LM27952SD/NOPB [TI]

输入电压范围为 3V 至 5.5V 的白光 LED 自适应 1.5X/1X 开关电容器电流驱动器 | NHK | 14 | -40 to 85;
LM27952SD/NOPB
型号: LM27952SD/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

输入电压范围为 3V 至 5.5V 的白光 LED 自适应 1.5X/1X 开关电容器电流驱动器 | NHK | 14 | -40 to 85

开关 驱动 光电二极管 接口集成电路 电容器 驱动器
文件: 总18页 (文件大小:1031K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM27952  
www.ti.com  
SNVS364B MAY 2005REVISED MAY 2013  
LM27952 White LED Adaptive 1.5X/1X Switched Capacitor Current Driver  
Check for Samples: LM27952  
1
FEATURES  
APPLICATIONS  
2
Drives up to 4 LEDs with up to 30mA each  
White LED Display Backlights  
White LED Keypad Backlights  
General Purpose LED Lighting  
Regulated current sources with 0.2%(typ.)  
matching  
3/2x, 1x Gain transition based on LED VF  
Peak Efficiency Over 85%  
DESCRIPTION  
The LM27952 is a switched capacitor white-LED  
driver capable of driving up to 4 LEDs with 30mA  
through each LED. Its 4 tightly regulated current sinks  
ensure excellent LED current and brightness  
matching. LED drive current is programmed by an  
external sense resistor. The LM27952 operates over  
an input voltage range from 3.0V to 5.5V and requires  
only four low-cost ceramic capacitors.  
Input Voltage Range: 3.0V to 5.5V  
PWM Brightness Control  
Very Small Solution Size - NO INDUCTOR  
Fixed 750kHz Switching Frequency  
<1µA Shutdown Current  
14-pin WSON Package: 4.0mm X 3.0mm X  
0.8mm  
The LM27952 provides excellent efficiency without  
the use of an inductor by operating the charge pump  
in a gain of 3/2, or in a gain of 1. Maximum efficiency  
is achieved over the input voltage range by actively  
selecting the proper gain based on the LED forward  
voltage requirements.  
Typical Application Circuit  
V
= 3.0V - 5.5V  
3.3 µF  
IN  
V
V
OUT  
IN  
D
4
C +  
1
C
IN  
3.3 µF  
D
3
C
OUT  
1 µF  
1 µF  
C
1
D
2
C -  
1
D4  
D3  
D2  
D1  
D
1
C +  
2
LM27952  
C
2
C -  
2
I
= 30 mA max  
DX  
I
PWM  
EN  
SET  
GND  
R
SET  
Capacitors: 1 µF - TDK C1608X7R1A105K  
3.3 µF - TDK C2012X7R1A335K  
or equivalent  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2013, Texas Instruments Incorporated  
LM27952  
SNVS364B MAY 2005REVISED MAY 2013  
www.ti.com  
DESCRIPTION (CONTINUED)  
The LM27952 uses constant frequency pre-regulation to minimize conducted noise on the input. It has a fixed  
750kHz switching frequency optimized for portable applications. The LM27952 consumes less than 1µA of  
supply current when shut down.  
The LM27952 is available in a 14-pin No-Pullback Leadless Leadframe Package: WSON-14.  
CONNECTION DIAGRAM  
C2+  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
C1-  
C1-  
GND  
C2-  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
C2+  
V
GND  
C2-  
V
OUT  
C1+  
OUT  
C1+  
D4  
D3  
D2  
D1  
D4  
D3  
D2  
D1  
V
IN  
V
IN  
PWM  
EN  
PWM  
EN  
8
8
I
I
SET  
SET  
Die-Attach Pad: GND  
Die-Attach Pad: GND  
Top View  
Bottom View  
Figure 1. LM27952  
14-pin No-Pullback Leadless Leadframe Package (WSON-14)  
4mm x 3mm x 0.8mm  
See Package Number NHK0014A  
Pin Description  
Pin  
1
Name  
C2+  
VOUT  
C1+  
D4  
Description  
Flying Capacitor C2 Connection  
Pre-Regulated Charge Pump Output  
Flying Capacitor C1 Connection  
Regulated Current Sink Input.  
Regulated Current Sink Input.  
Regulated Current Sink Input.  
Regulated Current Sink Input.  
2
3
4
5
D3  
6
D2  
7
D1  
8
ISET  
Current Set Input. Placing a resistor (RSET) between this pin and GND sets the LED current  
for all the LEDs. LED Current = 200 x (1.25V ÷ RSET).  
9
EN  
Enable Logic Input Pin. Logic Low = Shut Down, Logic High = Enabled. There is a 150k  
(typ.) resistor connected internally between the EN pin and GND.  
10  
PWM  
Current Sink Modulation Logic Input Pin. Logic Low = Off, Logic High = On.  
