VIN= 3.3V, IOUT=10mA  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-45  
-50  
-55  
10  
100  
1000  
10000  
100000  
10  
100  
1000  
10000  
100000  
Frequency(Hz)  
Frequency (Hz)  
D023  
D024  
14. PSRR for OUT-  
15. PSRR for OUT+  
16  
版权 © 2016–2017, Texas Instruments Incorporated  
 
 
 
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
9 Power Supply Recommendations  
The LM27762 is designed to operate from an input voltage supply range between 2.7 V and 5.5 V. This input  
supply must be well regulated and capable of supplying the required input current. If the input supply is located  
far from the LM27762, additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The high switching frequency and large switching currents of the LM27762 make the choice of layout important.  
Use the following steps as a reference to ensure the device is stable and maintains proper LED current  
regulation across its intended operating voltage and current range:  
Place CIN on the top layer (same layer as the LM27762) and as close as possible to the device. Connecting  
the input capacitor through short, wide traces to both the VIN and GND pins reduces the inductive voltage  
spikes that occur during switching, which can corrupt the VIN line.  
Place CCPOUT on the top layer (same layer as the LM27762) and as close as possible to the VOUT and GND  
pins. The returns for both CIN and CCPOUT must come together at one point, as close as possible to the GND  
pin. Connecting CCPOUT through short, wide traces reduces the series inductance on the VCPOUT and GND  
pins that can corrupt the VCPOUT and GND lines and cause excessive noise in the device and surrounding  
circuitry.  
Place C1 on top layer (same layer as the LM27762) and as close as possible to the device. Connect the flying  
capacitor through short, wide traces to both the C1+ and C1– pins.  
Place COUT+, COUT– on the top layer (same layer as the LM27762) and as close to the respective OUT pin as  
possible. For best performance the ground connection for COUT must connect back to the GND connection at  
the thermal pad of the device.  
Place R1 to R4 on the top layer (same layer as LM27762) and as close as possible to the respective FB pin.  
For best performance the ground connection of R2, R4 must connect back to the GND connection at the  
thermal pad of the device.  
Connections using long trace lengths, narrow trace widths, or connections through vias must be avoided. These  
add parasitic inductance and resistance that results in inferior performance, especially during transient  
conditions.  
版权 © 2016–2017, Texas Instruments Incorporated  
17  
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
10.2 Layout Example  
R1  
Positive Rail, To Load  
R2  
COUT+  
C1  
R3  
R4  
Thermal Pad  
COUT-  
CIN  
CCPOUT  
To GND Plane  
To Supply  
16. LM27762 Layout Example  
(Note: Pullup resistor for PGOOD not shown in example.)  
18  
版权 © 2016–2017, Texas Instruments Incorporated  
LM27762  
www.ti.com.cn  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
11 器件和文档支持  
11.1 器件支持  
《使用 LM27762EVM 评估模块》  
11.1.1 开发支持  
11.1.1.1 使用 WEBENCH® 工具创建定制设计  
请单击此处,使用 LM27762 器件并借助 WEBENCH® 电源设计器创建定制设计。  
1. 在开始阶段键入输出电压 (VIN)、输出电压 (VOUT) 和输出电流 (IOUT) 要求。  
2. 使用优化器拨盘优化关键设计参数,如效率、封装和成本。  
3. 将生成的设计与德州仪器 (TI) 的其他解决方案进行比较。  
WEBENCH Power Designer 提供一份定制原理图以及罗列实时价格和组件可用性的物料清单。  
在多数情况下,可执行以下操作:  
运行电气仿真,观察重要波形以及电路性能  
运行热性能仿真,了解电路板热性能  
将定制原理图和布局方案导出至常用 CAD 格式  
打印设计方案的 PDF 报告并与同事共享  
有关 WEBENCH 工具的详细信息,请访问 www.ti.com/WEBENCH。  
11.2 接收文档更新通知  
要接收文档更新通知,请导航至德州仪器 TI.com.cn 上的器件产品文件夹。请单击右上角的通知我 进行注册,即可  
收到任意产品信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
11.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.4 商标  
E2E is a trademark of Texas Instruments.  
WEBENCH is a registered trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
版权 © 2016–2017, Texas Instruments Incorporated  
19  
LM27762  
ZHCSFJ0B AUGUST 2016REVISED FEBRUARY 2017  
www.ti.com.cn  
12 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航栏。  
20  
版权 © 2016–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM27762DSSR  
LM27762DSST  
ACTIVE  
ACTIVE  
WSON  
WSON  
DSS  
DSS  
12  
12  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
L27762  
L27762  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Sep-2021  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Mar-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM27762DSSR  
LM27762DSST  
WSON  
WSON  
DSS  
DSS  
12  
12  
3000  
250  
180.0  
180.0  
8.4  
8.4  
2.25  
2.25  
3.25  
3.25  
1.05  
1.05  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Mar-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM27762DSSR  
LM27762DSST  
WSON  
WSON  
DSS  
DSS  
12  
12  
3000  
250  
210.0  
210.0  
185.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DSS0012B  
WSON - 0.8 mm max height  
SCALE 4.500  
PLASTIC SMALL OUTLINE - NO LEAD  
2.1  
1.9  
A
B
0.35  
0.25  
PIN 1 INDEX AREA  
0.3  
0.2  
3.1  
2.9  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
1
0.1  
(0.2) TYP  
SYMM  
0.05  
0.00  
EXPOSED  
THERMAL PAD  
6
7
SEE TERMINAL  
DETAIL  
2X  
13  
SYMM  
2.5  
2.65 0.1  
1
12  
10X 0.5  
0.3  
12X  
0.2  
0.1  
0.05  
0.35  
0.25  
12X  
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4218908/A 01/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DSS0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1)  
12X (0.5)  
SYMM  
1
12  
12X (0.25)  
13  
SYMM  
(2.65)  
10X (0.5)  
(R0.05) TYP  
(1.075)  
(
0.2) VIA  
TYP  
7
6
(1.9)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:25X  
0.05 MIN  
ALL AROUND  
EXPOSDE METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218908/A 01/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DSS0012B  
WSON - 0.8 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
EXPOSED METAL  
TYP  
12X (0.5)  
SYMM  
1
13  
12  
12X (0.25)  
(0.685)  
SYMM  
10X (0.5)  
2X (1.17)  
(R0.05) TYP  
7
6
2X (0.95)  
(1.9)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 13:  
83% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:25X  
4218908/A 01/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI 提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,不保证没  
有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。这些资源如有变更,恕不另行通知。TI 授权您仅可  
将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知  
识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款 (https:www.ti.com.cn/zh-cn/legal/termsofsale.html) ti.com.cn 上其他适用条款/TI 产品随附的其他适用条款  
的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2021 德州仪器半导体技术(上海)有限公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY