LM3421-Q1 [TI]

具有串联 DIM FET 驱动器的汽车类 N 沟道恒流 LED 控制器;
LM3421-Q1
型号: LM3421-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有串联 DIM FET 驱动器的汽车类 N 沟道恒流 LED 控制器

驱动 控制器 驱动器
文件: 总77页 (文件大小:2589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
LM342x-Q1 N -Channel Controllers for Constant-Current LED Drivers  
1 Features  
3 Description  
The LM3421-Q1 and LM3423-Q1 family of devices  
are versatile high voltage N-channel MOSFET  
controllers for LED drivers. They can be easily  
configured in buck, boost, buck-boost and SEPIC  
topologies. This flexibility, along with an input voltage  
rating of 75 V, makes the these controllers ideal for  
illuminating LEDs in a large family of applications.  
1
AEC Qualified for Automotive Applications  
Device Temperature Grade 1: 40°C TA ≤  
125°C (LM3421-Q1 and LM3423-Q1)  
Device Temperature Grade 0: 40°C TA ≤  
150°C (LM3421-Q0 and LM3423-Q0)  
VIN Range From 4.5 V to 75 V  
Adjustable high-side current sense voltage allows for  
tight regulation of the LED current with the highest  
efficiency possible. The LM3421-Q1 and LM3423-Q1  
devices use predictive off-time (PRO) control, which  
is a combination of peak current-mode control and a  
predictive off-timer. This method of control eases the  
design of loop compensation while providing inherent  
input voltage feed-forward compensation.  
High-Side Adjustable Current Sense  
2-, 1-A Peak MOSFET Gate Driver  
Input Undervoltage and Output Overvoltage  
Protection  
PWM and Analog Dimming  
Cycle-by-Cycle Current Limit  
Programmable Switching Frequency  
Zero Current Shutdown and Thermal Shutdown  
The LM3421-Q1 and LM3423-Q1 devices include a  
high-voltage start-up regulator that operates over a  
wide input range of 4.5 V to 75 V. The internal PWM  
controller is designed for adjustable switching  
frequencies of up to 2 MHz, thus enabling compact  
solutions.  
LED Output Status Flag (LM3423-Q1 and  
LM3423-Q0 Only)  
Fault Status Flag and Timer(LM3423-Q1 and  
LM3423-Q0 Only)  
Device Information(1)  
2 Applications  
PART NUMBER  
LM3421-Q1  
PACKAGE  
HTSSOP (16)  
HTSSOP (20)  
BODY SIZE (NOM)  
5.00 mm × 4.40 mm  
6.50 mm × 4.40 mm  
LED Drivers: Buck, Boost, Buck-Boost, and  
SEPIC  
LM3423-Q1  
Indoor and Outdoor Area SSL  
Automotive  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
General Illumination  
Constant-Current Regulators  
Typical Boost Application  
VIN  
1
2
3
4
5
6
7
8
VIN  
HSN 16  
HSP 15  
RPD 14  
IS 13  
EN  
COMP  
CSH  
RCT  
AGND  
OVP  
nDIM  
ILED  
VCC 12  
GATE 11  
PGND 10  
PWM  
DDRV  
9
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
7
Features.................................................................. 1  
9
Application and Implementation ........................ 28  
9.1 Application Information............................................ 28  
9.2 Typical Applications ................................................ 32  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Device Comparison ............................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 5  
7.1 Absolute Maximum Ratings ..................................... 5  
7.2 ESD Ratings ............................................................ 6  
7.3 Recommended Operating Conditions....................... 6  
7.4 Thermal Information.................................................. 6  
7.5 Electrical Characteristics .......................................... 7  
7.6 Typical Characteristics ........................................... 11  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
10 Power Supply Recommendations ..................... 65  
10.1 General Recommendations .................................. 65  
10.2 Input Supply Current Limit .................................... 65  
11 Layout................................................................... 65  
11.1 Layout Guidelines ................................................. 65  
11.2 Layout Example .................................................... 66  
12 Device and Documentation Support ................. 67  
12.1 Device Support...................................................... 67  
12.2 Related Links ........................................................ 67  
12.3 Community Resources.......................................... 67  
12.4 Trademarks........................................................... 67  
12.5 Electrostatic Discharge Caution............................ 67  
12.6 Glossary................................................................ 67  
8
13 Mechanical, Packaging, and Orderable  
Information ........................................................... 67  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DATE  
REVISION  
NOTES  
Initial release of separate data sheet for atomotive grade devices. For revision history  
before December 2018, see the LM3421 and LM3423 data sheet.  
Changed EN Pulldown Resistance maximum value for LM3421-Q1 and LM3423-Q1 from:  
1.3 MΩ to: 2.85 MΩ in the table.  
July 2019  
*
Changed EN Pulldown Resistance maximum value for LM3421-Q0 and LM3423-Q0 from:  
1.3 MΩ to: 3.15 MΩ in the table.  
Changed EN Pulldown Resistance minimum value from: 0.45 MΩ to: 0.245 MΩ in the table.  
2
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
5 Device Comparison  
Table 1. Device Comparison  
AEC-Q100 TEMPERATURE  
GRADE  
QUASI-PART NUMBER  
TEMPERATURE RANGE, TA  
LM3421Q0  
LM3421Q1  
LM3423Q0  
LM3423Q1  
Grade 0  
Grade 1  
Grade 0  
Grade 1  
–40°C to +150°C  
–40°C to +125°C  
–40°C to +150°C  
–40°C to +125°C  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
6 Pin Configuration and Functions  
PWP Package  
16-Pin HTSSOP  
Top View  
PWP Package  
20-Pin HTSSOP  
Top View  
VIN  
EN  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
HSN  
HSP  
RPD  
IS  
VIN  
EN  
1
2
3
4
5
6
7
8
9
10  
20  
19  
18  
17  
16  
15  
HSN  
HSP  
RPD  
IS  
COMP  
CSH  
COMP  
CSH  
RCT  
RCT  
VCC  
GATE  
PGND  
DDRV  
VCC  
GATE  
AGND  
OVP  
AGND  
OVP  
nDIM  
FLT  
17 Thermal  
Pad  
14  
PGND  
DDRV  
IADJ  
nDIM  
13  
21 Thermal  
Pad  
12  
11  
TIMR  
VREF  
Pin Functions  
PIN  
I/O(1)  
FUNCTION  
NAME  
LM3423-Q1 LM3421-Q1  
Analog ground. Connect to PGND through the DAP copper pad to provide ground return  
for CSH, COMP, RCT, and TIMR.  
AGND  
COMP  
6
3
6
3
G
I
Compensation. Connect a capacitor to AGND to set the compensation.  
Current sense high. Connect a resistor to AGND to set the signal current. For analog  
dimming, connect a controlled current source or a potentiometer to AGND as detailed in  
the Analog Dimming section.  
CSH  
4
4
I
DDRV  
DPOL  
13  
12  
9
O
I
Dim gate drive output. Connect to the gate of the dimming MOSFET.  
Dim polarity. Connect to AGND if dimming with a series P-channel MOSFET or leave  
open when dimming with series N-channel MOSFET.  
Enable. Connect to AGND for zero current shutdown or apply more than 2.4 V to enable  
device.  
EN  
2
2
I
Fault flag. Connect to pullup resistor from VIN and N-channel MOSFET open-drain  
output is high when a fault condition is latched by the timer.  
FLT  
9
11  
16  
I
O
I
GATE  
HSN  
15  
20  
Main gate drive output. Connect to the gate of the main switching MOSFET.  
LED current sense negative. Connect through a series resistor to the negative side of  
the LED current sense resistor.  
LED current sense positive. Connect through a series resistor to the positive side of the  
LED current sense resistor.  
HSP  
IS  
19  
17  
11  
15  
13  
I
I
Main switch current sense. Connect to the drain of the main N-channel MOSFET switch  
for RDS-ON sensing or to a sense resistor installed in the source of the same device.  
LED ready flag. Connect to pullup resistor from VIN and N-channel MOSFET open-drain  
output pulls down when the LED current is not in regulation.  
LRDY  
O
Dimming input and undervoltage protection. Connect a PWM signal for dimming as  
detailed in the PWM Dimming section and/or a resistor divider from VIN to program input  
undervoltage lockout (UVLO). Turnon threshold is 1.24 V and hysteresis for turnoff is  
provided by a 23-µA current source.  
nDIM  
OVP  
8
7
8
7
I
I
Overvoltage protection. Connect to a resistor divider from VO to program output  
overvoltage lockout (OVLO). Turnoff threshold is 1.24 V and hysteresis for turnon is  
provided by 23-µA current source.  
Power ground. Connect to AGND through the DAP copper pad to provide ground return  
for GATE and DDRV.  
PGND  
RCT  
14  
5
10  
5
G
I
Resistor capacitor timing. External RC network sets the predictive off-time and thus the  
switching frequency.  
(1) G = Ground, I = Input, O = Output  
Submit Documentation Feedback  
4
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Pin Functions (continued)  
PIN  
I/O(1)  
FUNCTION  
NAME  
LM3423-Q1 LM3421-Q1  
Resistor pulldown. Connect the low side of all external resistor dividers (VIN UVLO,  
OVP) to implement zero-current shutdown.  
RPD  
18  
10  
14  
I
I
I
Fault timer. Connect a capacitor to AGND to set the time delay before a sensed fault  
condition is latched.  
TIMR  
VIN  
Input voltage. Bypass with 100-nF capacitor to AGND as close to the device as possible  
in the printed-circuit-board layout.  
1
1
VCC  
16  
12  
I
Internal regulator output. Bypass with 2.2-µF to 3.3-µF ceramic capacitor to PGND.  
Thermal PAD on bottom of IC. Star ground, connecting AGND and PGND.  
Star ground, connecting AGND and PGND.  
Thermal PAD  
DAP  
G
G
DAP (21)  
DAP (17)  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
MAX  
UNIT  
V
76  
VIN, EN, RPD, nDIM  
OVP, HSP, HSN, LRDY, FLT, DPOL  
RCT  
–1 continuous  
–0.3  
mA  
V
76  
–100 continuous  
–0.3  
µA  
V
76  
5 continuous  
76  
–1 continuous  
–0.3  
mA  
V
IS  
–2 for 100 ns  
–1 continuous  
–0.3  
mA  
V
VCC  
8
–0.3  
7
100 continuous  
6
V
TIMR  
–100 continuous  
–0.3  
µA  
V
COMP, CSH  
GATE, DDRV  
PGND  
–200 continuous  
–0.3  
200 continuous  
VCC  
µA  
V
mA  
V
–2.5 for 100 ns  
–1 continuous  
–0.3  
VCC+ 2.5 for 100 ns  
1 continuous  
0.3  
–2.5 for 100 ns  
2.5 for 100 ns  
Continuous power dissipation  
Maximum junction temperature  
Internally Limited  
Internally Limited  
(3)  
Maximum lead temperature (solder and reflow)  
260  
150  
°C  
°C  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) Refer to http://www.ti.com/packaging for more detailed information and mounting techniques.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
7.2 ESD Ratings  
VALUE  
±2000  
±750  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
V
V(ESD)  
Electrostatic discharge  
All Pins  
Pin 4  
Charged-device model (CDM), per AEC  
Q100-011  
±500  
(1) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
7.3 Recommended Operating Conditions  
MIN  
MAX  
125  
150  
75  
UNIT  
°C  
Operating junction temperature, TJ  
Operating junction temperature, TJ  
Input voltage, VIN  
LM3421-Q1 , LM3423-Q1  
LM3421-Q0, LM3423-Q0  
40  
40  
4.5  
°C  
V
7.4 Thermal Information  
LM3421-Q1  
LM3423-Q1  
THERMAL METRIC(1)  
PWP (HTSSOP)  
PWP (HTSSOP)  
UNIT  
16 PINS  
38.9  
23.1  
16.8  
0.6  
20 PINS  
36.7  
21.5  
18  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
16.6  
1.7  
17.8  
1.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
7.5 Electrical Characteristics  
VIN = 14, 40°C TJ 150°C unless otherwise specified. Minimum and maximum limits are specified through test, design, or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
START-UP REGULATOR  
TEST CONDITIONS  
MIN  
6.3  
20  
TYP  
MAX  
UNIT  
ICC = 0 mA  
7.35  
VCCREG  
VCC regulation  
V
ICC = 0 mA, TA = 25°C  
VCC = 0 V  
6.9  
25  
ICCLIM  
VCC current limit  
mA  
VCC = 0 V, TA = 25°C  
LM3421-Q1,  
LM3423-Q1  
3
VEN = 3 V, Static  
IQ  
Quiescent current  
Shutdown current  
LM3421-Q0,  
LM3423-Q0  
3.5  
mA  
µA  
VEN = 3 V, Static, 40°C TJ 125°C  
VEN = 0 V  
2
1
ISD  
VEN = 0 V, TA = 25°C  
0.1  
VCC SUPPLY  
VCC Increasing  
4.5  
VCC Increasing, TA = 25°C  
VCC Decreasing  
4.17  
VCCUV  
VCC UVLO Threshold  
VCC UVLO Hysteresis  
V
V
3.7  
VCC Decreasing, TA = 25°C  
TA = 25°C  
4.08  
0.1  
VCCHYS  
ENABLE THRESHOLDS  
LM3421-Q1,  
LM3423-Q1  
2.4  
VEN Increasing  
V
ENST  
EN start-up threshold  
LM3421-Q0,  
LM3423-Q0  
2.75  
VEN Increasing, TA = 25°C  
VEN Decreasing  
1.75  
0.8  
ENST  
EN start-up threshold  
EN start-up hysteresis  
V
V
VEN Decreasing, TA = 25°C  
TA = 25°C  
1.63  
0.1  
ENSTHYS  
LM3421-Q1,  
LM3423-Q1  
0.245  
0.245  
2.85  
3.15  
VEN = 1 V  
REN  
EN pulldown resistance  
LM3421-Q0,  
LM3423-Q0  
MΩ  
VEN = 1 V, TA = 25°C  
0.82  
CSH THRESHOLDS  
CSH high fault  
CSH Increasing, TA = 25°C  
CSH increasing, TA = 25°C  
1.6  
1
V
V
CSH low condition on LRDY  
Pin  
LM3423-Q1,  
LM3423-Q0  
OV THRESHOLDS  
OVP Increasing  
1.185  
1.285  
OVPCB  
OVP OVLO threshold  
V
OVP Increasing, TA = 25°C  
1.24  
23  
LM3421-Q1,  
LM3423-Q1  
20  
20  
25  
26  
OVP Active (high)  
OVPHYS  
OVP hysteresis source current  
LM3421-Q0,  
LM3423-Q0  
µA  
OVP Active (high), TA = 25°C  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Electrical Characteristics (continued)  
VIN = 14, 40°C TJ 150°C unless otherwise specified. Minimum and maximum limits are specified through test, design, or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
DPOL THRESHOLDS  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DPOL Increasing  
2
2.6  
DPOLTHRSH DPOL logic threshold  
V
DPOL Increasing, TA = 25°C  
2.3  
1200  
RDPOL  
DPOL pullup resistance  
kΩ  
TA = 25°C  
500  
FAULT TIMER  
LM3421-Q1,  
LM3423-Q1  
1.185  
1.185  
1.285  
1.29  
V
VFLTTH  
Fault threshold  
LM3421-Q0,  
LM3423-Q0  
TA = 25°C  
TA = 25°C  
1.24  
11.5  
LM3421-Q1,  
LM3423-Q1  
10  
10  
13  
IFLT  
FAULT pin source current  
LM3421-Q0,  
LM3423-Q0  
µA  
13.5  
ERROR AMPLIFIER  
w/r/t to AGND  
1.21  
1.26  
VREF  
CSH reference voltage  
V
w/r/t to AGND, TJ = 25°C  
1.235  
0
Error amplifier input bias  
current  
TJ = 25°C  
–0.6  
22  
0.6  
35  
36  
µA  
LM3421-Q1,  
LM3423-Q1  
COMP sink or source current  
LM3421-Q0,  
LM3423-Q0  
µA  
22  
TJ = 25°C  
30  
100  
Transconductance  
Linear input range  
TJ = 25°C  
µA/V  
mV  
(1), TJ = 25°C  
±125  
(1)  
–6dB Unloaded Response  
MIN = TJ = 25°C  
,
Transconductance bandwidth  
0.5  
1
MHz  
OFF TIMER  
LM3421-Q1,  
LM3423-Q1  
75  
90  
RCT = 1 V through 1 kΩ  
tOFF(min)  
Minimum OFF-time  
LM3421-Q0,  
LM3423-Q0  
ns  
RCT = 1 V through 1 k, TJ = 25°C  
LM3421-Q1,  
35  
36  
120  
125  
LM3423-Q1  
RRCT  
RCT reset pulldown resistance  
VIN/25 reference voltage  
LM3421-Q0,  
LM3423-Q0  
TJ = 25°C  
LM3421-Q1,  
LM3423-Q1  
540  
540  
585  
590  
VIN = 14 V  
VRCT  
LM3421-Q0,  
LM3423-Q0  
mV  
VIN = 14 V, TJ = 25°C  
565  
(1) Specified by design. Not production tested.  
Submit Documentation Feedback  
8
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Electrical Characteristics (continued)  
VIN = 14, 40°C TJ 150°C unless otherwise specified. Minimum and maximum limits are specified through test, design, or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Continuous conduction  
switching frequency  
(2)  
f
2.2 nF > CT > 470 pF, TJ = 25°C  
(See  
)
Hz  
PWM COMPARATOR  
COMP-to-PWM offset voltage  
CURRENT LIMIT (IS)  
700  
215  
900  
275  
mV  
mV  
TJ = 25°C  
TJ = 25°C  
800  
245  
ILIM  
Current limit threshold  
LM3421-Q1,  
LM3423-Q1  
75  
90  
Current limit delay-to-output  
LM3421-Q0,  
LM3423-Q0  
ns  
ns  
TJ = 25°C  
TJ = 25°C  
35  
210  
11.5  
119  
0
115  
325  
Leading edge blanking (LEB)  
time  
tLEB  
HIGH SIDE TRANSCONDUCTANCE AMPLIFIER  
Input bias current  
TJ = 25°C  
µA  
20  
–1.5  
–7  
gM  
Transconductance  
mA/V  
TJ = 25°C  
TJ = 25°C  
1.5  
7
Input offset current  
µA  
Input offset voltage  
mV  
TJ = 25°C  
0
gM(BW)  
Transconductance bandwidth  
ICSH = 100 µA(1), TJ = 25°C  
250  
500  
kHz  
GATE DRIVER (GATE)  
GATE = High  
6
RSRC(GATE) GATE sourcing resistance  
GATE = High, TJ = 25°C  
GATE = Low  
2
4.5  
RSNK(GATE)  
GATE sinking resistance  
GATE = Low, TJ = 25°C  
1.3  
DIM DRIVER (DIM, DDRV)  
1.185  
1.285  
nDIMVTH  
nDIMHYS  
nDIM / UVLO threshold  
V
TJ = 25°C  
1.24  
LM3421-Q1,  
LM3423-Q1  
20  
20  
25  
26  
nDIM hysteresis current  
LM3421-Q0,  
LM3423-Q0  
µA  
TJ = 25°C  
23  
13.5  
3.5  
DDRV = High  
30  
10  
RSRC(DDRV)  
DDRV sourcing resistance  
DDRV sinking resistance  
DDRV = High, TJ = 25°C  
DDRV = Low  
RSNK(DDRV)  
DDRV = Low, TJ = 25°C  
(2) f = 25/(CT × RT  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Electrical Characteristics (continued)  
VIN = 14, 40°C TJ 150°C unless otherwise specified. Minimum and maximum limits are specified through test, design, or  
statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference  
purposes only.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
PULLDOWN N-CHANNEL MOSFETS  
LM3421-Q1,  
LM3423-Q1  
300  
350  
RRPD  
RPD pulldown resistance  
FLT pulldown resistance  
LRDY pulldown resistance  
LM3421-Q0,  
LM3423-Q0  
TJ = 25°C  
TJ = 25°C  
145  
145  
135  
LM3421-Q1,  
LM3423-Q1  
300  
350  
RFLT  
LM3421-Q0,  
LM3423-Q0  
LM3421-Q1,  
LM3423-Q1  
300  
350  
RLRDY  
LM3421-Q0,  
LM3423-Q0  
TJ = 25°C  
TJ = 25°C  
THERMAL SHUTDOWN  
TSD  
Thermal shutdown threshold(1)  
165  
165  
°C  
°C  
LM3421-Q1,  
LM3423-Q1  
TSD  
Thermal shutdown threshold(1)  
TJ = 25°C  
TJ = 25°C  
LM3421-Q0,  
LM3423-Q0  
210  
25  
Thermal shutdown  
hysteresis(1)  
THYS  
°C  
10  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
7.6 Typical Characteristics  
TA= 25°C, VIN = 14 V unless otherwise specified  
VO = 32 V (9 LEDs)  
VO = 21 V (6 LEDs)  
Figure 2. Buck-Boost Efficiency vs. Input Voltage  
Figure 1. Boost Efficiency vs. Input Voltage  
VO = 21 V (6 LEDs)  
Figure 4. Buck-Boost LED Current vs. Input Voltage  
VO = 32V (9 LEDs)  
Figure 3. Boost LED Current vs. Input Voltage  
VO = 21 V (6 LEDs), VIN = 24 V  
VO = 32 V (9 LEDs), VIN = 24 V  
Figure 5. Analog Dimming  
Figure 6. PWM Dimming  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Characteristics (continued)  
TA= 25°C, VIN = 14 V unless otherwise specified  
Figure 8. VCC vs Junction Temperature  
Figure 7. VCSH vs Junction Temperature  
567  
566  
565  
564  
563  
562  
-50  
-14  
22  
58  
94  
130  
TEMPERATURE (°C)  
Figure 9. VRCT vs Junction Temperature  
Figure 10. VLIM vs Junction Temperature  
225  
220  
215  
210  
205  
200  
195  
-50  
-14  
22  
58  
94  
130  
TEMPERATURE (°C)  
Figure 11. tON(min) vs Junction Temperature  
12  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
8 Detailed Description  
8.1 Overview  
The LM3421-Q1 and LM3423-Q1 are N-channel MOSFET ( N-channel FET ) controllers for buck, boost and  
buck-boost current regulators which are ideal for driving LED loads. The controller has wide input voltage range  
allowing for regulation of a variety of LED loads. The high-side differential current sense, with low adjustable  
threshold voltage, provides an excellent method for regulating output current while maintaining high system  
efficiency.  
The devices use a Predictive Off-time (PRO) control architecture that allows the regulator to be operated using  
minimal external control loop compensation, while providing an inherent cycle-by-cycle current limit. The  
adjustable current sense threshold provides the capability to amplitude (analog) dim the LED current and the  
output enable and disable function with external dimming FET driver allows for fast PWM dimming of the LED  
load. The maximum attainable LED current is not internally limited because the device is a controller. Instead,  
current is a function of the system operating point, component choices, and switching frequency that allows the  
device to easily provide constant currents up to 5 A. This controller contains all the features necessary to  
implement a high-efficiency versatile LED driver.  
8.2 Functional Block Diagram  
VIN  
6.9V LDO  
Regulator  
EN  
VCC  
V
UVLO  
820k  
CC  
UVLO  
(4.1V)  
1.235V  
REFERENCE  
Standby  
500k  
V
IN  
UVLO  
HYSTERESIS  
DPOL  
DDRV  
V
CC  
23 mA  
TLIM  
Thermal  
Limit  
nDIM  
RCT  
Dimming  
1.24V  
OVLO  
LatchOff  
PGND  
Reset  
Dominant  
Start new on time  
V
CC  
V
IN  
/25  
Q
S
R
LEB  
GATE  
PGND  
t = 150 ns  
COMP  
CSH  
RPD  
PWM  
23 mA  
OVP  
HYSTERESIS  
1.235V  
EN  
OVLO  
OVP  
800 mV  
1.24V  
LOGIC  
HSP  
HSN  
LRDY  
CURRENT  
LIMIT  
IS  
0.245V  
11.5 mA  
LED CURRENT LOW  
LED CURRENT HIGH  
LEB  
1.0V  
1.6V  
LatchOff  
TIMR  
FLT  
1.24V  
AGND  
TLIM  
Grey pins are available in the LM3423 only.  
V
UVLO  
CC  
In the LM3421, TIMR is internally shorted to AGND.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
8.3 Feature Description  
8.3.1 Current Regulators  
iL (t)  
I
L-MAX  
Âi  
L-PP  
I
L
I
L-MIN  
t
= DT  
t
= (1-D)T  
OFF S  
ON  
S
0
t
T
S
Figure 12. Ideal CCM Regulator Inductor Current iL(t)  
Current regulators can create three basic topologies: buck, boost, or buck-boost. All three topologies in their  
most basic form contain a main switching MOSFET, a recirculating diode, an inductor and capacitors. The  
controller is designed to drive a ground referenced N-channel FET which is perfect for a standard boost  
regulator. However, buck and buck-boost regulators usually have a high-side switch. When driving an LED load,  
a ground referenced load is often not necessary, therefore a ground referenced switch drives a floating load  
instead. The controller can then be used to drive all three basic topologies as shown in the Basic Topology  
Schematics section. Other topologies such as the SEPIC and flyback converter (both derivatives of the buck-  
boost) can be implemented as well.  
Looking at the buck-boost design, the basic operation of a current regulator can be analyzed. During the time  
that the N-channel FET (Q1) is turned on (tON), the input voltage source stores energy in the inductor (L1) while  
the output capacitor (CO) provides energy to the LED load. When Q1 is turned off (tOFF), the re-circulating diode  
(D1) becomes forward biased and L1 provides energy to both CO and the LED load. Figure 12 shows the  
inductor current (iL(t)) waveform for a regulator operating in CCM.  
The average output LED current (ILED) is proportional to the average inductor current (IL) , therefore if IL is tightly  
controlled, ILED is well regulated. As the system changes input voltage or output voltage, the ideal duty cycle (D)  
is varied to regulate IL and ultimately ILED. For any current regulator, D is a function of the conversion ratio:  
Buck  
VO  
D =  
V
IN  
(1)  
Boost  
VO - V  
IN  
D =  
VO  
(2)  
Buck-boost  
VO  
D
=
VO + V  
IN  
(3)  
8.3.2 Predictive Off-Time (PRO) Control  
PRO control is used by the device to control ILED. It is a combination of average peak current control and a one-  
shot off-timer that varies with input voltage. The LM3421-Q1 and LM3423-Q1 use peak current control to  
regulate the average LED current through an array of HBLEDs. This method of control uses a series resistor in  
the LED path to sense LED current and can use either a series resistor in the MOSFET path or the MOSFET  
RDS-ON for both cycle-by-cycle current limit and input voltage feed forward. D is indirectly controlled by changes in  
both tOFF and tON, which vary depending on the operating point.  
14  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Feature Description (continued)  
Even though the off-time control is quasi-hysteretic, the input voltage proportionality in the off-timer creates an  
essentially constant switching frequency over the entire operating range for boost and buck-boost topologies.  
The buck topology can be designed to give constant ripple over either input voltage or output voltage, however  
switching frequency is only constant at a specific operating point .  
This type of control minimizes the control loop compensation necessary in many switching regulators, simplifying  
the design process. The averaging mechanism in the peak detection control loop provides extremely accurate  
LED current regulation over the entire operating range.  
PRO control was designed to mitigate current mode instability (also called sub-harmonic oscillation) found in  
standard peak current mode control when operating near or above 50% duty cycles. When using standard peak  
current mode control with a fixed switching frequency, this condition is present, regardless of the topology.  
However, using a constant off-time approach, current mode instability cannot occur, enabling easier design and  
control.  
Predictive off-time advantages:  
There is no current mode instability at any duty cycle.  
Higher duty cycles or voltage transformation ratios are possible, especially in the boost regulator.  
The only disadvantage is that synchronization to an external reference frequency is generally not available.  
8.3.3 Average LED Current  
LM3421/23  
I
LED  
High-Side  
Sense Amplifier  
R
HSP  
HSP  
HSN  
V
R
SNS  
SNS  
R
HSN  
I
CSH  
R
C
CSH  
Error Amplifier  
CSH  
To PWM  
Comparator  
1.24V  
CMP  
COMP  
Figure 13. LED Current Sense Circuitry  
The LM3421-Q1 and LM3423-Q1 use an external current sense resistor (RSNS) placed in series with the LED  
load to convert the LED current (ILED) into a voltage (VSNS) as shown in Figure 13. The HSP and HSN pins are  
the inputs to the high-side sense amplifier which are forced to be equal potential (VHSP=VHSN) through negative  
feedback. Because of this, the VSNS voltage is forced across RHSP to generate the signal current (ICSH) which  
flows out of the CSH pin and through the RCSH resistor. The error amplifier regulates the CSH pin to 1.24 V,  
therefore ICSH can be calculated using Equation 4.  
VSNS  
RHSP  
ICSH  
=
(4)  
(5)  
This application regulates VSNS as described in Equation 5.  
RHSP  
VSNS = 1.24V x  
RCSH  
Calculate ILED using Equation 6.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
 
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Feature Description (continued)  
VSNS  
RSNS  
1.24V RHSP  
x
ILED  
=
=
RSNS  
RCSH  
(6)  
The selection of the three resistors (RSNS, RCSH, and RHSP) is not arbitrary. For matching and noise performance,  
the suggested signal current ICSH is approximately 100 µA. This current does not flow in the LEDs and does not  
affect either the off-state LED current or the regulated LED current. ICSH can be above or below this value, but  
the high-side amplifier offset characteristics may be affected slightly. In addition, to minimize the effect of the  
high-side amplifier voltage offset on LED current accuracy, the minimum VSNS is suggested to be 50 mV. Place a  
resistor (RHSN = RHSP) in series with the HSN pin to cancel out the effects of the input bias current (approximately  
10 µA) of both inputs of the high-side sense amplifier.  
The sense resistor (RSNS) can be placed anywhere in the series string of LEDs as long as the voltage at the HSN  
and HSP pins (VHSP and VHSN) satisfies the following conditions.  
VHSP < 76V  
VHSN > 3.5V  
(7)  
Typically, for a buck-boost configuration, RSNS is placed at the bottom of the string (LED-) which allows for  
greater flexibility of input and output voltage. However, if there is substantial input voltage ripple allowed, it can  
help to place RSNS at the top of the string (LED+) which limits the output voltage of the string to:  
VO = 76V - VIN  
(8)  
The CSH pin can also be used as a low-side current sense input regulated to 1.24 V. The high-side sense  
amplifier is disabled if HSP and HSN are tied to AGND (or VHSN > VHSP) .  
8.3.4 Analog Dimming  
The CSH pin can be used to analog dim the LED current by adjusting the current sense voltage (VSNS). There  
are several different methods to adjust VSNS using the CSH pin:  
1. External variable resistance: Adjust a potentiometer placed in series with RCSH to vary VSNS  
.
2. External variable current source: Source current (0 µA to ICSH) into the CSH pin to adjust VSNS  
.
Variable Current Source  
LM3421/23  
VCC  
V
REF  
Q8  
Q7  
R
MAX  
Q6  
R
CSH  
R
CSH  
R
ADJ  
BIAS  
Variable  
Resistance  
R
ADJ  
Figure 14. Analog Dimming Circuitry  
In general, analog dimming applications require a lower switching frequency to minimize the effect of the leading  
edge blanking circuit. As the LED current is reduced, the output voltage and the duty cycle decreases.  
Eventually, the minimum on-time is reached. The lower the switching frequency, the wider the linear dimming  
range. Figure 14 shows how both CSH methods are physically implemented.  
Method 1 uses an external potentiometer in the CSH path which is a simple addition to the existing circuitry.  
However, the LEDs cannot dim completely because there is always some resistance causing signal current to  
flow. This method is also susceptible to noise coupling at the CSH pin because the potentiometer increases the  
size of the signal current loop.  
16  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Feature Description (continued)  
Method 2 provides a complete dimming range and better noise performance, though it is more complex. It  
consists of a PNP current mirror and a bias network consisting of an NPN, 2 resistors and a potentiometer  
(RADJ), where RADJ controls the amount of current sourced into the CSH pin. A higher resistance value sources  
more current into the CSH pin, causing less regulated signal current through RHSP, effectively dimming the LEDs.  
VREF should be a precise external voltage reference, while Q7 and Q8 should be a dual pair PNP for best  
matching and performance. The additional current (IADD) sourced into the CSH pin can be calculated using  
Equation 9.  
«
÷
RADJ x VREF  
RADJ + RMAX  
- VBE-Q6  
IADD  
=
RBIAS  
(9)  
The corresponding LED current ( ILED) for a specific IADD is:  
R
«
÷
HSP  
ILED = (ICSH - IADD) x  
RSNS  
(10)  
8.3.5 Current Sense and Current Limit  
The LM3421-Q1 and LM3423-Q1 achieve peak current mode control using a comparator that monitors the main  
MOSFET (Q1) transistor current, comparing it with the COMP pin voltage as shown in Figure 15. The controller  
incorporates a cycle-by-cycle overcurrent protection function. Aredundant internal current sense comparator  
provides the current limit functionality . If the voltage at the current sense comparator input (IS pin) exceeds 245  
mV (typical), the on cycle is immediately terminated. The IS input pin has an internal N-channel MOSFET which  
pulls it down at the conclusion of every cycle. The discharge device remains on for an additional 210 ns (typical)  
after the beginning of a new cycle to blank the leading edge spike on the current sense signal. The leading edge  
blanking (LEB) determines the minimum achievable on-time (tON-MIN).  
R
DS-ON  
Sensing  
LM3421/23  
COMP  
Q1  
GATE  
IS  
0.8V  
PWM  
R
LIM  
Sensing  
0.245V  
I
T
R
LIM  
LEB  
PGND  
Figure 15. Current Sense / Current Limit Circuitry  
There are two possible methods to sense the transistor current. The RDS-ON of the main power MOSFET can be  
used as the current sense resistance because the IS pin was designed to withstand the high voltages present on  
the drain when the MOSFET is in the off state. Alternatively, a sense resistor located in the source of the  
MOSFET may be used for current sensing; however, TI suggests a low inductance (ESL) type. The cycle-by-  
cycle current limit (ILIM) can be calculated using either method as the limiting resistance (RLIM):  
245 mV  
RLIM  
ILIM  
=
(11)  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Feature Description (continued)  
8.3.6 Overcurrent Protection  
The LM3421-Q1 and LM3423-Q1 controllers have a secondary method of overcurrent protection. Switching  
action is disabled whenever the current in the LEDs is more than 30% above the regulation set point. The  
dimming MOSFET switch driver (DDRV) is not disabled however as this would immediately remove the fault  
condition and cause oscillatory behavior.  
8.3.7 Zero Current Shutdown  
The LM3421-Q1 and LM3423-Q1 controllers implement zero current shutdown through the EN and RPD pins.  
When pulled low, the EN pin places the devices into near-zero current state, where only the leakage currents  
occurs at the pins (typical 0.1 µA). The applications circuits frequently have resistor dividers to set UVLO, OVLO,  
or other similar functions. The RPD pin is an open-drain N-channel MOSFET that is enabled only when the  
device is enabled. Tying the bottom of all resistor dividers to the RPD pin as shown in Figure 16 allows them to  
float during shutdown, thus removing their current paths and providing true application-wide zero current  
shutdown.  
L1  
D1  
VIN  
VO  
LM3421/23  
Enable  
EN  
R
OV2  
VIN  
OVP  
RPD  
R
R
OV1  
UV2  
nDIM  
R
UV1  
Figure 16. Zero Current Shutdown Circuit  
8.3.8 Control Loop Compensation  
The control loop is modeled as most typical current mode controllers. Using a first order approximation, the  
uncompensated loop can be modeled as a single pole created by the output capacitor and, in the boost and  
buck-boost topologies, a right half plane zero created by the inductor, where both have a dependence on the  
LED string dynamic resistance. There is also a high-frequency pole in the model; however, it is near the  
switching frequency and plays no part in the compensation design process. Therefore, it is neglected. Because  
ceramic capacitance is recommended for use with LED drivers, due to long lifetimes and high ripple current  
rating, the ESR of the output capacitor can also be neglected in the loop analysis. The DC gain of the  
uncompensated loop depends on internal controller gains and the external sensing network.  
This section describes a buck-boost regulator as an example case.  
Use Equation 12 to calculate the uncompensated loop gain for a buck-boost regulator.  
÷
÷
s
wZ1  
-  
1
«
TU = TU0  
x
÷
÷
s
wP1  
1+  
«
(12)  
(13)  
Where the uncompensated DC loop gain of the system is calculated using Equation 13.  
Å
D x 500Vx RCSH x RSNS  
Å
D x 620V  
TU0  
=
=
(
)
(
)
1+D x RHSP x RLIM  
1+D xILED x RLIM  
And the output pole (ωP1) is approximated using Equation 14.  
1+D  
wP1=  
rD x CO  
(14)  
18  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
 
