LM3401MMX/NOPB [TI]

用于高功率 LED 驱动器的迟滞 PFET 控制器 | DGK | 8 | -40 to 125;
LM3401MMX/NOPB
型号: LM3401MMX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

用于高功率 LED 驱动器的迟滞 PFET 控制器 | DGK | 8 | -40 to 125

驱动 控制器 显示驱动器 驱动程序和接口
文件: 总27页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
LM3401 Hysteretic PFET Controller for High Power LED Drive  
Check for Samples: LM3401  
1
FEATURES  
DESCRIPTION  
The LM3401 is a switching controller designed to  
provide constant current to high power LEDs. The  
LM3401 drives an external P-MOSFET switch for  
step-down (Buck) regulators. The LM3401 delivers  
constant current within ±6% accuracy to a wide  
variety and number of series connected LEDs. Output  
current is adjusted with an external current sensing  
resistor to drive high power LEDs in excess of 1A.  
2
Hysteretic Control for Speed and Simplicity  
Input Operating Range of 4.5V-35V  
1.5MHz Maximum Switching Frequency  
Low 200mV Reference Voltage  
Programmable Current Limit  
High speed CMOS Compatible  
Enable/Dimming  
For improved accuracy and efficiency, the LM3401  
features dual-side hysteresis, very low reference  
voltage, and short propagation delay. A cycle by  
cycle current limit provides protection against over  
current and short circuit failures. Additional features  
Adjustable Hysteresis  
Input UVLO  
No output Capacitor Required  
8-pin VSSOP Package  
include adjustable hysteresis and  
compatible input pin for PWM dimming.  
a
CMOS  
APPLICATIONS  
LED Driver  
Battery Charger  
TYPICAL APPLICATION CIRCUIT  
V
= 4.5V to 35V  
IN  
R3  
VIN  
ILIM  
HG  
C1  
Q1  
D1  
DIM  
L1  
LM3401  
HYS  
GND  
CS  
LED  
current  
R2  
SNS  
R1  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2007–2013, Texas Instruments Incorporated  
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
CONNECTION DIAGRAM  
CS  
DIM  
SNS  
HYS  
1
2
3
4
8
7
6
5
ILIM  
VIN  
HG  
GND  
Figure 1. Top View  
8-Lead VSSOP  
See DGK Package  
PIN DESCRIPTIONS  
Pin #  
Pin  
Description  
Name  
1
2
3
4
5
6
7
8
CS  
DIM  
SNS  
HYS  
GND  
HG  
Current sense pin. Connect to the PFET drain  
Dimming input pin. When DIM is low, the HG drive is off. Can be connected to a logic level PWM signal  
Current feedback pin – to LED cathode. Connect a resistor from this pin to ground to set the DC LED current  
Hysteresis adjust pin. Connect a resistor from this pin to GND to set the hysteresis window  
Ground pin  
Gate drive output. Connect to the PFET gate  
VIN  
Power supply input  
ILIM  
Current limit adjust pin. Connect a resistor from this pin to the PFET source to set the current limit threshold  
2
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
(1)  
ABSOLUTE MAXIMUM RATINGS  
If Military/Aerospace specified devices are required, contact the Texas Instruments Semiconductor Sales Office/  
Distributors for availability and specifications.  
VALUE / UNIT  
VIN  
-0.3V to 36V  
-2.0V to 36V  
-0.3V to 8V  
CS  
SNS  
ILIM  
-0.3V to 36V  
-0.3V to 36V  
-0.3V to 4V  
DIM  
HYS  
Storage Temperature  
Lead Temperature  
Vapor Phase (60sec)  
Infrared (15sec)  
ESD Rating Human Body Model  
-65°C to +150°C  
215°C  
220°C  
2.5kV  
(2)  
(1) Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. Operating Ratings indicate conditions for  
which the device is intended to be functional, but do not include specific performance limits. For specified specifications, see Electrical  
Characteristics.  
(2) The human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin.  
RECOMMENDED OPERATING CONDITIONS(1)  
VALUE / UNIT  
VIN  
4.5V to 35V  
-40°C to +125°C  
151°C/W  
Junction Temperature Range  
(2)  
Thermal Resistance θJA  
(2)  
Power Dissispation  
0.66W  
(1) Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. Operating Ratings indicate conditions for  
which the device is intended to be functional, but do not include specific performance limits. For specified specifications, see Electrical  
Characteristics.  
(2) The maximum allowable power dissipation is a function of the maximum junction temperature, TJ_MAX, the junction-to-ambient thermal  
resistance, θJA, and the ambient temperature, TA. The maximum allowable power dissipation at any ambient temperature is calculated  
using: PD_MAX = (TJ_MAX - TA)/θJA. The maximum power dissipation of 0.66W is determined using TA = 25°C, θJA = 151°C/W, and  
TJ_MAX = 125°C. θJA will vary with board size and copper area. The θJA spec is based on a JEDEC standard 4-layer board.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM3401  
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS  
Specifications in standard type are for TJ = 25°C only, and limits in boldface type apply over the junction temperature (TJ)  
range of -40°C to +125°C. Unless otherwise stated, VIN = 24V. Minimum and Maximum limits are specified through test,  
design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for  
(1)  
reference purposes only  
.
Symbol  
SYSTEM  
Parameter  
Conditions  
Min  
188  
Typ  
Max  
212  
Units  
VREF  
ΔVREF / ΔVIN  
IQ  
Reference Voltage  
Line regulation  
200  
0.002  
1.05  
20  
mV  
mV/V  
mA  
µA  
-
5V < VIN < 35V  
(2)  
Operating VIN Current  
