LM2854MH-1000 [TI]

4A 500kHz/1MHz 同步降压稳压器 | PWP | 16 | -40 to 85;
LM2854MH-1000
型号: LM2854MH-1000
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4A 500kHz/1MHz 同步降压稳压器 | PWP | 16 | -40 to 85

开关 光电二极管 稳压器
文件: 总36页 (文件大小:1199K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
LM2854 4A 500kHz/1MHz 同步降压稳压器  
1 特性  
3 描述  
1
输入电压范围:2.95V 5.5V  
LM2854 PowerWise™降压转换器是一款 500kHz 或  
1MHz 降压开关稳压器,能够驱动高达 4A 的负载,并  
且拥有出色的电源转换效率、线路和负载调节性能以及  
输出精度。LM2854 的输入电压轨范围为 2.95V 至  
5.5V,提供的高精度可调节输出电压低至 0.8V。可通  
过外部小电容实现软启动,以便控制启动过程,从而使  
LM2854 能够正常进入预偏置输出电压。部分内部补偿  
功能减少了外部无源组件数以及电压模式降压转换器应  
用中通常所需的 PCB 电路板空间,同时仍然能够灵活  
处理陶瓷和/或电解电容。该器件采用无损逐周期峰值  
电流限制为负载提供过流或短路故障保护,并通过使能  
比较器来简化电源排序 进行了优化。LM2854 采用外  
露焊盘 HTSSOP-16 封装,提升了稳压器的散热性  
能。  
最大负载电流为 4A  
高带宽电压模式控制环路,部分内部补偿  
固定开关频率:500kHz 1MHz  
35m集成 MOSFET 开关  
可调输出电压低至 0.8V  
经优化的基准电压初始精度和温漂  
外部软启动控制,带跟踪功能  
带滞后的使能引脚  
待机电流低至 230µA  
预偏置负载启动功能  
集成欠压锁定 (UVLO)、过流保护 (OCP) 和热关断  
100% 占空比性能  
散热薄型小外形尺寸 (TSSOP)-16 外露焊盘封装  
器件信息(1)  
2 应用  
器件型号  
LM2854  
封装  
封装尺寸(标称值)  
5V 3.3V 电源轨到低压负载点 (POL) 的稳压  
HTSSOP (16)  
4.40mm × 5.00mm  
面向现场可编程门阵列 (FPGA)/数字信号处理器  
(DSP)/特定用途集成电路 (ASIC)/微处理器 (µP) 内  
核或 I/O 电源的本地解决方案  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
宽带联网和通信基础设施  
便携式计算  
典型应用电路  
V
IN  
L
O
V
OUT  
LM2854  
SW  
FB  
PVIN  
AVIN  
EN  
C
O
C
IN  
AGND  
PGND  
SS  
R
FB1  
C
SS  
C
R
COMP  
COMP  
R
FB2  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVS560  
 
 
 
 
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 11  
Application and Implementation ........................ 12  
8.1 Application Information............................................ 12  
8.2 Typical Application ................................................. 12  
Power Supply Recommendations...................... 25  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
描述.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 Layout................................................................... 25  
10.1 Layout Guidelines ................................................. 25  
10.2 Layout Example .................................................... 26  
11 器件和文档支持 ..................................................... 27  
11.1 文档支持................................................................ 27  
11.2 ....................................................................... 27  
11.3 静电放电警告......................................................... 27  
11.4 Glossary................................................................ 27  
12 机械、封装和可订购信息....................................... 27  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision C (April 2013) to Revision D  
Page  
添加了 ESD 额定值 表、特性 说明 部分,器件功能模式应用和实施部分,电源相关建议部分,布局部分,器件和文  
档支持部分以及机械、封装和可订购信息........................................................................................................................ 1  
Removed Soldering and Infrared values from Absolute Maximum Ratings. ......................................................................... 4  
Added thermal information generated using TI standard methodology. ............................................................................... 4  
Changes from Revision B (April 2013) to Revision C  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 24  
Changes from Revision D (January 2016) to Revision E  
Page  
已删除 从说明 部分和详细 说明 部分中删除了 Simple Switcher ............................................................................................ 1  
2
Copyright © 2008–2017, Texas Instruments Incorporated  
 
