LM2904BTQPWRQ1 [TI]

LM2904-Q1, LM2904B-Q1 Industry-Standard Dual Operational Amplifiers for Automotive Applications;
LM2904BTQPWRQ1
型号: LM2904BTQPWRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LM2904-Q1, LM2904B-Q1 Industry-Standard Dual Operational Amplifiers for Automotive Applications

文件: 总39页 (文件大小:3177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
LM2904-Q1, LM2904B-Q1 Industry-Standard Dual Operational Amplifiers for  
Automotive Applications  
1 Features  
3 Description  
AEC Q-100 qualified for automotive applications  
Temperature grade 1: –40°C to +125°C  
– Device HBM ESD classification 2  
– Device CDM ESD classification C5  
Wide supply range of 3 V to 36 V (LM2904B-Q1)  
Supply-current of 300 µA per channel (LM2904B-  
Q1, typical)  
Unity-gain bandwidth of 1.2 MHz (LM2904B-Q1)  
Common-mode input voltage range includes  
ground, enabling direct sensing near ground  
Low input offset voltage of 3 mV at 25°C  
(LM2904B-Q1, maximum)  
The LM2904-Q1 and LM2904B-Q1 are industry-  
standard operational amplifiers that have been  
qualified for automotive use in accordance to the  
AEC-Q100 specifications. The LM2904B-Q1 is the  
next-generation version of the LM2904-Q1, which  
include two high-voltage (36 V) operational amplifiers  
(op amps). The LM2904B-Q1 provides outstanding  
value for cost-sensitive applications, with features  
including low offset (1 mV, typical), common-mode  
input range to ground, and high differential input  
voltage capability.  
The LM2904B-Q1 simplifies circuit design with  
enhanced features such as unity-gain stability, lower  
offset voltage of 1 mV (typical), and lower quiescent  
current of 300 µA (typical). High ESD (2 kV, HBM) and  
integrated EMI and RF filters enable the LM2904B-Q1  
devices to be used in the most rugged,  
environmentally challenging applications for the  
automotive marketplace.  
Internal RF and EMI filter (LM2904B-Q1)  
Functional Safety-Capable  
Documentation available to aid functional safety  
system design  
2 Applications  
Automotive lighting  
Body electronics  
Automotive head unit  
Telematics control unit  
Device Information  
PART NUMBER(1)  
PACKAGE  
BODY SIZE (NOM)  
4.90 mm × 3.90 mm  
3.00 mm × 4.40 mm  
3.00 mm × 3.00 mm  
4.90 mm × 3.90 mm  
3.00 mm × 4.40 mm  
SOIC (8)  
LM2904B-Q1  
TSSOP (8)  
VSSOP (8)  
SOIC (8)  
Emergency call (eCall)  
Passive safety: brake system  
Electric vehicle / hybrid electric:  
Inverter and motor control  
On-board (OBC) and wireless charger  
Battery management system (BMS)  
LM2904-Q1  
TSSOP (8)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
RG  
RF  
R1  
VOUT  
VIN  
C1  
1
2pR1C1  
f
=
-3 dB  
VOUT  
VIN  
RF  
1
1 + sR1C1  
=
1 +  
(
(
(  
(
RG  
Single-Pole, Low-Pass Filter  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................4  
6 Pin Configuration and Functions...................................5  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings........................................ 6  
7.2 ESD Ratings............................................................... 6  
7.3 Recommended Operating Conditions.........................7  
7.4 Thermal Information....................................................7  
7.5 Electrical Characteristics: LM2904B-Q1..................... 8  
7.6 Electrical Characteristics: LM2904-Q1,  
LM2904AV-Q1, LM2904V-Q1........................................9  
7.7 Typical Characteristics..............................................10  
8 Parameter Measurement Information..........................17  
9 Detailed Description......................................................18  
9.1 Overview...................................................................18  
9.2 Functional Block Diagram.........................................18  
9.3 Feature Description...................................................19  
9.4 Device Functional Modes..........................................19  
10 Application and Implementation................................20  
10.1 Application Information........................................... 20  
10.2 Typical Application.................................................. 20  
11 Power Supply Recommendations..............................22  
12 Layout...........................................................................23  
12.1 Layout Guidelines................................................... 23  
12.2 Layout Examples.................................................... 23  
13 Device and Documentation Support..........................24  
13.1 Documentation Support.......................................... 24  
13.2 Related Links.......................................................... 24  
13.3 Receiving Notification of Documentation Updates..24  
13.4 Support Resources................................................. 24  
13.5 Trademarks.............................................................24  
13.6 Electrostatic Discharge Caution..............................24  
13.7 Glossary..................................................................24  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision I (June 2020) to Revision J (February 2021)  
Page  
Updated the numbering format for tables, figures, and cross-references throughout the document .................1  
Added Functional Safety-Capable feature and link to supporting document in Features section ..................... 1  
Deleted preview tag on VSSOP (8) package throughout the data sheet............................................................1  
Deleted SOT-23 (8) package information throughout the data sheet................................................................. 1  
Deleted preview tag from VSSOP package in Pin Configuration and Functions section................................... 5  
Deleted DDF (SOT23-8) package in Pin Configuration and Functions section..................................................5  
Updated VSSOP package thermal information in Thermal Information section.................................................7  
Changes from Revision H (December 2019) to Revision I (June 2020)  
Page  
Added applications link in Application section.................................................................................................... 1  
Deleted preview tag on TSSOP (8) package in Device Information table ......................................................... 1  
Added information on VSSOP-8 package to Device Information table...............................................................1  
Added information on VSSOP-8 package to the Device Comparison Table section..........................................4  
Deleted preview tag on TSSOP-8 package in the Device Comparison Table section........................................4  
Deleted preview tag from TSSOP package in Pin Configuration and Functions section....................................5  
Added VSSOP package information in Pin Configuration and Functions section.............................................. 5  
Added VSSOP package to Thermal Information table ...................................................................................... 7  
Changed section title from Community Resources to Support Resources in the Device and Documentation  
Support section.................................................................................................................................................24  
Changes from Revision G (February 2019) to Revision H (December 2019)  
Page  
Added information on SOT23-8 package to Device Information table................................................................1  
Added information on SOT23-8 package to the Device Comparison Table ...................................................... 4  
Added the Typical Characteristics section for the LM2904B-Q1 device........................................................... 10  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
Added test circuit for THD+N and small-signal step response, G = –1 in the Parameter Measurement  
Information section........................................................................................................................................... 17  
Changed specific voltages to a Recommended Operating Conditions reference............................................ 18  
Changed the functional block diagram for LM2904B-Q1 in the Detailed Description section.......................... 18  
Changes from Revision F (April 2008) to Revision G (February 2019)  
Page  
Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes,  
Application and Implementation section, Power Supply Recommendations section, Layout section, Device  
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ........... 1  
Added new device to data sheet.........................................................................................................................1  
Added AEC-Q100 qualification statement.......................................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
www.ti.com  
PACKAGE  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
5 Device Comparison Table  
AMBIENT  
TEMPERATURE  
RANGE  
SUPPLY  
VOLTAGE  
VOS  
IQ / CH  
INTEGRATED EMI  
FILTER  
PART NUMBER  
(MAXIMUM AT 25°C) (TYPICAL AT 25°C)  
LM2904B-Q1  
LM2904-Q1  
3 V to 36 V  
3 V to 26 V  
3 V to 32 V  
3 V to 32 V  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
3 mV  
7 mV  
7 mV  
2 mV  
300 µA  
350 µA  
350 µA  
350 µA  
Yes  
No  
No  
No  
D, DGK, PW  
D, PW  
LM2904V-Q1  
LM2904AV-Q1  
D, PW  
D, PW  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
6 Pin Configuration and Functions  
OUT1  
IN1œ  
IN1+  
Vœ  
1
2
3
4
8
7
6
5
V+  
OUT2  
IN2œ  
IN2+  
Not to scale  
Figure 6-1. D, DGK, and PW Package  
8-Pin SOIC, VSSOP, and TSSOP  
Top View  
Table 6-1. Pin Functions  
PIN(1)  
I/O  
DESCRIPTION  
NAME  
IN1–  
NO.  
2
I
I
Negative input  
Positive input  
Negative input  
Positive input  
Output  
IN1+  
IN2–  
IN2+  
OUT1  
OUT2  
V–  
3
6
I
5
I
1
O
O
7
Output  
4
Negative (lowest) supply or ground (for single-supply operation)  
Positive (highest) supply  
V+  
8
(1) For a listing of which devices are available in what packages, see Section 5.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating ambient temperature range (unless otherwise noted)(1)  
MIN  
MAX  
40  
UNIT  
LM2904B-Q1  
Supply voltage, VS = ([V+] – [V–])  
LM2904V-Q1, LM2904AV-Q1  
32  
V
LM2904-Q1  
26  
LM2904B-Q1, LM2904V-Q1,  
LM2904AV-Q1  
–32  
32  
(2)  
Differential input voltage, VID  
V
LM2904-Q1  
–26  
–0.3  
–0.3  
–0.3  
26  
40  
32  
26  
LM2904B-Q1  
Input voltage, VI  
Either input  
LM2904V-Q1, LM2904AV-Q1  
LM2904-Q1  
V
s
Duration of output short circuit (one amplifier) to V– at (or below) TA = 25°C,  
VS ≤ 15 V(3)  
Unlimited  
–40  
Operating ambient temperature, TA  
Operating virtual-junction temperature, TJ  
Storage temperature, Tstg  
125  
150  
150  
°C  
°C  
°C  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Differential voltages are at IN+, with respect to IN−.  
(3) Short circuits from outputs to the supply pins can cause excessive heating and eventual destruction.  
7.2 ESD Ratings  
VALUE  
UNIT  
LM2904B-Q1  
V(ESD) Electrostatic discharge  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
±2000  
±750  
V
LM2904-Q1, LM2904AV-Q1, AND LM2904V-Q1  
Human-body model (HBM), per AEC Q100-002(1)  
±1000  
±500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
 
 
 
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.3 Recommended Operating Conditions  
over operating ambient temperature range (unless otherwise noted)  
MIN  
3
MAX UNIT  
LM2904B-Q1  
36  
VS  
Supply voltage, VS = ([V+] – [V–])  
LM2904AV-Q1, LM2904V-Q1  
LM2904-Q1  
3
30  
26  
V
3
VCM  
TA  
Common-mode voltage  
V–  
–40  
(V+) – 2  
125  
V
Operating ambient temperature  
°C  
7.4 Thermal Information  
LM2904-Q1, LM2904AV-Q1, LM2904B-Q1, LM2904V-Q1(2)  
THERMAL METRIC(1)  
D (SOIC)  
8 PINS  
124.7  
66.9  
DGK (VSSOP)  
8 PINS  
186.1  
PW (TSSOP)  
8 PINS  
171.7  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
77.1  
68.8  
67.9  
107.7  
99.2  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
19.2  
17.2  
11.5  
ψJB  
67.2  
106.1  
97.9  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
(2) For a listing of which devices are available in what packages, see Section 5.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.5 Electrical Characteristics: LM2904B-Q1  
VS = (V+) – (V–) = 5 V – 36 V (±2.5 V – ±18 V), TA = 25°C, VCM = VOUT = VS / 2, RL = 10k connected to VS / 2  
(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OFFSET VOLTAGE  
±0.3  
±3.0  
±4  
VOS  
Input offset voltage  
LM2904B-Q1  
mV  
TA = –40°C to +125°C  
TA = –40°C to +125°C(1)  
dVOS/dT Input offset voltage drift  
±3.5  
±2  
12 µV/°C  
PSRR  
Power supply rejection ratio  
Channel separation, dc  
15  
µV/V  
µV/V  
f = 1 kHz to 20 kHz  
±1  
INPUT VOLTAGE RANGE  
VS = 3 V to 36 V  
VS = 5 V to 36 V  
(V–)  
(V–)  
(V+) – 1.5  
(V+) – 2  
100  
VCM  
Common-mode voltage range  
V
TA = –40°C to +125°C  
TA = –40°C to +125°C  
(V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V  
(V–) ≤ VCM ≤ (V+) – 2.0 V VS = 5 V to 36 V  
20  
25  
CMRR  
Common-mode rejection ratio  
µV/V  
316  
INPUT BIAS CURRENT  
±10  
0.5  
10  
±35  
±50  
4
IB  
Input bias current  
Input offset current  
nA  
TA = –40°C to +125°C(1)  
IOS  
nA  
TA = –40°C to +125°C(1)  
TA = –40°C to +125°C  
5
dIOS/dT Input offset current drift  
pA/  
NOISE  
En  
en  
Input voltage noise  
f = 0.1 to 10 Hz  
f = 1 kHz  
3
µVPP  
Input voltage noise density  
40  
nV/√/Hz  
INPUT IMPEDANCE  
ZID  
ZIC  
Differential  
10 || 0.1  
4 || 1.5  
MΩ || pF  
GΩ || pF  
Common-mode  
OPEN-LOOP GAIN  
70  
35  
140  
AOL  
Open-loop voltage gain  
VS = 15 V; VO = 1 V to 11 V; RL ≥ 10 kΩ, connected to (V–)  
V/mV  
TA = –40°C to +125°C  
FREQUENCY RESPONSE  
GBW  
SR  
Θm  
tOR  
ts  
Gain bandwidth product  
1.2  
0.5  
MHz  
V/µs  
°
Slew rate  
G = +1  
Phase margin  
Overload recovery time  
Settling time  
G = +1, RL = 10 kΩ, CL = 20 pF  
VIN × gain > VS  
56  
10  
µs  
To 0.1%, VS = 5 V, 2-V step , G = +1, CL = 100 pF  
4
µs  
THD+N Total harmonic distortion + noise  
G = +1, f = 1 kHz, VO = 3.53 VRMS, VS = 36 V, RL = 100k, IOUT ≤ ±50 µA, BW = 80 kHz  
0.001%  
OUTPUT  
IOUT = 50 µA  
1.35  
1.4  
1.5  
100  
0.75  
5
1.42  
1.48  
1.61  
150  
1
Positive rail (V+)  
Negative rail (V–)  
IOUT = 1 mA  
V
IOUT = 5 mA(1)  
VO  
Voltage output swing from rail  
IOUT = 50 µA  
IOUT = 1 mA  
mV  
V
VS = 5 V, RL ≤ 10 kΩ connected to (V–) TA = –40°C to +125°C  
20  
mV  
–20  
–10  
10  
5
–30  
VS = 15 V; VO = V–;  
VID = 1 V  
Source(1)  
TA = –40°C to +125°C  
mA  
IO  
Output current  
20  
VS = 15 V; VO = V+;  
VID = –1 V  
Sink(1)  
TA = –40°C to +125°C  
VID = –1 V; VO = (V–) + 200 mV  
60  
100  
±40  
100  
300  
μA  
mA  
pF  
Ω
ISC  
Short-circuit current  
VS = 20 V, (V+) = 10 V, (V–) = –10 V, VO = 0 V  
±60  
CLOAD  
RO  
Capacitive load drive  
Open-loop output resistance  
f = 1 MHz, IO = 0 A  
POWER SUPPLY  
VS = 5 V; IO = 0 A  
VS = 36 V; IO = 0 A  
300  
460  
800  
IQ Quiescent current per amplifier  
TA = –40°C to +125°C  
µA  
(1) Specified by characterization only.  