IHYS  
Hysteresis Pin Source Current  
SNS Comparator Hysteresis Multiplier  
SNS Comparator to HG Delay  
DIM to HG Delay  
HYS pin = 50 mV to 500 mV  
HYS pin = 250 mV  
SNS rising  
15  
25  
0.224  
80  
SNSHYS_MU  
TDLY  
0.168  
0.20  
46  
ns  
TDIM  
DIM rising  
69  
120  
8
ns  
IILIM  
ILIM Pin Sink Current  
4
5.5  
µA  
mV  
mV  
V
VCL_OFF  
VZC  
Current Limit Comparator Offset  
Zero Cross Comparator Threshold  
DIM Threshold Voltage  
Hysteresis  
-10  
-70  
1.85  
0
+10  
-200  
2.25  
Measured at CS pin  
-130  
2.0  
VDIM  
286  
300  
4.3  
mV  
nA  
V
ISNS  
SNS pin Bias Current  
VSNS = 200 mV  
Vin rising  
780  
UVLO  
UVLO threshold  
4.48  
Hysteresis  
0.5  
V
DRIVER  
Ton_min  
RHG  
Minimum on-time  
150  
5.3  
ns  
A
Gate Drive Resistance  
Source Current = 100 mA  
Sink Current = 100 mA  
10.5  
0.41  
0.33  
-4.7  
IHG  
Driver Output Current  
HG on voltage  
Source, HG = VIN -2.5V  
Sink, HG = VIN -2.5V  
A
VHG  
Referenced to VIN, steady state voltage  
-4.2  
-5.5  
V
(1) All room temperature limits are 100% production tested. All limits at temperature extremes are specified through correlation using  
standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(2) IQ specifies the current into the VIN pin and applies to non-switching operation.  
4
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise specified, VIN = 24V, TA = 25°C.  
VREF vs Temperature  
HYS Current vs VIN  
0.205  
0.203  
0.201  
20.85  
20.6  
20.35  
20.1  
19.85  
19.6  
0.199  
0.197  
0.195  
-50 -25  
0
25  
50  
75  
100 125  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (èC)  
INPUT VOLTAGE (V)  
Figure 2.  
Figure 3.  
HYS Multiplier vs Temperature  
Startup Waveforms  
0.23  
0.22  
ILED  
100 mA/Div  
0.21  
0.20  
VIN  
5V/Div  
500 mV  
0.19  
0.18  
0.17  
50 mV  
VCS  
10V/Div  
4 ms/DIV  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (èC)  
Figure 4.  
Figure 5.  
ILIM Sink Current vs Temperature  
HYS Current vs Temperature  
6.0  
5.8  
5.6  
21  
20.6  
20.2  
5.4  
5.2  
5.0  
19.8  
19.4  
19  
-50 -25  
0
25  
50  
75 100 125  
-50 -25  
0
25  
50  
75 100 125  
TEMPERATURE (èC)  
TEMPERATURE (°C)  
Figure 6.  
Figure 7.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM3401  
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Unless otherwise specified, VIN = 24V, TA = 25°C.  
UVLO Threshold vs Temperature  
4.50  
SNS to HG Propagation Delay vs VIN  
70  
TURN-ON  
4.30  
60  
50  
4.10  
TURN-OFF  
3.90  
3.70  
40  
30  
20  
3.50  
3.30  
-50 -25  
0
25  
50  
75  
100 125  
0
5
10 15 20 25 30 35 40  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
Figure 8.  
Figure 9.  
Line Transient Response  
Initial HG Voltage vs Input Voltage  
8.0  
180 pF  
6.5  
5.0  
ILED  
100 mA/Div  
470 pF  
VIN  
10V/Div  
1000 pF  
3.5  
2.0  
20 ms/DIV  
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE (V)  
Figure 10.  
Figure 11.  
350 mA Efficiency  
700 mA and 1A Efficiency  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
2 series (700 mA)  
3 series  
1 series (700 mA)  
2 series  
1 series  
1 series (1A)  
70  
65  
60  
65  
60  
0
5
10  
15  
20  
25  
30  
35  
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 12.  
Figure 13.  
6
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
BLOCK DIAGRAM  
VIN  
on  
UVLO  
VDD  
regulator  
HG  
DIM  
GND  
-
+
-0.13V  
CS  
SNS  
-
+
ILIM  
20 mA  
X 0.2  
HYS  
VREF  
200 mV  
+
-
ILIM  
5.5 mA  
Figure 14. Block Diagram  
Operational Description  
HYSTERETIC CONTROL  
The LM3401 is a step-down DC-DC controller designed to provide a constant current source for driving a high  
power LED string.  
The LM3401 uses comparator-based voltage mode hysteretic control for a simple and stable design. Hysteretic  
control does not utilize an internal oscillator, but relies on output conditions to directly control switching. The  
LM3401 controls LED current within the adjustable hysteresis window by monitoring peak and valley voltage at  
the SNS pin. A dual sided hysteresis window is used to optimize accuracy.  
Regulated LED current flows to ground through a sense resistor at the SNS pin. The voltage generated at the  
SNS pin is compared to the 200 mV internal reference. When the SNS voltage falls below the reference voltage  
minus hysteresis, the output of the hysteretic comparator goes low. This results in the driver output, HG, pulling  
the gate of the PFET low and turning on the PFET.  
With the PFET on, LED current ramps up through the PFET and the inductor. As the LED current increases, the  
SNS voltage reaches its upper threshold (reference voltage plus hysteresis). This forces the output of the  
comparator and HG to go high, which turns the PFET off. When the PFET turns off, current flows through the  
catch diode, and LED and inductor current ramp down. When the SNS voltage falls to its lower threshold, the  
cycle repeats. The resulting LED current, SNS, and switch node waveforms are shown in Figure 15.  
ILED  
100mA/Div  
VSNS  
100 mV/Div  
VCS  
10V/Div  
400 ns/DIV  
Figure 15. Hysteretic Switching Waveforms  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM3401  
 