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
5 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP  
Top View  
NC  
PGND  
PGND  
PGND  
PVIN  
PVIN  
PVIN  
NC  
1
2
3
4
5
6
7
8
16 FB  
15 AGND  
14 SS  
13 SW  
12 SW  
11 EN  
EXP  
10 AVIN  
9
NC  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
NC  
1, 8, 9  
Reserved for factory use, this pin should be connected to GND to ensure proper operation.  
Power ground pins for the internal power switches. These pins should be connected together  
locally at the device and tied to the PC board ground plane.  
PGND  
2, 3, 4  
Input voltage to the power switches inside the device. These pins should be connected  
together at the device. A low ESR input capacitance should be located as close as possible  
to these pins.  
PVIN  
5, 6, 7  
Analog input voltage supply that generates the internal bias. The UVLO circuit derives its  
input from this pin also. Thus, if the voltage on AVIN falls below the UVLO threshold, both  
internal FETs are turned off. TI recommends connecting PVIN to AVIN through a low pass  
RC filter to minimize the influence of input rail ripple and noise on the analog control circuitry.  
The series resistor should be 1 and the bypass capacitor should be a X7R ceramic type  
0.1 µF to 1 µF.  
AVIN  
10  
Active high enable input for the device. Typically, turnon threshold is 1.23 V with 0.15-V  
hysteresis. An external resistor divider from PVIN can be used to effectively increase the  
UVLO turnon threshold. If not used, the EN pin should be connected to PVIN.  
EN  
SW  
SS  
11  
12, 13  
14  
I
Switch node pins. This is the PWM output of the internal MOSFET power switches. These  
pins should be tied together locally and connected to the filter inductor.  
O
Soft-start control pin. An internal 2-µA current source charges an external capacitor  
connected between this pin and AGND to set the output voltage ramp rate during start-up.  
This pin can also be used to configure the tracking feature.  
I/O  
AGND  
FB  
15  
16  
I
Quiet analog ground for the internal bias circuitry.  
Feedback pin is connected to the inverting input of the voltage loop error amplifier. An 0.8-V  
bandgap reference is connected to the noninverting input of the error amplifier.  
Exposed metal pad on the underside of the package with a weak electrical connection to  
PGND. TI recommends connecting this pad to the PC board ground plane in order to  
improve thermal dissipation.  
Exposed Pad  
Copyright © 2008–2017, Texas Instruments Incorporated  
3
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)  
MIN  
MAX  
UNIT  
PVIN, AVIN, SW, EN, FB, SS to GND(3)  
Power Dissipation  
–0.3  
6
Internally Limited  
150  
V
Junction Temperature  
°C  
°C  
Storage Temperature  
65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(3) PGND and AGND are electrically connected together on the PC board and the resultant net is termed GND.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) The human body model is a 100-pF capacitor discharged through a 1.5-kresistor into each pin. Test method is per JESD22-AI14.  
6.3 Recommended Operating Conditions  
MIN  
2.95  
2.95  
40  
MAX  
5.5  
UNIT  
V
PVIN to GND(1)  
AVIN to GND(1)  
5.5  
V
Junction Temperature  
125  
°C  
(1) PGND and AGND are electrically connected together on the PC board and the resultant net is termed GND.  
6.4 Thermal Information  
LM2854  
PWP (HTSSOP)  
THERMAL METRIC(1)  
UNIT  
16 PINS  
38.4  
27.6  
17.1  
1.5  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
16.9  
1.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, Semiconductor and IC Package Thermal Metrics.  
4
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
6.5 Electrical Characteristics  
All Typical specifications are for TJ = 25°C only; all Maximum and Minimum limits apply over the operating junction  
temperature range TJ range of –40°C to 125°C. Minimum and maximum limits are ensured through test, design, or statistical  
correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes  
only. AVIN = PVIN = EN = 5 V, unless otherwise indicated in the Test Conditions column.  
PARAMETER  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1) UNIT  
SYSTEM PARAMETERS  
VREF  
Reference Voltage(3)  
Line Regulation(3)  
Load Regulation  
Measured at the FB pin  
ΔAVIN = 2.95 V to 5.50 V  
Normal operation  
Rising  
0.790  
0.8  
0.04%  
0.25  
2.6  
0.808  
0.6%  
V
ΔVREF/ΔAVIN  
ΔVREF/ΔIO  
mV/A  
V
2.95  
375  
VON  
UVLO Threshold (AVIN)  
Falling hysteresis  
ISW = 4 A  
25  
170  
35  
mV  
RDS(ON)-P  
PFET On Resistance  
NFET On Resistance  
Soft-Start Current  
65 mΩ  
65 mΩ  
µA  
RDS(ON)-N  
ISW = 4 A  
34  
ISS  
2
ICL  
Peak Current Limit Threshold  
Operating Current  
4.5  
6
6.7  
3
A
IQ  
Non-switching  
EN = 0 V  
1.7  
mA  
µA  
ISD  
Shut Down Quiescent Current  
230  
500  
PWM SECTION  
1-MHz option  
800  
400  
0%  
1050  
525  
1160 kHz  
580 kHz  
100%  
fSW  
Switching Frequency  
500-kHz option  
Drange  
PWM Duty Cycle Range  
ENABLE CONTROL  
VIH  
EN Pin Rising Threshold  
EN Pin Hysteresis  
0.8  
1.23  
150  
1.65  
V
VEN(HYS)  
mV  
THERMAL CONTROL  
TSD  
TJ for Thermal Shutdown  
165  
10  
°C  
°C  
TSD-HYS  
Hysteresis for Thermal Shutdown  
(1) Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation  
using Statistical Quality Control (SQC) methods. Limits are used to calculate Average Outgoing Quality Level (AOQL).  
(2) Typical numbers are at 25°C and represent the most likely parametric norm.  
(3) VREF measured in a non-switching, closed-loop configuration.  
Copyright © 2008–2017, Texas Instruments Incorporated  
5
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5, TJ = 25°C.  
2.65  
2.60  
0.802  
0.801  
0.800  
0.799  
0.798  
0.797  
0.796  
0.795  
2.55  
2.50  
2.45  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100  
125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 2. UVLO Threshold vs Temperature  
Figure 1. Feedback Voltage vs Temperature  
2.1  
1.250  
2.0  
1.9  
1.8  
1.225  
1.200  
1.175  
1.7  
1.6  
-50 -25  
0
25  
TEMPERATURE (°C)  
50  
75 100  
125  
-50  
-25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
Figure 4. Enable Threshold vs Temperature  
Figure 3. Soft Start Current vs Temperature  
1200  
60  
55  
50  
1100  
1 MHz  
1000  
900  
800  
700  
V
= 3.3V  
IN  
45  
40  
35  
30  
25  
20  
V
= 5.0V  
IN  
600  
500 kHz  
500  
400  
-50 -25  
0
25  
50 75 100 125  
-50 -25  
0
25  
50 75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 5. Switching Frequency vs Temperature  
Figure 6. PMOS RDS(ON) vs Temperature  
6
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5, TJ = 25°C.  
50  
45  
40  
35  
30  
1.8  
1.7  
25°C  
V
= 3.3V  
IN  
1.6  
1.5  
1.4  
125°C  
V
= 5.0V  
IN  
85°C  
-40°C  
25  
20  
1.3  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-50 -25  
0
25  
50 75 100 125  
TEMPERATURE (°C)  
V
IN  
Figure 7. NMOS RDS(ON) vs Temperature  
Figure 8. IQ (operating) vs VIN and Temperature  
6.50  
0.8010  
6.25  
6.00  
5.75  
5.50  
V
IN  
= 5.0V  
0.8005  
0.8000  
V
IN  
= 3.3V  
0.7995  
0.7990  
5.25  
5.00  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
-50 -25  
0
25  
50 75 100 125  
TEMPERATURE (°C)  
V
IN  
Figure 9. Peak Current Limit vs Temperature  
Figure 10. Feedback Voltage vs VIN  
1100  
1 MHz  
260  
1000  
900  
800  
700  
600  
500  
400  
25°C  
85°C  
240  
125°C  
220  
-40°C  
500 kHz  
200  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
2.5  
3.0  
3.5  
4.0  
(V)  
4.5  
5.0  
5.5  
V
V
IN  
IN  
Figure 11. IQ (disabled) vs VIN and Temperature, EN = 0 V  
Figure 12. Switching Frequency vs VIN  
Copyright © 2008–2017, Texas Instruments Incorporated  
7
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5, TJ = 25°C.  
Figure 13. LM2854 500-kHz Switch Node Voltage (oscilloscope set at infinite persistence) VIN = 5 V, VOUT = 2.5 V, IOUT = 4 A  
8
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
7 Detailed Description  
7.1 Overview  
The LM2854 PowerWise synchronous DC-DC buck regulator belongs to the Texas Instruments family of  
switching regulators. Integration of the power MOSFETs and associated drivers, compensation component  
network, and the PWM controller reduces the number of external components necessary for a complete power  
supply design, without sacrificing performance.  
7.2 Functional Block Diagram  
AGND  
PVIN  
Ramp and Clock  
Current Limit  
0.8V  
Reference  
Generator  
Oscillator  
UVLO  
AVIN  
EN  
+
-
Gate  
Drive  
Error  
Amplifier  
SW  
1.23V  
-
Reference  
Selector  
+
-
+
SS  
PWM  
Comparator  
Zc2  
PGND  
FB  
7.3 Feature Description  
7.3.1 Switching Frequency  
The LM2854 is available in two switching frequency options, 500 kHz and 1 MHz. Generally, a higher switching  
frequency allows for faster transient response and a reduction in the footprint area and volume of the external  
power stage components, while a lower switching frequency affords better efficiency. These factors should be  
considered when selecting the appropriate switching frequency for a given application.  
7.3.2 Enable  
The LM2854 features a enable (EN) pin and associated comparator to allow the user to easily sequence the  
LM2854 from an external voltage rail, or to manually set the input UVLO threshold. The turnon or rising threshold  
and hysteresis for this comparator are typically 1.23 V and 0.15 V, respectively. The precise reference for the  
enable comparator allows the user to ensure that the LM2854 will be disabled when the system demands it to  
be.  
7.3.3 Soft-Start  
The LM2854 begins to operate when both the AVIN and EN voltages exceed the rising UVLO and enable  
thresholds, respectively. A controlled soft-start eliminates inrush currents during start-up and allows the user  
more control and flexibility when sequencing the LM2854 with other power supplies. An external soft-start  
capacitor is used to control the LM2854 start-up time. During soft-start, the voltage on the feedback pin is  
connected internally to the non-inverting input of the error amplifier. The soft-start period lasts until the voltage on  
the soft-start pin exceeds the LM2854 reference voltage of 0.8 V. At this point, the reference voltage takes over  
at the non-inverting amplifier input.  
Copyright © 2008–2017, Texas Instruments Incorporated  
9
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
In the event of either AVIN or EN decreasing below the falling UVLO or enable threshold respectively, the  
voltage on the soft-start pin is collapsed by discharging the soft-start capacitor through a 5-ktransistor to  
ground.  
7.3.4 Tracking  
The LM2854 can track the output of a master power supply during soft-start by connecting a resistor divider to  
the SS pin. In this way, the output voltage slew rate of the LM2854 will be controlled by a master supply for loads  
that require precise sequencing. When the tracking function is used, a small value soft-start capacitor can be  
connected to the SS pin to alleviate output voltage overshoot when recovering from a current limit fault.  
Master Power  
Supply  
VOUT1  
VIN  
LM2854  
LO  
VOUT2  
PVIN  
SW  
FB  
RT2  
RT1  
AVIN  
SS  
CO  
VSS  
CIN  
AGND  
PGND  
Figure 14. Simplified Schematic Showing Use of Tracking  
7.3.5 Pre-Biased Start-up Capability  
The LM2854 is in a pre-biased state when the device starts up with an output voltage greater than zero. This  
often occurs in many multi-rail applications such as when powering an FPGA, ASIC, or DSP. The output can be  
pre-biased in these applications through parasitic conduction paths from one supply rail to another. Even though  
the LM2854 is a synchronous converter, it will not pull the output low when a pre-bias condition exists. The  
LM2854 will not sink current during start up until the soft-start voltage exceeds the voltage on the FB pin. Since  
the device can not sink current it protects the load from damage that might otherwise occur if current is  
conducted through the parasitic paths of the load.  
7.3.6 Feedback Voltage Accuracy  
The FB pin is connected to the inverting input of the voltage loop error amplifier and during closed loop operation  
its reference voltage is 0.8 V. The FB voltage is accurate to within –1.25% / +1% over temperature. Additionally,  
the LM2854 contains error nulling circuitry to substantially eliminate the feedback voltage over temperature drift  
as well as the long term aging effects of the internal amplifiers. In addition, the 1/f noise of the bandgap amplifier  
and reference are dramatically reduced. The manifestation of this circuit action is that the duty cycle will have two  
slightly different but distinct operating points, each evident every other switching cycle. The oscilloscope plot  
shown previously of the SW pin with infinite persistence set shows this behavior. No discernible effect is evident  
on the output due to LC filter attenuation. For further information, a Texas Instruments white paper is available on  
this topic.  
7.3.7 Positive Current Limit  
The LM2854 employs lossless cycle-by-cycle high-side current limit circuitry to limit the peak current through the  
high-side FET. The peak current limit threshold, denoted ICL, is nominally set at 6 A internally. When a current  
greater than ICL is sensed through the PFET, its on-time is immediately terminated and the NFET is activated.  
The NFET stays on for the entire next four switching cycles (effectively four PFET pulses are skipped). During  
these skipped pulses, the voltage on the soft-start pin is reduced by discharging the soft-start capacitor by a  
current sink on the soft-start pin of nominally 6 µA or 14 µA for the 500-kHz or 1-MHz options, respectively.  
Subsequent overcurrent events will drain more and more charge from the soft-start capacitor, effectively  
decreasing the reference voltage as the output droops due to the pulse skipping. Reactivation of the soft-start  
circuitry ensures that when the overcurrent situation is removed, the part will resume normal operation smoothly.  
10  
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Feature Description (continued)  
7.3.8 Negative Current Limit  
The LM2854 implements negative current limit detection circuitry to prevent large negative current in the  
inductor. When the negative current sensed in the low-side NFET is below approximately –0.4 A, the present  
switching cycle is immediately terminated and both FETs are turned off. When both FETs are off, the negative  
inductor current originally flowing in the low-side NFET and into the SW pin commutates to the high-side PFET’s  
body diode and ramps back to zero. At this point, the SW pin becomes a high impedance node and ringing can  
be observed on the SW node as the stored energy in the inductor is dissipated while resonating with the parasitic  
nodal capacitance.  
7.3.9 Overtemperature Protection  
When the LM2854 senses a junction temperature greater than 165°C, both switching FETs are turned off and the  
part enters a sleep state. Upon sensing a junction temperature below 155°C, the part will re-initiate the soft-start  
sequence and begin switching once again. This feature is provided to prevent catastrophic failure due to  
excessive thermal dissipation.  
7.3.10 Loop Compensation  
The LM2854 preserves flexibility by integrating the control components around the error amplifier while using  
three small external compensation components from VOUT to FB. An integrated type II (two pole, one zero)  
voltage-mode compensation network is featured. To ensure stability, an external resistor and small value  
capacitor can be added across the upper feedback resistor as a pole-zero pair to complete a type III (three pole,  
two zero) compensation network. For correct selection of these components, see Detailed Design Procedure.  
7.4 Device Functional Modes  
7.4.1 Shutdown Mode  
If EN is less than VIH – VEN(HSY), the LM2854 shuts down. Most internal circuitry is shut down, and the SW output  
is high-impedance. Once EN voltage exceeds VIH, the LM2854 enters soft-start mode.  
7.4.2 Soft-Start and Track Mode  
Once operation is initiated, the LM2854 starts charging its SS node. If a voltage is already present on the  
LM2854 circuit output, the LM2854 does not attempt to pull the circuit output low. If only a capacitor is connected  
to the SS pin, voltage on this pin rises, and once voltage exceeds 0.8 V, normal operating mode commences. If  
the high-side current limit is exceeded, the voltage on the SS pin is reduced, prolonging soft-start and track  
mode.  
If a resistor divider is used to connect the SS pin to another power supply, Soft Start and Track mode can be  
used to cause the output of the LM2854 Buck to track this supply.  
7.4.3 Normal Operating Mode  
If the EN input of the LM2854 is above VIH and the SS pin is above 0.8 V, output is regulated normally. If EN is  
reduced to less than VIH – VEN(HSY), the LM2854 enters shutdown mode. If the high-side current limit is activated  
or SS is pulled to below 0.8 V, the LM2854 enters soft-start and track mode.  
Copyright © 2008–2017, Texas Instruments Incorporated  
11  
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM2854 is designed to convert voltage between 2.95 V and 5.5 V to a well-regulated voltage between input  
voltage and 0.8 V.  
8.2 Typical Application  
V
IN  
L
O
V
OUT  
LM2854  
SW  
FB  
PVIN  
AVIN  
EN  
C
O
C
IN  
AGND  
PGND  
SS  
R
FB1  
C
SS  
C
R
COMP  
COMP  
R
FB2  
Figure 15. Typical Application Diagram  
8.2.1 Design Requirements  
Before starting a design, the following five design criteria should be considered. These criteria are the basic  
inputs into the detailed design procedure listed below.  
Output voltage: Choose an output voltage between 0.8 V and the lowest expected input voltage.  
Size vs efficiency: Choose 1 MHz for small physical size, and 500 kHz switching frequency for efficiency.  
Step load response and ripple: Use this criterion to select output capacitance. Also see compensation in  
Detailed Design Procedure.  
UVLO: Input UVLO voltage should be selected. A voltage divider connected to the EN input can be used to  
select input start-up voltage.  
Tracking: If tracking is desired, a voltage divider can be connected to the SS node.  
8.2.2 Detailed Design Procedure  
8.2.2.1 Input Filter Capacitor  
Fast switching currents place a large strain on the input supply to a buck regulator. A capacitor placed close to  
the PVIN and PGND pins of the LM2854 helps to supply the instantaneous charge required when the regulator  
demands a pulse of current every switching cycle. In fact, the input capacitor conducts a square-wave current of  
peak-to-peak amplitude equal to IOUT. With this high AC current present in the input capacitor, the RMS current  
rating becomes an important parameter. The necessary RMS current rating of the input capacitor to a buck  
regulator can be estimated using Equation 1.  
ICin(RMS) = IOUT  
D(1-D)  
(1)  
where the PWM duty cycle, D, is given in Equation 2.  
VOUT  
D =  
VIN  
(2)  
12  
Copyright © 2008–2017, Texas Instruments Incorporated  
 