Submit Document Feedback  
Copyright © 2021 Texas Instruments Incorporated  
8
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.6 Electrical Characteristics: LM2904-Q1, LM2904AV-Q1, LM2904V-Q1  
For VS = (V+) – (V–) = 5 V, TA = 25°C, RL = 10 kΩ connected to V– (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)  
MIN  
TYP  
±3  
MAX  
UNIT  
OFFSET VOLTAGE  
±7  
±10  
±2  
LM2904-Q1,  
LM2904V-A1  
TA = –40°C to 125°C  
VS = 5 V to maximum;  
VC M = 0 V; VO = 1.4 V  
VOS  
Input offset voltage  
mV  
±1  
LM2904AV-Q1  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
±4  
dVOS/dT  
PSRR  
Input offset voltage drift  
±7  
100  
120  
µV/°C  
dB  
Input offset voltage vs power supply  
(ΔVIO/ΔVS)  
VS = 5 V to 30 V  
65  
VO1/ VO2 Channel separation  
f = 1 kHz to 20 kHz  
dB  
INPUT VOLTAGE RANGE  
(V–)  
(V–)  
65  
(V+) – 1.5  
(V+) – 2  
VCM  
Common-mode voltage range  
VS = 5 V to maximum  
V
TA = –40°C to 125°C  
CMRR  
Common-mode rejection ratio  
VS = 5 V to maximum; VCM = 0 V  
80  
–20  
2
dB  
INPUT BIAS CURRENT  
–250  
–500  
50  
IB  
Input bias current  
VO = (V–) + 1.4 V  
nA  
nA  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
LM2904-Q1  
300  
50  
IOS  
Input offset current  
VO = (V–) + 1.4 V  
2
LM2904AV-Q1,  
LM2904V-Q1  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
150  
dIOS/dT  
NOISE  
en  
Input offset current drift  
10  
40  
100  
pA/°C  
Input voltage noise density  
f = 1 kHz  
nV/√ Hz  
OPEN-LOOP GAIN  
25  
15  
VS = 15 V; VO = (V–) + 1 V to (V–) + 11 V; RL ≥ 2 kΩ,  
connected to (V–)  
AOL  
Open-loop voltage gain  
V/mV  
TA = –40°C to 125°C  
FREQUENCY RESPONSE  
GBW  
Gain bandwidth product  
0.7  
0.3  
MHz  
V/µs  
SR  
Slew rate  
G = +1  
OUTPUT  
RL ≥ 10 kΩ  
VS – 1.5  
4
VS = maximum;  
RL = 2 kΩ  
LM2904-Q1  
VS = maximum;  
RL ≥ 10 kΩ  
3
6
5
2
4
Positive rail  
Negative rail  
V
TA = –40°C to 125°C  
TA = –40°C to 125°C  
VO  
Voltage output swing from rail  
VS = maximum;  
RL = 2 kΩ  
LM2904AV-Q1,  
LM2904V-Q1  
VS = maximum;  
RL ≥ 10 kΩ  
VS = 5 V;  
RL ≤ 10 kΩ  
5
20  
mV  
mA  
–20  
–10  
10  
–30  
VS = 15 V; VO = V–; VID = 1 V  
Source  
TA = –40°C to 125°C  
TA = –40°C to 125°C  
20  
VS = 15 V; VO = V+;  
VID = –1 V  
IO  
Output current  
Sink  
5
LM2904-Q1  
30  
40  
VID = –1 V; VO = (V–) + 200 mV  
VS = 10 V; VO = VS / 2  
µA  
LM2904AV-Q1, LM2904V-Q1  
12  
ISC  
Short-circuit current  
±40  
±60  
mA  
POWER SUPPLY  
VO = VS / 2; IO = 0 A  
350  
500  
600  
IQ Quiescent current per amplifier  
TA = –40°C to 125°C  
µA  
VS = maximum; VO = maximum / 2; IO = 0 A  
1000  
(1) All characteristics are measured with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes  
is 26 V for LM2904-Q1 and 32 V for LM2904AV-Q1/LM2904V-Q1.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics  
Typical characteristics section is applicable for LM2904B-Q1. The typical characteristics data section was taken with TA =  
25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).  
20  
18  
16  
14  
12  
10  
8
30  
27  
24  
21  
18  
15  
12  
9
6
4
6
2
3
0
0
-1800  
-1200  
-600  
0
600  
1200  
1800  
DC11  
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5 2.75  
DC12  
Offset Voltage (µV)  
Offset Voltage Drift (µV/°C)  
Figure 7-1. Offset Voltage Production Distribution  
Figure 7-2. Offset Voltage Drift Distribution  
750  
500  
300  
450  
150  
100  
-150  
-450  
-750  
-100  
-300  
-500  
-40  
-20  
0
20  
40  
Temperature (°C)  
60  
80  
100  
120  
-18  
-12  
-6  
Common-Mode Voltage (V)  
0
6
12  
17  
DC10  
DC10  
Figure 7-3. Offset Voltage vs Temperature  
Figure 7-4. Offset Voltage vs Common-Mode Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
70  
G = 1  
G = 10  
G = 100  
G = 1000  
G = –1  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-30  
Gain (dB)  
Phase (°)  
-10  
-20  
-10  
1k  
10k  
100k  
1M  
1k  
10k  
100k  
1M  
Frequency (Hz)  
Frequency (Hz)  
D012  
D017  
Figure 7-5. Open-Loop Gain and Phase vs Frequency  
Figure 7-6. Closed-Loop Gain vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
Typical characteristics section is applicable for LM2904B-Q1. The typical characteristics data section was taken with TA =  
25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).  