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
OUTPUT CURRENT SETTING  
The LED average current is programmed using a resistor between SNS and GND, shown as R1 in the typical  
application schematic. The SNS resistor (RSNS) can be calculated as follows:  
VSNS  
RSNS  
=
ILED  
(1)  
Where VSNS is 200 mV typically, and ILED is the DC average LED current.  
The sense resistor power rating must be higher than its power dissipation. The required power rating can be  
calculated (in Watts) as follows:  
WRSNS = VSNS x ILED  
(2)  
When selecting a sense resistor, thermal de-rating must also be taken into consideration.  
While RSNS sets the DC LED current, the AC peak LED current will be higher than the DC setting. This peak  
current must not be greater than the maximum peak current rating of the LED, ILED_max. Peak LED current can be  
calculated from the equation below:  
ILED_RIP  
I
=
LED  
+
ILED_PK  
2
(3)  
The LED ripple current, ILED_RIP, is described below in the Hysteresis Adjust section.  
HYSTERESIS ADJUST  
Adjustable hysteresis (via the HYS pin) provides direct control over the LED ripple current. The HYS pin also  
gives some control over the switching frequency. Although the hysteresis value can be set after the inductor is  
selected, a preliminary value must be set in order to begin the frequency calculation. The hysteresis window  
must be set small enough to keep the peak LED current below its maximum rating, ILED_max  
.
The maximum SNS pin hysteresis can be calculated as shown:  
SNSHYS_MAX = (ILED_max - ILED) x RSNS  
(4)  
Any SNSHYS value between 10mV and this maximum is acceptable.  
The SNSHYS value is set with a single resistor from the HYS pin to GND, shown as R2 in the typical application  
schematic. The HYS pin voltage, VHYS, is internally multiplied by SNSHYS_MU (0.2 typical) to generate the  
hysteresis at the SNS pin, SNSHYS. The hysteresis setting resistor can be determined from the following  
equation:  
SNSHYS x 5  
R2 =  
20 mA  
(5)  
Where 20 µA is the typical HYS source current, and SNSHYS is the resulting SNS pin hysteresis voltage. The  
hysteresis voltage can be set within a range of 10 mV to 100 mV (50 mV to 500 mV at the HYS pin). The  
SNSHYS value defines both the upper and lower threshold of the SNS pin. For example, with a VHYS setting of  
100 mV, SNSHYS will be 20 mV. Therefore, the total hysteretic window will be 40 mV, or 20 mV above and 20mV  
below the 200 mV reference voltage. This directly correlates to peak-to-peak inductor and LED ripple current,  
approximated by the following equation:  
SNSHYS x 2  
ILED_RIP  
=
RSNS  
(6)  
If LED ripple current is a design priority, the preliminary R2 value can be determined using a target LED ripple  
current as shown:  
ILED_RIP x RSNS x 5  
R2 =  
40 mA  
(7)  
A more precise equation for ripple current is given in the Inductor Selection section. Once an inductor is selected  
the more precise equation should be used to determine the actual ripple current and LED peak current. Larger  
hysteresis values will result in lower switching frequency and higher ripple current for a given inductor. Typical  
examples are shown in Figure 16 below.  
8
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
1800  
1500  
1200  
900  
600  
300  
0
1800  
22 mH freq  
68 mH freq  
1500  
1200  
22 mH rip  
900  
600  
300  
0
68 mH rip  
50  
110  
175  
255  
340  
425  
505  
V
(mV)  
HYS  
Figure 16. Switching Frequency and Ripple Current vs Hysteresis  
SWITCHING FREQUENCY  
Although hysteretic control is a simple control method, the switching frequency depends on application conditions  
and components. If the inductance, input voltage, or LED forward voltage is changed, there will be a change in  
the switching frequency. Therefore, care must be taken to select components which will provide the desired  
frequency range. Usually, the best approach is to determine a nominal switching frequency for the application  
and then select the inductor accordingly. Once the inductor is selected, VHYS can be adjusted to set the  
frequency range more precisely. This design process usually involves a few iterations to select appropriate  
standard values that will result in the desired frequency and ripple current.  
Switching frequency can be approximately calculated using the formula:  
D
fSW  
=
2 x SNSHYS x L  
+ (2 x delay)  
RSNS x (VIN - VANODE  
)
(8)  
Where D is the duty cycle, defined as (VOUT + VDIODE) / VIN, VANODE is 200 mV plus the sum of LED forward  
voltages, and delay is the sum of the LM3401 propagation delay time and the PFET delay time. The LM3401  
propagation delay is 46 ns typically (See the Propagation Delay curve). Alternately, the inductor value can be  
calculated from a known frequency by re-arranging the same equation:  
D
fSW  
- (2 x delay)  
x RSNS x (VIN - VANODE  
)
L =  
2 x SNSHYS  
(9)  
Switching frequency for a typical application is shown in Figure 17 along with the calculated frequency.  
1500  
= calculated value  
1250  
22 mH  
1000  
750  
500  
68 mH  
250  
0
0
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE (V)  
Figure 17. Frequency vs Input Voltage  
Maximum switching frequency will typically occur around the input voltage which corresponds to 25% duty cycle.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM3401  
 
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
If the input voltage falls below the forward voltage of the LED string, the LM3401 will operate at 100% duty cycle.  
In this state, the anode voltage will be equal to the input voltage and LED current is determined by the v-i curve  
of the LED. At 100% duty cycle, LED current will be continuous with a maximum value equal to the ILED_PK level  
set at the HYS pin.  
In some applications, maximum operating frequency will be limited by the minimum on-time as shown in the  
following equation:  
D
fSW  
ton  
=
(10)  
When the on-time reaches minimum (150 ns typical) due to increasing input voltage, the frequency will be  
reduced in order to maintain the proper duty cycle.  
INDUCTOR SELECTION  
The most important parameters for the inductor are the inductance and the current rating. The LM3401 operates  
over a wide frequency range and can use a wide range of inductance values.  
Once an inductance value is determined from the frequency equation, the maximum operating current must be  
verified.  
Although peak-to-peak ripple current is controlled by the hysteresis value, there is some variation due to  
propagation delay. This means that the inductance has a direct effect on LED current line regulation.  
In general, a larger inductor will result in lower frequency and better line regulation. The actual peak-to-peak  
inductor current can be calculated as follows:  
(VIN - VANODE) x 2 x delay  
2 x SNSHYS  
RSNS  
+
ILED_RIP = IL_RIP  
=
L
(11)  
Use the maximum value of Vin to determine the worst case ILED_RIP value. This value should be used to  
determine the peak current, ILED_PK, shown in the Output Current Setting section.  
Since the LM3401 can operate at 100% duty cycle, the inductor must be rated to handle ILED_PK continuously.  
RIPPLE REDUCTION CAPACITOR  
The typical application schematic shown on the front page is the simplest application of the LM3401. In this  
schematic, inductor current is equal to LED current. Therefore, the equations for ripple current apply to both LED  
ripple and inductor ripple.  
However, LED ripple current can be reduced without altering the inductor current by using a bypass capacitor  
placed in parallel with the LED string (shown as C2 in the Figure 24 schematic).  
This allows larger hysteresis values to be used while significantly reducing ripple current in the LED string.  
Figure 18 below shows this effect: inductor ripple current is unaffected while LED ripple current is dramatically  
reduced.  
ILED  
50 mA/Div  
IL  
50 mA/Div  
VCS  
20V/Div  
400 ns/DIV  
Figure 18. LED Ripple Current Reduction with a 1 µF Ripple Reduction Capacitor  
If a ripple reduction capacitor is used, the equation for SNSHYS_MAX only applies for 100% duty operation.  
10  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
 
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
LED average DC current and peak inductor current are not affected by the ripple reduction capacitor. However,  
LED peak current is reduced and switching frequency may shift slightly.  
Any type of capacitor can be used, provided the working voltage rating is sufficient. In general, higher  
capacitance and lower ESR will provide more ripple reduction; a typical value greater than 100 nF is  
recommended. Smaller capacitance values will be less effective, and large ESR values may actually increase  
LED ripple current.  
Despite its effectiveness to smooth LED ripple current, there are two notable disadvantages to using a ripple  
reduction capacitor.  
First, when used, care must be taken to avoid shorting the LED anode to ground. If this occurs, the capacitor will  
force a large negative voltage spike at the SNS pin which could damage the IC.  
Second, this capacitor will limit the maximum PWM dimming frequency because it takes some additional time to  
charge and discharge. Additionally, ceramic capacitors can generate audible noise due to fast voltage changes  
during dimming. To reduce audible noise, use the smallest possible case size, use dimming frequencies below  
500 Hz, or use a non-ceramic ripple reduction capacitor.  
A small bypass capacitor, in the range of 100 pF to 200 pF can also be used to reduce high frequency switching  
noise. This is recommended in higher current applications, where switching noise can adversely affect the SNS  
or DIM pins. A small capacitor for noise reduction will have little to no effect on the LED ripple current or dimming  
but may help solve potential EMI problems.  
HG AND PFET SELECTION  
When switching, the HG pin swings from VIN (off state) to 4.7V below VIN (typical). As long as the DIM pin is high  
and the SNS pin is below the upper threshold, HG will stay low, driving the PFET on.  
The PFET should be selected based on the maximum Drain-Source voltage (VDS), Drain current rating (Id),  
maximum Gate-Source voltage (VGS), on-resistance (RDS(on)), and Gate capacitance.  
The voltage across the PFET in the off state is equal to the sum of the input voltage and the diode forward  
voltage. The VDS must therefore be selected to provide some margin beyond this voltage.  
Since the peak current through the PFET is equal to the peak current through the inductor, Id must be rated  
higher than the maximum ILED_PK. The LM3401 is capable of 100% duty cycle, therefore, the PFET drain current  
should be rated to handle ILED_PK continuously. In this case there is no ripple, so IPK = IAVE  
.
Although the typical HG voltage is VIN - 4.7V, this voltage can go much lower during the initial PFET turn-on time.  
How far HG swings at turn-on depends on several factors including the gate capacitance, on-time, and input  
voltage. As shown in the Typical Performance Characteristics, the initial HG voltage swing increases with  
decreasing PFET gate capacitance. Therefore, A PFET must be selected with a maximum VGS rating larger than  
the initial HG voltage. Conversely, when driving PFETs with larger gate capacitance, the initial HG voltage will be  
lower. In some cases, a low VGS threshold PFET may be required to ensure complete turn-on. Use the Typical  
Performance curve as a guideline to selecting a proper PFET.  
Note that HG will eventually settle around the typical voltage of VIN - 4.7V regardless of the PFET gate  
capacitance.  
HG has an absolute minimum voltage of 1.2V typically. When the input voltage is below approximately 6V, this  
minimum limit causes a reduction in drive voltage. At 5V input, for example, HG will swing to 1.2V (or a gate  
drive voltage of -3.8V). This may not be sufficient to drive some PFETs, and at this reduced HG voltage, RDS(on)  
is likely to increase and trigger current limit. Therefore, a low VGS threshold PFET is also recommended for lower  
input voltage applications.  
The power loss in the PFET consists of switching losses and conducting losses. Although switching losses are  
difficult to precisely calculate, the equations below can be used to estimate total power dissipation, which is the  
sum of PDCOND and PDSW  
.
PDFET_COND = RDS(on) x ILED2 x D  
(12)  
fSW x ILED x VIN x (Pon + Poff)  
PDFET_SW  
=
2
(13)  
Where Pon = PFET turn-on time, Poff = PFET turn-off time, and D is the duty cycle. A value of 10 ns to 50 ns is  
typical for ton and toff. Longer PFET on and off times will degrade both efficiency and accuracy.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM3401  
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
Increasing RDS(on) will increase power losses and degrade efficiency. FET  
has a positive temperature  
RDS(on)  
coefficient. At 125°C, the RDS(on) may be as much as 150% higher than the value at 25°C. The Gate capacitance  
of the PFET has a direct impact on both PFET transition time and the power dissipation in the LM3401. Most of  
the power dissipated in the LM3401 is used to drive the PFET switch. This power can be calculated as follows:  
The average amount of gate driver current required during switching (IG) is:  
IG = Qg x fSW  
(14)  
Where Qg is the PFET gate charge.  
And the total power dissipated in the IC is:  
PD = (Iq x VIN) + (IG x 4.7V)  
(15)  
Where Iq is typically 1.05 mA and 4.7V is the typical HG voltage.  
Maximum power dissipation within the LM3401 is limited by ambient temperature. Use the following equation to  
determine maximum allowable power dissipation, or maximum allowable ambient temperature:  
(125°C œ Ta_max  
)
PDmax  
=
qJA  
(16)  
Where θJA is the typical thermal resistance of 151°C/W. In general, keeping the gate capacitance below 2000 pF  
is recommended to keep propagation delay, switching losses, and power losses low. PFETs with very fast rise  
times may cause excessive ringing at the HG node when combined with the inductance of a long HG trace. To  
reduce this ringing, a small resistor can be added between HG and the PFET gate. A typical value of 10is  
usually sufficient.  
CURRENT LIMIT OPERATION  
The LM3401 current limit monitors inductor current at each switching cycle. Current is sensed across the RDS(on)  
of the PFET at the CS pin. When the PFET current exceeds the current limit threshold, HG is turned off and the  
current limit latch is set. In current limit mode, the PFET is held off until the inductor current falls to near zero.  
IL  
500 mA/Div  
VCS  
10V/Div  
10 ms/DIV  
Figure 19. Typical Current Limit Operation  
The current limit threshold is adjusted with a setting resistor, shown as R3 in the typical application schematic,  
connected from ILIM to the VIN node of the PFET.  
An internal 5.5 µA (typical) current sink at the ILIM pin creates a voltage across the setting resistor. This voltage  
is compared to the sensed voltage at the CS pin. Current limit is activated and latched when the voltage at the  
CS pin drops below the voltage at the ILIM pin.  
The current limit setting resistor, R3, can be calculated from the equation below. The minimum current limit  
occurs at maximum RDS(on) and minimum IILIM value.  
ILIM_PK x RDS(on)  
R3 =  
4 mA  
(17)  
Where 4 µA is the minimum IILIM value and ILIM_PK is the peak inductor current limit threshold. ILIM_PK should be  
set somewhat higher than the maximum LED current, ILED_PK, to avoid false current limit triggering. The  
temperature variation of the PFET RDS(on) will result in an equivalent variation in current limit. To ensure that  
current limit is not falsely triggered, use the highest RDS(on) value over the temperature range to set the R3 value.  
12  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
When current limit is activated, the HG driver remains off until the CS voltage rises to -130 mV (typical). This  
ensures that inductor current is close to 0A when the current limit latch is released. The actual minimum inductor  
current will depend on the catch diode forward voltage characteristic, which determines the CS pin negative  
voltage.  
Although the LM3401 monitors voltage at the CS pin to reset the current limit, there is also a minimum off time of  
typically 3 µs. When current limit is triggered, HG will be turned off for at least this amount of time, regardless of  
the inductor current.  
The current limit comparator imposes typically 150 ns of blanking time at the beginning of each switching cycle.  
This ensures that the PFET is fully on and any switch node ringing has dissipated when the current is sensed.  
However a slower PFET may not fully turn on within the blanking time. In this case, the current limit threshold  
must be increased or a faster PFET must be used.  
Because the current limit comparator has a limited differential voltage capability, a maximum of 1Mis  
recommended for R3.  
PWM DIMMING  
The DIM pin is a CMOS compatible input for a PWM (Pulse Width Modulation) dimming signal. PWM dimming  
adjusts LED brightness by varying the duty cycle, which varies the average LED current. This type of dimming is  
recommended, because LED peak current remains constant regardless of brightness, which results in more  
predictable LED color and performance as compared to analog dimming. Figure 20 shows a typical PWM  
dimming waveform.  
When DIM is high (above 2V typically) the LM3401 operates normally and the LED string will be driven at the set  
current. When pulled low, DIM will disable HG and switching will stop. The PFET will remain off as long as DIM is  
low. When the LM3401 is powered up or enabled with the DIM pin, the LED current will very rapidly increase to  
its set point.  
There is minimal delay time between a DIM logic change and HG switching. Also, because the LM3401 requires  
no output capacitor, minimal time is required to ramp-up the LED current. This allows for low duty cycle, high  
frequency PWM dimming signals to be used.  
A dimming frequency greater than 100 Hz is recommended to avoid visible flicker. The LM3401 is capable of  
PWM dimming frequencies up to 10 kHz with a duty cycle between 1 and 100%. Any DIM signal pulse width  
longer than 100 ns can be used. In most cases, the maximum dimming frequency is limited by the inductor size  
and input voltage to anode voltage ratio. Less inductance and higher VIN/VANODE ratios will allow the inductor and  
LED current to increase faster, thus allowing for a faster PWM frequency, or lower dimming duty cycle.  
ILED  
200 mA/Div  
VCS  
20V/Div  
DIM  
2V/Div  
2 ms/DIV  
Figure 20. Typical PWM DIM Signal and LED Current L = 22 µH  
DIM is a high impedance pin, which is somewhat sensitive to noise. If there is excessive switching noise at the  
DIM pin, a small bypass filter capacitor can be used. See the Ripple Reduction Capacitor section. VIN can also  
be used for PWM dimming when a logic signal is not available. In this mode of operation DIM should be  
connected to VIN through a 10 kresistor. There is typically 10 us of startup delay time when using VIN for  
dimming. Depending on the application, this delay limits the maximum dimming frequency to typically several  
hundred Hz.  
Higher dimming frequency and lower dimming duty cycle can be achieved by using a FET switch in parallel with  
the LED string. This is shown in Figure 21 below.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM3401  
 