 
 
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Typical Application (continued)  
Neglecting capacitor ESR, the resultant input capacitor AC ripple voltage is a triangular waveform with peak-to-  
peak amplitude specified in Equation 3.  
VOUTD(1-D)  
DVin =  
fSWCIN  
(3)  
The maximum input capacitor ripple voltage and RMS current occur at 50% duty cycle. A 22-µF or 47-µF high-  
quality dielectric (X5R, X7R) ceramic capacitor with adequate voltage rating is typically sufficient as an input  
capacitor to the LM2854. The input capacitor should be placed as close as possible to the PVIN and PGND pins  
to substantially eliminate the parasitic effects of any stray inductance or resistance on the PC board and supply  
lines. Additional bulk capacitance with higher ESR may be required to damp any resonance effects of the input  
capacitance and parasitic inductance.  
8.2.2.2 AVIN Filtering Components  
In addition to the large input filter capacitor, a smaller ceramic capacitor such as a 0.1 µF or 1.0 µF is  
recommended between AVIN and AGND to filter high frequency noise present on the PVIN rail from the quiet  
AVIN supply. For additional filtering in noisy environments, a small RC filter can be used on the AVIN pin as  
shown below.  
V
IN  
LM2854  
PVIN  
AVIN  
SW  
FB  
R
F
EN  
C
IN  
C
F
AGND  
SS  
PGND  
Figure 16. Filtering of AVIN  
In general, RF is typically selected between 1 and 10 so that the steady state voltage drop across the  
resistor due to the AVIN bias current does not affect the UVLO level. Recommended filter capacitor, CF, is 1 µF  
in X5R or X7R dielectric.  
8.2.2.3 Soft-Start Capacitor  
When the LM2854 is enabled, the output voltage will ramp up linearly in the time dictated by the relationship  
shown in Equation 4.  
CSS x VREF  
tSS  
=
ISS  
(4)  
where VREF is the internal reference voltage (nominally 0.8V), ISS is the soft-start charging current (nominally 2  
µA) and CSS is the external soft-start capacitance. Rearranging this equation allows for the necessary soft-start  
capacitor for a given start-up time to be calculated as in Equation 5.  
tSS x 2 mA  
CSS  
=
0.8V  
(5)  
(6)  
Thus, the required soft start capacitor per unit output voltage start-up time is given in Equation 6.  
CSS = 2.5 nF / ms  
For example, a 10 nF soft-start capacitor will yield a 4 ms soft-start time.  
8.2.2.4 Tracking - Equal Soft-Start Time  
One way to use the tracking feature is to design the tracking resistor divider so that the master supply output  
voltage, VOUT1, and the LM2854 output voltage, VOUT2, both rise together and reach their target values at the  
same time. This is termed ratiometric start-up. For this case, the equation governing the values of tracking divider  
resistors RT1 and RT2 is given in Equation 7.  
Copyright © 2008–2017, Texas Instruments Incorporated  
13  
 
 
 
 
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Application (continued)  
RT2  
RT1  
=
VOUT1 -1.0V  
(7)  
The above equation includes an offset voltage to ensure that the final value of the SS pin voltage exceeds the  
reference voltage of the LM2854. This offset will cause the LM2854 output voltage to reach regulation slightly  
before the master supply. A value of 33 k1% is recommended for RT2 as a compromise between high  
precision and low quiescent current through the divider while minimizing the effect of the 2 µA soft-start current  
source.  
For example, If the master supply voltage VOUT1 is 3.3V and the LM2854 output voltage was 1.8V, then the value  
of RT1 needed to give the two supplies identical soft-start times would be 14.3 k. A timing diagram for this  
example, the equal soft-start time case, is shown in Figure 17.  
RATIOMETRIC STARTUP  
VOUT1  
VOUT2  
EN  
TIME  
Figure 17. Simplified Start-up Waveforms When Using Proportional Tracking  
8.2.2.5 Tracking - Equal Slew Rates  
Alternatively, the tracking feature can be used to have similar output voltage ramp rates. This is referred to as  
simultaneous start-up. In this case, the tracking resistors can be calculated using Equation 8.  
0.8V  
RT2  
RT1  
=
VOUT2 - 0.8V  
(8)  
(9)  
and to ensure proper overdrive of the SS pin as calculated in Equation 9.  
VOUT2 < 0.8 VOUT1  
For the example case of VOUT1 = 5 V and VOUT2 = 2.5 V, with RT2 set to 33 kas before, RT1 is calculated from  
the above equation to be 15.5 k. A timing diagram for the case of equal slew rates is shown in Figure 18.  
SIMULTANEOUS STARTUP  
VOUT1  
VOUT2  
EN  
TIME  
Figure 18. Simplified Start-up Waveforms, Showing Tracking Used to Achieve Equal Slew Rates  
14  
Copyright © 2008–2017, Texas Instruments Incorporated  
 
 
 
 
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Typical Application (continued)  
8.2.2.6 Enable and UVLO  
Using a resistor divider from VIN to EN as shown in the schematic diagram below, the input voltage at which the  
part begins switching can be increased above the normal input UVLO level as shown in Equation 10.  
REN1 + REN2  
VIN(UVLO) = 1.23V  
REN2  
(10)  
For example, suppose that the required input UVLO level is 3.69 V. Choosing REN2 = 10 k, then we calculate  
REN1 = 20 k.  
V
IN  
LM2854  
PVIN  
SW  
FB  
AVIN  
EN  
R
R
EN1  
C
IN  
SS  
AGND  
PGND  
EN2  
Figure 19. Simplified Schematic Showing Use of EN as an Input UVLO  
Alternatively, the EN pin can be driven from another voltage source to cater for system sequencing requirements  
commonly found in FPGA and other multi-rail applications. The following schematic shows an LM2854 that is  
sequenced to start based on the voltage level of a master system rail.  
V
OUT1  
V
IN  
LM2854  
L
O
V
OUT2  
PVIN  
SW  
FB  
R
EN1  
AVIN  
EN  
C
O
C
IN  
R
EN2  
SS  
AGND  
PGND  
Figure 20. Simplified Schematic Showing EN Used to Cascade Power Supply Start-up  
8.2.2.7 Output Voltage Setting  
A divider resistor network from VOUT to the FB pin determines the desired output voltage as shown in  
Equation 11.  
RFB1 + RFB2  
VOUT = 0.8V  
RFB2  
(11)  
RFB1 is defined based on the voltage loop requirements and RFB2 is then selected for the desired output voltage.  
These resistors are normally selected as 0.5% or 1% tolerance.  
8.2.2.8 Compensation Component Selection  
The power stage transfer function of a voltage mode buck converter has a complex double pole related to the LC  
output filter and a left half plane zero due to the output capacitor ESR, denoted RESR. The locations of these  
singularities are given respectively in Equation 12.  
Copyright © 2008–2017, Texas Instruments Incorporated  
15  
 
 
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Application (continued)  
1
1
@
fLC  
=
2p  
LOCO  
RESR + RL  
RDCR + RL  
2p LOCO  
fESR  
1
=
2pRESRCO  
where  
CO is the output capacitance value appropriately derated for applied voltage and operating temperature  
RL is the effective load resistance  
RDCR is the series damping resistance associated with the inductor and power switches  
(12)  
VIN  
RDCR LO  
LM2854  
VOUT  
SW  
PVIN  
EN  
RESR  
CO  
RL  
Ramp  
Error  
AVIN  
V
REF  
Amp  
-
+
RFB1  
+
-
FB  
PWM  
Comp  
RCOMP  
RFB2  
CCOMP  
SS  
AGND  
PGND  
Figure 21. LM2854 Compensation Scheme  
The conventional compensation strategy employed with voltage mode control is to use two compensator zeros to  
offset the LC double pole, one compensator pole located to cancel the output capacitor ESR zero and one  
compensator pole located between one third and one half switching frequency for high frequency noise  
attenuation.  
The LM2854 internal compensation components are designed to locate a pole at the origin and a pole at high  
frequency as mentioned above. Furthermore, a zero is located at 8.8 kHz or 17.6 kHz for the 500 kHz or 1 MHz  
options, respectively, to approximately cancel the likely location of one LC filter pole.  
The three external compensation components, RFB1, RCOMP and CCOMP, are selected to position a zero at or  
below the LC pole location and a pole to cancel the ESR zero. The voltage loop crossover frequency, floop, is  
usually selected between one tenth to one fifth of the switching frequency, as shown in Equation 13.  
0.1fSW floop 0.2fSW  
(13)  
A simple solution for the required external compensation capacitor, CCOMP, with type III voltage mode control can  
be expressed as in Equation 14.  
LO(mH)CO(mF)  
CCOMP(pF) = a  
floop (kHz)  
VIN (V)  
(14)  
where the constant α is nominally 0.038 or 0.075 for the 500 kHz or 1 MHz options, respectively. This assumes a  
compensator pole cancels the output capacitor ESR zero. Furthermore, since the modulator gain is proportional  
to VIN, the loop crossover frequency increases with VIN. Thus, it is recommended to design the loop at maximum  
expected VIN.  
The upper feedback resistor, RFB1, is selected to provide adequate mid-band gain and to locate a zero at or  
below the LC pole frequency. The series resistor, RCOMP, is selected to locate a pole at the ESR zero frequency,  
as shown in Equation 15.  
16  
Copyright © 2008–2017, Texas Instruments Incorporated  
 