Applying a Pulse Width Modulated (PWM) signal to this pin allows the regulated current sinks  
to be modulated without shutting down the internal Charge Pump and the VOUT node.  
11  
12  
13  
14  
VIN  
C2-  
Input Supply Range: 3.0V to 5.5V.  
Flying Capacitor C2 Connection.  
Power Supply Ground Connection.  
Flying Capacitor C1 Connection.  
GND  
C1-  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
2
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM27952  
LM27952  
www.ti.com  
SNVS364B MAY 2005REVISED MAY 2013  
(1) (2)(3)  
Absolute Maximum Ratings  
VIN  
-0.3V to 6.0V  
EN, PWM  
-0.3V to (VIN + 0.3V)  
w/ 6.0V max  
Continuous Power Dissipation  
(4)  
Internally Limited  
150°C  
Junction Temperature (TJ-MAX-ABS  
Storage Temperature Range  
Lead Temp. (Soldering, 5 sec.)  
)
-65°C to 150°C  
260°C  
(5)  
ESD Rating  
Human Body Model  
2kV  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under  
which operation of the device is ensured. Operating Ratings do not imply ensured performance limits. For specified performance limits  
and associated test conditions, see the Electrical Characteristics tables.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office / Distributors for  
availability and specifications.  
(4) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ=150°C (typ.) and  
disengages at TJ = 140°C (typ.).  
(5) The Human-body model is a 100 pF capacitor discharged through a 1.5kresistor into each pin.  
(1) (2)  
Operating Ratings  
Input Voltage VIN  
3.0V to 5.5V  
2.5V to 3.9V  
LED Voltage Range  
Junction Temperature Range (TJ)  
-40°C to +115°C  
Ambient Temperature Range (TA)  
(3)  
-40°C to +85 °C  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Min and Max limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely  
norm.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operation junction temperature (TJ-MAX-OP  
115ºC), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
part/package in the application (θJA), as given by the following equation: TA-MAX = TJ-MAX-OP - (θJA × PD-MAX).  
=
Thermal Characteristics  
Junction-to-Ambient Thermal Resistance,  
(1)  
WSON-14 Package (θJA  
)
45°C/W  
(1) Junction-to-ambient thermal resistance (θJA) is taken from a thermal modeling result, performed under the conditions and guidelines set  
forth in the JEDEC standard JESD51-7. The test board is a 4 layer FR-4 board measuring 102mm x 76mm x 1.6mm with a 2 x 1 array  
of thermal vias. The ground plane on the board is 50mm x 50mm. Thickness of copper layers are 36µm/18µm  
/18µm/36µm(1.5oz/1oz/1oz/1.5oz). Ambient temperature in simulation is 22°C, still air. Power dissipation is 1W. The value of θJA of the  
LM27952 in WSON-14 could fall in a range as wide as 45ºC/W to 150ºC/W (if not wider), depending on PWB material, layout, and  
environmental conditions. In applications where high maximum power dissipation exists (high VIN, high IOUT), special care must be paid  
to thermal dissipation issues. For more information on these topics, please refer to Application Note 1187: Leadless Leadframe Package  
(LLP) and the Power Efficiency and Power Dissipation section of this datasheet..  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM27952  
LM27952  
SNVS364B MAY 2005REVISED MAY 2013  
www.ti.com  
(1) (2)  
Electrical Characteristics  
Limits in standard typeface are for TA = 25°C, and limits in boldface type apply over the full operating junction temperature  
range (-40°C to +85 °C). Unless otherwise noted, specifications apply to the LM27952 Typical Application Circuit (pg.1) with  
(3)  
VIN = 3.6V, V(EN) = 1.8V, V(PWM) = 1.8V, 4 LEDs, VDX = 0.45V, CIN = COUT = 3.3µF, C1 = C2 = 1µF, RSET = 12.5k  
Symbol  
IDX  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
LED Current Regulation  
3.0V VIN 5.5V  
RSET = 12.5kΩ  
IVOUT = 0mA  
19.32  
(8%)  
21  