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
L1  
DIM signal  
to  
SNS  
R1  
Figure 21. Parallel FET Dimming  
When the FET switches on, inductor current flows through the FET and the regulated average inductor current is  
unchanged. Using this method, inductor current rise time does not limit the dimming frequency. A ripple reduction  
capacitor should not be used with the parallel FET dimming method since it significantly slows the LED current  
rise time. However, a small noise filter capacitor can be used.  
INPUT CAPACITOR SELECTION  
An input bypass capacitor is required between VIN and ground. The input capacitor prevents large voltage  
transients at the input and provides the instantaneous current when the PFET turns on. The important  
parameters for the input capacitor are the voltage rating and the RMS current rating. Follow the manufacturer’s  
recommended voltage de-rating. RMS current can be calculated with the equation below. The highest RMS  
current will occur around 50% duty cycle.  
VANODE  
VANODE  
VIN  
Irms = ILED  
x
x 1 -  
VIN  
(18)  
A ceramic input capacitor must be placed close to the drain of the PFET. This minimizes the trace inductance  
between VIN and the PFET, which is a source of switching noise. If the input capacitor is not properly located,  
switching noise can cause current limit and stability problems.  
CATCH DIODE SELECTION  
The catch diode provides the current path to the LED string during the PFET off-time and must be rated higher  
than the average current through the diode, which can be calculated as shown:  
IDIODE = ILED x (1-D)  
(19)  
The peak reverse voltage across the catch diode is approximately equal to the input voltage. Therefore, the  
diode’s peak reverse voltage rating should be larger than the maximum input voltage, plus some safety margin.  
A Schottky diode is recommended because its low forward voltage maximizes efficiency. For high temperature  
applications, diode leakage current may become significant and require a higher reverse voltage rating or a low  
leakage diode to achieve acceptable performance.  
LED CURRENT ACCURACY  
The total accuracy of average LED current is affected by several factors, both internal and external to the  
LM3401. Total static accuracy is the part-to-part variation and can be calculated from the equation below:  
RSNS%2 + VSNS%  
2
ILED_Acc%  
=
(20)  
Where the worst case VSNS% is ±6%, and RSNS% is the sense resistor accuracy. Because these factors are not  
correlated, the RSS (root-sum-square) method of calculation is used.  
The LED current will also show some variation with input voltage. This is primarily due to propagation delay and  
the dynamic resistance of the LED. In longer on-time operation, the error due to dynamic resistance tends to  
dominate, while at shorter on-time, the propagation delay will dominate. These two effects counteract each other,  
resulting in typical regulation curves similar to those shown in Figure 22. A larger inductor will reduce the error  
due to propagation delay and will result in better overall line regulation.  
14  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
395  
385  
375  
100%  
Duty  
50%  
Duty  
365  
355  
33 mH  
68 mH  
100 mH  
345  
335  
5
10  
15  
20  
25  
30  
35  
INPUT VOLTAGE (V)  
Figure 22. LED DC current line regulation LED Vf = 7.0V  
For most applications, the average LED current will be the highest at the maximum input voltage and lowest at a  
duty cycle somewhat greater than 50%. The maximum LED current variation can be estimated as:  
(VIN_max œ VIN_60%) x delay  
ILED_reg (A) =  
2 x L  
(21)  
Where VIN_60% is the input voltage corresponding to a duty cycle of 60%. Since the actual input voltage where  
minimum LED current occurs varies with the application, this is an approximation. As the duty cycle approaches  
100%, the average LED current will approach ILED_PK. The average LED current will be the highest at the point  
that 100% duty cycle is reached. In the case that 100% duty cycle can occur, maximum LED current variation is  
calculated as:  
SNSHYS  
ILED_var_100% (A) =  
RSNS  
(22)  
PCB LAYOUT  
PCB layout is very important in all switching regulator designs. Poor layout can cause EMI problems, excess  
switching noise, and improper device operation. The following key points should be followed to ensure a quality  
layout.  
Traces carrying large AC currents should be as wide and short as possible to minimize trace inductance. These  
areas, shown as darker regions in Figure 23, are:  
VIN between the input capacitor and PFET  
GND between the input capacitor and catch diode  
The switch node  
As shown in Figure 23, place the input capacitor ground as close as possible to the anode of the catch diode.  
The VIN side of the input capacitor should be placed close to the top of the PFET.  
The CS node (the node connecting the catch diode cathode, inductor, and PFET source) should be kept as small  
as possible. This node is one of the main sources for radiated EMI. The SNS and HYS pins are sensitive to  
noise. Be sure to route the SNS trace away from the inductor and the switch node, which are sources of noise.  
The SNS and HYS resistors should be placed close to their respective pins and grounded close to the GND pin.  
An isolated ground area shown as SGND in Figure 23 is recommended for the SNS, HYS, and GND pin  
connections. The two ground areas, GND and SGND, should be connected on an inner or bottom layer. This  
connection is shown as two vias in Figure 23.  
A large, continuous ground plane can also be used, as long as the input capacitor and catch diode ground area  
is somewhat isolated.  
The HG trace should be kept as short as possible to minimize inductance and gate ringing (See HG and PFET  
selection section).  
Finally, for accurate current limit sensing, the CS pin and ILIM resistor connections should be made at the PFET  
pads, via separate traces.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM3401  
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
LED+  
GND  
CS  
IC  
SGND  
VIN  
Figure 23. Example PCB Layout  
DESIGN EXAMPLE  
V
= 18V to 35V  
IN  
VIN  
ILIM  
R3  
C1  
2.2 mF  
50V  
46k  
Q1  
40V  
1.8A  
DIM  
HG  
CS  
LM3401  
+
690 mA  
± 5%  
C2*  
1 mF  
50V  
L1  
33 mH  
D1  
40V  
1A  
HYS  
GND  
R2  
5.6k  
1%  
SNS  
R1  
290m  
1%  
* Optional Component  
0.25W  
Figure 24. Example Circuit  
The following design example is intended to illustrate the step-by-step design process described in the previous  
sections. The example refers to the circuit in Figure 24, and the results are summaized in Table 1. The resulting  
circuit will drive a string of 2 Luxeon V Star LEDs at 700 mA from an input voltage between 18V and 35V.  
The example LEDs have a maximum DC current rating of 700 mA, a forward voltage of 5.4V to 8.3V, and a  
maximum peak current rating of 1.0A.  
First, set the LED DC current with R1:  
200 mV  
= 286 mW  
R1 =  
700 mA  
(23)  
(24)  
And the required wattage is:  
WRSNS = 700 mA2 x 0.286 = 140 mW  
Select a standard value of 290 m, 1/4W resistor, which will result in a 690 mA LED DC current.  
To keep the peak LED current below ILED_MAX, the maximum hysteresis is determined by:  
SNSHYS_MAX = (1.0A - .690A) x 0.29= 90 mV  
(25)  
(26)  
Which gives a maximum R2 value of:  
90 mV x 5  
= 22.48 kW  
R2 =  
20 mA  
Next, a preferred switching frequency of 1 MHz is selected for this example.  
16  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
 