-5  
-7.5  
-10  
120  
100  
80  
IB+  
IB–  
60  
40  
20  
-12.5  
-15  
0
-20  
-40  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
-20  
-15  
-10  
-5  
0
5
10  
15  
20  
Common-Mode Voltage (V)  
Common-Mode Voltage (V)  
DC3I  
DC3I  
Figure 7-7. Input Bias Current vs Common-Mode Voltage  
Figure 7-8. Input Offset Current vs Common-Mode Voltage  
-6  
0.06  
-7  
-8  
0.045  
0.03  
-9  
0.015  
0
IB+  
IB–  
-10  
-11  
-12  
-0.015  
-0.03  
-40  
-10  
20  
50  
80  
110 130  
-40  
-10  
20  
50  
80  
110  
130  
Temperature (°C)  
Temperature (°C)  
DCIO  
DCIB  
Figure 7-9. Input Bias Current vs Temperature  
Figure 7-10. Input Offset Current vs Temperature  
(V–) + 18 V  
V+  
–40C  
25C  
125C  
(V–) + 15 V  
(V–) + 12 V  
(V–) + 9 V  
(V–) + 6 V  
(V–) + 3 V  
V–  
(V+) – 3 V  
(V+) – 6 V  
(V+) – 9 V  
(V+) – 12 V  
–40C  
25C  
125C  
0
5
10  
15  
20  
25  
30  
35  
40  
0
10  
20  
30  
40  
50  
Output Current (mA)  
Output Current (mA)  
DC1-  
DC13  
Figure 7-12. Output Voltage Swing vs Output Current (Sinking)  
Figure 7-11. Output Voltage Swing vs Output Current (Sourcing)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
Typical characteristics section is applicable for LM2904B-Q1. The typical characteristics data section was taken with TA =  
25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
120  
115  
110  
105  
100  
95  
PSRR+  
PSRR-  
CMRR  
90  
VS = 36V  
VS = 5V  
85  
-40  
-10  
20  
50  
80  
110  
130  
1k  
10k 100k  
Frequency (Hz)  
1M  
Temperature (°C)  
DC2_  
D001  
Figure 7-13. CMRR and PSRR vs Frequency  
Figure 7-14. Common-Mode Rejection Ratio vs  
Temperature (dB)  
-118  
-119  
-120  
-121  
-122  
-123  
1.6  
1.2  
0.8  
0.4  
0
-0.4  
-0.8  
-1.2  
-1.6  
-2  
-40  
-20  
0
20  
40  
60  
80  
100 120 140  
0
1
2
3
4
5
6
7
8
9
10  
Temperature (°C)  
Time (s)  
DC8_  
D011  
VS = 5 V to 36 V  
Figure 7-16. 0.1-Hz to 10-Hz Noise  
Figure 7-15. Power Supply Rejection Ratio vs Temperature (dB)  
-32  
-40  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10 k  
2 kꢀ  
-48  
-56  
-64  
-72  
-80  
-88  
-96  
-104  
-112  
100  
1k  
10k  
Frequency (Hz)  
10  
100  
1k  
Frequency (Hz)  
10k  
100k  
D013  
D010  
G = 1, f = 1 kHz, BW = 80 kHz,  
VOUT = 10 VPP, RL connected to V–  
Figure 7-17. Input Voltage Noise Spectral Density vs Frequency  
Figure 7-18. THD+N Ratio vs Frequency, G = 1  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
Typical characteristics section is applicable for LM2904B-Q1. The typical characteristics data section was taken with TA =  
25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).  
-32  
-40  
-48  
-56  
-64  
-72  
-80  
-88  
-96  
-104  
-30  
-40  
10 k  
2 kꢀ  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
10 k  
2 kꢀ  
100  
1k  
10k  
0.001  
0.01  
0.1  
1
10 20  
Frequency (Hz)  
Amplitude (VPP)  
D014  
D015  
G = –1, f = 1 kHz, BW = 80 kHz,  
VOUT = 10 VPP, RL connected to V–  
See Figure 8-3  
G = 1, f = 1 kHz, BW = 80 kHz,  
RL connected to V–  
Figure 7-19. THD+N Ratio vs Frequency, G = –1  
Figure 7-20. THD+N vs Output Amplitude, G = 1  
-20  
460  
-35  
-50  
430  
400  
370  
340  
310  
280  
-65  
-80  
-95  
10 k  
2 kꢀ  
-110  
0.001  
0.01  
0.1  
1
10 20  
3
9
15  
21  
27  
33 36  
Amplitude (VPP  
)
Supply Voltage (V)  
D016  
DC_S  
G = –1, f = 1 kHz, BW = 80 kHz,  
RL connected to V–  
See Figure 8-3  
Figure 7-21. THD+N vs Output Amplitude, G = –1  
Figure 7-22. Quiescent Current vs Supply Voltage  
600  
500  
VS = 36V  
VS = 5V  
540  
400  
300  
200  
100  
480  
420  
360  
300  
240  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
1k  
10k  
100k  
1M  
Temperature (°C)  
Frequency (Hz)  
DC4_  
D006  
Figure 7-24. Open-Loop Output Impedance vs Frequency  
Figure 7-23. Quiescent Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
Typical characteristics section is applicable for LM2904B-Q1. The typical characteristics data section was taken with TA =  
25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).  