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Feature Description (continued)  
And the right half plane zero (ωZ1) is:  
Å2  
rD xD  
wZ1=  
DxL1  
(15)  
135  
90  
100  
80  
60  
40  
20  
0
ö
P1  
ö
Z1  
GAIN  
45  
0
PHASE  
-45  
-90  
-135  
-180  
-225  
0°Phase Margin  
-20  
-40  
-60  
1e-1  
1e1  
1e3  
1e5  
1e7  
FREQUENCY (Hz)  
Figure 17. Uncompensated Loop Gain Frequency Response  
Figure 17 shows the uncompensated loop gain in a worst-case scenario when the RHP zero is below the output  
pole. This occurs at high duty cycles when the regulator is trying to boost the output voltage significantly. The  
RHP zero adds 20dB/decade of gain while losing 45°/decade of phase, which places the crossover frequency  
(when the gain is zero dB) extremely high because the gain only starts falling again due to the high-frequency  
pole (not shown in Figure 17). The phase is below –180° at the crossover frequency, which means there is no  
phase margin (180° + phase at crossover frequency) causing system instability. Even if the output pole is below  
the RHP zero, the phase reaches –180° before the crossover frequency in most cases yielding instability.  
LM3421/23  
I
LED  
High-Side  
Sense Amplifier  
R
HSP  
HSP  
HSN  
C
FS  
V
SNS  
R
SNS  
R
HSN  
R
FS  
Error Amplifier  
sets ö  
P3  
R
CSH  
CSH  
To PWM  
Comparator  
1.24V  
R
O
C
CMP  
sets ö  
COMP  
P2  
Figure 18. Compensation Circuitry  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Feature Description (continued)  
To mitigate this problem, a compensator should be designed to give adequate phase margin (above 45°) at the  
crossover frequency. A simple compensator using a single capacitor at the COMP pin (CCMP) adds a dominant  
pole to the system, which ensures adequate phase margin if placed low enough. At high duty cycles (as shown  
in Figure 17), the RHP zero places extreme limits on the achievable bandwidth with this type of compensation.  
However, because an LED driver is essentially free of output transients (except catastrophic failures open or  
short), the dominant pole approach, even with reduced bandwidth, is usually the best approach. The dominant  
compensation pole (ωP2) is determined by CCMP and the output resistance (RO) of the error amplifier (typically 5  
M) as demonstrated in Equation 16.  
1
wP2  
=
5ì106 ìCCMP  
(16)  
It may also be necessary to add one final pole at least one decade above the crossover frequency to attenuate  
switching noise and, in some cases, provide better gain margin. This pole can be placed across RSNS to filter the  
ESL of the sense resistor at the same time. Figure 18 shows how the compensation is physically implemented in  
the system.  
The high-frequency pole (ωP3) can be calculated using Equation 17.  
1
wP3  
=
RFS xCFS  
(17)  
The total system transfer function becomes:  
÷
÷
s
wZ1  
1-  
«
T = TU0  
x
÷
÷
«
«
÷
÷
s
wP1  
s
wP2  
s
wP3  
÷
1+  
x 1+  
x 1+  
÷
«
(18)  
The resulting compensated loop gain frequency response shown in Figure 19 indicates that the system has  
adequate phase margin (above 45°) if the dominant compensation pole is placed low enough, ensuring stability.  
90  
80  
60  
ö
P2  
45  
0
40  
GAIN  
-45  
-90  
-135  
-180  
-225  
-270  
20  
ö
ö
Z1  
P1  
0
PHASE  
ö
P3  
-20  
-40  
-60  
-80  
60°Phase Margin  
1e-1  
1e1  
1e3  
1e5  
1e7  
FREQUENCY (Hz)  
Figure 19. Compensated Loop Gain Frequency Response  
8.3.9 Start-Up Regulator  
The controller includes a high voltage, low dropout bias regulator. When power is applied, the regulator is  
enabled and sources current into an external capacitor (CBYP) connected to the VCC pin. The recommended  
bypass capacitance for the VCC regulator is 2.2 µF to 3.3 µF. The output of the VCC regulator is monitored by an  
internal UVLO circuit that protects the device from attempting to operate with insufficient supply voltage and the  
supply is also internally current limited. Figure 20 shows the typical start-up waveforms.  
20  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Feature Description (continued)  
V
CMP  
0.9V  
0
t
t
t
t
CO  
VCC  
CMP  
Figure 20. Start-Up Waveforms  
First, CBYP is charged to be above VCC UVLO threshold (approximately 4.2 V). The CVCC charging time (tVCC) can  
be estimated using Equation 19.  
4.2V  
25 mA  
tVCC  
xCBYP 168W xC  
=
BYP  
=
(19)  
CCMP is then charged to 0.9 V over the charging time (tCMP), which can be estimated using Equation 20.  
0.9V  
25 mA  
tCMP  
x CCMP 36 kW xC  
=
CMP  
=
(20)  
Once CCMP = 0.9 V, the part starts switching to charge CO until the LED current is in regulation. The CO charging  
time (tCO) can be roughly estimated using Equation 21.  
VO  
ILED  
tCO  
C
O x  
=
(21)  
The system start-up time (tSU) is defined using Equation 22.  
tSU  
t
t
t
+
CO  
=
+
VCC  
CMP  
(22)  
In some configurations, the start-up waveform overshoots the steady state COMP pin voltage. In this case, the  
LED current and output voltage overshoots also, which can trip the overvoltage or protection, causing a race  
condition. The easiest way to prevent this is to use a larger compensation capacitor (CCMP), thereby slowing  
down the control loop.  
8.3.10 Overvoltage Lockout (OVLO)  
The LM3421-Q1 and LM3423-Q1 can be configured to detect an output (or input) overvoltage condition through  
the OVP pin. The pin features a precision 1.24-V threshold with 23 µA (typical) of hysteresis current as shown in  
Figure 21. When the OVLO threshold is exceeded, the GATE pin is immediately pulled low and a 23-µA current  
source provides hysteresis to the lower threshold of the OVLO hysteretic band.  
If the LEDs are referenced to a potential other than ground (floating), as in the buck-boost and buck  
configuration, the output voltage (VO) should be sensed and translated to ground by using a single PNP as  
shown in Figure 22.  
The overvoltage turnoff threshold (VTURN-OFF) is defined:  
Ground Referenced  
ROV + ROV2  
1
«
÷
÷
VTURN-OFF = 1.24Vx  
ROV1  
(23)  
Floating  
VTURN-OFF = 1.24Vx  
+ ROV2  
ROV1  
0.5 x ROV1  
«
÷
÷
(24)  
21  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
 