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
Since this is a relatively high switching frequency, a low starting point of 25 mV is selected for the comparator  
hysteresis to maintain good line regulation. This will allow a larger inductor at the same operating frequency and  
is well below the calculated maximum. Set a preliminary hysteresis value with R2:  
25 mV x 5  
= 6.25 kW  
R2 =  
20 mA  
(27)  
For 1 MHz switching frequency and 25 mV hysteresis, inductance can be calculated. Because frequency varies  
with input voltage and LED forward voltage, for this calculation, assume typical values of 24V and 13.6V  
respectively, and a PFET delay time of 15 ns.  
0.60  
-(2 x 60 ns)  
x [0.29 x (24V - 13.8V)]  
2 x 25 mV  
1 MHz  
= 29.6 mH  
L =  
(28)  
Select a value of 33 µH and the hysteresis can be adjusted downward by re-arranging the same frequency  
equation:  
0.60  
-(2 x 60 ns)  
x [0.29 x (24V - 13.8V)]  
1 MHz  
SNSHYS  
=
= 22.4 mV  
2 x 33 mH  
(29)  
This gives a new R2 value of 5.6k. This will result in a typical operating frequency of 1 MHz at 24VIN. Next, it  
must be verified that the peak LED current is within the maximum allowed.  
For now, the design is created without using a ripple reduction capacitor. Therefore, LED ripple current is equal  
to inductor ripple current. Maximum LED ripple current is calculated as:  
(35V œ 11V) x 2 x 60 ns  
2 x 22.4 mV  
+
= 227 mA  
ILED_RIP  
=
33 mH  
0.29W  
(30)  
Note that the maximum input voltage and minimum anode voltage were used for this worst case calculation.  
Now peak LED current can be determined:  
227 mA  
690 mA +  
=
= 804 mA  
ILED_PK  
2
(31)  
This confirms that the component selections will keep LED peak current below the maximum LED rating. Notice if  
a ripple reduction capacitor is chosen, the peak inductor current is still 804mA, but the LED peak current is  
reduced. Therefore, the inductor must be rated for a DC current greater than 804 mA. Now that the inductor  
value has been selected and verified, the operating frequency range can be determined. Lowest operating  
frequency occurs at minimum input voltage and maximum anode voltage. For this example the values are 18V  
minimum input and 16.8V maximum anode voltage (200 mV SNS voltage plus the maximum LED forward  
voltages) and calculate:  
0.96  
= 219 kHz  
fSW  
=
2 x 22.4 mV x 33 mH  
0.29W x (18V œ 16.8V)  
+ (2 x 60 ns)  
(32)  
At duty cycles close to 100% (96% in this case) the frequency equation becomes less accurate. Actual switching  
frequency will typically be lower than the calculated value.  
To estimate maximum operating frequency, calculate using a VIN which corresponds to a duty cycle of 25%. In  
this particular example, 25% duty cycle would occur above 35VIN (VIN = (VOUT + VDIODE)/0.25 = 69.9V), therefore  
maximum frequency will occur at the maximum input voltage corresponding to a duty cycle of 50% (D = (VOUT  
VDIODE)/35V = 0.50):  
+
0.50  
= 1.25 MHz  
fSW  
=
2 x 22.4 mV x 33 mH  
0.29W x (35V œ 16.8V)  
+ (2 x 60 ns)  
(33)  
Using the equation in the Switching Frequency section, it can be verified that this maximum frequency is within  
the minimum on-time limited frequency (and below the maximum operating frequency).  
The maximum frequency calculation is only an estimate, the actual maximum should be verified on the bench.  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM3401  
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
The next step is to select a PFET. The critical PFET parameters must meet the minimum circuit requirements of  
35V input, 804 mA DC current, and adequate gate drive voltage rating.  
Therefore, select a PFET with the following ratings:  
40V maximum VDS  
–20V maximum VGS  
1.8A continuous Id  
130mohm maximum RDS(on)  
Typically the PFET may be only sourcing 690 mA for about 50% duty cycle. However, at minimum input voltage  
the duty cycle will increase close to 100%. Therefore, the PFET Id rating should be based on its continuous, not  
pulsed, current capability.  
Now the power dissipation should be verified. Assume the selected PFET has a gate capacitance of 200 pF,  
which is within recommendation, and a gate charge of 15 nC. Maximum frequency and input voltage are used for  
a worst case calculation:  
IG = 15 nC x 1.25 MHz = 18.75 mA PD = (1.05 mA x 35V) + (18.75 mA x 4.7V) = 0.125W Ta_max = 125°C - (151°C/W x  
0.125W) = 106°C  
(34)  
With the selected components, the maximum ambient temperature is above 100°C, sufficient for most  
applications. Note that this limit applies to the IC only and depends on the pcb type and size. Lower ambient  
temperature limits may apply to the PFET and other components.  
Now the current limit threshold is set with R3 at 0.95A, which is 120% of the maximum peak current. The worst  
case RDS(on) value at 125°C is used, which is 150% of nominal, and the worst case ILIM pin sink current.  
0.95A x 195 mW  
= 46.3 kW  
R3 =  
4 mA  
(35)  
The typical current limit threshold will be higher than 1A and can be determined by using typical values for RDS(on)  
and ILIM sink current. The PFET, inductor, and catch diode must be able to handle this current for short periods of  
time.  
The next component is the input capacitor, C1. A low ESR ceramic capacitor must be used and properly located  
on the PCB. For this design, the capacitor working voltage must be rated to at least 40V, and 50V is  
recommended. A 2.2 µF input capacitor should be sufficient, assuming a good PCB layout. The worst case input  
RMS current is calculated below 50% at duty cycle:  
13.8V  
27.6V  
13.8V  
27.6V  
x
Irms = 690 mA x  
1 -  
= 345 mA  
(36)  
It must be verified that the selected input capacitor can tolerate this current. An additional bulk capacitor placed  
at the input voltage connection is also recommended.  
Next, select D1, the catch diode. A Schottky diode should be used. The reverse voltage rating must be greater  
than 35V and the average forward current rating must be greater than:  
IDIODE = 690 mA x (1 - 0.31) = 480 mA  
(37)  
This calculation assumes the minimum duty cycle, which is maximum input voltage and minimum anode voltage.  
The diode must also be able to handle peak currents as high as the current limit threshold for short periods. We  
select a 1A diode to ensure adequate capability over temperature.  
If desired, a ripple reduction capacitor can be added at C2 to reduce the LED ripple current. A minimum starting  
value of 100 nF is recommended for C2, and a value of 1 µF will work well in most applications. In case of an  
open LED failure, the ripple reduction capacitor must be rated to the maximum input voltage of 35V. If C2 is  
used, LED ripple current is reduced and the calculated maximum R2 value no longer applies as a limit.  
Finally, check the accuracy. The static accuracy is calculated below using a 1% sense resistor.  
2 = 6.1%  
0.012 + 0.06  
ILED_Acc%  
=
(38)  
To estimate line regulation, maximum input voltage and 60% duty cycle input voltage is used. For this example  
60% duty cycle occurs at (13.6V + 0.2V)/0.60 or 23V input.  
(35V œ 23V) x 60 ns  
ILED_reg  
=
= 11 mA  
2 x 33 mH  
(39)  
18  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
LM3401  
www.ti.com  
SNVS516C AUGUST 2007REVISED MAY 2013  
This is the estimated amount of LED current variation over the input voltage range. If the minimum input voltage  
was below 17V, the LED current variation would be calculated using the 100% duty cycle equation.  
Table 1. Design Example Summary  
Parameter  
R1  
Value  
Result  
Comment  
1%  
290 mΩ  
690 mA DC  
R2  
5.6 kΩ  
±22.4 mV hysteresis  
VHYS = 112 mV(adjustable)  
L1  
33 µH, >804 mA  
fsw  
-
1MHz typical  
227 mA p-p  
804 mA  
219 kHz min  
worst case  
worst case  
Iripple  
-
-
ILED_PK  
PFET  
R3  
40V, 1.8A, 130 mΩ  
46 kΩ  
0.95A minimum peak current limit  
>345 mA rms  
adjustable  
C1  
2.2 µF, 50V ceramic  
40V, 1A  
D1  
Schottky  
part-to-part  
vs VIN  
Accuracy  
Regulation  
Ta_max  
C2  
±6.1%  
±42 mA max variation  
11 mA variation  
1.6%  
108°C  
worst case  
optional  
1.0 µF, 50V  
LED ripple reduction  
Copyright © 2007–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM3401  
 