44  
40  
36  
32  
28  
24  
20  
16  
12  
8
18  
16  
14  
12  
10  
8
Overshoot (+)  
Overshoot (-)  
Overshoot (+)  
Overshoot (–)  
6
4
2
0
0
40  
80  
120 160 200 240 280 320 360  
Capacitance load (pF)  
40  
80  
120  
160  
200  
240  
280  
320  
360  
Capacitance load (pF)  
D019  
D020  
G = 1, 100-mV output step, RL = open  
G = –1, 100-mV output step, RL = open  
Figure 7-25. Small-Signal Overshoot vs Capacitive Load  
Figure 7-26. Small-Signal Overshoot vs Capacitive Load  
60  
57  
54  
51  
48  
45  
42  
39  
36  
33  
30  
20  
Input  
Output  
10  
0
-10  
-20  
0
200  
400  
Time (s)  
600  
800  
1000  
0
40  
80  
120 160 200 240 280 320 360  
Capacitance Load (pF)  
D021  
D018  
G = –10  
Figure 7-28. Overload Recovery  
Figure 7-27. Phase Margin vs Capacitive Load  
10  
7.5  
5
10  
7.5  
5
2.5  
0
2.5  
0
-2.5  
-5  
-2.5  
-5  
-7.5  
-10  
-7.5  
-10  
Input  
Output  
Input  
Output  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
Time (s)  
Time (s)  
D022  
D023  
G = 1, RL = open  
G = –1, RL = open, RFB = 10K  
See Figure 8-3  
Figure 7-29. Small-Signal Step Response, G = 1  
Figure 7-30. Small-Signal Step Response, G = –1  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
Typical characteristics section is applicable for LM2904B-Q1. The typical characteristics data section was taken with TA =  
25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).  
20  
16  
12  
8
40  
32  
24  
16  
8
4
0
0
-4  
-8  
-8  
-16  
-24  
-32  
-40  
-12  
-16  
-20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
Time (s)  
Time (s)  
D003  
D004  
G = 1, RL = open  
G = 1, RL = open  
Figure 7-31. Large-Signal Step Response (Rising)  
Figure 7-32. Large-Signal Step Response (Falling)  
2.5  
0.675  
Positive  
Negative  
Output  
Input  
2
1.5  
1
0.625  
0.575  
0.525  
0.475  
0.425  
0.5  
0
-0.5  
-1  
-1.5  
-2  
-2.5  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temp(C)  
0
20  
40  
60  
80  
100  
D009  
Time (µs)  
AC_S  
G = 1, RL = open  
Figure 7-33. Large-Signal Step Response  
Figure 7-34. Slew Rate vs Temperature  
15  
14  
13  
12  
11  
10  
9
60  
40  
20  
0
Sinking  
Sourcing  
8
7
6
-20  
-40  
-60  
5
4
3
2
1
0
1k  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
Temperature (°C)  
10k  
100k  
Frequency (Hz)  
1M  
DC7_  
D005  
VS = 15 V  
Figure 7-36. Maximum Output Voltage vs Frequency  
Submit Document Feedback  
Figure 7-35. Short-Circuit Current vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
15  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
7.7 Typical Characteristics (continued)  
Typical characteristics section is applicable for LM2904B-Q1. The typical characteristics data section was taken with TA =  
25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).  
-75  
90  
84  
78  
72  
66  
60  
54  
48  
42  
36  
30  
24  
-85  
-95  
-105  
-115  
-125  
-135  
1k  
10k  
100k  
Frequency (Hz)  
1M  
1M  
10M  
100M  
Frequency (Hz)  
1G  
D008  
D007  
Figure 7-37. Channel Separation vs Frequency  
Figure 7-38. EMIRR (Electromagnetic Interference Rejection  
Ratio) vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
8 Parameter Measurement Information  
900  
V
CC+  
V
CC+  
100 Ω  
RS  
V
O
+
V = 0 V  
I
+
V
I
V
O
C
L
V
CC−  
R
L
V
CC−  
Figure 8-2. Noise-Test Circuit  
Figure 8-1. Unity-Gain Amplifier  
10 k  
+18V  
VIN  
+
-18V  
GND  
GND  
Figure 8-3. Test Circuit, G = –1, for THD+N and Small-Signal Step Response  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9 Detailed Description  
9.1 Overview  
The LM2904-Q1 and LM2904B-Q1 devices consist of two independent, high-gain frequency-compensated  
operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from  
split supplies also is possible if the difference between the two supplies is within the supply voltage range  
specified in Section 7.3, and VS is at least 1.5 V more positive than the input common-mode voltage. The low  
supply-current drain is independent of the magnitude of the supply voltage.  
Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier  
circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices  
can be operated directly from the standard 5-V supply used in digital systems and easily can provide the  
required interface electronics without additional ±5-V supplies.  
9.2 Functional Block Diagram  
VCC+  
~6 µA  
Current  
Regulator  
~6 µA  
Current  
Regulator  
~100 µA  
Current  
Regulator  
IN-  
OUT  
IN+  
~120 µA  
Current  
Regulator  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
9.3 Feature Description  
9.3.1 Unity-Gain Bandwidth  
The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without  
greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (LM2904B-Q1).  