22.68  
(+8%)  
mA  
3.0V VIN 5.5V  
RSET = 8.32kΩ  
IVOUT = 0mA  
31  
11  
3.0V VIN 5.5V  
RSET = 24.9kΩ  
IVOUT = 0mA  
ID-MATCH  
IQ  
LED Current Matching  
RSET = 8.32kΩ  
0.2  
1.3  
0.1  
1
1.7  
1
%
mA  
µA  
V
(4)  
Quiescent Supply Current  
Shutdown Supply Current  
ISET Pin Voltage  
D(1-4) = OPEN  
RSET = OPEN  
ISD  
3.0V VIN 5.5V  
V(EN) = 0V  
VSET  
3.0V VIN 5.5V  
1.25  
200  
IDX / ISET  
Output Current to Current Set  
Ratio  
VHR  
Current Sink Voltage  
Headroom Requirement  
IDX = 95% IDX (nom.)  
RSET = 8.32kΩ  
(IDX nom. = 31mA)  
360  
240  
750  
mV  
(5)  
IDX = 95% IDX (nom.)  
RSET = 12.5kΩ  
(IDX nom. = 21mA)  
fSW  
VIH  
VIL  
IIH  
Switching Frequency  
Logic Input High  
525  
(-30%)  
975  
(+30%)  
kHz  
V
Input Pins: EN, PWM  
3.0V VIN 5.5V  
1.0  
VIN  
Logic Input Low  
Input Pins: EN, PWM  
3.0V VIN 5.5V  
0
0.4  
Logic Input High Current  
Input Pin: PWM  
V(PWM) = 1.8V  
10  
12  
nA  
µA  
nA  
Input Pin: EN  
V(EN) = 1.8V  
(6)  
IIL  
Logic Input Low Current  
Charge Pump Output  
Input Pins: EN, PWM  
V(EN, PWM) = 0V  
10  
ROUT  
VGDX  
tON  
3.3  
450  
330  
(7)  
Resistance  
1x to 3/2x Gain Transition  
Voltage Threshold on VDX  
VDX Falling  
mV  
µs  
Startup Time  
IDX = 90% steady state  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Min and Max limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the most likely  
norm.  
(3) CIN, COUT, C1, C2: Low-ESR Surface-Mount Ceramic Capacitors (MLCCs) used in setting electrical characteristics  
(4) LED Current Matching is based on two calculations: [(IMAX - IAVG) ÷ IAVG] and [(IAVG - IMIN) ÷ IAVG]. IMAX and IMIN are the highest and  
lowest respective Dx currents, and IAVG is the average Dx current of all four current sinks. The largest number of the two calculations  
(worst case) is considered the matching figure for the part. The typical specification provided is the most likely norm of the matching  
figure for all parts.  
(5) Headroom Voltage = VDX to GND. If headroom voltage requirement is not met, LED current regulation will be compromised.  
(6) EN Logic Input High Current (IIH) is due to a 150k(typ.) pull-down resistor connected internally between the EN and GND pins.  
(7) The open loop output resistance (ROUT) models all voltage losses in the charge pump. ROUT can be used to estimate the voltage at the  
charge pump output VOUT and the maximum current capability of the device under low VIN and high IOUT conditions, beyond what is  
specified in the electrical specifications table: VOUT = (G x VIN) - (ROUT x IOUT). In the equation, G is the charge pump gain mode, and  
IOUT is the total output current (sum of all active Dx current sinks and all current drawn from VOUT).  
4
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM27952  
LM27952  
www.ti.com  
SNVS364B MAY 2005REVISED MAY 2013  
BLOCK DIAGRAM  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM27952  
LM27952  
SNVS364B MAY 2005REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics  
Unless otherwise specified: TA = 25°C, 4 LEDs, VDX = 0.45V, VIN = 3.6V, VEN = VIN, VPWM = VIN, C1 = C2 = 1µF, CIN = COUT  
3.3µF. Capacitors are low-ESR multi-layer ceramic capacitors (MLCC's).  
=
LED Current Regulation  
vs.  
LED Current Regulation  
vs.  
Input Voltage  
Input Voltage  
Figure 2.  
Figure 3.  
Average LED Current Regulation  
Average LED Current Regulation  
vs.  
vs.  
Input Voltage  
Input Voltage  
Figure 4.  
Figure 5.  
Efficiency  
vs.  
Input Voltage  
LED Current  
vs.  
RSET  
Figure 6.  
Figure 7.  
6
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM27952  
LM27952  
www.ti.com  
SNVS364B MAY 2005REVISED MAY 2013  
Typical Performance Characteristics (continued)  
Unless otherwise specified: TA = 25°C, 4 LEDs, VDX = 0.45V, VIN = 3.6V, VEN = VIN, VPWM = VIN, C1 = C2 = 1µF, CIN = COUT  
=
3.3µF. Capacitors are low-ESR multi-layer ceramic capacitors (MLCC's).  
LED Current  
Output Voltage  
vs.  
Output Current  
vs.  
VHR  
Figure 8.  
Figure 9.  
Input and Output Voltage Ripple  
Startup Response  
VIN = 3.6V, Load = 15mA/LED, 4 LEDs  
CH1 (TOP): VIN; Scale: 20mV/Div, AC Coupled  
CH2 (BOTTOM): VOUT; Scale: 20mV/Div, AC Coupled  
VIN = 3.6V, Load = 20mA/LED, 4 LEDs  
CH1 (TOP): VEN; Scale: 1V/Div  
CH2 (BOTTOM): VOUT; Scale: 1V/Div  
Time scale: 400ns/Div  
Time scale: 100µs/Div  
Figure 10.  
Figure 11.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM27952  
LM27952  
SNVS364B MAY 2005REVISED MAY 2013  
www.ti.com  
APPLICATION INFORMATION  
CIRCUIT DESCRIPTION  
The LM27952 is an adaptive 1.5x/1x CMOS charge pump, optimized for driving white LEDs used in backlighting  
small-format displays. It provides four constant current inputs capable of sinking up to 30mA through each LED.  
The well-matched current sinks ensure the current through all the LEDs are virtually identical, providing a uniform  
brightness across the entire display.  
Each LED is driven from VOUT and connected to one of the four current sinks. LED drive current is programmed  
by connecting a resistor, RSET, to the current set pin, ISET. LED brightness is adjusted by applying a Pulse Width  
Modulated (PWM) signal to the dedicated PWM input pin.  
CHARGE PUMP  
The input to the 1.5x/1x charge pump is connected to the VIN pin, and the loosely regulated output of the charge  
pump is connected to the VOUT pin. The recommended input voltage range of the LM27952 is 3.0V to 5.5V. The  
device's loosely-regulated charge pump has both open loop and closed loop modes of operation. When the  
device is in open loop, the voltage at VOUT is equal to the gain times the voltage at the input. When the device is  
in closed loop, the voltage at VOUT is loosely regulated to 4.5V (typ.). The charge pump gain transitions are  
actively selected to maintain regulation based on LED forward voltage and load requirements. This allows the  
charge pump to stay in the most efficient gain (1x) over as much of the input voltage range as possible, reducing  
the power consumed from the battery.  
SOFT START  
The LM27952 contains internal soft-start circuitry to limit input inrush currents when the part is enabled. Soft start  
is implemented internally with a controlled turn-on of the internal voltage reference. Due to the soft-start circuitry,  
startup time of the LM27952 is approximately 330µs (typ.).  
ENABLE AND PWM PINS  
The LM27952 has 2 logic control pins. Both pins are active-high logic (HIGH = ON). There is an internal pull-  
down resistor (150ktyp.) connected between the enable pin (EN) and GND. There is no pull-up or pull-down  
connected to the Pulse Width Modulated (PWM) pin.  
The EN pin is the master enable pin for the part. When the voltage on this pin is low (<0.4V), the part is in  
shutdown mode. In this mode, all internal circuitry is OFF and the part consumes very little supply current (<1µA  
typ.). When the voltage on the EN pin is high (>1.0V), the part will activate the charge pump and regulate the  
output voltage to its nominal value.  
The PWM pin serves as a dedicated logic input for LED brightness control. When the voltage on this pin is low  
(<0.4V), the current sinks will be turned off and no current will flow through the LEDs. When the voltage on this  
pin is high (>1.0V), the currents sinks will turn on and regulate to the current level set by the resistor connected  
to the ISET pin.  
SETTING LED CURRENTS  
The current through the four LEDs connected to D1-4 can be set to a desired level simply by connecting an  
appropriately sized resistor (RSET) between the ISET pin of the LM27952 and GND. The LED currents are  