 
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Feature Description (continued)  
In the ground referenced configuration, the voltage across ROV2 is VO – 1.24 V whereas in the floating  
configuration it is VO – 620 mV where 620 mV approximates VBE of the PNP.  
The overvoltage hysteresis (VHYSO) is defined using Equation 25.  
VHYSO = 23 mA x ROV2  
(25)  
LM3421/23  
VO  
23 mA  
R
R
OV2  
OV1  
OVP  
OVLO  
1.24V  
Figure 21. Overvoltage Protection Circuitry  
LED+  
R
OV2  
LM3421/23  
LED-  
OVP  
R
OV1  
Figure 22. Floating Output OVP Circuitry  
The OVLO feature can cause some interesting results if the OVLO trip-point is set too close to VO. At turnon, the  
converter has a modest amount of voltage overshoot before the control loop gains control of ILED. If the overshoot  
exceeds the OVLO threshold, the controller shuts down, opening the dimming MOSFET. This isolates the LED  
load from the converter and the output capacitance. The voltage then discharges very slowly through the HSP  
and HSN pins until VO drops below the lower threshold, where the process repeats. This looks like the LEDs are  
blinking at around 2 Hz. This mode can be escaped if the input voltage is reduced.  
8.3.11 Input Undervoltage Lockout (UVLO)  
The nDIM pin is a dual-function input that features an accurate 1.24-V threshold with programmable hysteresis  
as shown in Figure 23. This pin functions as both the PWM dimming input for the LEDs and as a VIN UVLO.  
When the pin voltage rises and exceeds the 1.24-V threshold, 23 µA (typical) of current is driven out of the nDIM  
pin into the resistor divider providing programmable hysteresis.  
22  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Feature Description (continued)  
LM3421/23  
VIN  
23 mA  
R
R
UV2  
UV1  
nDIM  
UVLO  
1.24V  
R
UVH  
(optional)  
Figure 23. UVLO Circuit  
When using the nDIM pin for UVLO and PWM dimming concurrently, the UVLO circuit can have an extra series  
resistor to set the hysteresis. This allows the standard resistor divider to have smaller resistor values minimizing  
PWM delays due to a pulldown MOSFET at the nDIM pin (see PWM Dimming section). In general, at least 3 V of  
hysteresis is preferable when PWM dimming, if operating near the UVLO threshold.  
The turnon threshold (VTURN-ON) is defined using Equation 26.  
÷
÷
RUV + RUV2  
1
«
VTURN O-N = 1.24Vx  
RUV1  
(26)  
(27)  
The hysteresis (VHYS) is defined as follows:  
8.3.11.1 UVLO Only  
VHYS 23 mA xR  
=
UV2  
8.3.11.2 PWM Dimming and UVLO  
«
(
)’  
÷
RUVH x RUV1 + RUV2  
23mA x R  
VHYS  
=
+
UV2  
÷
RUV1  
(28)  
When zero current shutdown and UVLO are implemented together, the EN pin can be used to escape UVLO.  
The nDIM pin pulls up to VIN when EN is pulled low. Therefore, if VIN is within the UVLO hysteretic window when  
EN is pulled high again, the controller starts-up even though VTURN-ON is not exceeded.  
8.3.12 PWM Dimming  
The active low nDIM pin can be driven with a PWM signal which controls the main N-channel FET and the  
dimming FET (dimFET). The brightness of the LEDs can be varied by modulating the duty cycle of this signal.  
LED brightness is approximately proportional to the PWM signal duty cycle, (that is, 30% duty cycle equals  
approximately 30% LED brightness). This function can be ignored if PWM dimming is not required by using nDIM  
solely as a VIN UVLO input as described in Input Undervoltage Lockout (UVLO) or by tying it directly to VCC or  
VIN.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Feature Description (continued)  
Inverted  
PWM  
VIN  
LM3421/23  
nDIM  
D
DIM  
R
UV2  
R
UVH  
R
UV1  
Q
DIM  
Standard  
PWM  
Figure 24. PWM Dimming Circuit  
STOPPED DD EDITING HERELM3421-Q1 and LM3423-Q1  
Figure 24 shows how the PWM signal is applied to nDIM:  
1. Connect the dimming MOSFET (QDIM) with the drain to the nDIM pin and the source to AGND. Apply an  
external logic-level PWM signal to the gate of QDIM  
.
2. Connect the anode of a Schottky diode (DDIM) to the nDIM pin. Apply an inverted external logic-level PWM  
signal to the cathode of the same diode.  
The DDRV pin is a PWM output that follows the nDIM PWM input signal. When the nDIM pin rises, the DDRV pin  
rises and the PWM latch reset signal is removed allowing the main MOSFET Q1 to turn on at the beginning of  
the next clock set pulse. In boost and buck-boost topologies, the DDRV pin is used to control a N-channel  
MOSFET placed in series with the LED load, while it would control a P-channel MOSFET in parallel with the load  
for a buck topology.  
The series dimFET opens the LED load, when nDIM is low, effectively speeding up the rise and fall times of the  
LED current. Without any dimFET, the rise and fall times are limited by the inductor slew rate and dimming  
frequencies above 1 kHz are impractical. Using the series dimFET, dimming frequencies up to 30 kHz are  
achievable. With a parallel dimFET (buck topology), even higher dimming frequencies are achievable.  
When using the PWM functionality in a boost regulator, the PWM signal can drive a ground referenced FET.  
However, with buck-boost and buck topologies, level shifting circuitry is necessary to translate the PWM dim  
signal to the floating dimFET as shown in Figure 25 and Figure 26. If high side dimming is necessary in a boost  
regulator using the LM3423-Q1, level shifting can be added providing the polarity inverting DPOL pin is pulled  
low (see LM3423-Q1 Only: DPOL, FLT, TIMR, and LRDY section) as shown in Figure 27.  
When using a series dimFET to PWM dim the LED current, more output capacitance is always better. Typical  
applications use a minimum of 40 µF for PWM dimming. For most applications, a capacitance of 40 µF provides  
adequate energy storage at the output when the dimFET turns off and opens the LED load. Then when the  
dimFET is turned back on, the capacitance helps source current into the load, improving the LED current rise  
time.  
A minimum on-time must be maintained in order for PWM dimming to operate in the linear region of its transfer  
function. Because the controller is disabled during dimming, the PWM pulse must be long enough such that the  
energy intercepted from the input is greater than or equal to the energy being put into the LEDs. For boost and  
buck-boost regulators, the minimum dimming pulse length in seconds (tPULSE) is:  
2 x ILED x VO X L1  
tPULSE  
=
2
VIN  
(29)  
Even maintaining a dimming pulse greater than tPULSE, preserving linearity at low dimming duty cycles is difficult.  
24  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Feature Description (continued)  
The second helpful modification is to remove the CFS capacitor and RFS resistor, eliminating the high-frequency  
compensation pole. Typically, this does not affect stability, but it speeds up the response of the CSH pin,  
specifically at the rising edge of the LED current when PWM dimming, thus improving the achievable linearity at  
low dimming duty cycles.  
LED+  
LM3421/23  
10W  
5 kW  
Q7  
Q4  
100 nF  
Q2  
VCC  
Q6  
R
SNS  
100 pF  
10V  
V
IN  
500W  
DDRV  
Figure 25. Buck-boost Level-Shifted PWM Circuit  
LM3421/23  
R
SNS  
100  
kW  
10V  
Q2  
100 nF  
DDRV  
Figure 26. Buck Level-Shifted PWM Circuit  
V
O
LM3421/23  
DPOL  
R
SNS  
100  
kW  
10V  
Q2  
VCC  
Q6  
100 pF  
10 kW  
DDRV  
Figure 27. Boost Level-Shifted PWM Circuit  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Feature Description (continued)  
8.3.13 LM3423-Q1 Only: DPOL, FLT, TIMR, and LRDY  
The LM3423-Q1 has four additional pins: DPOL, FLT, TIMR, and LRDY. The DPOL pin is simply used to invert  
the DDRV polarity . If DPOL is left open, then it is internally pulled high and the polarity is correct for driving a  
series N-channel dimFET. If DPOL is pulled low then the polarity is correct for using a series P-channel dimFET  
in high-side dimming applications. For a parallel P-channel dimFET, as used in the buck topology, leave DPOL  
open for proper polarity.  
The additional TIMR and FLT pins can be used in conjunction with an input disconnect MOSFET switch as  
shown in Figure 28 to protect the module from various fault conditions.  
A fault is detected and an 11.5 µA (typical) current is sourced from the TIMR pin whenever any one of the  
following conditions exists.  
LED current is above regulation by more than 30%.  
OVLO has engaged.  
Thermal shutdown has engaged.  
An external capacitor (CTMR) from TIMR to AGND programs the fault filter time as follows:  
tFLT 11.5  
x
m
A
CTMR  
=
1.24V  
(30)  
When the voltage on the TIMR pin reaches 1.24 V, the device is latched off and the N-channel MOSFET open-  
drain FLT pin transitions to a high impedance state. The controller immediatly pulls the TIMR pin to ground  
(resets) if the fault condition is removed at any point during the filter period. Otherwise, if the timer expires, the  
fault remains latched until one of these situations occurs:  
The EN pin is pulled low long enough for the VCC pin to drop below 4.1 V (approximately 200 ms) or  
the TIMR pin is pulled to ground or  
a complete power cycle occurs  
When using the EN and OVP pins in conjunction with the RPD pulldown pin, a race condition exists when exiting  
the disabled (EN low) state. When disabled, controller pulls up the OVP pin to the output voltage because the  
RPD pulldown is disabled, and this appears as if it is a real OVLO condition. The timer pin immediately rises and  
latches the controller to the fault state. To protect against this behavior, a minimum timer capacitor (CTMR = 220  
pF) should be used. If fault latching is not required, short the TMR pin to AGND, which disables the FLT flag  
function.  
The LM3423-Q1 also includes an LED Ready (LRDY) flag to notify the system that the LEDs are in proper  
regulation. The N-channel MOSFET open-drain LRDY pin is pulled low whenever any of the following conditions  
are met:  
1. VCC UVLO has engaged.  
2. LED current is below regulation by more than 20%.  
3. LED current is above regulation by more than 30%.  
4. Overvoltage protection has engaged  
5. Thermal shutdown has engaged.  
6. A fault has latched the device off.  
The LRDY pin is pulled low during start-up of the device and remains low until the LED current is in regulation.  
26  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Feature Description (continued)  
VIN  
VSW  
LM3421/23  
FLT  
VIN  
High = LED in regulation  
LRDY  
TIMR  
Figure 28. Fault Detection and LED Status Circuit  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Inductor  
The inductor (L1) is the main energy storage device in a switching regulator. Depending on the topology, energy  
is stored in the inductor and transfered to the load in different ways (as an example, buck-boost operation is  
detailed in the Current Regulators section). The size of the inductor, the voltage across it, and the length of the  
switching subinterval (tON or tOFF) determines the inductor current ripple (ΔiL-PP). In the design process, L1 is  
chosen to provide a desired ΔiL-PP. For a buck regulator the inductor has a direct connection to the load, which is  
good for a current regulator. This requires little to no output capacitance therefore ΔiL-PP is basically equal to the  
LED ripple current ΔiLED-PP. However, for boost and buck-boost regulators, there is always an output capacitor  
which reduces ΔiLED-PP; therefore, the inductor ripple can be larger than in the buck regulator case where output  
capacitance is minimal or completely absent.  
In general, ΔiLED-PP is recommended by manufacturers to be less than 40% of the average LED current (ILED).  
Therefore, for the buck regulator with no output capacitance, ΔiL-PP should also be less than 40% of ILED. For the  
boost and buck-boost topologies, ΔiL-PP can be much higher depending on the output capacitance value.  
However, ΔiL-PP is suggested to be less than 100% of the average inductor current (IL) to limit the RMS inductor  
current.  
L1 is also suggested to have an RMS current rating at least 25% higher than the calculated minimum allowable  
RMS inductor current (IL-RMS).  
9.1.2 LED Dynamic Resistance  
When the load is a string of LEDs, the output load resistance is the LED string dynamic resistance plus RSNS  
.
LEDs are PN junction diodes, and their dynamic resistance shifts as their forward current changes. Dividing the  
forward voltage of a single LED (VLED) by the forward current (ILED) leads to an incorrect calculation of the  
dynamic resistance of a single LED (rLED). The result can be 5 to 10 times higher than the true rLED value.  
Figure 29. Dynamic Resistance  
Obtaining rLED is accomplished by referring to the manufacturer's LED I-V characteristic. It can be calculated as  
the slope at the nominal operating point as shown in Figure 29. For any application with more than 2 series  
LEDs, RSNS can be neglected allowing rD to be approximated as the number of LEDs multiplied by rLED  
.
28  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Application Information (continued)  
9.1.3 Output Capacitor  
For boost and buck-boost regulators, the output capacitor (CO) provides energy to the load when the recirculating  
diode (D1) is reverse biased during the first switching subinterval. An output capacitor in a buck topology simplys  
reduce the LED current ripple (ΔiLED-PP) below the inductor current ripple (ΔiL-PP). In all cases, CO is sized to  
provide a desired ΔiLED-PP. As mentioned in the Inductor section, ΔiLED-PP is recommended by manufacturers to be  
less than 40% of the average LED current (ILED).  
CO should be carefully chosen to account for derating due to temperature and operating voltage. It must also  
have the necessary RMS current rating. Ceramic capacitors are the best choice due to their high ripple current  
rating, long lifetime, and good temperature performance. An X7R dieletric rating is suggested.  
9.1.4 Input Capacitors  
The input capacitance (CIN) provides energy during the discontinuous portions of the switching period. For buck  
and buck-boost regulators, CIN provides energy during tON and during tOFF, the input voltage source charges up  
CIN with the average input current (IIN). For boost regulators, CIN only needs to provide the ripple current due to  
the direct connection to the inductor. CIN is selected given the maximum input voltage ripple (ΔvIN-PP) which can  
be tolerated. ΔvIN-PP is suggested to be less than 10% of the input voltage (VIN).  
An input capacitance at least 100% greater than the calculated CIN value is recommended to account for derating  
due to temperature and operating voltage. When PWM dimming, even more capacitance can be helpful to  
minimize the large current draw from the input voltage source during the rising transition of the LED current  
waveform.  
The chosen input capacitors must also have the necessary RMS current rating. Ceramic capacitors are again the  
best choice due to their high ripple current rating, long lifetime, and good temperature performance. An X7R  
dielectric rating is suggested.  
For most applications, TI recommends bypassing the VIN pin with an 0.1 µF ceramic capacitor placed as close as  
possible to the pin. In situations where the bulk input capacitance may be far from the controller, a 10-series  
resistor can be placed between the bulk input capacitance and the bypass capacitor, creating a 150-kHz filter to  
eliminate undesired high-frequency noise.  
9.1.5 Main MOSFET / Dimming MOSFET  
The controller requires an external N-channel FET (Q1) as the main power MOSFET for the switching regulator.  
TI recommends Q1 have a voltage rating at least 15% higher than the maximum transistor voltage to ensure safe  
operation during the ringing of the switch node. In practice, all switching regulators have some ringing at the  
switch node due to the diode parasitic capacitance and the lead inductance. TI recommends the current rating be  
at least 10% higher than the average transistor current. The power rating is then verified by calculating the power  
loss given the RMS transistor current and the N-channel FET on-resistance (RDS-ON).  
When PWM dimming, the controller requires another MOSFET (Q2) placed in series (or parallel for a buck  
regulator) with the LED load. This MOSFET should have a voltage rating greater than the output voltage (VO)  
and a current rating at least 10% higher than the nominal LED current (ILED) . The power rating is simply RDS-ON  
multiplied by ILED, assuming 100% dimming duty cycle (continuous operation) occurs.  
For most applications, choose an N-channel FET that minimizes total gate charge (Qg) when fSW is high. It that is  
not possible. minimize the on-resistance RDS(on) to minimize the dominant power losses in the system.  
Frequently, higher current N-channel FETs in larger packages yield better thermal performance.  
9.1.6 Re-Circulating Diode  
The controller requires a recirculating diode (D1) to carry the inductor current during the off time (tOFF). The most  
efficient choice for D1 is a Schottky diode due to low forward voltage drop and near-zero reverse recovery time.  
Similar to Q1, TI recommends D1 have a voltage rating at least 15% higher than the maximum transistor voltage  
to ensure safe operation during the ringing of the switch node and a current rating at least 10% higher than the  
average diode current. The power rating is verified by calculating the power loss through the diode. This is  
accomplished by checking the typical diode forward voltage from the I-V curve on the product data sheet and  
multiplying by the average diode current. In general, higher current diodes have a lower forward voltage and  
come in better performing packages minimizing both power losses and temperature rise.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Application Information (continued)  
9.1.7 Boost Inrush Current  
When configured as a boost converter, there is a phantom power path comprised of the inductor, the output  
diode, and the output capacitor. This path causes two things to happen when power is applied:  
1. a very large inrush of current to charge the output capacitor  
2. the energy stored in the inductor during this inrush collects in the output capacitor, charging it to a higher  
potential than the input voltage  
Depending on the state of the EN pin, the output capacitor discharges by:  
1. EN < 1.3 V: no discharge path (leakage only).  
2. EN > 1.3 V, the OVP divider resistor path, if present, and 10 µA into each of the HSP & HSN pins.  
In applications using the OVP divider and with EN > 1.3 V, the output capacitor voltage can charge higher than  
VTURN-OFF. In this situation, the FLT pin (LM3423-Q1 only) is open and the PWM dimming MOSFET is turned off.  
This condition (the system appearing disabled) can persist for an undesirably long time. Possible solutions to this  
condition include:  
Add an inrush diode from VIN to the output as shown in Figure 30.  
Add an NTC thermistor in series with the input to prevent the inrush from overcharging the output capacitor  
too high.  
Use a current limited source supply.  
Raise the OVP threshold.  
Boost Inrush Diode  
L1  
D1  
VIN  
VO  
Q1  
Figure 30. Boost Topology with Inrush Diode  
9.1.8 Switching Frequency  
An external resistor (RT) connected between the RCT pin and the switch node (where D1, Q1, and L1 connect),  
in combination with a capacitor (CT) between the RCT and AGND pins, sets the off-time (tOFF) as shown in  
Figure 31. For boost and buck-boost topologies, the VIN proportionality ensures a virtually constant switching  
frequency (fSW).  
For a buck topology, RT and CT are also used to set tOFF, however the iinput voltage (VIN) proportionality does  
not ensure a constant switching frequency. Instead, constant ripple operation can be achieved. Changing the  
connection of RT in Figure 31 from VSW to VIN provides a constant ripple over varying VIN. Adding a PNP  
transistor as shown in Figure 32 provides constant ripple over varying VO.  
The switching frequency is defined:  
Buck (Constant Ripple vs. VIN)  
25 x  
VIN - VO  
(
)
fSW  
=
RT x CT X VIN  
(31)  
Buck (Constant Ripple vs. VO)  
2
(
)
25 x V x VO - VO  
IN  
fSW  
=
2
RT x CT xV  
IN  
(32)  
Boost and Buck-boost  
30  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
 
