LM3100MH/NOPB [TI]

同步 1MHz 1.5A 降压稳压器 | PWP | 20 | -40 to 125;
LM3100MH/NOPB
型号: LM3100MH/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

同步 1MHz 1.5A 降压稳压器 | PWP | 20 | -40 to 125

开关 光电二极管 输出元件 稳压器
文件: 总25页 (文件大小:3148K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
LM3100 同步 1MHz 1.5A 降压稳压器  
1 特性  
3 说明  
1
输入电压范围:4.5V 36V  
LM3100 同步整流降压转换器 采用了 可实现高效经济  
的降压稳压器所需的全部功能,能够为负载提供 1.5A  
电流和低至 0.8V 的电压。双 40V N 通道同步  
MOSFET 开关使用的外部组件较少,从而降低了复杂  
性,最大程度减少了布板空间。LM3100 专为与陶瓷及  
其他极低的 ESR 输出电容器出色配合而设计。恒定导  
通时间 (COT) 调节机制无需环路补偿,从而实现快速  
负载瞬态响应,并简化电路实现。与其他大多数 COT  
稳压器不同,此款稳压器采用独特的设计,无需依赖  
ESR 输出电容器也可实现稳定性。由于输入电压和导  
通时间之间的反比关系,线路和负载变化时,运行频率  
几乎保持恒定。通过外部编程,运行频率可高达  
1MHz。保护功能 采用了 VCC 欠压锁定、热关断和栅  
极驱动欠压锁定。此器件采用热增强型 HTSSOP-20  
封装  
1.5A 输出电流  
0.8V±1.5% 基准  
集成 40V N 通道同步开关  
组件数量少,解决方案尺寸小  
无需环路补偿  
超快瞬态响应  
可在使用陶瓷电容和其他低 ESR 电容器时保持稳  
可编程开关频率高达 1MHz  
启动时最大占空比受限  
谷值电流限值  
精密内部基准,可调节输出电压低至 0.8V  
热关断  
耐热增强型带散热片薄型小外形尺寸封装  
(HTSSOP)-20 封装  
器件信息  
器件型号  
LM3100  
封装  
封装尺寸(标称值)  
2 应用  
HTSSOP (20)  
6.50mm x 4.40mm  
5VDC12VDC24VDC12VAC 24VAC 系统  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
嵌入式系统  
工业控制  
汽车远程信息处理和车身电子装置  
负载点稳压器  
存储系统  
宽带基础设施  
直接对 2/3/4 节锂电池系统进行降压转换  
1. 典型应用  
L
C
FB  
V
OUT  
R
FB1  
R
R
EN  
ON  
C
OUT  
N/C  
SW  
SW  
VIN  
VIN  
BST  
GND  
SS  
N/C  
N/C  
R
FB2  
C
BST  
PGND  
PGND  
VCC  
RON  
EN  
V
IN  
C
IN  
FB  
N/C  
N/C  
N/C  
TST  
C
SS  
C
VCC  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVS421  
 
 
 
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
目录  
7.3 Feature Description................................................... 9  
7.4 Device Functional Modes........................................ 10  
Applications and Implementation ...................... 13  
8.1 Applications Information.......................................... 13  
8.2 Typical Application .................................................. 15  
Layout ................................................................... 17  
9.1 Layout Guidelines ................................................... 17  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions ...................... 4  
6.4 Thermal Information ................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 6  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
8
9
10 器件和文档支持 ..................................................... 18  
10.1 接收文档更新通知 ................................................. 18  
10.2 社区资源................................................................ 18  
10.3 ....................................................................... 18  
10.4 静电放电警告......................................................... 18  
10.5 Glossary................................................................ 18  
11 机械、封装和可订购信息....................................... 18  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision F (December 2009) to Revision G  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 16  
Changes from Revision G (April 2013) to Revision H  
Page  
已添加 添加了应用和实现 部分、器件信息 表、引脚配置 功能 部分、ESD 额定值 表、热性能信息 表、特性 说明  
部分、器件功能模式器件和文档支持部分以及机械、封装和可订购信息部分...................................................................... 1  
已删除 从标题中删除了 Simple Switcher................................................................................................................................ 1  
2
Copyright © 2006–2017, Texas Instruments Incorporated  
 