proportional to the current that flows out of the ISET pin and are a factor of 200 times greater than the ISET current.  
The feedback loop of an internal amplifier sets the voltage of the ISET pin to 1.25V (typ.). The statements above  
are simplified in the equations below:  
IDx = 200 ×(VSET / RSET  
)
(1)  
(2)  
RSET = 200 × (1.25V / IDx  
)
8
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM27952  
LM27952  
www.ti.com  
SNVS364B MAY 2005REVISED MAY 2013  
ADJUSTING LED BRIGHTNESS (PWM control)  
Perceived LED brightness can be adjusted using a PWM control signal on the LM27952 PWM logic input pin,  
turning the current sources ON and OFF at a rate faster than perceptible by the eye. When this is done, the total  
brightness perceived is proportional to the duty cycle (D) of the PWM signal (D = the percentage of time that the  
LED is on in every PWM cycle). A simple example: if the LEDs are driven at 15mA each with a PWM signal that  
has a 50% duty cycle, perceived LED brightness will be about half as bright as compared to when the LEDs are  
driven continuously with 15mA.  
The minimum recommended PWM frequency is 100Hz. Frequencies below this may be visibly noticeable as  
flicker or blinking. The maximum recommended PWM frequency is 1kHz. Frequencies above this may cause  
interference with internal current driver circuitry and/or noise in the audible range. Due to the regulation control  
loop, the maximum frequency and minimum duty cycle applied to the PWM pin should be chosen such that the  
minimum ON time is no less than 30µs in duration. If a PWM signal is applied to the EN pin instead, the  
maximum frequency and minimum duty cycle should be chosen to accommodate both the LM27952 startup time  
(330µs typ.) and the 30µs control loop delay.  
The preferred method to adjust brightness is to keep the master EN voltage ON continuously and apply a PWM  
signal to the dedicated PWM input pin. The benefit of this type of connection can be best understood with a  
contrary example. When a PWM signal is connected to the master enable (EN) pin, the charge pump repeatedly  
turns on and off. Every time the charge pump turns on, there is an inrush of current as the capacitances, both  
internal and external, are recharged. This inrush current results in a current spike and a voltage dip at the input  
of the part. By only applying the PWM signal to PWM logic input pin, the charge pump continuously stays on,  
resulting in much lower input noise.  
In cases where a PWM signal must be connected to the EN pin, measures can be taken to reduce the  
magnitude of the charge-pump turn-on transient response. More input capacitance, series resistors and/or ferrite  
beads may provide benefits. If the current spikes and voltage dips can be tolerated, connecting the PWM signal  
to the EN pin does provide a benefit of lower supply current consumption. When the PWM signal to the EN pin is  
low, the LM27952 will be shutdown and input current will only be a few micro-amps. This results in a lower time-  
averaged input current than the prior suggestion, where EN is kept on continuously.  
MAXIMUM OUTPUT CURRENT, MAXIMUM LED VOLTAGE, MINIMUM INPUT VOLTAGE  
The LM27952 can drive 4 LEDs at 30mA each from an input voltage as low as 3.0V, so long as the LEDs have a  
forward voltage of 3.5V or less (room temperature).  
The statement above is a simple example of the LED drive capabilities of the LM27952. The statement contains  
key application parameters required to validate an LED-drive design using the LM27952: LED current (ILED),  
number of active LEDs (N), LED forward voltage (VLED), and minimum input voltage (VIN-MIN).  
The equation below can be used to estimate the total output current capability of the LM27952:  
ILED_MAX = ((1.5 x VIN) - VLED) / ((N x ROUT) + kHR) (eq. 1)  
(3)  
(4)  