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Application Information (continued)  
25  
RT x CT  
fSW  
=
(33)  
For all topologies, the CT capacitor is recommended to be 1 nF and should be located very close to the LM34xx-  
Q1.  
V
V
SW  
IN  
LM3421/23  
R
SNS  
V
/25  
IN  
Start t  
ON  
R
T
RCT  
R
T
LM3421/23  
C
T
V
IN  
/25  
Start t  
ON  
Reset timer  
LED-  
RCT  
C
T
Reset timer  
Figure 31. Off-timer Circuitry for Boost and Buck-  
boost Regulators  
Figure 32. Off-timer Circuitry for Buck Regulators  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2 Typical Applications  
9.2.1 Basic Topology Schematics  
L1  
D1  
VIN  
R
HSN  
1
16  
15  
14  
13  
12  
VIN  
HSN  
HSP  
LM3421  
C
R
SNS  
FS  
R
C
IN  
R
HSP  
2
3
4
5
6
7
8
EN  
FS  
R
T
C
CMP  
COMP  
CSH  
RCT  
RPD  
IS  
R
CSH  
C
O
R
OV2  
ILED  
VCC  
GATE  
PGND  
DDRV  
C
BYP  
C
T
11  
AGND  
OVP  
nDIM  
Q1  
R
UV2  
10  
9
R
LIM  
DAP  
R
UVH  
Q2  
R
UV1  
Q3  
PWM  
R
C
OV  
OV1  
Figure 33. Boost Regulator (VIN < VO)  
32  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
VIN  
R
HSN  
1
16  
15  
14  
13  
12  
VIN  
HSN  
HSP  
LM3421  
C
FS  
R
SNS  
C
IN  
R
HSP  
2
3
4
5
6
7
8
EN  
R
FS  
R
T
C
O
C
CMP  
COMP  
CSH  
RCT  
RPD  
IS  
R
PU  
D2  
R
CSH  
R
OV2  
Q2  
ILED  
DIM  
D1  
VCC  
GATE  
PGND  
DDRV  
L1  
C
BYP  
Q5  
C
T
11  
AGND  
OVP  
nDIM  
Q1  
R
UV2  
10  
9
R
LIM  
DAP  
R
UVH  
DIM  
C
DIM  
R
UV1  
Q3  
PWM  
R
OV1  
C
OV  
Figure 34. Buck Regulator (VIN > VO)  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
L1  
D1  
VIN  
ILED  
DIM  
C
O
Q2  
R
HSN  
1
16  
15  
14  
13  
12  
VIN  
HSN  
HSP  
LM3421  
C
R
SNS  
FS  
R
C
R
IN  
HSP  
2
EN  
VIN  
FS  
R
T
C
CMP  
3
4
5
6
7
8
COMP  
CSH  
RPD  
IS  
R
CSH  
R
Q7  
PU  
R
OV2  
DIM  
RCT  
VCC  
GATE  
PGND  
DDRV  
Q6  
Q4  
C
BYP  
C
T
C
G
D2  
11  
Q5  
AGND  
OVP  
Q1  
VIN  
R
UV2  
10  
9
R
LIM  
R
SER  
DAP  
R
UVH  
nDIM  
R
UV1  
Q3  
PWM  
R
OV1  
C
OV  
Figure 35. Buck-Boost Regulator  
34  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
9.2.1.1 Design Requirements  
Number of series LEDs: N  
Single LED forward voltage: VLED  
Single LED dynamic resistance: rLED  
Nominal input voltage: VIN  
Input voltage range: VIN-MAX, VIN-MIN  
Switching frequency: fSW  
Current sense voltage: VSNS  
Average LED current: ILED  
Inductor current ripple: ΔiL-PP  
LED current ripple: ΔiLED-PP  
Peak current limit: ILIM  
Input voltage ripple: ΔvIN-PP  
Output OVLO characteristics: VTURN-OFF, VHYSO  
Input UVLO characteristics: VTURN-ON, VHYS  
9.2.1.2 Detailed Design Procedure  
9.2.1.2.1 Operating Point  
Given the number of series LEDs (N), the forward voltage (VLED) and dynamic resistance (rLED) for a single LED,  
solve for the nominal output voltage (VO) and the nominal LED string dynamic resistance (rD):  
VO = N x VLED  
(34)  
rD = N x rLED  
(35)  
Solve for the ideal nominal duty cycle (D):  
Buck:  
VO  
D =  
V
IN  
(36)  
Boost:  
VO - V  
IN  
D =  
VO  
(37)  
Buck-Boost:  
VO  
D
=
VO + V  
IN  
(38)  
Using the same equations, find the minimum duty cycle (DMIN) using maximum input voltage (VIN-MAX) and the  
maximum duty cycle (DMAX) using the minimum input voltage (VIN-MIN). Also, remember that D' = 1 - D.  
9.2.1.2.2 Switching Frequency  
Set the switching frequency (fSW) by assuming a CT value of 1 nF and solving for RT:  
Buck (Constant Ripple vs. VIN)  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
25 x VIN - VO  
(
)
RT =  
fSW x CT X VIN  
(39)  
Buck (Constant Ripple vs. VO)  
2
O
x (V x VO V )  
25  
-
IN  
RT  
=
2
fSW x CT x V  
IN  
(40)  
(41)  
Boost and Buck-Boost  
25  
RT =  
fSW x CT  
9.2.1.2.3 Average LED Current  
For all topologies, set the average LED current (ILED) knowing the desired current sense voltage (VSNS) and  
solving for RSNS  
:
VSNS  
ILED  
RSNS  
=
(42)  
If the calculated RSNS is too far from a desired standard value, then VSNS requires adjustment to obtain a  
standard value.  
Setup the suggested signal current of 100 µA by assuming RCSH = 12.4 kand solving for RHSP  
:
ILED x RCSH x RSNS  
RHSP  
=
1.24V  
(43)  
If the calculated RHSP is too far from a desired standard value, then RCSH can be adjusted to obtain a standard  
value.  
9.2.1.2.4 Inductor Ripple Current  
Set the nominal inductor ripple current (ΔiL-PP) by solving for the appropriate inductor (L1):  
Buck  
(VIN - VO )ìD  
L1=  
DiL-PP ì fSW  
(44)  
(45)  
Boost and Buck-Boost  
V ìD  
DiL-PP ì fSW  
IN  
L1=  
To set the worst case inductor ripple current, use VIN-MAX and DMIN when solving for L1.  
The minimum allowable inductor RMS current rating (IL-RMS) can be calculated as:  
Buck  
2
DIL-PP  
«
1
12  
IL-RMS = ILED  
x
1 +  
x
÷
ILED  
(46)  
Boost and Buck-Boost  
2
DIL-PP x D'  
ILED  
÷
1
12  
x
1 +  
x
IL-RMS  
=
ILED  
D'  
«
(47)  
36  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
9.2.1.2.5 LED Ripple Current  
Set the nominal LED ripple current (ΔiLED-PP), by solving for the output capacitance (CO):  
Buck  
DiL-PP  
8 x fSW x rD x DiLED-PP  
CO =  
(48)  
(49)  
Boost and Buck-boost  
ILED ìD  
CO  
=
rD ì DiLED-PP ì fSW  
To set the worst case LED ripple current, use DMAX when solving for CO. Remember, when PWM dimming, TI  
recommends using a minimum of 40 µF of output capacitance to improve performance.  
The minimum allowable RMS output capacitor current rating (ICO-RMS) can be approximated:  
Buck  
üiLED-PP  
ICO- RMS  
=
12  
(50)  
(51)  
Boost and Buck-boost  
DMAX  
ICO-RMS = ILED  
x
1-DMAX  
9.2.1.2.6 Peak Current Limit  
Set the peak current limit (ILIM) by solving for the transistor path sense resistor (RLIM):  
245 mV  
RLIM  
=
ILIM  
(52)  
9.2.1.2.7 Loop Compensation  
Using a simple first order peak current mode control model, neglecting any output capacitor ESR dynamics, the  
necessary loop compensation can be determined.  
First, the uncompensated loop gain (TU) of the regulator can be approximated:  
Buck  
1
TU = TU0  
x
÷
÷
s
1+  
wP1  
«
(53)  
(54)  
Boost and Buck-Boost  
s
-  
÷
÷
1
wZ1  
«
TU = TU0  
x
÷
÷
s
1+  
wP1  
«
Where the pole (ωP1) is approximated:  
Buck  
1
wP1=  
rD x CO  
(55)  
37  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
Boost  
2
wP1=  
rD x CO  
(56)  
(57)  
Buck-Boost  
1+D  
wP1=  
rD x CO  
And the RHP zero (ωZ1) is approximated:  
Boost  
Å2  
rD xD  
L1  
wZ1=  
(58)  
(59)  
Buck-Boost  
Å2  
rD xD  
wZ1=  
DxL1  
And the uncompensated DC loop gain (TU0) is approximated:  
Buck  
500Vx RCSH x RSNS  
RHSP x RLIM  
620V  
ILED x RLIM  
TU0  
=
=
(60)  
(61)  
Boost  
TU0  
Buck-Boost  
Å
D x 500V x RCSH x RSNS  
Å
D x 310V  
=
=
2 x RHSP x RLIM  
ILED x RLIM  
Å
D x 500Vx RCSH x RSNS  
Å
D x 620V  
TU0  
=
=
(
)
(
)
1+D x RHSP x RLIM  
1+D xILED x RLIM  
(62)  
For all topologies, the primary method of compensation is to place a low frequency dominant pole (ωP2), which  
ensures that there is ample phase margin at the crossover frequency. This is accomplished by placing a  
capacitor (CCMP) from the COMP pin to AGND, which is calculated according to the lower value of the pole and  
the RHP zero of the system (shown as a minimizing function):  
min(wP1,wZ1)  
wP2  
=
5 xTU0  
(63)  
1
CCMP  
=
wP2 ì 5ì106  
(64)  
If analog dimming is used, CCMP should be approximately 4× larger to maintain stability as the LEDs are dimmed  
to zero.  
A high-frequency compensation pole (ωP3) can be used to attenuate switching noise and provide better gain  
margin. Assuming RFS = 10 , CFS is calculated according to the higher value of the pole and the RHP zero of  
the system (shown as a maximizing function):  
(
)
wP3 max w ,w x10  
=
P1  
Z1  
(65)  
(66)  
1
CFS  
=
10ì wP3  
The total system loop gain (T) can then be written as:  
38  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
Buck  
1
T = TU0  
x
÷
÷
«
÷
÷
«
÷
÷
s
wP1  
s
s
wP3  
1+  
x 1+  
x 1+  
wP2  
«
(67)  
(68)  
Boost and Buck-Boost  
÷
÷
s
wZ1  
1-  
«
T = TU0  
x
÷
÷
«
÷
÷
s
wP1  
s
wP2  
s
wP3  
÷
1+  
x 1+  
x 1+  
÷
«
«
9.2.1.2.8 Input Capacitance  
Set the nominal input voltage ripple (ΔvIN-PP) by solving for the required capacitance (CIN):  
Buck  
ILED x (1 - D) x D  
CIN  
Boost  
CIN  
=
DVIN-PP x fSW  
(69)  
(70)  
(71)  
DiL-PP  
=
8 x DVIN-PP x fSW  
Buck-Boost  
CIN  
ILED x D  
=
DVIN-PP x fSW  
Use DMAX to set the worst case input voltage ripple, when solving for CIN in a buck-boost regulator and DMID = 0.5  
when solving for CIN in a buck regulator.  
The minimum allowable RMS input current rating (ICIN-RMS) can be approximated:  
Buck  
I
CIN- RMS = ILED x DMID x(1-DMID  
)
(72)  
(73)  
(74)  
Boost  
DiL-PP  
ICIN-RMS  
Buck-Boost  
ICIN-RMS = ILED  
=
12  
DMAX  
x
1-DMAX  
9.2.1.2.9 N-channel FET  
The N-channel FET voltage rating should be at least 15% higher than the maximum N-channel FET drain-to-  
source voltage (VT-MAX):  
Buck  
VT- MAX = V  
IN- MAX  
(75)  
Boost  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
V
T- MAX = VO  
(76)  
(77)  
Buck-Boost  
T- MAX = VIN- MAX + VO  
V
The current rating should be at least 10% higher than the maximum average N-channel FET current (IT-MAX):  
Buck  
IT-MAX = DMAX x ILED  
(78)  
(79)  
(80)  
Boost and Buck-Boost  
DMAX  
IT-MAX  
=
x ILED  
1 - DMAX  
Approximate the nominal RMS transistor current (IT-RMS) :  
Buck  
I
T- RMS = ILED x D  
9.2.1.2.9.1 Boost and Buck-Boost  
I
LED x D  
IT- RMS  
=
Å
D
(81)  
(82)  
Given an N-channel FET with on-resistance (RDS-ON), solve for the nominal power dissipation (PT):  
P = IT- RMS2 x RDSON  
T
9.2.1.2.10 Diode  
The Schottky diode voltage rating should be at least 15% higher than the maximum blocking voltage (VRD-MAX):  
Buck  
VRD-MAX = VIN-MAX  
(83)  
Boost  
VRD-MAX = VO  
(84)  
(85)  
Buck-Boost  
VRD-MAX = VIN-MAX + VO  
The current rating should be at least 10% higher than the maximum average diode current (ID-MAX):  
Buck  
ID-MAX = (1 - DMIN) x ILED  
(86)  
(87)  
Boost and Buck-Boost  
ID-MAX = ILED  
Replace DMAX with D in the ID-MAX equation to solve for the average diode current (ID). Given a diode with forward  
voltage (VFD), solve for the nominal power dissipation (PD):  
PD = ID xVFD  
(88)  
40  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
9.2.1.2.11 Output OVLO  
For boost and buck-boost regulators, output OVLO is programmed with the turn-off threshold voltage (VTURN-OFF  
)
and the desired hysteresis (VHYSO). To set VHYSO, solve for ROV2  
:
VHYSO  
ROV2  
=
23mA  
(89)  
To set VTURN-OFF, solve for ROV1  
:
Boost  
1.24V x ROV2  
ROV1  
Buck-Boost  
ROV1  
=
VTURN-OFF - 1.24V  
(90)  
(91)  
1.24V x ROV2  
=
VTURN- OFF - 620 mV  
A small filter capacitor (COVP = 47 pF) should be added from the OVP pin to ground to reduce coupled switching  
noise.  
9.2.1.2.12 Input UVLO  
For all topologies, input UVLO is programmed with the turnon threshold voltage (VTURN-ON) and the desired  
hysteresis (VHYS).  
Method 1: If no PWM dimming is required, a two resistor network can be used. To set VHYS, solve for RUV2  
:
VHYS  
23 mA  
RUV2  
=
(92)  
To set VTURN-ON, solve for RUV1  
:
1.24Vx RUV2  
RUV1  
=
VTURN- ON - 1.24V  
(93)  
Method 2: If PWM dimming is required, a three resistor network is suggested. To set VTURN-ON, assume RUV2  
10 kand solve for RUV1 as in Method 1. To set VHYS, solve for RUVH  
=
:
(
)
RUV1 x VHYS - 23 mA x RUV2  
RUVH  
=
(
)
23 mA x RUV1 + RUV2  
(94)  
9.2.1.2.13 PWM Dimming Method  
PWM dimming can be performed several ways:  
Method 1: Connect the dimming MOSFET (Q3) with the drain to the nDIM pin and the source to AGND. Apply an  
external PWM signal to the gate of QDIM. A pulldown resistor may be necessary to properly turn off Q3.  
Method 2: Connect the anode of a Schottky diode to the nDIM pin. Apply an external inverted PWM signal to the  
cathode of the same diode.  
The DDRV pin should be connected to the gate of the dimFET with or without level-shifting circuitry as described  
in the PWM Dimming section. The dimFET should be rated to handle the average LED current and the nominal  
output voltage.  
9.2.1.2.14 Analog Dimming Method  
Analog dimming can be performed several ways:  
Method 1: Place a potentiometer in series with the RCSH resistor to dim the LED current from the nominal ILED to  
near zero.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
Method 2: Connect a controlled current source as detailed in the Analog Dimming section to the CSH pin.  
Increasing the current sourced into the CSH node decreases the LEDs from the nominal ILED to zero current in  
the same manner as the thermal foldback circuit.  
42  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
9.2.2 LM3421 Buck-Boost Application  
L1  
10V œ 70V  
D1  
VIN  
R
HSN  
1
16  
15  
14  
13  
12  
VIN  
HSN  
HSP  
LM3421  
1A  
C
IN  
ILED  
R
HSP  
2
EN  
C
O
R
T
C
CMP  
3
4
5
6
7
8
COMP  
CSH  
RPD  
IS  
R
CSH  
C
FS  
R
SNS  
VIN  
R
FS  
RCT  
VCC  
GATE  
PGND  
DDRV  
C
BYP  
C
T
11  
AGND  
OVP  
Q1  
R
UV2  
R
10  
9
OV2  
R
LIM  
DAP  
Q2  
nDIM  
VIN  
R
UV1  
R
C
OV  
OV1  
Figure 36. LM3421 Buck-Boost Application  
9.2.2.1 Design Requirements  
N = 6  
VLED = 3.5 V  
rLED = 325 mΩ  
VIN = 24 V  
VIN-MIN = 10 V  
VIN-MAX = 70 V  
fSW = 500 kHz  
VSNS = 100 mV  
ILED = 1 A  
ΔiL-PP = 700 mA  
ΔiLED-PP = 12 mA  
ΔvIN-PP = 100 mV  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
ILIM = 6 A  
VTURN-ON = 10 V  
VHYS = 3 V  
VTURN-OFF = 40 V  
VHYSO = 10 V  
9.2.2.2 Detailed Design Procedure  
9.2.2.2.1 Operating Point  
Solve for VO and rD:  
VO Nx V  
6x 3.5V 21V  
=
=
=
LED  
(95)  
(96)  
rD N x r  
6 x 325 mW 1.95W  
=
=
=
LED  
Solve for D, D', DMAX, and DMIN  
:
VO  
21V  
21V + 24V  
D =  
=
= 0.467  
VO +V  
IN  
(97)  
(98)  
D' 1- D 1- 0.467 0.533  
=
=
=
VO  
21V  
=
DMIN  
=
= 0.231  
VO + VIN-MAX  
21V + 70V  
(99)  
VO  
=
21V  
21V +10V  
DMAX  
=
= 0.677  
VO + V  
IN-MIN  
(100)  
9.2.2.2.2 Switching Frequency  
Assume CT = 1 nF and solve for RT:  
25  
fSW x CT  
25  
=
RT =  
= 50 kW  
500 kHz x 1 nF  
(101)  
The closest standard resistor is 49.9 k; therefore, fSW is:  
25  
RT x CT  
25  
=
fSW  
=
= 501 kHz  
49.9 kW x 1 nF  
(102)  
(103)  
The chosen component from step 2 is:  
CT = 1 nF  
RT = 49.9 kW  
9.2.2.2.3 Average LED Current  
Solve for RSNS  
:
V
ILED  
100 mV  
1A  
SNS  
RSNS  
0.1W  
=
=
=
(104)  
Assume RCSH = 12.4 kand solve for RHSP  
:
ILED xRCSH x RSNS  
1.24V  
1Ax12.4 kW x 0.1W  
RHSP  
=
=
=1.0 kW  
1.24V  
(105)  
44  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
The closest standard resistor for RSNS is actually 0.1 and for RHSP is actually 1 k; therefore, ILED is:  
1.24Vx RHSP  
RSNS x RCSH  
1.24V x1.0 kW  
0.1W x12.4 kW  
ILED  
=
=
=1.0A  
(106)  
(107)  
The chosen components from step 3 are:  
RSNS 0.1W  
=
RCSH 12.4 kW  
=
RHSP  
R
1kW  
=
=
HSN  
9.2.2.2.4 Inductor Ripple Current  
Solve for L1:  
V x D  
24Vx0.467  
DiL-PP x fSW 700 mA x501kHz  
IN  
32 mH  
=
L1=  
=
(108)  
(109)  
The closest standard inductor is 33 µH; therefore, ΔiL-PP is:  
V x D  
24Vx 0.467  
L1x fSW 33 mHx501 kHz  
IN  
678 mA  
=
DiL- PP  
=
=
Determine minimum allowable RMS current rating:  
«
Å’2  
DiL-PP x D  
I
1
12  
LED x 1+  
÷
x
IL-RMS  
=
=
÷
ILED  
Å
D
2
678 mA x 0.533  
1
1A  
1.89A  
x
=
x 1+  
÷
÷
IL-RMS  
12  
1A  
0.533  
«
(110)  
(111)  
The chosen component from step 4 is:  
L1= 33 mH  
9.2.2.2.5 Output Capacitance  
Solve for CO:  
ILED x D  
CO =  
rD x DiLED-PP x fSW  
1A x 0.467  
1.95W x 12 mA x501 kHz  
=
= 39.8 mF  
CO  
(112)  
The closest capacitance totals 40 µF; therefore, ΔiLED-PP is:  
ILED x D  
DiLED-PP  
=
=
rD x CO x fSW  
1A x 0.467  
1.95W x x 501 kHz  
DiLED-PP  
12 mA  
=
40 mF  
(113)  
Determine minimum allowable RMS current rating:  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
DMAX  
1- DMAX  
0.677  
1- 0.677  
x
x
I
CO-RMS =ILED  
=1A  
=1.45A  
(114)  
(115)  
The chosen components from step 5 are:  
CO = 4 x 10 mF  
9.2.2.2.6 Peak Current Limit  
Solve for RLIM  
:
245 mV 245 mV  
=
RLIM  
=
= 0.041W  
ILIM  
6A  
(116)  
The closest standard resistor is 0.04 ; therefore, ILIM is:  
245 mV 245 mV  
ILIM  
=
=
= 6.13A  
RLIM  
0.04W  
(117)  
(118)  
The chosen component from step 6 is:  
RLIM = 0.04W  
9.2.2.2.7 Loop Compensation  
ωP1 is approximated:  
rad  
sec  
1+D  
rD xCO  
1.467  
1.95W x 40 mF  
wP1 =  
=
=19k  
(119)  
(120)  
ωZ1 is approximated:  
Å2  
1.95W x0.5332  
DxL1 0.467x 33mH  
rad  
sec  
rD x D  
wZ1 =  
=
= 36k  
TU0 is approximated:  
Å
0.533x620V  
1.467x1A x 0.04W  
D x 620V  
TU0 =  
=
= 5630  
(
)
1 D xILED x RLIM  
+
(121)  
To ensure stability, calculate ωP2:  
rad  
sec  
19k  
min(wP1, wZ1)  
wP1  
rad  
sec  
=
=
= 0.675  
wP2  
=
5 x TU0  
5 x 5630 5 x 5630  
(122)  
(123)  
Solve for CCMP  
:
1
1
CCMP  
=
=
= 0.3 mF  
wP2 ì5ì106 W  
rad  
0.675  
ì5ì106 W  
sec  
To attenuate switching noise, calculate ωP3:  
w
w
P3 = (max wP1, wZ1) x 10 = wZ1 x 10  
rad  
sec  
rad  
sec  
x 10 = 360k  
P3 = 36k  
(124)  
Assume RFS = 10 and solve for CFS  
:
46  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
1
x w  
1
CFS =  
=
= 0.28 mF  
rad  
sec  
10W  
P3  
10W x  
360k  
(125)  
(126)  
The chosen components from step 7 are:  
CCMP = 0.33mF  
RFS =10W  
CFS = 0.27mF  
9.2.2.2.8 Input Capacitance  
Solve for the minimum CIN:  
ILED x D  
DvIN-PP x fSW  
1A x 0.467  
100 mV x 504kHz  
CIN =  
=
= 9.27mF  
(127)  
To minimize power supply interaction a 200% larger capacitance of approximately 20 µF is used, therefore the  
actual ΔvIN-PP is much lower. Because high voltage ceramic capacitor selection is limited, four 4.7-µF X7R  
capacitors are chosen.  
Determine minimum allowable RMS current rating:  
DMAX  
1- DMAX  
0.677  
1- 0.677  
x
x
I
IN-RMS =ILED  
=1A  
=1.45A  
(128)  
(129)  
The chosen components from step 8 are:  
CIN = 4 x 4.7 mF  
9.2.2.2.9 N-channel FET  
Determine minimum Q1 voltage rating and current rating:  
VT-MAX  
V
V
70V 21V 91V  
= + =  
=
+
IN- MAX  
O
(130)  
(131)  
0.677  
1- 0.677  
IT-MAX  
x1A 2.1A  
=
=
A 100-V N-channel FET is chosen with a current rating of 32 A due to the low RDS-ON = 50 m. Determine IT-RMS  
and PT:  
ILED  
1A  
0.533  
IT-RMS  
D
0.467 1.28A  
x
=
x
=
=
Å
D
(132)  
(133)  
PT  
I
2 x RDSON 1.28A2 x 50 mW 82 mW  
= =  
T- RMS  
=
The chosen component from step 9 is:  
Q1 ç 32A, 100V, DPAK  
(134)  
9.2.2.2.10 Diode  
Determine minimum D1 voltage rating and current rating:  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
Typical Applications (continued)  
V
RD-MAX = VIN-MAX + VO = 70V +21V = 91V  
(135)  
(136)  
ID-MAX 1A  
I
=
=
LED  
A 100-V diode is chosen with a current rating of 12 A and VDF = 600 mV. Determine PD:  
I x V 1A x 600 mV 600 mW  
P
=
=
FD  
=
D
D
(137)  
(138)  
The chosen component from step 10 is:  
D1 ç 12A, 100V, DPAK  
9.2.2.2.11 Input UVLO  
Solve for RUV2  
:
VHYS  
3V  
m
RUV2  
=
=
=130kW  
m
23 A 23 A  
(139)  
(140)  
The closest standard resistor is 130 k; therefore, VHYS is:  
VHYS  
R
x23mA 130 kW x23 mA 2.99V  
=
=
=
UV2  
Solve for RUV1  
:
1.24Vx RUV2  
VTURN- ON -1.24V  
1.24Vx130kW  
10V -1.24V  
RUV1  
=
=
= 18.4 kW  
(141)  
The closest standard resistor is 18.2 k, making VTURN-ON  
:
(
)
1.24Vx RUV1+ RUV2  
VTURN-ON  
=
=
RUV1  
(
)
1.24V x 18.2kW +130kW  
VTURN-ON  
= 10.1V  
18.2kW  
(142)  
(143)  
The chosen components from step 11 are:  
RUV1 18.2kW  
=
RUV2 130 kW  
=
9.2.2.2.12 Output OVLO  
Solve for ROV2  
:
VHYSO  
10V  
m
ROV2  
=
=
= 435kW  
m
23 A 23 A  
(144)  
(145)  
The closest standard resistor is 432 k; therefore, VHYSO is:  
m
m
VHYSO  
R
x 23 A 432 kW x 23 A 9.94V  
=
=
=
OV2  
Solve for ROV1  
:
1.24Vx ROV2  
VTURN-OFF - 0.62V  
1.24Vx 432kW  
40V - 0.62V  
ROV1  
=
=
= 13.6kW  
(146)  
The closest standard resistor is 13.7 k, making VTURN-OFF  
:
48  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
Typical Applications (continued)  
(
)
1.24Vx 0.5 xROV1+ ROV2  
VTURN-OFF  
=
=
ROV1  
(
)
13.7 kW +432kW  
1.24Vx  
0.5 x  
VTURN-OFF  
= 39.7V  
13.7 kW  
(147)  
(148)  
The chosen components from step 12 are:  
ROV1 = 13.7 kW  
ROV2 = 432 kW  
Table 2. Bill of Materials  
QTY  
1
PART ID  
LM3421  
CBYP  
CCMP  
CFS  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Buck-boost controller  
2.2-µF X7R 10% 16V  
0.33-µF X7R 10% 25V  
0.27-µF X7R 10% 25V  
4.7-µF X7R 10% 100V  
10-µF X7R 10% 50V  
47-pF COG/NPO 5% 50V  
1000-pF COG/NPO 5% 50V  
Schottky 100 V 12 A  
33 µH 20% 6.3 A  
NMOS 100 V 32 A  
PNP 150 V 600 mA  
12.4 k1%  
TI  
LM3421MH  
1
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71C225KA12L  
GRM21BR71E334KA01L  
GRM21BR71E274KA01L  
C5750X7R2A475K  
C4532X7R1H106K  
08055A470JAT2A  
1
1
4
CIN  
4
CO  
TDK  
1
COV  
AVX  
1
CT  
MURATA  
VISHAY  
COILCRAFT  
FAIRCHILD  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
1
D1  
1
L1  
MSS1278-333MLB  
FDD3682  
1
Q1  
1
Q2  
MMBT5401  
1
RCSH  
RFS  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW080513K7FKEA  
CRCW0805432KFKEA  
WSL2512R1000FEA  
CRCW080549K9FKEA  
CRCW080518K2FKEA  
CRCW0805130KFKEA  
1
10 1%  
2
RHSP, RHSN  
RLIM  
ROV1  
ROV2  
RSNS  
RT  
1 k1%  
1
0.04 1% 1 W  
1
13.7 k1%  
1
432 k1%  
1
0.1 1% 1 W  
1
49.9 k1%  
1
RUV1  
RUV2  
18.2 k1%  
1
130 k1%  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.2.3 Application Curve  
VOUT = 21 V  
Figure 37. Sample Buck-Boost Efficiency vs Input Voltage.  
50  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
9.2.3 LM3421-Q1 BOOST Application  
D2  
L1  
D1  
8V œ 28V  
VIN  
R
HSN  
1
16  
VIN  
HSN  
HSP  
LM3421  
C
R
SNS  
FS  
R
C
IN  
R
HSP  
2
15  
14  
13  
12  
EN  
FS  
R
T
C
CMP  
3
4
5
6
7
8
COMP  
CSH  
RPD  
IS  
R
CSH  
1A  
C
O
ILED  
RCT  
VCC  
GATE  
PGND  
DDRV  
C
BYP  
C
T
11  
AGND  
OVP  
Q1  
R
UV2  
10  
9
R
LIM  
DAP  
R
UVH  
nDIM  
Q2  
R
OV2  
OV1  
R
UV1  
Q3  
PWM  
R
C
OV  
Figure 38. LM3421-Q1 BOOST Application  
9.2.3.1 Design Requirements  
Input: 8 V to 28 V  
Output: 9 LEDs at 1 A  
PWM Dimming up to 30kHz  
Switching Frequency: 700-kHz  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.3.2 Detailed Design Procedure  
Table 3. Bill of Materials  
QTY  
1
PART ID  
LM3421  
CBYP  
CCMP  
CFS  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Boost controller  
2.2-µF X7R 10% 16 V  
0.1-µF X7R 10% 25 V  
DNP  
TI  
LM3421MH  
1
MURATA  
MURATA  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
1
0
4
CIN  
4.7-µF X7R 10% 100 V  
10-µF X7R 10% 50 V  
47-pF COG/NPO 5% 50 V  
1000-pF COG/NPO 5% 50 V  
Schottky 60 V 5 A  
33-µH 20% 6.3 A  
NMOS 60 V 8 A  
NMOS 60 V 115 mA  
12.4 k1%  
TDK  
C5750X7R2A475K  
C4532X7R1H106K  
08055A470JAT2A  
4
CO  
TDK  
1
COV  
AVX  
1
CT  
MURATA  
COMCHIP  
COILCRAFT  
VISHAY  
ON-SEMI  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
CDBC560-G  
2
D1, D2  
L1  
1
MSS1278-333MLB  
SI4436DY  
2
Q1, Q2  
Q3  
1
2N7002ET1G  
2
RCSH, ROV1  
RFS  
RHSP, RHSN  
RLIM  
CRCW080512K4FKEA  
CRCW08050000Z0EA  
CRCW08051K00FKEA  
WSL2512R0600FEA  
CRCW0805499KFKEA  
WSL2512R1000FEA  
CRCW080510K0FKEA  
CRCW080535K7FKEA  
CRCW08051K82FKEA  
CRCW080517K8FKEA  
1
0 1%  
2
1 k1%  
1
0.06 1% 1 W  
499 k1%  
1
ROV2  
RSNS  
RUV2  
RT  
1
0.1 1% 1 W  
1
10 k1%  
1
35.7 k1%  
1
RUV1  
RUVH  
1.82 k1%  
1
17.8 k1%  
52  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
9.2.4 LM3421-Q1 Buck-Boost Application  
L1  
D1  
10V ꢀ0V  
VIN  
2A  
R
HSN  
1
16  
15  
14  
1ꢀ  
12  
ILED  
VIN  
HSN  
HSP  
LM3421  
C
O
C
R
IN  
HSP  
2
4
5
6
7
8
EN  
Q2  
R
DIM  
R
T
C
CMP  
C
FS  
COMP  
CSH  
RCT  
RPD  
IS  
SNS  
VIN  
R
R
CSH  
POT  
R
FS  
R
F
R
Q7  
PU  
C
F
VCC  
GATE  
PGND  
DDRV  
R
OV2  
C
DIM  
BYP  
C
T
11  
Q6  
Q4  
AGND  
OVP  
nDIM  
Q1  
R
C
B
D2  
UV2  
10  
9
Q5  
R
LIM  
R
SER  
VIN  
DAP  
R
UVH  
R
UV1  
Qꢀ  
PWM  
C
R
OV1  
OV  
Figure 39. LM3421-Q1 Buck-Boost Application  
9.2.4.1 Design Requirements  
Input: 10 V to 30 V  
Output: 4 LEDs at 2 A  
PWM Dimming: up to 10 kHz  
Analog Dimming  
Switching Frequency: 600-kHz  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.4.2 Detailed Design Procedure  
Table 4. Bill of Materials  
QTY  
1
1
1
3
1
0
4
4
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
PART ID  
LM3421  
CB  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Buck-boost controller  
100-pF COG/NPO 5% 50 V  
2.2-µF X7R 10% 16 V  
1-µF X7R 10% 25 V  
0.1-µF X7R 10% 25 V  
DNP  
TI  
LM3421MH  
MURATA  
MURATA  
MURATA  
MURATA  
GRM2165C1H101JA01D  
GRM21BR71C225KA12L  
GRM21BR71E105KA01L  
GRM21BR71E104KA01L  
CBYP  
CCMP, CREF, CSS  
CF  
CFS  
CIN  
6.8-µF X7R 10% 50 V  
10-µF X7R 10% 50 V  
47-pF COG/NPO 5% 50 V  
1000-pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
Zener 10 V 500 mA  
22 µH 20% 7.2 A  
NMOS 60 V 8 A  
NMOS 60 V 260 mA  
PNP 40 V 200 mA  
PNP 150 V 600 mA  
NPN 300 V 600 mA  
NPN 40 V 200 mA  
12.4 k1%  
TDK  
C5750X7R1H685K  
C4532X7R1H106K  
08055A470JAT2A  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
BZX84C10LT1G  
CO  
TDK  
COV  
AVX  
CT  
MURATA  
VISHAY  
ON-SEMI  
COILCRAFT  
VISHAY  
ON-SEMI  
FAIRCHILD  
FAIRCHILD  
FAIRCHILD  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
BOURNS  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
D1  
D2  
L1  
MSS1278-223MLB  
SI4436DY  
Q1, Q2  
Q3  
2N7002ET1G  
Q4  
MMBT5087  
Q5  
MMBT5401  
Q6  
MMBTA42  
Q7  
MMBT6428  
RCSH  
RF  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08050000Z0EA  
CRCW080510K0FKEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW080518K2FKEA  
CRCW0805499KFKEA  
3352P-1-105  
10 1%  
RFS  
0 1%  
RUV2  
RHSP, RHSN  
RLIM  
ROV1  
ROV2  
RPOT  
RPU  
10 k1%  
1 k1%  
0.04 1% 1 W  
18.2 k1%  
499 k1%  
1-Mpotentiometer  
4.99 k1%  
CRCW08054K99FKEA  
CRCW0805499RFKEA  
WSL2512R0500FEA  
CRCW080541K2FKEA  
CRCW08051K43FKEA  
CRCW080517K4FKEA  
RSER  
RSNS  
RT  
499 1%  
0.05 1% 1 W  
41.2 k1%  
RUV1  
RUVH  
1.43 k1%  
17.4 k1%  
54  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
9.2.5 LM3423-Q1 Boost Application  
D2  
L1  
D1  
18V œ 38V  
VIN  
R
HSN  
1
2
20  
VCC  
VIN  
HSN  
HSP  
LM3423  
External  
Enable  
C
FS  
R
SNS  
C
IN  
R
HSP  
19  
18  
17  
16  
EN  
VREF  
R
R
FS  
R
T
Q4  
Q5  
C
CMP  
3
COMP  
CSH  
RCT  
AGND  
OVP  
nDIM  
FLT  
RPD  
D3  
RPD  
VCC  
PU  
R
MAX  
Q2  
Q7  
R
4
IS  
R
ADJ  
R
BIAS2  
CSH  
5
Q6  
VCC  
C
DIM  
C
BYP  
C
T
6
15  
GATE  
PGND  
DDRV  
DPOL  
LRDY  
Q1  
R
SER  
C
O
R
UV2  
7
14  
13  
12  
11  
R
LIM  
8
R
UVH  
700 mA  
ILED  
9
DAP  
R
UV1  
10  
TIMR  
R
OV2  
OV1  
Q3  
PWM  
C
OV  
R
RPD  
Figure 40. LM3423-Q1 Boost Application  
9.2.5.1 Design Requirements  
Input: 18 V to 38 V  
Output: 12 LEDs at 700 mA  
High-Side PWM Dimming: up to 30 kHz  
Dimming: Analog  
Zero Current Shutdown  
Switching Frequency: 700-kHz  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.5.2 Detailed Design Procedure  
Table 5. Bill of Materials  
QTY  
1
1
1
1
4
4
1
1
2
1
1
1
1
1
1
1
1
1
1
2
1
3
1
1
1
1
1
1
1
PART ID  
PART VALUE  
MANUFACTURER  
PART NUMBER  
LM3423  
Boost controller  
2.2-µF X7R 10% 16 V  
1-µF X7R 10% 25 V  
0.1-µF X7R 10% 25 V  
4.7-µF X7R 10% 100 V  
10-µF X7R 10% 50 V  
47-pF COG/NPO 5% 50 V  
1000-pF COG/NPO 5% 50 V  
Schottky 60 V 5 A  
Zener 10 V 500 mA  
47 µH 20% 5.3 A  
NMOS 60 V 8 A  
PMOS 70 V 5.7 A  
NMOS 60 V 260 mA  
Dual PNP 40 V 200 mA  
NPN 300 V 600 mA  
NPN 40 V 200 mA  
100-kpotentiometer  
17.4 k1%  
TI  
LM3423MH  
CBYP  
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71C225KA12L  
GRM21BR71E105KA01L  
GRM21BR71E104KA01L  
C5750X7R2A475K  
C4532X7R1H106K  
08055A470JAT2A  
GRM2165C1H102JA01D  
CDBC560-G  
CCMP  
CFS  
CIN  
CO  
TDK  
COV  
AVX  
CT  
MURATA  
COMCHIP  
ON-SEMI  
COILCRAFT  
VISHAY  
ZETEX  
D1, D2  
D3  
BZX84C10LT1G  
L1  
MSS1278-473MLB  
SI4436DY  
Q1  
Q2  
ZXMP7A17K  
Q3  
ON-SEMI  
FAIRCHILD  
FAIRCHILD  
FAIRCHILD  
BOURNS  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
2N7002ET1G  
Q4, Q5 (dual pack)  
FFB3906  
Q6  
MMBTA42  
Q7  
MMBT3904  
RADJ  
3352P-1-104  
RBIAS2  
RCSH, ROV1  
RFS  
CRCW080517K4FKEA  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
WSL2512R0600FEA  
CRCW0805499KFKEA  
WSL2512R1500FEA  
CRCW080535K7FKEA  
CRCW08051K43FKEA  
CRCW080510K0FKEA  
CRCW080516K9FKEA  
12.4 k1%  
10 1%  
RHSP, RHSN, RMAX  
RLIM  
1 k1%  
0.06 1% 1W  
ROV2  
499 k1%  
RSNS  
0.15 1% 1W  
RT  
35.7 k1%  
RUV1  
1.43 k1%  
RUV2  
10 k1%  
RUVH  
16.9 k1%  
56  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
9.2.6 LM3421 Buck-Boost Application  
L1  
D1  
10V œ 70V  
VIN  
R
T
C
IN  
R
HSN  
RCT  
External  
Enable  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
500 mA  
ILED  
VIN  
HSN  
HSP  
LM3421  
C
O
Q9  
R
HSP  
EN  
C
EN  
Q2  
DIM  
COMP  
CSH  
RCT  
AGND  
OVP  
nDIM  
RPD  
IS  
C
R
CMP  
CSH  
C
FS  
R
SNS  
VIN  
C
Q8  
CSH  
R
FS  
R
F
VCC  
GATE  
PGND  
DDRV  
RCT  
C
BYP  
C
T
Q7  
R
PU  
C
F
11  
10  
9
Q1  
R
OV2  
DIM  
R
UV2  
Q6  
Q4  
DAP  
C
D2  
B
R
SER  
R
UVH  
Q5  
VIN  
Q3  
R
UV1  
PWM  
R
OV1  
C
OV  
Figure 41. LM3421 Buck-Boost Application  
9.2.6.1 Design Requirements  
Input: 10 V to 70 V  
Output: 6 LEDs at 500 mA  
PWM Dimming up to 10 kHz  
Slow Fade Out  
MOSFET RDS-ON Sensing  
700-kHz Switching Frequency  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.6.2 Detailed Design Procedure  
Table 6. Bill of Materials  
QTY  
1
1
1
1
1
0
4
4
1
1
1
1
1
2
1
2
1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
PART ID  
LM3421  
CB  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Buck-boost controller  
100-pF COG/NPO 5% 50 V  
2.2-µF X7R 10% 16 V  
1-µF X7R 10% 25 V  
0.1-µF X7R 10% 25 V  
DNP  
TI  
LM3421MH  
MURATA  
MURATA  
MURATA  
MURATA  
GRM2165C1H101JA01D  
GRM21BR71C225KA12L  
GRM21BR71E105KA01L  
GRM21BR71E104KA01L  
CBYP  
CCMP  
CF  
CFS  
CIN  
4.7-µF X7R 10% 100 V  
10-µF X7R 10% 50 V  
47-pF COG/NPO 5% 50 V  
1000-pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
Zener 10 V 500 mA  
68 µH 20% 4.3 A  
NMOS 100 V 32 A  
NMOS 60 V 260 mA  
PNP 40 V 200 mA  
PNP 150 V 600 mA  
NPN 300 V 600 mA  
NPN 40 V 200 mA  
12.4 k1%  
TDK  
C5750X7R2A475K  
C4532X7R1H106K  
08055A470JAT2A  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
BZX84C10LT1G  
CO  
TDK  
COV  
AVX  
CT  
MURATA  
VISHAY  
ON-SEMI  
COILCRAFT  
FAIRCHILD  
ON-SEMI  
FAIRCHILD  
FAIRCHILD  
FAIRCHILD  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
D1  
D2  
L1  
MSS1278-683MLB  
FDD3682  
Q1, Q2  
Q3  
2N7002ET1G  
Q4, Q8  
Q5  
MMBT5087  
MMBT5401  
Q6  
MMBTA42  
Q7, Q9  
RCSH  
RFS  
MMBT6428  
CRCW080512K4FKEA  
CRCW08050000Z0EA  
CRCW080510K0FKEA  
CRCW08051K00FKEA  
CRCW080515K8FKEA  
CRCW0805499KFKEA  
CRCW08054K99FKEA  
CRCW0805499RFKEA  
WSL2512R2000FEA  
CRCW080535K7FKEA  
CRCW08051K43FKEA  
CRCW080517K4FKEA  
0 1%  
RUV2  
RHSP, RHSN  
ROV1  
ROV2  
RPU  
10 k1%  
1 k1%  
15.8 k1%  
499 k1%  
4.99 k1%  
RSER  
RSNS  
RT  
499 1%  
0.2 1% 1 W  
35.7 k1%  
RUV1  
RUVH  
1.43 k1%  
17.4 k1%  
58  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
9.2.7 LM3423 Buck Application  
15V œ 50V  
VIN  
R
HSN  
1
20  
19  
18  
17  
16  
VIN  
HSN  
HSP  
LM3423  
C
R
SNS  
FS  
External  
Enable  
C
IN  
R
HSP  
2
3
EN  
R
FS  
R
T
C
O
C
CMP  
COMP  
CSH  
RCT  
AGND  
OVP  
nDIM  
FLT  
RPD  
RPD  
R
D2  
PU  
R
CSH  
4
R
OV2  
Q2  
IS  
1.25A  
ILED  
D1  
5
VCC  
L1  
C
BYP  
Q4  
C
T
6
15  
GATE  
PGND  
DDRV  
DPOL  
LRDY  
Q1  
C
DIM  
7
14  
13  
12  
11  
R
LIM  
R
UV2  
R
UVH  
8
PWM  
Q3  
R
UV1  
VIN  
9
DAP  
R
PU2  
LED  
STATUS  
LIGHT  
10  
TIMR  
R
C
OV1  
OV  
RPD  
Figure 42. LM3423 Buck Application  
9.2.7.1 Design Requirements  
Input: 15 V to 50 V  
Output: 3 LEDs at 1.25 A  
PWM Dimming up to 50 kHz  
LED Status Indicator  
Zero Current Shutdown  
700-kHz Switching Frequency  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.7.2 Detailed Design Procedure  
Table 7. Bill of Materials  
QTY  
1
PART ID  
LM3423  
CBYP  
CCMP, CDIM  
CFS  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Buck controller  
2.2-µF X7R 10% 16 V  
0.1 µF X7R 10% 25 V  
DNP  
TI  
LM3423MH  
1
MURATA  
MURATA  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
2
0
4
CIN  
4.7-µF X7R 10% 100 V  
DNP  
TDK  
C5750X7R2A475K  
0
CO  
1
COV  
47-pF COG/NPO 5% 50 V  
1000-pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
Zener 10 V 500 mA  
22 µH 20% 7.3 A  
NMOS 60 V 8 A  
PMOS 30 V 6.2 A  
NMOS 60 V 115 mA  
PNP 150 V 600 mA  
12.4 k1%  
AVX  
08055A470JAT2A  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
BZX84C10LT1G  
1
CT  
MURATA  
VISHAY  
ON-SEMI  
COILCRAFT  
VISHAY  
VISHAY  
ON-SEMI  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
1
D1  
1
D2  
1
L1  
MSS1278-223MLB  
SI4436DY  
1
Q1  
1
Q2  
SI3483DV  
1
Q3  
2N7002ET1G  
1
Q4  
MMBT5401  
1
RCSH  
RFS  
CRCW080512K4FKEA  
CRCW08050000OZEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW080521K5FKEA  
CRCW0805499KFKEA  
CRCW0805100KFKEA  
CRCW080535K7FKEA  
WSL2512R0800FEA  
CRCW080511K5FKEA  
1
0 1%  
2
RHSP, RHSN  
RLIM  
1 k1%  
1
0.04 1% 1 W  
21.5 k1%  
1
ROV1  
ROV2  
RPU, RPU2, RUV2  
RT  
1
499 k1%  
3
100 k1%  
1
35.7 k1%  
1
RSNS  
RUV1  
0.08 1% 1 W  
11.5 k1%  
1
60  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
9.2.8 LM3423 Buck-Boost Application  
L1  
D1  
15V œ 60V  
VIN  
Q2  
R
D2  
PU  
R
HSN  
1
2
20  
19  
18  
17  
16  
VIN  
HSN  
HSP  
2.5A  
ILED  
LM3423  
C
O
C
R
IN  
HSP  
External  
Enable  
EN  
R
T
C
CMP  
3
COMP  
CSH  
RCT  
AGND  
OVP  
nDIM  
FLT  
RPD  
RPD  
R
CSH  
4
C
FS  
R
SNS  
IS  
VIN  
R
FS  
5
VCC  
R
FLT  
C
BYP  
C
T
6
15  
GATE  
PGND  
DDRV  
DPOL  
LRDY  
Q1  
R
OV2  
7
14  
13  
12  
11  
R
UV2  
Q5  
VIN  
8
R
UV1  
9
DAP  
10  
TIMR  
C
TMR  
R
OV1  
C
OV  
RPD  
Figure 43. LM3423 Buck-Boost Application  
9.2.8.1 Design Requirements  
Input: 15 V to 60 V  
Output: 8 LEDs at 2.5 A  
Fault Input Disconnect  
Zero Current Shutdown  
500-kHz Switching Frequency  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.8.2 Detailed Design Procedure  
Table 8. Bill of Materials  
QTY  
1
PART ID  
LM3423  
CBYP  
CCMP  
CFS  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Buck-boost controller  
2.2-µF X7R 10% 16 V  
0.33-µF X7R 10% 25 V  
0.1-µF X7R 10% 25 V  
4.7-µF X7R 10% 100 V  
10-µF X7R 10% 50 V  
47-pF COG/NPO 5% 50 V  
1000-pF COG/NPO 5% 50 V  
220-pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
Zener 10 V 500 mA  
22 µH 20% 7.2 A  
NMOS 100 V 32 A  
PMOS 70 V 5.7 A  
PNP 150 V 600 mA  
12.4 k1%  
TI  
LM3423MH  
1
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71C225KA12L  
GRM21BR71E334KA01L  
GRM21BR71E104KA01L  
C5750X7R2A475K  
C4532X7R1H106K  
08055A470JAT2A  
1
1
4
CIN  
4
CO  
TDK  
1
COV  
AVX  
1
CT  
MURATA  
MURATA  
VISHAY  
ON-SEMI  
COILCRAFT  
FAIRCHILD  
ZETEX  
GRM2165C1H102JA01D  
GRM2165C1H221JA01D  
12CWQ10FNPBF  
1
CTMR  
D1  
1
1
D2  
BZX84C10LT1G  
1
L1  
MSS1278-223MLB  
FDD3682  
1
Q1  
1
Q2  
ZXMP7A17K  
1
Q5  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
MMBT5401  
2
RCSH, ROV1  
RFS  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW0805100KFKEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW080515K8FKEA  
CRCW0805499KFKEA  
CRCW080549K9FKEA  
CRCW080513K7FKEA  
CRCW0805150KFKEA  
1
10 1%  
2
RFLT, RPU2  
RHSP, RHSN  
RLIM, RSNS  
ROV1  
ROV2  
RT  
100 k1%  
2
1 k1%  
2
0.04 1% 1 W  
1
15.8 k1%  
1
499 k1%  
1
49.9 k1%  
1
RUV1  
RUV2  
13.7 k1%  
1
150 k1%  
62  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
9.2.9 LM3421 SEPIC Application  
L1  
D1  
9V œ 36V  
VIN  
C
SEP  
L2  
R
HSN  
1
16  
15  
14  
13  
12  
VIN  
HSN  
HSP  
LM3421  
C
FS  
R
SNS  
C
R
IN  
HSP  
2
3
4
5
6
7
8
EN  
R
FS  
R
T
C
CMP  
COMP  
CSH  
RCT  
RPD  
IS  
R
CSH  
750 mA  
ILED  
C
O
VCC  
GATE  
PGND  
DDRV  
C
BYP  
C
T
11  
AGND  
OVP  
nDIM  
Q1  
R
UV2  
10  
9
R
LIM  
DAP  
R
UVH  
Q2  
R
R
OV2  
OV1  
R
UV1  
Q3  
PWM  
C
OV  
Figure 44. LM3421 SEPIC Application  
9.2.9.1 Design Procedure  
Input: 9 V to 36 V  
Output: 5 LEDs at 750 mA  
PWM Dimming up to 30 kHz  
500-kHz Switching Frequency  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
9.2.9.2 Detailed Design Procedure  
Table 9. Bill of Materials  
QTY  
1
PART ID  
LM3421  
CBYP  
CCMP  
CFS  
PART VALUE  
MANUFACTURER  
PART NUMBER  
SEPIC controller  
2.2-µF X7R 10% 16 V  
0.47-µF X7R 10% 25 V  
DNP  
TI  
LM3421MH  
1
MURATA  
MURATA  
GRM21BR71C225KA12L  
GRM21BR71E474KA01L  
1
0
4
CIN  
4.7-µF X7R 10% 100 V  
10-µF X7R 10% 50 V  
1-µF X7R 10% 100 V  
47-pF COG/NPO 5% 50 V  
1000-pF COG/NPO 5% 50 V  
Schottky 60 V 5 A  
68 µH 20% 4.3 A  
NMOS 60 V 8 A  
NMOS 60 V 115 mA  
12.4 k1%  
TDK  
C5750X7R2A475K  
C4532X7R1H106K  
C4532X7R2A105K  
08055A470JAT2A  
4
CO  
TDK  
1
CSEP  
COV  
TDK  
1
AVX  
1
CT  
MURATA  
COMCHIP  
COILCRAFT  
VISHAY  
ON-SEMI  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
CDBC560-G  
1
D1  
2
L1, L2  
Q1, Q2  
Q3  
DO3340P-683  
2
SI4436DY  
1
2N7002ET1G  
1
RCSH  
RFS  
CRCW080512K4FKEA  
CRCW08050000OZEA  
CRCW0805750RFKEA  
WSL2512R0400FEA  
CRCW080515K8FKEA  
CRCW0805499KFKEA  
CRCW080549K9FKEA  
WSL2512R1000FEA  
CRCW080549K9FKEA  
CRCW08051K62FKEA  
CRCW080510K0FKEA  
CRCW080516K9FKEA  
1
0 1%  
2
RHSP, RHSN  
RLIM  
750 1%  
1
0.04 1% 1 W  
15.8 k1%  
1
ROV1  
ROV2  
RREF1, RREF2  
RSNS  
RT  
1
499 k1%  
2
49.9 k1%  
1
0.1 1% 1 W  
1
49.9 k1%  
1
RUV1  
RUV2  
RUVH  
1.62 k1%  
1
10 k1%  
1
16.9 k1%  
64  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
10 Power Supply Recommendations  
10.1 General Recommendations  
The device is designed to operate from an input voltage supply range from 4.5 V to 75 V. This input supply  
should be well regulated. If the input supply is located more than a few inches from the EVM or PCB, additional  
bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10.2 Input Supply Current Limit  
It is important to set the output current limit of your input supply to an appropriate value to avoid delays in your  
converter analysis and optimization. If not set high enough, current limit can be tripped during start-up or when  
your converter output power is increased, causing a foldback or shutdown condition. It is a common oversight  
when powering up a converter for the first time.  
11 Layout  
11.1 Layout Guidelines  
The performance of any switching regulator depends as much upon the layout of the PCB as the component  
selection. Following a few simple guidelines allows maximum noise rejection and minimal generation of EMI  
within the circuit.  
Discontinuous currents are the most likely to generate EMI, therefore care should be taken when routing  
these paths. The main path for discontinuous current in the LM34xx-Q1 buck regulator contains the input  
capacitor (CIN), the recirculating diode (D1), the N-channel MOSFET (Q1), and the sense resistor (RLIM). In  
the LM34xx-Q1 boost regulator, the discontinuous current flows through the output capacitor (CO), D1, Q1,  
and RLIM. In the buck-boost regulator, both loops are discontinuous and should be carefully layed out. These  
loops should be kept as small as possible and the connections between all the components should be short  
and thick to minimize parasitic inductance. In particular, the switch node (where L1, D1 and Q1 connect)  
should be just large enough to connect the components. To minimize excessive heating, large copper pours  
can be placed adjacent to the short current path of the switch node.  
The RT, COMP, CSH, IS, HSP and HSN pins are all high-impedance inputs which couple external noise  
easily; therefore, the loops containing these nodes should be minimized whenever possible.  
In some applications the LED or LED array can be far away (several inches or more) from the controller or on  
a separate PCB connected by a wiring harness. When an output capacitor is used and the LED array is large  
or separated from the rest of the regulator, the output capacitor should be placed close to the LEDs to reduce  
the effects of parasitic inductance on the AC impedance of the capacitor.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
SNVSB95 JULY 2019  
www.ti.com  
11.2 Layout Example  
Note critical paths and component placement:  
Minimize power loop containing discontinuous currents  
Minimize signal current loops (components close to IC)  
ñ
Ground plane under IC for signal routing helps minimize noise coupling  
discontinuous switching  
frequency currents  
VIN  
Input  
Power  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIN  
LM3421  
HSN  
HSP  
RPD  
IS  
GND  
EN  
COMP  
CSH  
ILED  
RCT  
VCC  
AGND  
OVP  
GATE  
PGND  
DDRV  
DAP  
PWM  
nDIM  
STAR GROUND  
Power Ground  
Figure 45. LM3421 Boost Layout Guideline  
66  
Submit Documentation Feedback  
Copyright © 2019, Texas Instruments Incorporated  
Product Folder Links: LM3421-Q1 LM3423-Q1  
LM3421-Q1, LM3423-Q1  
www.ti.com  
SNVSB95 JULY 2019  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
12.2 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 10. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LM3421  
LM3421-Q1  
LM3423  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
LM3423-Q1  
12.3 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2019, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: LM3421-Q1 LM3423-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
PWP  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3421Q0MH/NOPB  
LM3421Q0MHX/NOPB  
LM3421Q1MH/NOPB  
LM3421Q1MHX/NOPB  
LM3423Q0MH/NOPB  
LM3423Q0MHX/NOPB  
LM3423Q1MH/NOPB  
LM3423Q1MHX/NOPB  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
16  
16  
16  
16  
20  
20  
20  
20  
92  
RoHS & Green  
SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 150  
-40 to 150  
-40 to 125  
-40 to 125  
-40 to 150  
-40 to 150  
-40 to 125  
-40 to 125  
LM3421  
Q0MH  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
2500 RoHS & Green  
92 RoHS & Green  
2500 RoHS & Green  
73 RoHS & Green  
2500 RoHS & Green  
73 RoHS & Green  
2500 RoHS & Green  
SN  
SN  
SN  
SN  
SN  
SN  
SN  
LM3421  
Q0MH  
LM3421  
Q1MH  
LM3421  
Q1MH  
LM3423  
Q0MH  
LM3423  
Q0MH  
LM3423  
Q1MH  
LM3423  
Q1MH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM3421-Q1, LM3423-Q1 :  
Catalog: LM3421, LM3423  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3421Q0MHX/NOPB HTSSOP PWP  
LM3421Q1MHX/NOPB HTSSOP PWP  
LM3423Q0MHX/NOPB HTSSOP PWP  
LM3423Q1MHX/NOPB HTSSOP PWP  
16  
16  
20  
20  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
16.4  
16.4  
6.95  
6.95  
6.95  
6.95  
5.6  
5.6  
7.1  
7.1  
1.6  
1.6  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
16.0  
16.0  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3421Q0MHX/NOPB  
LM3421Q1MHX/NOPB  
LM3423Q0MHX/NOPB  
LM3423Q1MHX/NOPB  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
PWP  
PWP  
PWP  
16  
16  
20  
20  
2500  
2500  
2500  
2500  
367.0  
367.0  
367.0  
356.0  
367.0  
367.0  
367.0  
356.0  
35.0  
35.0  
35.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Apr-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM3421Q0MH/NOPB  
LM3421Q1MH/NOPB  
LM3423Q0MH/NOPB  
LM3423Q1MH/NOPB  
PWP  
PWP  
PWP  
PWP  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
16  
16  
20  
20  
92  
92  
73  
73  
495  
495  
495  
495  
8
8
8
8
2514.6  
2514.6  
2514.6  
2514.6  
4.06  
4.06  
4.06  
4.06  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
4X 0.166 MAX  
NOTE 5  
2X 1.34 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.3  
2.7  
17  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.3  
2.7  
4214868/A 02/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3.3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
17  
SYMM  
(3.3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4214868/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016A  
PowerPAD TM HTSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3.3)  
17  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.69 X 3.69  
3.3 X 3.3 (SHOWN)  
3.01 X 3.01  
0.125  
0.15  
0.175  
2.79 X 2.79  
4214868/A 02/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
MECHANICAL DATA  
PWP0020A  
MXA20A (Rev C)  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LM3421MH