 
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Typical Application (continued)  
1
RFB1  
=
2pCCOMP LC  
f
1
RCOMP  
=
2pCCOMP ESR  
f
(15)  
Note that the lower feedback resistor, RFB2, has no impact on the control loop from an AC standpoint since the  
FB pin is the input to an error amplifier and effectively at AC ground. Hence, the control loop can be designed  
irrespective of output voltage level. The only caveat here is the necessary derating of the output capacitance with  
applied voltage. Having chosen RFB1 as above, RFB2 is then selected for the desired output voltage.  
Table 1 and Table 2 list inductor and ranges of capacitor values that work well with the LM2854, along with the  
associated compensation components to ensure stable operation. Values different than those listed may be  
used, but the compensation components may need to be recalculated to avoid degradation in phase margin.  
Note that the capacitance ranges specified refer to in-circuit values where the nominal capacitance value is  
adequately derated for applied voltage.  
8.2.2.9 Filter Inductor and Output Capacitor Selection  
In a buck regulator, selection of the filter inductor and capacitor will affect many key system parameters,  
including stability, transient response and efficiency The LM2854 can accommodate relatively wide ranges of  
output capacitor and filter inductor values in a typical application and still achieve excellent load current transient  
performance and low output voltage ripple.  
The inductance is chosen such that the peak-to-peak inductor current ripple, ΔiL, is approximately 25 to 40% of  
IOUT as shown in Equation 16.  
VOUT(1-D)  
VOUT(1-D)  
@
LO =  
DiLfSW  
0.3IOUTfSW  
(16)  
Note that the peak inductor current is the DC output current plus half the ripple current and reaches its highest  
level at lowest duty cycle (or highest VIN). It is recommended that the inductor should have a saturation current  
rating in excess of the current limit level.  
When operating the LM2854 at input voltages above 5.2 V, the inductor should be sized to keep the minimum  
inductor current above –0.5 A. For most applications this should only occur at light loads or when the inductor is  
drastically undersized. To ensure the current never goes below –0.5 A for any application, the peak-to-peak  
ripple current (ΔiL) in the inductor should be less than 1 A. Keeping the minimum inductor current above –0.5 A  
limits the energy storage in the inductor and helps prevent the switch node voltage from exceeding the absolute  
maximum specification when the low side FET turns off.  
Table 3 lists examples of off-the-shelf powdered iron and ferrite based inductors that are suitable for use with the  
LM2854. The output capacitor can be of ceramic or electrolytic chemistry. The chosen output capacitor requires  
sufficient DC voltage rating and RMS ripple current handling capability.  
The output capacitor RMS current and peak-to-peak output ripple are given respectively as in Equation 17.  
DiL  
ICout(RMS)  
=
12  
2
1
2
DVOUT = DiL  
RESR  
+
8fSWCO  
(17)  
In general, 22 µF to 100 µF of ceramic output capacitance is sufficient for both LM2854 frequency options given  
the optimal high frequency characteristics and low ESR of ceramic dielectric. It is advisable to consult the  
manufacturer’s derating curves for capacitance voltage coefficient as the in-circuit capacitance may drop  
significantly with applied voltage.  
Copyright © 2008–2017, Texas Instruments Incorporated  
17  
 
 
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Application (continued)  
Tantalum or organic polymer electrolytic capacitance may be suitable with the LM2854 500 kHz option,  
particularly in applications where substantial bulk capacitance per unit volume is required. However, the high  
loop bandwidth achievable with the LM2854 obviates the necessity for large bulk capacitance during transient  
loading conditions.  
Table 4 lists some examples of commercially available capacitors that can be used with the LM2854.  
Table 1. LM2854 500-kHz Compensation Component Values  
CO (µF)  
ESR (m)  
MIN  
VIN (V)  
LO (µH)  
RFB1 (k)  
CCOMP (pF)  
RCOMP (k)  
MIN  
40  
MAX  
100  
200  
220  
100  
200  
220  
100  
200  
220  
100  
200  
220  
MAX  
10  
5
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
1.5  
1.5  
1.5  
2.2  
2.2  
2.2  
2
1
150  
150  
150  
150  
150  
120  
150  
100  
100  
150  
100  
100  
47  
1
1
100  
100  
40  
100  
120  
68  
15  
2
25  
10  
5
25  
1
5
100  
100  
40  
1
120  
120  
68  
1
15  
2
25  
10  
5
15  
1
100  
100  
40  
1
150  
150  
100  
220  
220  
1
15  
2
25  
10  
5
15  
1
3.3  
100  
100  
1
1
15  
25  
10  
Table 2. LM2854 1-MHz Compensation Component Values  
CO (µF)  
ESR (m)  
MIN  
VIN (V)  
LO (µH)  
RFB1 (k)  
CCOMP (pF)  
RCOMP (k)  
MIN  
20  
MAX  
60  
MAX  
10  
5
0.68  
0.68  
0.68  
1
2
1
120  
75  
33  
100  
100  
56  
1
1
60  
150  
220  
60  
100  
20  
15  
2
25  
10  
5
100  
100  
75  
20  
1
5
1
60  
150  
220  
60  
1
150  
150  
56  
1
1
100  
20  
15  
2
25  
10  
5
75  
15  
1
0.68  
0.68  
0.68  
1
75  
60  
150  
220  
60  
1
50  
150  
150  
82  
1
100  
20  
15  
2
25  
10  
5
50  
12  
1
3.3  
75  
1
60  
150  
220  
1
50  
220  
330  
1
1
100  
15  
25  
33  
10  
Table 3. Recommended Filter Inductors  
INDUCTANCE (µH)  
DCR (m)  
MANUFACTURER  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
MANUFACTURER P/N  
IHLP1616BZERR47M11  
CASE SIZE (mm)  
4.06 × 4.45 × 2.00  
4.06 × 4.45 × 2.00  
6.47 × 6.86 × 1.80  
6.47 × 6.86 × 2.40  
6.47 × 6.86 × 2.40  
6.47 × 6.86 × 2.40  
6.47 × 6.86 × 2.40  
6.47 × 6.86 × 2.40  
0.47  
1
14.5  
24  
IHLP1616BZER1R0M11  
IHLP2525AHERR47M01  
IHLP2525BDERR47M01  
IHLP2525BDERR68M01  
IHLP2525BDERR82M01  
IHLP2525BDER1R0M01  
IHLP2525BDER1R5M01  
0.47  
0.47  
0.68  
0.82  
1
8.4  
6
8.7  
10.6  
13.1  
18.5  
1.5  
18  
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Table 3. Recommended Filter Inductors (continued)  
INDUCTANCE (µH)  
DCR (m)  
15.7  
3.5  
MANUFACTURER  
Vishay Dale  
Sumida  
Sumida  
Sumida  
Sumida  
Sumida  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
Coilcraft  
TDK  
MANUFACTURER P/N  
IHLP2525CZER2R2M11  
CDMC6D28NP-R47M  
CDMC6D28NP-R68M  
CDMC6D28NP-1R0M  
CDMC6D28NP-1R5M  
CDMC6D28NP-2R2M  
DO1813H-561ML  
CASE SIZE (mm)  
6.47 × 6.86 × 3.00  
6.50 × 7.25 × 3.00  
6.50 × 7.25 × 3.00  
6.50 × 7.25 × 3.00  
6.50 × 7.25 × 3.00  
6.50 × 7.25 × 3.00  
6.10 × 8.89 × 5.00  
7 × 7 × 3  
2.2  
0.47  
0.68  
1
4.5  
17.3  
10.4  
16.1  
10  
1.5  
2.2  
0.56  
0.47  
0.68  
1
3.3  
HA3619-471ALC  
4.8  
HA3619-681ALC  
7 × 7 × 3  
7.5  
HA3619-102ALC  
7 × 7 × 3  
1.2  
1.5  
1.8  
0.47  
0.68  
1
9.4  
HA3619-122ALC  
7 × 7 × 3  
11.5  
16.5  
3.3  
HA3619-152ALC  
7 × 7 × 3  
HA3619-182ALC  
7 × 7 × 3  
SPM6530T-R47M170  
SPM6530T-R68M140  
SPM6530T-1R0M120  
SPM6530T-1R5M100  
PCMC042T-0R47MN  
PCMC063T-1R0MN  
PCMC063T-1R5MN  
7.1 × 6.5 × 3  
7.1 × 6.5 × 3  
7.1 × 6.5 × 3  
7.1 × 6.5 × 3  
4 × 4.5 × 2  
4.9  
TDK  
7.1  
TDK  
1.5  
0.47  
1.0  
1.5  
9.7  
TDK  
14  
Cyntec  
9
Cyntec  
6.5 × 6.9 × 3  
6.5 × 6.9 × 3  
14  
Cyntec  
Table 4. Recommended Filter Capacitors  
CAPACITANCE VOLTAGE (V), ESR  
CHEMISTRY  
MANUFACTURER MANUFACTURER P/N  
CASE SIZE  
(µF)  
(m)  
22  
6.3, < 5  
6.3, < 5  
6.3, < 5  
10, < 5  
6.3, < 5  
6.3, 50  
6.3, 25  
6.3, 18  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Tantalum  
TDK  
TDK  
C3216X5R0J226M  
C3216X5R0J476M  
C3225X5R0J476M  
C3225X5R1A476M  
C3225X5R0J107M  
TPSD157M006#0050  
6TPE100MPB2  
1206  
1206  
47  
47  
TDK  
1210  
47  
TDK  
1210  
100  
100  
100  
150  
TDK  
1210  
AVX  
D, 7.5 × 4.3 × 2.9 mm  
B2, 3.5 × 2.8 × 1.9 mm  
C2, 6 × 3.2 × 1.8 mm  
Organic Polymer  
Organic Polymer  
Sanyo  
Sanyo  
6TPE150MIC2  
D3L, 7.3 × 4.3 × 2.8  
mm  
330  
470  
6.3, 18  
6.3, 23  
Organic Polymer  
Niobium Oxide  
Sanyo  
AVX  
6TPE330MIL  
NOME37M006#0023  
E, 7.3 × 4.3 × 4.1 mm  
Copyright © 2008–2017, Texas Instruments Incorporated  
19  
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
8.2.3 Application Curves  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5 V, CIN is 47-μF 10-V X5R ceramic  
capacitor, LO is from TDK SPM6530T family; TAMBIENT = 25°C.  
97  
96  
95  
92  
90  
88  
86  
84  
82  
80  
78  
76  
74  
V
= 3.3V  
IN  
V
= 3.3V  
IN  
94  
93  
92  
V
IN  
= 5.0V  
V
= 5.0V  
IN  
91  
90  
89  
0
1
2
3
4
0
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 22. LM2854 1-MHz Efficiency vs IOUT VOUT = 0.8 V,  
Figure 23. LM2854 1-MHz Efficiency vs IOUT VOUT = 2.5 V,  
LO = 0.47 µH, 3.3-mDCR  
LO = 1 µH, 7.1-mDCR  
94  
98  
97  
V
IN  
= 3.3V  
92  
90  
V
= 4.0V  
IN  
96  
95  
94  
V
= 5.0V  
IN  
88  
86  
84  
V
= 5.0V  
IN  
93  
92  
82  
80  
0
1
2
3
4
0
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 24. LM2854 1-MHz Efficiency vs IOUT VOUT = 1.2 V,  
Figure 25. LM2854 1-MHz Efficiency vs IOUT VOUT = 3.3 V,  
LO = 0.68 µH, 4.9-mDCR  
LO = 1 µH, 7.1-mDCR  
96  
94  
94  
92  
90  
V
= 3.3V  
IN  
V
= 5.0V  
IN  
92  
90  
88  
88  
86  
84  
82  
80  
78  
76  
V
= 5.0V  
IN  
V
= 3.3V  
IN  
86  
84  
0
1
2
3
4
0
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 26. LM2854 1-MHz Efficiency vs IOUT VOUT = 1.8 V,  
Figure 27. LM2854 500-kHz Efficiency vs IOUT VOUT = 0.8 V,  
LO = 1 µH, 7.1-mDCR  
LO = 1 µH, 7.1-mDCR  
20  
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5 V, CIN is 47-μF 10-V X5R ceramic  
capacitor, LO is from TDK SPM6530T family; TAMBIENT = 25°C.  
96  
94  
92  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
V
= 3.3V  
IN  
90  
88  
86  
V
IN  
= 5.0V  
V
= 5.0V  
IN  
V
= 3.3V  
IN  
84  
82  
80  
0
1
2
3
4
0
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 28. LM2854 500-kHz Efficiency vs IOUT VOUT = 2.5 V,  
Figure 29. LM2854 500-kHz Efficiency vs IOUT VOUT = 1.2 V,  
LO = 2.2 µH, 16-mDCR  
LO = 1.5 µH, 9.7-mDCR  
99  
98  
98  
96  
V
= 4.0V  
V
= 3.3V  
IN  
IN  
97  
94  
96  
95  
94  
92  
90  
88  
V
= 5.0V  
IN  
V
= 5.0V  
IN  
93  
92  
86  
84  
0
1
2
3
4
0
1
2
3
4
LOAD CURRENT (A)  
LOAD CURRENT (A)  
Figure 30. LM2854 500-kHz Efficiency vs IOUT VOUT = 3.3 V,  
Figure 31. LM2854 500-kHz Efficiency vs IOUT VOUT = 1.8 V,  
LO = 1.5 µH, 9.7-mDCR  
LO = 1.5 µH, 9.7-mDCR  
Figure 32. LM2854 1-MHz Bode Plot VIN = 3.3 V, VOUT = 1.8  
V, IOUT = 4 A RFB1 = 150 k, RCOMP = 1 k, CCOMP = 100 pF,  
LOUT = 0.82 µH, COUT = 100-µF Ceramic  
Figure 33. LM2854 500-kHz Bode Plot VIN = 3.3 V,  
VOUT = 1.8 V, IOUT = 4 A RFB1 = 250 k, RCOMP = 1 k,  
CCOMP = 47 pF, LOUT = 1.5 µH, COUT = 100-µF Ceramic  
Copyright © 2008–2017, Texas Instruments Incorporated  
21  
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5 V, CIN is 47-μF 10-V X5R ceramic  
capacitor, LO is from TDK SPM6530T family; TAMBIENT = 25°C.  
Figure 35. LM2854 500-kHz Bode Plot VIN = 5 V,  
VOUT = 1.8 V, IOUT = 4 A RFB1 = 250 k, RCOMP = 1 k,  
CCOMP = 47 pF, LOUT = 1.5 µH, COUT = 100-µF Ceramic  
Figure 34. LM2854 1-MHz Bode Plot VIN = 5 V, VOUT = 1.8 V,  
IOUT = 4 A RFB1 = 150 k, RCOMP = 1 k, CCOMP = 100 pF,  
LOUT = 0.82 µH, COUT = 100 µF  
Figure 36. LM2854 1-MHz Bode Plot VIN = 5 V, VOUT = 3.3 V,  
IOUT = 4 A RFB1 = 150 k, RCOMP = 1 k, CCOMP = 68 pF,  
LOUT = 0.82 µH, COUT = 100-µF Ceramic  
Figure 37. LM2854 500-kHz Bode Plot VIN = 5 V,  
VOUT = 3.3 V, IOUT = 4 A RFB1 = 250 k, RCOMP = 1 k,  
CCOMP = 33 pF, LOUT = 1.5 µH, COUT = 100-µF Ceramic  
Figure 39. LM2854 500-kHz Power On through Enable  
VIN = 5 V, VOUT = 1.8 V, IOUT = 4 A, CSS = 220 pF  
Figure 38. LM2854 500-kHz Power On Characteristic  
VIN = 5 V, VOUT = 1.8 V, IOUT = 4 A, CSS = 220 pF  
22  
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5 V, CIN is 47-μF 10-V X5R ceramic  
capacitor, LO is from TDK SPM6530T family; TAMBIENT = 25°C.  
Figure 40. LM2854 500-kHz Power Off Characteristic  
VIN = 5 V, VOUT = 1.8 V, IOUT = 4 A, CSS = 220 pF  
Figure 41. LM2854 1-MHz Load Transient Response  
VIN = 5 V, VOUT = 3.3 V, IOUT = 0.5-A to 4-A to 0.5-A step  
di/dt 4 A/µs, CO = 100-µF Ceramic  
Figure 43. LM2854 500-kHz Pre-Biased Start-up Waveform  
(Oscilloscope Set at Infinite Persistence) VOUT = 2.5 V,  
IOUT = 0 A, VPRE-BIAS = 1.25 V  
Figure 42. LM2854 500-kHz Start-up Waveform VOUT  
2.5 V, IOUT = 0 A  
=
8.2.4 System Examples  
This section provides several application solutions with an associated bill of materials, listed in Table 5 to  
Table 7. All bill of materials reference the schematic in Figure 44. The compensation for each solution was  
optimized to work over the full input range. Many applications have a fixed input voltage rail. It is possible to  
modify the compensation to obtain a faster transient response for a given input voltage operating point.  
V
IN  
U1  
L
O
V
OUT  
LM2854  
SW  
FB  
PVIN  
EN  
C
O
R
C
F
C
IN  
AVIN  
SS  
AGND  
PGND  
F
R
FB1  
C
SS  
C
R
COMP  
COMP  
R
FB2  
Figure 44. LM2854 Application Circuit Schematic  
Copyright © 2008–2017, Texas Instruments Incorporated  
23  
 
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Unless otherwise specified, the following conditions apply: VIN = PVIN = AVIN = EN = 5 V, CIN is 47-μF 10-V X5R ceramic  
capacitor, LO is from TDK SPM6530T family; TAMBIENT = 25°C.  
Table 5. LM2854 500-kHz Bill of Materials, VIN = 5 V, VOUT = 3.3 V, IOUT(MAX) = 4 A, Optimized for  
Efficiency  
REF DES  
DESCRIPTION  
CASE SIZE  
MANUFACTURER  
MANUFACTURER P/N  
Synchronous Buck  
Regulator  
U1  
HTSSOP-16  
Texas Instruments  
LM2854MHX-500  
CIN  
CO  
47 µF, X5R, 10 V  
100 µF, X5R, 6.3 V  
1.5 µH, 9.7 m, 10 A  
249 kΩ  
1210  
1210  
TDK  
TDK  
C3225X5R1A476M  
C3225X5R0J107M  
LO  
7.1 × 6.5 × 3.0 mm  
0603  
TDK  
SPM6530T-1R5M100  
CRCW06032493F-e3  
CRCW060328062F-e3  
CRCW06031001F-e3  
CRCW06031R0F-e3  
C1608C0G1H330J  
RFB1  
RFB2  
RCOMP  
RF  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
TDK  
80.6 kΩ  
0603  
1 kΩ  
0603  
1 Ω  
0603  
CCOMP  
CSS  
CF  
33 pF, ±5%, C0G, 50 V  
10 nF, ±10%, X7R, 16 V  
1.0 µF, ±10%, X7R, 10 V  
0603  
0603  
Murata  
GRM188R71C103KA01  
GRM188R71A105KA61  
0603  
Murata  
Table 6. LM2854 1-MHz Bill of Materials, VIN = 3.3 V to 5 V, VOUT = 2.5 V, IOUT (MAX) = 4 A, Optimized for  
Electrolytic Input and Output Capacitance  
REF DES  
U1  
DESCRIPTION  
Synchronous Buck Regulator  
150 µF, 6.3 V, 18 mΩ  
330 µF, 6.3 V, 18 mΩ  
2.2 µH, 16 m, 7 A  
100 kΩ  
CASE SIZE  
MANUFACTURER  
Texas Instruments  
Sanyo  
MANUFACTURER P/N  
LM2854MHX-1000  
6TPE150MIC2  
HTSSOP-16  
CIN  
C2, 6 × 3.2 × 1.8 mm  
CO  
D3L, 7.3 × 4.3 × 2.8 mm  
Sanyo  
6TPE330MIL  
LO  
6.47 × 6.86 × 3 mm  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
TDK  
IHLP2525CZER2R2M11  
CRCW06031003F-e3  
CRCW060324752F-e3  
CRCW06031502F-e3  
CRCW06031R0F-e3  
C1608C0G1H331J  
GRM188R71C103KA01  
GRM188R71A105KA61  
RFB1  
RFB2  
RCOMP  
RF  
0603  
0603  
0603  
0603  
0603  
0603  
0603  
47.5 kΩ  
15 kΩ  
1 Ω  
CCOMP  
CSS  
330 pF, ±5%, C0G, 50 V  
10 nF, ±10%, X7R, 16 V  
1 µF,±10%, X7R, 10 V  
Murata  
CF  
Murata  
Table 7. LM2854 1-MHz Bill of Materials, VIN = 3.3 V, VOUT = 0.8 V, IOUT (MAX) = 4 A, Optimized for Solution  
Size and Transient Response  
REF DES  
U1  
DESCRIPTION  
Synchronous Buck Regulator  
47 µF, X5R, 6.3 V  
47 µF, X5R, 6.3 V  
0.47 µH, 14.5 m, 7 A  
110 kΩ  
CASE SIZE  
MANUFACTURER  
Texas Instruments  
TDK  
MANUFACTURER P/N  
LM2854MHX-1000  
HTSSOP-16  
CIN  
1206  
C3216X5R0J476M  
CO  
1206  
TDK  
C3216X5R0J476M  
LO  
4.06 × 4.45 × 2.00 mm  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Vishay Dale  
Murata  
IHLP1616BZER0R47M11  
CRCW04021103F-e3  
CRCW04021001F-e3  
CRCW04021R0F-e3  
GRM1555C1H270JZ01  
GRM155R71C103KA01  
GRM155R61A105KE15  
RFB1  
RCOMP  
RF  
0402  
0402  
0402  
0402  
0402  
0402  
1 kΩ  
1 Ω  
CCOMP  
CSS  
27 pF, ±5%, C0G, 50 V  
10 nF, ±10%, X7R, 16 V  
1 µF, ±10%, X7R, 10 V  
Murata  
CF  
Murata  
24  
Copyright © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
9 Power Supply Recommendations  
The LM2854 is designed to operate from an input voltage supply range from 2.95 V to 5.5 V. This input supply  
should be able to source the maximum input current and maintain a voltage above either 2.95 V or the output  
voltage, whichever is higher. In cases where input supply is located at a distance (more than a few inches) from  
the device, drop due to traces and wires must be considered.  
10 Layout  
10.1 Layout Guidelines  
PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance  
of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce and resistive voltage drop  
in the traces. These can send erroneous signals to the DC-DC converter resulting in poor regulation or instability.  
Good layout can be implemented by following a few simple design rules.  
1. Minimize area of switched current loops.  
There are two loops where currents are switched at high di/dt slew rates in a buck regulator. The first loop  
represents the path taken by AC current flowing during the high side PFET on time. This current flows from  
the input capacitor to the regulator PVIN pins, through the high side FET to the regulator SW pin, filter  
inductor, output capacitor and returning via the PCB ground plane to the input capacitor.  
The second loop represents the path taken by AC current flowing during the low side NFET on time. This  
current flows from the output capacitor ground to the regulator PGND pins, through the NFET to the inductor  
and output capacitor. From an EMI reduction standpoint, it is imperative to minimize this loop area during PC  
board layout by physically locating the input capacitor close to the LM2854. Specifically, it is advantageous to  
place CIN as close as possible to the LM2854 PVIN and PGND pins. Grounding for both the input and output  
capacitor should consist of a localized top side plane that connects to PGND and the exposed die attach pad  
(DAP). The inductor should be placed close to the SW pin and output capacitor.  
2. Minimize the copper area of the switch node.  
The LM2854 has two SW pins optimally located on one side of the package. In general the SW pins should  
be connected to the filter inductor on the top PCB layer. The inductor should be placed close to the SW pins  
to minimize the copper area of the switch node.  
3. Have a single point ground for all device analog grounds located under the DAP.  
The ground connections for the Feedback, Soft-start, Enable and AVIN components should be routed to the  
AGND pin of the device. The AGND pin should connect to PGND under the DAP. This prevents any  
switched or load currents from flowing in the analog ground traces. If not properly handled, poor grounding  
can result in degraded load regulation or erratic switching behavior.  
4. Minimize trace length to the FB pin.  
Since the feedback (FB) node is high impedance, the trace from the output voltage setpoint resistor divider to  
FB pin should be as short as possible. This is most important as relatively high value resistors are used to  
set the output voltage. The FB trace should be routed away from the SW pin and inductor to avoid noise  
pickup from the SW pin. Both feedback resistors, RFB1 and RFB2, and the compensation components, RCOMP  
and CCOMP, should be located close to the FB pin.  
5. Make input and output bus connections as wide as possible.  
This reduces any voltage drops on the input or output of the converter and maximizes efficiency. To optimize  
voltage accuracy at the load, ensure that a separate feedback voltage sense trace is made to the load. Doing  
so will correct for voltage drops and provide optimum output accuracy.  
6. Provide adequate device heat-sinking.  
Use an array of heat-sinking vias to connect the DAP to the ground plane on the bottom PCB layer. If the  
PCB has a plurality of copper layers, these thermal vias can also be employed to make connection to inner  
layer heat-spreading ground planes. For best results use a 5 x 3 via array with minimum via diameter of 10  
mils. Ensure enough copper area is used to keep the junction temperature below 125°C.  
Copyright © 2008–2017, Texas Instruments Incorporated  
25  
LM2854  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
www.ti.com.cn  
Layout Guidelines (continued)  
7. Keep sensitive system signals away from SW node.  
SW is a high-voltage, rapidly changing signal which can couple to adjacent signal lines. Signal integrity of  
lines that have high impedances or are very sensitive to noise can be compromised by capacitive coupling to  
SW node.  
10.2 Layout Example  
V
IN  
L
O
V
OUT  
LM2854  
SW  
PVIN  
C
IN  
C
O
PGND  
Loop 2  
Loop 1  
Figure 45. High Current Loops  
Guideline 4:  
Minimize FB  
node  
Guideline 3:  
Kelvin connect  
AGND to DAP  
Connect to VOUT  
CCOMP  
RFB1  
Guideline 5: Wide  
input and output  
traces  
Guideline 1:  
RCOMP  
minimize current  
loops œ place CIN  
adjacent to the  
LM2854  
PGND and  
Thermal  
RFB2  
FB  
GND  
CSS  
GND  
AGND  
SS  
CIN  
CO More COUT  
More CIN  
LO  
Thermal  
Connection  
SW  
+
+
EN  
VIN  
VOUT  
AVIN  
10  
10 F  
VIN  
GND  
GND and  
Thermal  
Guidelines 2 and 7: Minimize  
SW node. The SW node is  
should be designed to carry  
output current but should not  
be sized larger than  
necessary. Also keep  
sensitive signals away from  
this node  
GND  
Guideline 5: Wide  
input and output  
traces  
Guideline 6: Provide  
adequate heat sinking using  
thermal vias and wide  
connections from GND to EP  
Figure 46. Recommended Layout for the LM2854  
26  
版权 © 2008–2017, Texas Instruments Incorporated  
LM2854  
www.ti.com.cn  
ZHCS532E MARCH 2008REVISED OCTOBER 2017  
11 器件和文档支持  
11.1 文档支持  
11.1.1 相关文档  
相关文档如下:  
AN-1786LM2854 500kHz 降压稳压器评估板》(版本B),SNVA323  
AN-1880LM2854 1MHz 降压稳压器演示板》(版本B),SNVA358  
AN-1149《开关电源布局指南》SNVA021  
AN-1229 PCB 布局指南》SNVA054  
《构建电源 - 布局注意事项》SLUP230  
《使用 LM4360x LM4600x 简化低辐射 EMI 布局》SNVA721  
AN-2020《富于洞见的热设计》SNVA419  
AN-1520《外露焊盘封装实现最佳热敏电阻特性的电路板布线指南》SNVA183  
《半导体和 IC 封装热指标》SPRA953  
《使用 LM43603 LM43602 简化热设计》SNVA719  
《使用新的热指标》SBVA025  
11.2 商标  
PowerWise is a trademark of Texas Instrumetns, Inc.  
All other trademarks are the property of their respective owners.  
11.3 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
11.4 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
版权 © 2008–2017, Texas Instruments Incorporated  
27  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM2854MH-1000  
NRND  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
16  
16  
16  
16  
16  
92  
Non-RoHS  
& Green  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
LM2854  
-1000  
LM2854MH-1000/NOPB  
LM2854MH-500/NOPB  
LM2854MHX-1000/NOPB  
LM2854MHX-500/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
PWP  
92  
RoHS & Green  
SN  
SN  
SN  
SN  
LM2854  
-1000  
PWP  
92  
RoHS & Green  
LM2854  
-500  
PWP  
2500 RoHS & Green  
2500 RoHS & Green  
LM2854  
-1000  
PWP  
LM2854  
-500  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM2854MHX-1000/NOPB HTSSOP PWP  
LM2854MHX-500/NOPB HTSSOP PWP  
16  
16  
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.95  
6.95  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM2854MHX-1000/NOPB  
LM2854MHX-500/NOPB  
HTSSOP  
HTSSOP  
PWP  
PWP  
16  
16  
2500  
2500  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM2854MH-1000  
LM2854MH-1000  
PWP  
PWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
16  
16  
16  
16  
92  
92  
92  
92  
495  
495  
495  
495  
8
8
8
8
2514.6  
2514.6  
2514.6  
2514.6  
4.06  
4.06  
4.06  
4.06  
LM2854MH-1000/NOPB  
LM2854MH-500/NOPB  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM2854MH-1000/NOPB

4A 500kHz/1MHz 同步降压稳压器 | PWP | 16 | -40 to 85
TI

LM2854MH-500

4A 500 kHz / 1 MHz PowerWise㈢ Synchronous SIMPLE SWITCHER㈢ Buck Regulator
NSC

LM2854MH-500/NOPB

4A 500kHz/1MHz 同步降压稳压器 | PWP | 16 | -40 to 85
TI

LM2854MHX-1000

4A 500 kHz / 1 MHz PowerWise㈢ Synchronous SIMPLE SWITCHER㈢ Buck Regulator
NSC

LM2854MHX-1000/NOPB

4A 500kHz/1MHz 同步降压稳压器 | PWP | 16 | -40 to 85
TI

LM2854MHX-500

4A 500 kHz / 1 MHz PowerWise㈢ Synchronous SIMPLE SWITCHER㈢ Buck Regulator
NSC

LM2854MHX-500/NOPB

4A 500kHz/1MHz 同步降压稳压器 | PWP | 16 | -40 to 85
TI

LM285AH-1.2

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 1.235V, MBCY2
TI

LM285AH-2.5

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 2.5V, MBCY2
TI

LM285AM-1.2

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 1.235V, PDSO8, SOP-8
TI

LM285AM-1.2

IC 1-OUTPUT TWO TERM VOLTAGE REFERENCE, 1.235 V, PDSO8, SOP-8, Voltage Reference
NSC

LM285AM-1.2X

1-OUTPUT TWO TERM VOLTAGE REFERENCE, 1.235V, PDSO8, SOP-8
TI