ILED_MAX = ((1.5 x VIN ) - VLED) / ((N x 3.3) + 12mV/mA)  
ROUT – Output resistance. This parameter models the internal losses of the charge pump that result in voltage  
droop at the pump output VOUT. Since the magnitude of the voltage droop is proportional to the total output  
current of the charge pump, the loss parameter is modeled as a resistance. The output resistance of the  
LM27952 is typically 3.3(VIN = 3.0V, TA = 25°C). In equation form:  
VVOUT = 1.5 × VIN – N × ILED × ROUT  
(eq. 2)  
(5)  
kHR – Headroom constant. This parameter models the minimum voltage required across the current sinks for  
proper regulation. This minimum voltage is proportional to the programmed LED current, so the constant has  
units of mV/mA. The typical kHR of the LM27952 is 12mV/mA. In equation form:  
(VVOUT – VLED) > kHR × ILED  
(eq. 3)  
(6)  
The "ILED-MAX" equation (eq. 1) is obtained from combining the ROUT equation (eq. 2) with the kHR equation (eq. 3)  
and solving for ILED. Maximum LED current is highly dependent on minimum input voltage and LED forward  
voltage. Output current capability can be increased by raising the minimum input voltage of the application, or by  
selecting LEDs with a lower forward voltage. Excessive power dissipation may also limit output current capability  
of an application.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM27952  
LM27952  
SNVS364B MAY 2005REVISED MAY 2013  
www.ti.com  
CAPACITOR SELECTION  
The LM27952 requires 4 external capacitors for proper operation. Surface-mount multi-layer ceramic capacitors  
are recommended. These capacitors are small, inexpensive and have very low equivalent series resistance (ESR  
<20mtyp.). Tantalum capacitors, OS-CON capacitors, and aluminum electrolytic capacitors are not  
recommended for use with the LM27952 due to their high ESR, as compared to ceramic capacitors.  
For most applications, ceramic capacitors with X7R or X5R temperature characteristic are preferred for use with  
the LM27952. These capacitors have tight capacitance tolerance (as good as ±10%) and hold their value over  
temperature (X7R: ±15% over -55°C to 125°C; X5R: ±15% over -55°C to 85°C).  
Capacitors with Y5V or Z5U temperature characteristic are generally not recommended for use with the  
LM27952. Capacitors with these temperature characteristics typically have wide capacitance tolerance (+80%, -  
20%) and vary significantly over temperature (Y5V: +22%, -82% over -30°C to +85°C range; Z5U: +22%, -56%  
over +10°C to +85°C range). Under some conditions, a nominal 1µF Y5V or Z5U capacitor could have a  
capacitance of only 0.1µF. Such detrimental deviation is likely to cause Y5V and Z5U capacitors to fail to meet  
the minimum capacitance requirements of the LM27952.  
The voltage rating of the output capacitor should be 10V or more. All other capacitors should have a voltage  
rating at or above the maximum input voltage of the application.  
PARALLEL DX OUTPUTS FOR INCREASED CURRENT DRIVE  
Outputs D1-4 may be connected together to drive a one or two LEDs at higher currents. In such a configuration,  
all four parallel current sinks of equal value drive the single LED. The LED current programmed should be  
chosen so that the current through each of the outputs is programmed to 25% of the total desired LED current.  
For example, if 60mA is the desired drive current for the single LED, RSET should be selected such that the  
current through each of the current sink inputs is 15mA. Similarly, if two LEDs are to be driven by pairing up the  
D1-4 inputs (i.e D1-2, D3-4), RSET should be selected such that the current through each current sink input is 50% of  
the desired LED current.  
Connecting the outputs in parallel does not affect internal operation of the LM27952 and has no impact on the  
Electrical Characteristics and limits previously presented. The available diode output current, maximum diode  
voltage, and all other specifications provided in the Electrical Characteristics table apply to this parallel output  
configuration, just as they do to the standard 4-LED application circuit.  
POWER EFFICIENCY  
Efficiency of LED drivers is commonly taken to be the ratio of power consumed by the LEDs (PLED) to the power  
drawn at the input of the part (PIN). With a 1.5x/1x charge pump, the input current is equal to the charge pump  
gain times the output current (total LED current). For a simple approximation, the current consumed by internal  
circuitry can be neglected and the efficiency of the LM27952 can be predicted as follows:  
PLED = N × VLED × ILED  
PIN = VIN × IIN  
(7)  
(8)  
PIN = VIN × (Gain × N × ILED + IQ)  
E = (PLED ÷ PIN)  
(9)  
(10)  
Neglecting IQ will result in a slightly higher efficiency prediction, but this impact will be no more than a few  
percentage points when several LEDs are driven at full power. It is also worth noting that efficiency as defined  
here is in part dependent on LED voltage. Variation in LED voltage does not affect power consumed by the  
circuit and typically does not relate to the brightness of the LED. For an advanced analysis, it is recommended  
that power consumed by the circuit (VIN x IIN) be evaluated rather than power efficiency.  
THERMAL PROTECTION  
Internal thermal protection circuitry disables the LM27952 when the junction temperature exceeds 150°C (typ.).  
This feature protects the device from being damaged by high die temperatures that might otherwise result from  
excessive power dissipation. The device will recover and operate normally when the junction temperature falls  
below 140°C (typ.). It is important that the board layout provide good thermal conduction to keep the junction  
temperature within the specified operating ratings.  
10  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM27952  
LM27952  
www.ti.com  
SNVS364B MAY 2005REVISED MAY 2013  
POWER DISSIPATION  
The power dissipation (PDISSIPATION) and junction temperature (TJ) can be approximated with the equations  
below. PIN is the power generated by the 1.5x/1x charge pump, PLED is the power consumed by the LEDs, TAis  
the ambient temperature, and θJA is the junction-to-ambient thermal resistance for the WSON-14 package. VIN is  
the input voltage to the LM27952, VLED is the nominal LED forward voltage, and ILED is the programmed LED  
current.  
PDISSIPATION = PIN - PLED  
(11)  
(12)  
(13)  
= [Gain × VIN × (4 x ILED)] (VLED × 4 x ILED  
)
TJ = TA + (PDISSIPATION × θJA)  
The junction temperature rating takes precedence over the ambient temperature rating. The LM27952 may be  
operated outside the ambient temperature rating, so long as the junction temperature of the device does not  
exceed the maximum operating rating of 115°C. The maximum ambient temperature rating must be derated in  
applications where high power dissipation and/or poor thermal resistance causes the junction temperature to  
exceed 115°C.  
PCB Layout Considerations  
The WSON is a leadframe based Chip Scale Package (CSP) with very good thermal properties. This package  
has an exposed DAP (die attach pad) at the center of the package measuring 3.0mm x 1.6mm. The main  
advantage of this exposed DAP is to offer lower thermal resistance when it is soldered to the thermal land on the  
PCB. For PCB layout, TI highly recommends a 1:1 ratio between the package and the PCB thermal land. To  
further enhance thermal conductivity, the PCB thermal land may include vias to a ground plane. For more  
detailed instructions on mounting WSON packages, please refer to Texas Instruments Application Note AN-1187.  
Copyright © 2005–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM27952  
 
LM27952  
SNVS364B MAY 2005REVISED MAY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision A (May 2013) to Revision B  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 11  
12  
Submit Documentation Feedback  
Copyright © 2005–2013, Texas Instruments Incorporated  
Product Folder Links: LM27952  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM27952SD/NOPB  
LM27952SDX/NOPB  
ACTIVE  
ACTIVE  
WSON  
WSON  
NHK  
NHK  
14  
14  
1000 RoHS & Green  
4500 RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
D005B  
D005B  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Sep-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM27952SD/NOPB  
LM27952SDX/NOPB  
WSON  
WSON  
NHK  
NHK  
14  
14  
1000  
4500  
178.0  
330.0  
12.4  
12.4  
3.3  
3.3  
4.3  
4.3  
1.0  
1.0  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
23-Sep-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM27952SD/NOPB  
LM27952SDX/NOPB  
WSON  
WSON  
NHK  
NHK  
14  
14  
1000  
4500  
210.0  
367.0  
185.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
MECHANICAL DATA  
NHK0014A  
SDA14A (Rev A)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

LM27952SDX

White LED Adaptive 1.5X/1X Switched Capacitor Current Driver
NSC

LM27952SDX/NOPB

IC LED DISPLAY DRIVER, PDSO14, 4 X 3 MM, 0.80 MM HEIGHT, LLP-14, Display Driver
NSC

LM27952SDX/NOPB

输入电压范围为 3V 至 5.5V 的白光 LED 自适应 1.5X/1X 开关电容器电流驱动器 | NHK | 14 | -40 to 85
TI

LM27953

White LED Driver with Four LED Current Sinks and 3/2x Switched Capacitor Boost
NSC

LM27953TL

White LED Driver with Four LED Current Sinks and 3/2x Switched Capacitor Boost
NSC

LM27953TLX

White LED Driver with Four LED Current Sinks and 3/2x Switched Capacitor Boost
NSC

LM2795BL

Current Regulated Switched Capacitor LED Supply with Analog and PWM Brightness Control
NSC

LM2795BLX

Current Regulated Switched Capacitor LED Supply with Analog and PWM Brightness Control
NSC

LM2795TL

Current Regulated Switched Capacitor LED Supply with Analog and PWM Brightness Control
NSC

LM2795TL/NOPB

IC,LASER DIODE/LED DRIVER,CMOS,BGA,14PIN,PLASTIC
NSC

LM2795TLX

Current Regulated Switched Capacitor LED Supply with Analog and PWM Brightness Control
NSC

LM2795TLX/NOPB

IC SWITCHED CAPACITOR REGULATOR, 675 kHz SWITCHING FREQ-MAX, PBGA14, CSP-14, Switching Regulator or Controller
NSC