N-Channel Controllers for Constant Current LED Drivers
NSC

LM3421MH/NOPB

具有串联 DIM FET 驱动器的 N 沟道恒流 LED 驱动器控制器 | PWP | 16 | -40 to 125
TI

LM3421MHX

N-Channel Controllers for Constant Current LED Drivers
NSC

LM3421MHX/NOPB

具有串联 DIM FET 驱动器的 N 沟道恒流 LED 驱动器控制器 | PWP | 16 | -40 to 125
TI

LM3421Q0

N-Channel Controllers for Constant Current LED Drivers
NSC

LM3421Q0MH

N-Channel Controllers for Constant Current LED Drivers
NSC

LM3421Q0MH/NOPB

具有串联 DIM FET 驱动器的汽车类 N 沟道恒流 LED 控制器 | PWP | 16 | -40 to 150
TI

LM3421Q0MHX

N-Channel Controllers for Constant Current LED Drivers
NSC

LM3421Q0MHX/NOPB

具有串联 DIM FET 驱动器的汽车类 N 沟道恒流 LED 控制器 | PWP | 16 | -40 to 150
TI

LM3421Q1

N-Channel Controllers for Constant Current LED Drivers
NSC

LM3421Q1MH

N-Channel Controllers for Constant Current LED Drivers
NSC

LM3421Q1MH/NOPB

具有串联 DIM FET 驱动器的汽车类 N 沟道恒流 LED 控制器 | PWP | 16 | -40 to 125
TI