LM3401  
SNVS516C AUGUST 2007REVISED MAY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision B (May 2013) to Revision C  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 19  
20  
Submit Documentation Feedback  
Copyright © 2007–2013, Texas Instruments Incorporated  
Product Folder Links: LM3401  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
PACKAGING INFORMATION  
Orderable Device  
LM3401MM/NOPB  
LM3401MMX/NOPB  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
VSSOP  
VSSOP  
DGK  
8
8
1000  
Green (RoHS  
& no Sb/Br)  
CU SN | Call TI  
Level-1-260C-UNLIM  
SNHB  
SNHB  
ACTIVE  
DGK  
3500  
Green (RoHS  
& no Sb/Br)  
CU SN  
Level-1-260C-UNLIM  
-40 to 125  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2013  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3401MM/NOPB  
LM3401MMX/NOPB  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000  
3500  
178.0  
330.0  
12.4  
12.4  
5.3  
5.3  
3.4  
3.4  
1.4  
1.4  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
11-Oct-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3401MM/NOPB  
LM3401MMX/NOPB  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
1000  
3500  
210.0  
367.0  
185.0  
367.0  
35.0  
35.0  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM3401N

Voltage-Feedback Operational Amplifier
ETC

LM3401_08

Hysteretic PFET Controller for High Power LED Drive
NSC

LM3402

0.5A Constant Current Buck Regulator for Driving High Power LEDs
NSC

LM3402

LM3402/LM3402HV 0.5A Constant Current Buck Regulator for Driving High Power LEDs
TI

LM34024DA

IC VREG FIXED POSITIVE REGULATOR, MBFM2, TO-3, 2 PIN, Fixed Positive Single Output Standard Regulator
NXP

LM3402HV

0.5A Constant Current Buck Regulator for Driving High Power LEDs
NSC

LM3402HV

0.5A Constant Current Buck Regulator for Driving High Power LEDs
TI

LM3402HVMM

0.5A Constant Current Buck Regulator for Driving High Power LEDs
NSC

LM3402HVMM

0.5A Constant Current Buck Regulator for Driving High Power LEDs
TI

LM3402HVMM/NOPB

75-V 0.5A constant current buck LED driver 8-VSSOP -40 to 125
TI

LM3402HVMMX

0.5A Constant Current Buck Regulator for Driving High Power LEDs
NSC

LM3402HVMMX

0.5A Constant Current Buck Regulator for Driving High Power LEDs
TI