9.3.2 Slew Rate  
The slew rate is the rate at which an operational amplifier can change its output when there is a change on the  
input. These devices have a 0.5-V/µs slew rate (LM2904B-Q1).  
9.3.3 Input Common Mode Range  
The valid common mode range is from device ground to VS – 1.5 V (VS – 2 V across temperature). Inputs may  
exceed VS up to the maximum VS without device damage. At least one input must be in the valid input common-  
mode range for the output to be the correct phase. If both inputs exceed the valid range, then the output phase  
is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA and the output  
phase is undefined.  
9.4 Device Functional Modes  
The LM2904-Q1 and LM2904B-Q1 devices are powered on when the supply is connected. This device can be  
operated as a single-supply operational amplifier or dual-supply amplifier, depending on the application.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
10 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
10.1 Application Information  
The LM2904-Q1 and LM2904B-Q1 operational amplifiers are useful in a wide range of signal conditioning  
applications. Inputs can be powered before VS for flexibility in multiple supply circuits. For full application design  
guidelines related to this family of devices, please refer to the application report Application design guidelines for  
LM324/LM358 devices.  
10.2 Typical Application  
A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage  
on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes  
negative voltages positive.  
RF  
Vsup+  
RI  
VOUT  
+
VIN  
Vsup-  
Figure 10-1. Application Schematic  
10.2.1 Design Requirements  
The supply voltage must be chosen such that it is larger than the input voltage range and output range. For  
instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to  
accommodate this application.  
10.2.2 Detailed Design Procedure  
Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:  
VOUT  
A V  
=
VIN  
(1)  
(2)  
1.8  
A V  
=
= - 3.6  
-0.5  
Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is  
desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not  
draw too much current. This example uses 10 kΩ for RI which means 36 kΩ is used for RF. This was determined  
by Equation 3.  
RF  
A V = -  
RI  
(3)  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
 
 
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
10.2.3 Application Curve  
2
1.5  
1
VIN  
VOUT  
0.5  
0
-0.5  
-1  
-1.5  
-2  
0
0.5  
1
Time (ms)  
1.5  
2
Figure 10-2. Input and Output Voltages of the Inverting Amplifier  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
11 Power Supply Recommendations  
CAUTION  
Supply voltages larger than specified in the recommended operating region can permanently  
damage the device (see Section 7.1).  
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-  
impedance power supplies. For more detailed information on bypass capacitor placement, see Section 12.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
12 Layout  
12.1 Layout Guidelines  
For best operational performance of the device, use good PCB layout practices, including:  
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the  
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance  
power sources local to the analog circuitry.  
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as  
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single-  
supply applications.  
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective  
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.  
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital  
and analog grounds, paying attention to the flow of the ground current.  
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it  
is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed  
to in parallel with the noisy trace.  
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting  
input minimizes parasitic capacitance, as shown in Section 12.2.  
Keep the length of input traces as short as possible. Always remember that the input traces are the most  
sensitive part of the circuit.  
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce  
leakage currents from nearby traces that are at different potentials.  
12.2 Layout Examples  
Place components close to  
device and to each other to  
reduce parasitic errors  
Run the input traces as far  
away from the supply lines  
as possible  
VS+  
RF  
OUT1  
V+  
RG  
GND  
OUT2  
IN1Þ  
GND  
VIN  
IN1+  
IN2Þ  
RIN  
IN2+  
VÞ  
Use low-ESR, ceramic  
bypass capacitor  
Only needed for  
dual-supply  
operation  
VSÞ  
(or GND for single supply)  
GND  
Ground (GND) plane on another layer  
Figure 12-1. Operational Amplifier Board Layout for Noninverting Configuration  
RIN  
VIN  
+
VOUT  
RG  
RF  
Figure 12-2. Operational Amplifier Schematic for Noninverting Configuration  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
13 Device and Documentation Support  
13.1 Documentation Support  
13.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Application Design Guidelines for LM324/LM358 Devices application report  
13.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to order now.  