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
5 Pin Configuration and Functions  
PWP Package  
20-Pin HTSSOP  
Top View  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
N/C  
SW  
SW  
VIN  
VIN  
BST  
GND  
SS  
N/C  
N/C  
PGND  
PGND  
VCC  
RON  
EN  
FB  
N/C  
TST  
LM3100  
N/C  
N/C  
EP  
10  
Pin Functions  
PIN  
DESCRIPTION  
NO.  
NAME  
No Connection  
These pins must be left unconnected.  
1,9,10,12,19,20  
N/C  
Switching Node  
2, 3  
4, 5  
SW  
VIN  
Internally connected to the buck switch source. Connect to output inductor.  
Input supply voltage  
Supply pin to the device. Nominal input range is 4.5 V to 36 V.  
Connection for bootstrap capacitor  
6
BST  
Connect a 0.033 µF capacitor from SW pin to this pin. An internal diode charges the capacitor during  
the high-side switch off-time.  
Analog Ground  
7
8
GND  
SS  
Ground for all internal circuitry other than the synchronous switches.  
Soft-start  
An internal 8 µA current source charges an external capacitor to provide the soft- start function.  
Test mode enable pin  
Force the device into test mode. Must be connected to ground for normal operation.  
11  
TST  
Feedback  
13  
FB  
Internally connected to the regulation and over-voltage comparators. The regulation setting is 0.8 V at  
this pin. Connect to feedback divider.  
Enable pin  
14  
15  
EN  
Connect a voltage higher than 1.26 V to enable the regulator.  
On-time Control  
RON  
An external resistor from VIN to this pin sets the high-side switch on-time.  
Start-up regulator Output  
16  
VCC  
Nominally regulated to 6 V. Connect a capacitor of not less than 680 nF between VCC and GND for  
stable operation.  
Power Ground  
17, 18  
DAP  
PGND  
EP  
Synchronous rectifier MOSFET source connection. Tie to power ground plane.  
Exposed Pad  
Thermal connection pad, connect to GND.  
Copyright © 2006–2017, Texas Instruments Incorporated  
3
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–2  
MAX  
UNIT  
V
VIN, RON to GND  
SW to GND  
40  
40  
V
SW to GND (Transient)  
VIN to SW  
(< 100 ns)  
V
–0.3  
–0.3  
–0.3  
–65  
40  
7
V
BST to SW  
V
All Other Inputs to GND  
Junction Temperature, TJ  
Storage temperature, Tstg  
7
V
150  
150  
°C  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)  
±2  
kV  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) The human body model is a 100-pF capacitor discharged through a 1.5-kresistor into each pin.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
36  
UNIT  
Supply Voltage Range VIN  
4.5  
V
Junction Temperature Range TJ  
–40  
125  
°C  
6.4 Thermal Information  
LM3100  
THERMAL METRIC(1)  
PWP (HTSSOP)  
20 PINS  
UNIT  
RθJC  
Junction-to-case thermal resistance  
6.5  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2006–2017, Texas Instruments Incorporated  
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
6.5 Electrical Characteristics  
at TJ = 25°C, and VIN = 18 V, VOUT = 3.3 V (unless otherwise noted).(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
START-UP REGULATOR, VCC  
VCC  
Output voltage  
CCC = 680 nF, no load  
ICC = 2 mA  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
5.0  
6.0  
50  
7.2  
140  
570  
V
VIN - VCC  
Dropout voltage  
Current limit(1)  
mV  
ICC = 20 mA  
350  
65  
IVCCL  
VCC = 0 V  
40  
mA  
V
Under-voltage lockout  
threshold  
VCC-UVLO  
VIN increasing  
VIN decreasing  
TJ = –40°C to 125°C  
3.6  
3.75  
3.85  
VCC-UVLO-HYS  
tVCC-UVLO-D  
IIN  
UVLO hysteresis  
UVLO filter delay  
Operating current  
130  
3
mV  
µs  
No switching, VFB = 1 V  
VEN = 0 V  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
0.7  
1
mA  
Operating current,  
Device shutdown  
IIN-SD  
17  
30  
µA  
SWITCHING CHARACTERISTICS  
Main MOSFET  
RDS-UP-ON  
Rds(on)  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
0.18  
0.11  
3.3  
0.35  
0.2  
4
Ω
Ω
V
Syn. MOSFET  
RDS- DN-ON  
Rds(on)  
Gate drive voltage  
UVLO  
VG-UVLO  
VBST - VSW increasing  
SOFT-START  
ISS  
SS pin source current VSS = 0.5 V  
TJ = –40°C to 125°C  
6
8
9.8  
µA  
A
CURRENT LIMIT  
Syn. MOSFET current  
limit threshold  
ICL  
1.9  
ON/OFF TIMER  
VIN = 10 V, RON = 100 kΩ  
VIN = 30 V, RON = 100 kΩ  
1.38  
0.47  
tON  
ON timer pulse width  
µs  
ON timer minimum  
pulse width  
tON-MIN  
200  
260  
ns  
ns  
tOFF  
OFF timer pulse width  
ENABLE INPUT  
VEN  
EN Pin input threshold VEN rising  
TJ = –40°C to 125°C  
1.236  
1.26  
90  
1.285  
V
Enable threshold  
VEN falling  
VEN-HYS  
mV  
hysteresis  
REGULATION and OVER-VOLTAGE COMPARATOR  
In-regulation feedback  
voltage  
VFB  
VSS 0.8 V  
VSS 0.8 V  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
TJ = –40°C to 125°C  
0.784  
0.788  
0.8  
0.816  
0.812  
0.940  
100  
V
Feedback over-  
voltage threshold  
VFB-OV  
0.894 0.920  
5
V
IFB  
THERMAL SHUTDOWN  
nA  
Thermal shutdown  
temperature  
TSD  
TJ rising  
TJ falling  
165  
20  
°C  
°C  
Thermal shutdown  
temperature  
TSD-HYS  
hysteresis  
(1) VCC provides self bias for the internal gate drive and control circuits. Device thermal limitations limit external loading.  
Copyright © 2006–2017, Texas Instruments Incorporated  
5
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
6.6 Typical Characteristics  
All curves taken at VIN = 18 V with configuration in typical application circuit for VOUT = 3.3 V shown in this datasheet. TA =  
25°C, unless otherwise specified.  
1000  
7
-40oC  
V
= 36V  
IN  
6
5
4
3
2
1
0
800  
25oC  
V
= 7V  
IN  
125oC  
V
= 18V  
600  
400  
200  
0
IN  
VEN = 2V ; VFB = 1V  
Active mode, no switching  
VEN = 0V  
Shut-down mode  
125oC  
25oC  
-40oC  
V
Externally Loaded  
CC  
C
= 680 nF  
VCC  
V
= 1V, no switching  
FB  
0
10  
20  
(V)  
30  
40  
0
20  
40  
(mA)  
60  
80  
V
IN  
I
CC  
Figure 2. Quiescent Current, IIN vs VIN  
Figure 3. VCC vs ICC  
7
4000  
3000  
6.5  
6
R
= 100 kW  
ON  
R
= 100 kW  
ON  
R
= 50 kW  
ON  
5.5  
5
R
= 20 kW  
ON  
R
= 25 kW  
2000  
ON  
R
= 10 kW  
ON  
R
ON  
= 50 kW  
1000  
0
V
not loaded externally  
4.5  
4
CC  
I
= 700 mA  
LOAD  
4.5  
6
7.5  
9
10.5  
0
5
10 15 20 25 30 35 40  
(V)  
V
(V)  
IN  
V
IN  
Figure 4. VCC vs VIN  
Figure 5. TON vs VIN  
1000  
800  
0.85  
0.825  
0.8  
RON = 25 kW  
L = 3.8 mH  
I
= 1.5A  
LOAD  
V
R
= 3.3V  
OUT  
= 50 kW  
ON  
I
= 0.5A  
LOAD  
L = 4.7 mH  
= 0.4A  
I
LOAD  
600  
400  
200  
0
V
= 36V  
= 18V  
IN  
RON = 50 kW  
L = 8.2 mH  
I
= 1.5A  
LOAD  
I
= 0.5A  
= 0.5A  
LOAD  
RON = 100 kW  
L = 14 mH  
V
IN  
= 4.5V  
I
= 1.5A  
LOAD  
V
IN  
0.775  
0.75  
I
LOAD  
10  
V
= 3.3A  
OUT  
0
20  
(V)  
30  
40  
-50  
-20  
10  
40  
70  
100  
130  
V
IN  
TEMPERATURE (ºC)  
Figure 7. VFB vs Temperature  
Figure 6. Switching Frequency, FSW vs VIN  
6
Copyright © 2006–2017, Texas Instruments Incorporated  
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
Typical Characteristics (continued)  
All curves taken at VIN = 18 V with configuration in typical application circuit for VOUT = 3.3 V shown in this datasheet. TA =  
25°C, unless otherwise specified.  
100  
0.4  
V
= 8V  
IN  
90  
0.3  
0.2  
0.1  
0
80  
70  
60  
Main MOSFET  
V
IN  
= 18V  
V
= 36V  
IN  
Syn. MOSFET  
50  
40  
0
0.3  
0.6  
0.9  
1.2  
1.5  
-50  
-20  
10  
40  
70  
100  
130  
LOAD CURRENT (A)  
TEMPERATURE (ºC)  
VOUT = 3.3 V  
Figure 8. RDS(ON) vs Temperature  
Figure 9. Efficiency vs Load Current  
3
2
100  
90  
V
IN  
= 4.5V  
V
= 8V  
IN  
1
0
80  
70  
60  
V
= 18V  
IN  
V
IN  
= 12V  
V
-1  
V
= 24V  
= 0.8V  
OUT  
IN  
V
= 36V  
IN  
-2  
50  
40  
R
ON  
= 30 kW  
V
= 3.3V  
OUT  
L = 6.8 mH  
-3  
0
0.3  
0.6  
0.9  
1.2  
1.5  
0
0.3  
0.6  
0.9  
1.2  
1.5  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
VOUT = 3.3 V  
VOUT = 0.8 V  
Figure 10. VOUT Regulation vs Load Current  
Figure 11. Efficiency vs Load Current  
3
2
1
0
V
IN  
= 12V  
V
IN  
= 24V  
-1  
V
= 4.5V  
1.2  
IN  
V
= 0.8V  
OUT  
-2  
-3  
R
= 30 kW  
ON  
L = 6.8 mH  
0
0.3  
0.6  
0.9  
1.5  
VOUT = 3.3 V, 1.5 A Loaded  
LOAD CURRENT (A)  
VOUT = 0.8 V  
Figure 13. Power Up  
Figure 12. VOUT Regulation vs Load Current  
Copyright © 2006–2017, Texas Instruments Incorporated  
7
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Characteristics (continued)  
All curves taken at VIN = 18 V with configuration in typical application circuit for VOUT = 3.3 V shown in this datasheet. TA =  
25°C, unless otherwise specified.  
VOUT = 3.3 V, 1.5 A Loaded  
VOUT = 3.3 V, 1.5 A Loaded  
Figure 14. Enable Transient  
Figure 15. Shutdown Transient  
VOUT = 3.3 V, 1.5 A Loaded  
VOUT = 3.3 V, 0.15 A Loaded  
Figure 16. Continuous Mode Operation  
Figure 17. Discontinuous Mode Operation  
VOUT = 3.3 V, 0.15 A - 1.5 A Load Current slew-rate: 2.5 A/µs  
VOUT = 3.3 V, 0.15 A - 1.5 A Load  
Figure 19. Load Transient  
Figure 18. CCM to DCM Transition  
8
Copyright © 2006–2017, Texas Instruments Incorporated  
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
7 Detailed Description  
7.1 Overview  
The LM3100 Step Down Switching Regulator features all functions needed to implement a cost effective, efficient  
buck power converter capable of supplying 1.5 A to a load. This voltage regulator contains Dual 40-V N-Channel  
buck synchronous switches and is available in a thermally enhanced HTSSOP-20 package. The Constant ON-  
Time (COT) regulation scheme requires no loop compensation, results in fast load transient response, and  
simplifies circuit implementation. It will work correctly even with an all ceramic output capacitor network and does  
not rely on the output capacitor’s ESR for stability. The operating frequency remains constant with line and load  
variations due to the inverse relationship between the input voltage and the on-time. The valley current limit  
detection circuit, internally set at 1.9 A, inhibits the high-side switch until the inductor current level subsides.  
Please refer to the functional block diagram with a typical application circuit.  
The LM3100 can be applied in numerous applications and can operate efficiently from inputs as high as 36 V.  
Protection features include: Thermal shutdown, VCC under-voltage lockout, gate drive under-voltage lockout.  
7.2 Functional Block Diagram  
LM 3100  
EN  
1.26V  
11  
EN  
AVDD  
VDD  
0.92V  
0.8V  
VREF  
VIN  
6V LDO  
4,5  
VCC 16  
VIN  
VCC  
UVLO  
THERMAL  
SHUTDOWN  
CIN  
CVCC  
1.26V  
GND  
RON  
BST  
6
260 ns  
ON TIMER  
OFF TIMER  
START  
V
15 RON  
START  
IN  
Ron  
COMPLETE  
SD  
Gate Drive  
UVLO  
COMPLETE  
CBST  
VDD  
LEVEL  
SHIFT  
8 mA  
DRIVER  
L
DrvH  
8
SS  
2,3  
SW  
LOGIC  
DrvL  
CSS  
VCC  
Vout  
REGULATION  
COMPARATOR  
DRIVER  
CFB  
*
1200  
Zero -  
Coil  
Current  
Detect  
PMOS  
input  
0.8V  
1
P
GND  
RFB1  
80  
13 FB  
COUT  
R
ILIM  
RFB2  
CURRENT LIMIT  
COMPARATOR  
200W  
32 mV  
0.26W  
0.92V  
PGND 17,18  
OVER-VOLTAGE  
COMPARATOR  
7
*optional  
7.3 Feature Description  
7.3.1 Hysteretic Control Circuit Overview  
The LM3100 buck DC-DC regulator employs a control scheme in which the high-side switch on-time varies  
inversely with the line voltage (VIN). Control is based on a comparator and the one-shot on-timer, with the output  
voltage feedback (FB) compared with an internal reference of 0.8 V. If the FB level is below the reference the  
buck switch is turned on for a fixed time determined by the input voltage and a programming resistor (RON).  
Following the on-time, the switch remains off for a minimum of 260 ns. If FB is below the reference at that time  
the switch turns on again for another on-time period. The switching will continue until regulation is achieved.  
The regulator will operate in discontinuous conduction mode at light load currents, and continuous conduction  
mode with heavy load current. In discontinuous conduction mode (DCM), current through the output inductor  
starts at zero and ramps up to a peak during the on-time, then ramps back to zero before the end of the off-time.  
The next on-time period starts when the voltage at FB falls below the internal reference. Until then the inductor  
current remains zero and the load is supplied entirely by the output capacitor. In this mode the operating  
frequency is lower than in continuous conduction mode, and varies with load current. Conversion efficiency is  
maintained since the switching losses are reduced with the reduction in load and switching frequency. The  
discontinuous operating frequency can be calculated approximately as follows:  
Copyright © 2006–2017, Texas Instruments Incorporated  
9
 
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
Feature Description (continued)  
VOUT (VIN - 1) x L x 1.18 x 1020 x IOUT  
FSW  
=
2
(VIN œ VOUT) x RON  
(1)  
In continuous conduction mode (CCM), current always flows through the inductor and never reaches zero during  
the off-time. In this mode, the operating frequency remains relatively constant with load and line variations. The  
CCM operating frequency can be calculated approximately as follows:  
VOUT  
1.3 x 10-10 x RON  
FSW  
=
(2)  
The output voltage is set by two external resistors (RFB1, RFB2). The regulated output voltage is calculated as  
follows:  
VOUT = 0.8 V x (RFB1 + RFB2)/RFB2  
(3)  
7.4 Device Functional Modes  
7.4.1 Start-up Regulator (VCC  
)
The start-up regulator is integrated within LM3100. The input pin (VIN) can be connected directly to line voltage  
up to 36 V, with transient capability of 40 V. The VCC output regulates at 6 V, and is current limited to 65 mA.  
Upon power up, the regulator sources current into the external capacitor at VCC (CVCC). CVCC must be at least  
680 nF for stability. When the voltage on the VCC pin reaches the under-voltage lockout threshold of 3.75 V, the  
buck switch is enabled and the Soft-start pin is released to allow the soft-start capacitor (CSS) to charge.  
The minimum input voltage is determined by the dropout voltage of VCC regulator, and the VCC UVLO falling  
threshold (3.7 V). If VIN is less than 4.0 V, the VCC UVLO activates to shut off the output.  
7.4.2 Regulation Comparator  
The feedback voltage at FB pin is compared to the internal reference voltage of 0.8 V. In normal operation (the  
output voltage is regulated), an on-time period is initiated when the voltage at FB falls below 0.8 V. The buck  
switch stays on for the on-time, causing the FB voltage to rise above 0.8 V. After the on-time period, the buck  
switch stays off until the FB voltage falls below 0.8 V again. Bias current at the FB pin is nominally 100 nA.  
7.4.3 Over-Voltage Comparator  
The voltage at FB pin is compared to an internal 0.92 V reference. If the feedback voltage rises above 0.92 V the  
on-time pulse is immediately terminated. This condition can occur if the input voltage, or the output load, changes  
suddenly. Once the OVP is activated, the buck switch remains off until the voltage at FB pin falls below 0.92 V.  
The low side switch will stay on to discharge the inductor energy until the inductor current decays to zero. The  
low side switch will be turned off.  
7.4.4 ON-Time Timer, Shutdown  
The ON-Time of LM3100 main switch is determined by the RON resistor and the input voltage (VIN), and is  
calculated from:  
1.3 x 10-10 x RON  
tON  
=
VIN  
(4)  
The inverse relationship of tON and VIN results in a nearly constant switching frequency as VIN is varied. RON  
should be selected for a minimum on-time (at maximum VIN) greater than 200 ns for proper current limit  
operation. This requirement limits the maximum frequency for each application, depending on VIN and VOUT  
,
calculated from Equation 5:  
VOUT  
FSW(MAX)  
=
VIN(MAX) x 200 ns  
(5)  
The LM3100 can be remotely shut down by taking the EN pin below 1.1 V. Refer to Figure 20. In this mode the  
SS pin is internally grounded, the on-timer is disabled, and bias currents are reduced. Releasing the EN pin  
allows normal operation to resume.  
10  
Copyright © 2006–2017, Texas Instruments Incorporated  
 
 
 
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
Device Functional Modes (continued)  
For normal operation, the voltage at the EN pin is set between 1.5 V and 3.0 V, depending on VIN and the  
external pull-up resistor. For all cases, this voltage must be limited not to exceed 7 V.  
VIN  
VIN  
LM3100  
EN  
STOP  
RUN  
Figure 20. Shutdown Implementation  
7.4.5 Current Limit  
Current limit detection occurs during the off-time by monitoring the re-circulating current through the low-side  
synchronous switch. Referring to Functional Block Diagram, when the buck switch is turned off, inductor current  
flows through the load, into PGND, and through the internal low-side synchronous switch. If that current exceeds  
1.9 A the current limit comparator toggles, forcing a delay to the start of the next on-time period. The next cycle  
starts when the re-circulating current falls back below 1.9 A and the voltage at FB is below 0.8 V. The inductor  
current is monitored during the low-side switch on-time. As long as the overload condition persists and the  
inductor current exceeds 1.9 A, the high-side switch will remain inhibited. The operating frequency is lower during  
an over-current due to longer than normal off-times.  
Figure 21 illustrates an inductor current waveform, the average inductor current is equal to the output current,  
IOUT in steady state. When an overload occurs, the inductor current will increase until it exceeds the current limit  
threshold, 1.9 A. Then the control keeps the high-side switch off until the inductor current ramps down below 1.9  
A. Within each on-time period, the current ramps up an amount equal to:  
(VIN - VOUT) x tON  
DI =  
L
(6)  
During this time the LM3100 is in a constant current mode, with an average load current (IOCL) equal to 1.9 A  
+ΔI/2.  
I
PK  
DI  
I
OCL  
I
CL  
I
OUT  
Load Current  
Increases  
Current Limited  
Normal Operation  
Figure 21. Inductor Current - Current Limit Operation  
7.4.6 N-Channel Buck Switch and Driver  
The LM3100 integrates an N-Channel buck (high-side) switch and associated floating high voltage gate driver.  
The gate drive circuit works in conjunction with an external bootstrap capacitor and an internal high voltage  
diode. A 33 nF capacitor (CBST) connected between BST and SW pins provides voltage to the high-side driver  
during the buck switch on-time. During each off-time, the SW pin falls to approximately –1 V and CBST charges  
from the VCC supply through the internal diode. The minimum off-time of 260 ns ensures adequate time each  
cycle to recharge the bootstrap capacitor.  
Copyright © 2006–2017, Texas Instruments Incorporated  
11  
 
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
Device Functional Modes (continued)  
7.4.7 Soft-Start  
The soft-start feature allows the converter to gradually reach a steady state operating point, thereby reducing  
start-up stresses and current surges. Upon turn-on, after VCC reaches the under-voltage threshold, an internal 8  
µA current source charges up the external capacitor at the SS pin. The ramping voltage at SS (and the non-  
inverting input of the regulation comparator) ramps up the output voltage in a controlled manner.  
An internal switch grounds the SS pin if any of the following cases happen: (i) VCC falls below the under-voltage  
lock-out threshold; (ii) a thermal shutdown occurs; or (iii) the EN pin is grounded. Alternatively, the converter can  
be disabled by connecting the SS pin to ground using an external switch. Releasing the switch allows the SS pin  
return to pull high and the output voltage returns to normal. The shut-down configuration is shown in Figure 22 .  
VIN  
VIN  
LM3100  
SS  
STOP  
+
RUN  
Figure 22. Alternate Shutdown Implementation  
7.4.8 Thermal Protection  
The LM3100 should be operated so the junction temperature does not exceed the maximum limit. An internal  
Thermal Shutdown circuit, which activates (typically) at 165°C, takes the controller to a low power reset state by  
disabling the buck switch and the on-timer, and grounding the SS pin. This feature helps prevent catastrophic  
failures from accidental device overheating. When the junction temperature falls back below 145°C (typical  
hysteresis = 20°C), the SS pin is released and normal operation resumes.  
12  
Copyright © 2006–2017, Texas Instruments Incorporated  
 
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
8 Applications and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Applications Information  
8.1.1 External Components  
The following guidelines can be used to select the external components.  
8.1.1.1 RFB1 and RFB2  
The ratio of these resistors is calculated from:  
RFB1  
VOUT  
-1  
=
RFB2  
0.8V  
(7)  
RFB1 and RFB2 should be chosen from standard value resistors in the range of 1.0 k- 10 kwhich satisfy the  
above ratio.  
For VOUT = 0.8 V, the FB pin can be connected to the output directly. However, the converter operation needs a  
minimum inductor current ripple to maintain good regulation when no load is connected. This minimum load is  
about 10 µA and can be implemented by adding a pre-load resistor to the output.  
8.1.1.2 RON  
The minimum value for RON is calculated from:  
200 ns x VIN(MAX)  
RON  
í
1.3 x 10-10  
(8)  
Equation 2 in Hysteretic Control Circuit Overview section can be used to select RON if a specific frequency is  
desired as long as the above limitation is met.  
8.1.1.3  
L
The main parameter affected by the inductor is the output current ripple amplitude (IOR). The maximum allowable  
(IOR) must be determined at both the minimum and maximum nominal load currents. At minimum load current,  
the lower peak must not reach 0 A. At maximum load current, the upper peak must not exceed the current limit  
threshold (1.9 A). The allowable ripple current is calculated from the following equations:  
IOR(MAX1) = 2 x IO(min)  
(9)  
or  
IOR(MAX2) = 2 x (1.9 A - IO(max)  
)
(10)  
The lesser of the two ripple amplitudes calculated above is then used in the following equation:  
VOUT x (VIN - VOUT  
)
L =  
IOR x FS x VIN  
(11)  
where VIN is the maximum input voltage and Fs is determined from Equation 1. This provides a value for L. The  
next larger standard value should be used. L should be rated for the IPK current level shown in Figure 21.  
Copyright © 2006–2017, Texas Instruments Incorporated  
13  
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
Applications Information (continued)  
25.0  
R
ON  
= 100 kW  
20.0  
15.0  
10.0  
5.0  
R
ON  
= 50 kW  
R
ON  
= 25 kW  
0.0  
0
10  
20  
(V)  
30  
40  
V
IN  
Figure 23. Inductor Selector for VOUT = 3.3 V  
25  
R
= 100 kW  
ON  
20  
15  
10  
5
R
= 50 kW  
ON  
R
ON  
= 25 kW  
0
0
10  
20  
(V)  
30  
40  
V
IN  
Figure 24. Inductor Selector for VOUT = 0.8 V  
8.1.1.4 CVCC  
The capacitor on the VCC output provides not only noise filtering and stability, but also prevents false triggering of  
the VCC UVLO at the buck switch on/off transitions. For this reason, CVCC should be no smaller than 680 nF for  
stability, and should be a good quality, low ESR, ceramic capacitor.  
8.1.1.5 CO and CO3  
CO should generally be no smaller than 10 µF. Experimentation is usually necessary to determine the minimum  
value for CO, as the nature of the load may require a larger value. A load which creates significant transients  
requires a larger value for CO than a fixed load.  
CO3 is a small value ceramic capacitor to further suppress high frequency noise at VOUT. A 47 nF is  
recommended, located close to the LM3100.  
8.1.1.6 CIN and CIN3  
CIN’s purpose is to supply most of the switch current during the on-time, and limit the voltage ripple at VIN,  
assume the voltage source feeding VIN has an output impedance greater than zero. If the source’s dynamic  
impedance is high (effectively a current source), CIN supplies the average input current, but not the ripple current.  
At maximum load current, when the buck switch turns on, the current into VIN suddenly increases to the lower  
peak of the inductor’s ripple current, ramps up to the peak value, then drop to zero at turn-off. The average  
current during the on-time is the load current. For a worst case calculation, CIN must supply this average load  
current during the maximum on-time. CIN is calculated from:  
14  
Copyright © 2006–2017, Texas Instruments Incorporated  
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
Applications Information (continued)  
IOUT x tON  
CIN  
=
DV  
(12)  
where IOUT is the load current, tON is the maximum on-time, and ΔV is the allowable ripple voltage at VIN.  
CIN3’s purpose is to help avoid transients and ringing due to long lead inductance at VIN. A low ESR, 0.1 µF  
ceramic chip capacitor is recommended, located close to the LM3100.  
8.1.1.7 CBST  
The recommended value for CBST is 33 nF. A high quality ceramic capacitor with low ESR is recommended as  
CBST supplies a surge current to charge the buck switch gate at turn-on. A low ESR also helps ensure a  
complete recharge during each off-time.  
8.1.1.8 CSS  
The capacitor at the SS pin determines the soft-start time, i.e. the time for the reference voltage at the regulation  
comparator, and the output voltage, to reach their final value. The time is determined from the following:  
CSS x 0.8V  
tSS  
=
8 mA  
(13)  
8.1.1.9 CFB  
If output voltage is higher than 1.6 V, this feedback capacitor is needed for Discontinuous Conduction Mode to  
improve the output ripple performance, the recommended value for CFB is 10 nF.  
8.2 Typical Application  
C
C
O3  
FB  
L 15 mH  
10 nF 47 nF  
V
= 3.3V  
= 1.5A  
OUT  
OUT  
R
FB1  
I
6.8k  
RON  
100k  
R
EN  
200k  
C
, C  
O1 O2  
N/C  
SW  
SW  
VIN  
VIN  
BST  
GND  
SS  
N/C  
N/C  
R
FB2  
C
BST  
2 x 22 mF  
2.2k  
33 nF  
PGND  
PGND  
VCC  
RON  
EN  
V
= 8V – 36V  
IN  
C
, C  
IN2  
IN1  
C
IN3  
2 x 10 mF  
0.1 mF  
FB  
N/C  
N/C  
N/C  
C
C
SS  
10 nF  
VCC  
TST  
680 nF  
Figure 25. Typical Application Schematic for VOUT = 3.3 V  
Copyright © 2006–2017, Texas Instruments Incorporated  
15  
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
Typical Application (continued)  
L 6.8 mH  
V
= 0.8V  
OUT  
I
= 1.5A  
OUT  
C
O3  
R
R
EN  
ON  
47 nF  
200k  
30k  
C
, C  
O1 O2  
N/C  
N/C  
N/C  
R
FB2  
40k  
C
BST  
2 x 22 mF  
SW  
SW  
VIN  
VIN  
BST  
GND  
SS  
33 nF  
PGND  
PGND  
VCC  
RON  
EN  
V
= 4.5V – 24V  
IN  
C
, C  
IN1 IN2  
C
IN3  
2 x 10 mF  
0.1 mF  
FB  
C
N/C  
N/C  
N/C  
SS  
C
VCC  
10 nF  
TST  
680 nF  
Figure 26. Typical Application Schematic for VOUT = 0.8 V  
16  
Copyright © 2006–2017, Texas Instruments Incorporated  
LM3100  
www.ti.com.cn  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
9 Layout  
9.1 Layout Guidelines  
9.1.1 PC Board Layout  
The LM3100 regulation, over-voltage, and current limit comparators are very fast, and will respond to short  
duration noise pulses. Layout considerations are therefore critical for optimum performance. The layout must be  
as neat and compact as possible, and all external components must be as close as possible to their associated  
pins. Refer to the functional block diagram, the loop formed by CIN, the high and low-side switches internal to the  
IC, and the PGND pin should be as small as possible. The PGND connection to Cin should be as short and  
direct as possible. There should be several vias connecting the Cin ground terminal to the ground plane placed  
as close to the capacitor as possible. The boost capacitor should be connected as close to the SW and BST pins  
as possible. The feedback divider resistors and the CFB capacitor should be located close to the FB pin. A long  
trace run from the top of the divider to the output is generally acceptable since this is a low impedance node.  
Ground the bottom of the divider directly to the GND (pin 7). The output capacitor, COUT, should be connected  
close to the load and tied directly into the ground plane. The inductor should connect close to the SW pin with as  
short a trace as possible to help reduce the potential for EMI (electro-magnetic interference) generation.  
If it is expected that the internal dissipation of the LM3100 will produce excessive junction temperatures during  
normal operation, good use of the PC board’s ground plane can help considerably to dissipate heat. The  
exposed pad on the bottom of the IC package can be soldered to a ground plane and that plane should extend  
out from beneath the IC to help dissipate the heat. The exposed pad is internally connected to the IC substrate.  
Additionally the use of thick copper traces, where possible, can help conduct heat away from the IC. Using  
numerous vias to connect the die attach pad to an internal ground plane is a good practice. Judicious positioning  
of the PC board within the end product, along with the use of any available air flow (forced or natural convection)  
can help reduce the junction temperature.  
版权 © 2006–2017, Texas Instruments Incorporated  
17  
LM3100  
ZHCS522H JANUARY 2006REVISED OCTOBER 2017  
www.ti.com.cn  
10 器件和文档支持  
10.1 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
10.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
10.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
10.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
10.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
11 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
18  
版权 © 2006–2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3100MH  
NRND  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
20  
20  
20  
73  
Non-RoHS  
& Green  
Call TI  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
LM3100  
MH  
LM3100MH/NOPB  
LM3100MHX/NOPB  
ACTIVE  
ACTIVE  
PWP  
73  
RoHS & Green  
SN  
SN  
LM3100  
MH  
PWP  
2500 RoHS & Green  
LM3100  
MH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3100MHX/NOPB  
HTSSOP PWP  
20  
2500  
330.0  
16.4  
6.95  
7.1  
1.6  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 20  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LM3100MHX/NOPB  
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM3100MH  
LM3100MH  
PWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
HTSSOP  
20  
20  
20  
73  
73  
73  
495  
495  
495  
8
8
8
2514.6  
2514.6  
2514.6  
4.06  
4.06  
4.06  
LM3100MH/NOPB  
Pack Materials-Page 3  
MECHANICAL DATA  
PWP0020A  
MXA20A (Rev C)  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM3100MHX

SIMPLE SWITCHER㈢ Synchronous 1MHz 1.5A Step-Down Voltage Regulator
NSC

LM3100MHX/NOPB

IC 1.9 A SWITCHING REGULATOR, 1000 kHz SWITCHING FREQ-MAX, PDSO20, PLASTIC, TSSOP-20, Switching Regulator or Controller
NSC

LM3100MHX/NOPB

同步 1MHz 1.5A 降压稳压器 | PWP | 20 | -40 to 125
TI

LM3100_07

SIMPLE SWITCHER㈢ Synchronous 1MHz 1.5A Step-Down Voltage Regulator
NSC

LM3101

Secondary-Side PWM Controller
NSC

LM3101M

Secondary-Side PWM Controller
NSC

LM3101N

Secondary-Side PWM Controller
NSC

LM3102

SIMPLE SWITCHER㈢ Synchronous 1MHz 2.5A Step-Down Voltage Regulator
NSC

LM3102

LM3102/-Q1 SIMPLE SWITCHER® Synchronous 1-MHz, 2.5-A Step-Down Voltage Regulator
TI

LM3102-Q1

LM3102/-Q1 SIMPLE SWITCHER® Synchronous 1-MHz, 2.5-A Step-Down Voltage Regulator
TI

LM3102MH

SIMPLE SWITCHER㈢ Synchronous 1MHz 2.5A Step-Down Voltage Regulator
NSC

LM3102MH/NOPB

IC SWITCHING REGULATOR, 1000 kHz SWITCHING FREQ-MAX, PDSO20, PLASTIC, TSSOP-20, Switching Regulator or Controller
NSC