Table 13-1. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
ORDER NOW  
LM2904-Q1  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
LM2904B-Q1  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
13.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
13.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
13.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
 
 
 
 
 
 
 
LM2904-Q1, LM2904B-Q1  
SLOS414J – MAY 2003 – REVISED FEBRUARY 2021  
www.ti.com  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser based versions of this data sheet, see the left-hand navigation pane.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM2904-Q1 LM2904B-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Nov-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM2904AVQDRG4Q1  
LM2904AVQDRQ1  
LM2904AVQPWRG4Q1  
LM2904AVQPWRQ1  
LM2904BQDGKRQ1  
LM2904BQDRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
2500 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
2500 RoHS & Green  
2500 RoHS & Green  
2000 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
2904AVQ  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
2904AVQ  
2904AVQ  
2904AVQ  
27ZB  
TSSOP  
TSSOP  
VSSOP  
SOIC  
PW  
PW  
DGK  
D
2904BQ  
2904BQ  
4BTQ  
LM2904BQPWRQ1  
LM2904BTQDGKRQ1  
LM2904BTQDRQ1  
LM2904BTQPWRQ1  
LM2904QDRG4Q1  
LM2904QDRQ1  
TSSOP  
VSSOP  
SOIC  
PW  
DGK  
D
2904TQ  
2904BT  
2904Q1  
2904Q1  
2904Q1  
2904Q1  
2904VQ  
2904VQ1  
2904VQ  
2904VQ  
TSSOP  
SOIC  
PW  
D
SOIC  
D
LM2904QPWRG4Q1  
LM2904QPWRQ1  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
LM2904VQDRG4Q1  
LM2904VQDRQ1  
SOIC  
D
LM2904VQPWRG4Q1  
LM2904VQPWRQ1  
TSSOP  
TSSOP  
PW  
PW  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Nov-2021  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM2904-Q1, LM2904B-Q1 :  
Catalog : LM2904, LM2904B  
Enhanced Product : LM2904-EP  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Nov-2021  
Enhanced Product - Supports Defense, Aerospace and Medical Applications  
Addendum-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Nov-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM2904AVQDRG4Q1  
LM2904AVQDRQ1  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2000  
2000  
2500  
2500  
2000  
2500  
3000  
3000  
2500  
2500  
2000  
2000  
2500  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.5  
12.5  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.5  
12.5  
12.4  
12.4  
12.5  
12.5  
12.4  
12.4  
6.4  
6.4  
7.0  
7.0  
5.3  
6.4  
7.0  
5.3  
6.4  
7.0  
6.4  
6.4  
7.0  
7.0  
6.4  
6.4  
7.0  
7.0  
5.2  
5.2  
3.6  
3.6  
3.4  
5.2  
3.6  
3.4  
5.2  
3.6  
5.2  
5.2  
3.6  
3.6  
5.2  
5.2  
3.6  
3.6  
2.1  
2.1  
1.6  
1.6  
1.4  
2.1  
1.6  
1.4  
2.1  
1.6  
2.1  
2.1  
1.6  
1.6  
2.1  
2.1  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LM2904AVQPWRG4Q1 TSSOP  
PW  
PW  
DGK  
D
LM2904AVQPWRQ1  
LM2904BQDGKRQ1  
LM2904BQDRQ1  
TSSOP  
VSSOP  
SOIC  
LM2904BQPWRQ1  
LM2904BTQDGKRQ1  
LM2904BTQDRQ1  
LM2904BTQPWRQ1  
LM2904QDRG4Q1  
LM2904QDRQ1  
TSSOP  
VSSOP  
SOIC  
PW  
DGK  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
LM2904QPWRG4Q1  
LM2904QPWRQ1  
LM2904VQDRG4Q1  
LM2904VQDRQ1  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
SOIC  
D
LM2904VQPWRG4Q1  
LM2904VQPWRQ1  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
6-Nov-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM2904AVQDRG4Q1  
LM2904AVQDRQ1  
LM2904AVQPWRG4Q1  
LM2904AVQPWRQ1  
LM2904BQDGKRQ1  
LM2904BQDRQ1  
SOIC  
SOIC  
D
D
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
8
2500  
2500  
2000  
2000  
2500  
2500  
2000  
2500  
3000  
3000  
2500  
2500  
2000  
2000  
2500  
2500  
2000  
2000  
340.5  
340.5  
367.0  
853.0  
366.0  
340.5  
853.0  
366.0  
340.5  
853.0  
340.5  
340.5  
853.0  
853.0  
340.5  
340.5  
367.0  
853.0  
336.1  
336.1  
367.0  
449.0  
364.0  
336.1  
449.0  
364.0  
338.1  
449.0  
336.1  
336.1  
449.0  
449.0  
336.1  
336.1  
367.0  
449.0  
25.0  
25.0  
35.0  
35.0  
50.0  
25.0  
35.0  
50.0  
20.6  
35.0  
25.0  
25.0  
35.0  
35.0  
25.0  
25.0  
35.0  
35.0  
TSSOP  
TSSOP  
VSSOP  
SOIC  
PW  
PW  
DGK  
D
LM2904BQPWRQ1  
LM2904BTQDGKRQ1  
LM2904BTQDRQ1  
LM2904BTQPWRQ1  
LM2904QDRG4Q1  
LM2904QDRQ1  
TSSOP  
VSSOP  
SOIC  
PW  
DGK  
D
TSSOP  
SOIC  
PW  
D
SOIC  
D
LM2904QPWRG4Q1  
LM2904QPWRQ1  
TSSOP  
TSSOP  
SOIC  
PW  
PW  
D
LM2904VQDRG4Q1  
LM2904VQDRQ1  
SOIC  
D
LM2904VQPWRG4Q1  
LM2904VQPWRQ1  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 2  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
PW0008A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
8
0
0
SMALL OUTLINE PACKAGE  
C
6.6  
6.2  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
A
0.1 C  
6X 0.65  
8
5
1
3.1  
2.9  
NOTE 3  
2X  
1.95  
4
0.30  
0.19  
8X  
4.5  
4.3  
1.2 MAX  
B
0.1  
C A  
B
NOTE 4  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
0 - 8  
DETAIL A  
TYPICAL  
4221848/A 02/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
8X (0.45)  
(R0.05)  
1
4
TYP  
8
SYMM  
6X (0.65)  
5
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221848/A 02/2015  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0008A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
8X (1.5)  
SYMM  
(R0.05) TYP  
8X (0.45)  
1
4
8
SYMM  
6X (0.65)  
5
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:10X  
4221848/A 02/2015  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY