LM3429MHX/NOPB [TI]

适用于恒流 LED 驱动器的简易 N 沟道控制器 | PWP | 14 | -40 to 125;
LM3429MHX/NOPB
型号: LM3429MHX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

适用于恒流 LED 驱动器的简易 N 沟道控制器 | PWP | 14 | -40 to 125

驱动 控制器 光电二极管 接口集成电路 驱动器
文件: 总65页 (文件大小:1978K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
LM3429/-Q1 N-Channel Controller for Constant Current LED Drivers  
1 Features  
3 Description  
The LM3429 is a versatile high voltage N-channel  
MosFET controller for LED drivers. It can be easily  
configured in buck, boost, buck-boost and SEPIC  
topologies. This flexibility, along with an input voltage  
rating of 75V, makes the LM3429 ideal for  
illuminating LEDs in a very diverse, large family of  
applications.  
1
LM3429-Q1 is AEC-Q100 Grade 1 Qualified for  
Automotive Applications  
VIN Range From 4.5 V to 75 V  
Adjustable Current Sense Voltage  
High-Side Current Sensing  
2-, 1-A Peak MosFET Gate Driver  
Input Undervoltage Protection  
Overvoltage Protection  
Adjustable high-side current sense voltage allows for  
tight regulation of the LED current with the highest  
efficiency possible. The LM3429 uses Predictive Off-  
time (PRO) control, which is a combination of peak  
current-mode control and a predictive off-timer. This  
method of control eases the design of loop  
compensation while providing inherent input voltage  
feed-forward compensation.  
PWM Dimming  
Analog Dimming  
Cycle-by-Cycle Current Limit  
Programmable Switching Frequency  
Low Profile 14-lead HTSSOP Package  
Thermal Shutdown  
The LM3429 includes a high-voltage startup regulator  
that operates over a wide input range of 4.5 V to 75  
V. The internal PWM controller is designed for  
adjustable switching frequencies of up to 2 MHz, thus  
enabling compact solutions. Additional features  
include analog dimming, PWM dimming, overvoltage  
protection, undervoltage lock-out, cycle-by-cycle  
current limit, and thermal shutdown.  
2 Applications  
LED Drivers - Buck, Boost, Buck-Boost, SEPIC  
Indoor and Outdoor SSL  
Automotive  
General Illumination  
Device Information(1)  
Constant-Current Regulators  
PART NUMBER  
LM3429  
LM3429-Q1  
PACKAGE  
BODY SIZE (NOM)  
HTSSOP (14)  
5.00 mm × 4.40 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Typical Boost Application Circuit  
VIN  
LM3429  
1
2
3
4
5
6
7
VIN  
14  
HSN  
13  
COMP  
CSH  
HSP  
12  
IS  
ILED  
11  
RCT  
VCC  
10  
AGND  
OVP  
GATE  
9
PGND  
DAP  
8
PWM  
nDIM  
NC  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Table of Contents  
1
2
3
4
5
6
Features.................................................................. 1  
Applications ........................................................... 1  
Description ............................................................. 1  
Revision History..................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics .......................................... 5  
6.6 Typical Characteristics ............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 21  
8
Application and Implementation ........................ 22  
8.1 Application Information............................................ 22  
8.2 Typical Applications ................................................ 24  
Power Supply Recommendations...................... 53  
9.1 Input Supply Current Limit ...................................... 53  
9
10 Layout................................................................... 53  
10.1 Layout Guidelines ................................................. 53  
10.2 Layout Example .................................................... 54  
11 Device and Documentation Support ................. 55  
11.1 Device Support...................................................... 55  
11.2 Documentation Support ........................................ 55  
11.3 Related Links ........................................................ 55  
11.4 Community Resources.......................................... 55  
11.5 Trademarks........................................................... 55  
11.6 Electrostatic Discharge Caution............................ 56  
11.7 Glossary................................................................ 56  
7
12 Mechanical, Packaging, and Orderable  
Information ........................................................... 56  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision G (April 2013) to Revision H  
Page  
Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device  
Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout  
section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information  
section ................................................................................................................................................................................... 1  
Changes from Revision F (May 2013) to Revision G  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 51  
Changed layout of National Data Sheet to TI format ........................................................................................................... 52  
2
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
 
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
5 Pin Configuration and Functions  
PWP Package  
14- Pin HTSSOP  
Top View  
1
14 HSN  
13 HSP  
12 IS  
V
IN  
COMP  
CSH  
2
3
4
5
6
7
DAP  
15  
RCT  
11  
V
CC  
AGND  
OVP  
10 GATE  
9
8
PGND  
NC  
nDIM  
Pin Functions  
PIN  
NAME  
I/O  
DESCRIPTION  
APPLICATION INFORMATION  
NO.  
1
Bypass with 100 nF capacitor to AGND as close to the device as  
possible in the circuit board layout.  
VIN  
I
I
Input Voltage  
Compensation  
2
COMP  
Connect a capacitor to AGND to set compensation.  
Connect a resistor to AGND to set signal current. For analog  
dimming, connect current source or potentiometer to AGND (see  
Analog Dimming section).  
3
CSH  
I
Current Sense High  
Connect a resistor from the switch node and a capacitor to AGND to  
set the switching frequency.  
4
5
RCT  
I
Resistor Capacitor Timing  
Analog Ground  
Connect to PGND through the DAP copper circuit board pad to  
provide proper ground return for CSH, COMP, and RCT.  
AGND  
GND  
Connect to a resistor divider from the output (VO) or the input to  
program output overvoltage lockout (OVLO). Turn-off threshold is  
1.24 V and hysteresis for turn-on is provided by 20 µA current  
source.  
6
7
OVP  
I
I
Overvoltage Protection  
Not DIM input  
Connect a PWM signal for dimming as detailed in the PWM Dimming  
section and/or a resistor divider from VIN to program input  
undervoltage lockout (UVLO). Turn-on threshold is 1.24 V and  
hysteresis for turn-off is provided by 20 µA current source.  
nDIM  
8
9
NC  
No Connection  
Power Ground  
Leave open.  
Connect to AGND through DAP copper pad to provide ground return  
for GATE.  
PGND  
GND  
10  
11  
GATE  
VCC  
O
I
Gate Drive Output  
Connect to the gate of the external NFET.  
Internal Regulator Output  
Bypass with a 2.2 µF–3.3 µF, ceramic capacitor to PGND.  
Connect to the drain of the main N-channel MosFET switch for RDS-  
12  
IS  
I
Main Switch Current Sense  
sensing or to a sense resistor installed in the source of the same  
ON  
device.  
Connect through a series resistor to LED current sense resistor  
(positive).  
13  
14  
HSP  
HSN  
DAP  
I
I
LED Current Sense Positive  
LED Current Sense Negative  
Thermal pad on bottom of IC  
Connect through a series resistor to LED current sense resistor  
(negative).  
DAP  
(15)  
GND  
Connect to AGND and PGND.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
–0.3  
–0.3  
–0.3  
–0.3  
MAX  
UNIT  
VIN, nDIM  
OVP, HSP, HSN  
RCT  
76  
76  
3
76  
IS  
–2 for 100 ns  
V
Voltage  
VCC  
–0.3  
–0.3  
8
COMP, CSH  
6
–0.3  
VCC  
GATE  
PGND  
–2.5 for 100 ns  
–0.3  
VCC+2.5 for 100 ns  
0.3  
–2.5  
2.5 for 100 ns  
VIN, nDIM  
OVP, HSP, HSN  
RCT  
–1  
–100  
5
mA  
µA  
–1  
Continuous Current  
mA  
IS  
–1  
COMP, CSH  
GATE  
–200  
–1  
200  
1
µA  
mA  
Maximum Junction Temperature  
Maximum Lead Temperature (Reflow and Solder)  
Continuous Power Dissipation  
Internally Limited  
(3)  
260  
150  
°C  
°C  
Internally Limited  
Storage Temperature, Tstg  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(3) Refer to http://www.ti.com/packaging for more detailed information and mounting techniques.  
6.2 ESD Ratings  
VALUE  
UNIT  
LM3429 IN PWP PACKAGE  
V(ESD) Electrostatic discharge  
LM3429-Q1 IN PWP PACKAGE  
V(ESD) Electrostatic discharge  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
±2000  
±1000  
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all  
pins(2)  
Human body model (HBM), per AEC Q100-002(3)  
Charged device model (CDM), per AEC Q100-011  
±2000  
±1000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
(3) AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
MAX UNIT  
Operating Junction Temperature Range  
Input Voltage VIN  
–40  
4.5  
125  
75  
°C  
V
4
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
6.4 Thermal Information  
LM3429-Q1  
LM3429  
THERMAL METRIC(1)  
PWP (HTSSOP) PWP (HTSSOP) UNIT  
14 PINS  
47.8  
26.5  
22.3  
0.7  
14 PINS  
47.8  
26.5  
22.3  
0.7  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
22.1  
3.3  
22.1  
3.3  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
6.5 Electrical Characteristics  
MIN and MAX limits apply TJ = (40°C to 125°C) unless specified otherwise. Unless otherwise stated the following condition  
applies: VIN = 14 V.  
PARAMETER  
STARTUP REGULATOR (VCC  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
)
VCC-REG  
ICC-LIM  
IQ  
VCC Regulation  
ICC = 0 mA  
6.3  
20  
6.9  
27  
7.35  
V
VCC Current Limit  
Quiescent Current  
VCC UVLO Threshold  
VCC = 0V  
mA  
Static  
1.6  
3
VCC-UVLO  
VCC Increasing  
VCC Decreasing  
4.17  
4.08  
0.1  
4.5  
3.7  
V
VCC-HYS  
VCC UVLO Hysteresis  
OVERVOLTAGE PROTECTION (OVP)  
VTH-OVP  
IHYS-OVP  
OVP OVLO Threshold  
OVP Increasing  
1.18  
10  
1.24  
20  
1.28  
30  
V
OVP Hysteresis Source Current  
OVP Active (high)  
µA  
ERROR AMPLIFIER  
VCSH CSH Reference Voltage  
With Respect to AGND  
MIN, MAX: TJ = 25°C  
1.21  
–0.6  
10  
1.235  
0
1.26  
0.6  
40  
V
Error Amplifier Input Bias Current  
COMP Sink / Source Current  
Transconductance  
µA  
26  
100  
±125  
µA/V  
mV  
(3)  
Linear Input Range  
Transconductance Bandwidth  
-6dB Unloaded  
Response(3), MIN: TJ =  
25°C  
0.5  
1
MHz  
OFF TIMER (RCT)  
tOFF-MIN Minimum Off-time  
RRCT  
RCT = 1V through 1 kΩ  
35  
36  
75  
120  
585  
ns  
RCT Reset Pulldown Resistance  
VIN/25 Reference Voltage  
VRCT  
VIN = 14V  
540  
700  
215  
75  
565  
mV  
PWM COMPARATOR  
COMP to PWM Offset  
CURRENT LIMIT (IS)  
800  
900  
mV  
VLIM  
Current Limit Threshold  
245  
35  
275  
75  
mV  
ns  
VLIM Delay to Output  
tON-MIN  
Leading Edge Blanking Time  
250  
450  
(1) All limits specified at room temperature (TYP) and at temperature extremes (MIN/MAX). All room temperature limits are 100%  
production tested. All limits at temperature extremes are specified through correlation using standard Statistical Quality Control (SQC)  
methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).  
(2) Typical numbers are at 25°C and represent the most likely norm.  
(3) These electrical parameters are specified by design, and are not verified by test.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Electrical Characteristics (continued)  
MIN and MAX limits apply TJ = (40°C to 125°C) unless specified otherwise. Unless otherwise stated the following condition  
applies: VIN = 14 V.  
PARAMETER  
HIGH SIDE TRANSCONDUCTANCE AMPLIFIER  
Input Bias Current  
TEST CONDITIONS  
MIN(1)  
TYP(2)  
MAX(1)  
UNIT  
10  
119  
0
µA  
mA/V  
µA  
Transconductance  
20  
–1.5  
–7  
Input Offset Current  
1.5  
7
Input Offset Voltage  
0
mV  
Transconductance Bandwidth  
ICSH = 100 µA(3), MIN: TJ  
= 25°C  
250  
500  
kHz  
GATE DRIVER (GATE)  
RSRC(GATE)  
RSNK(GATE)  
GATE Sourcing Resistance  
GATE Sinking Resistance  
GATE = High  
GATE = Low  
2
6
1.3  
4.5  
UNDERVOLTAGE LOCKOUT and DIM INPUT (nDIM)  
VTH-nDIM  
IHYS-nDIM  
nDIM / UVLO Threshold  
nDIM Hysteresis Current  
1.18  
10  
1.24  
20  
1.28  
30  
V
µA  
THERMAL SHUTDOWN  
(3)  
(3)  
TSD  
Thermal Shutdown Threshold  
165  
25  
°C  
THYS  
Thermal Shutdown Hysteresis  
6
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
6.6 Typical Characteristics  
TA= 25°C and VIN = 14 V unless otherwise specified. The measurements for Figure 1 and Figure 3 were made using the  
standard boost evaluation board from AN-1986 (SNVA404). The measurements for Figure 2, Figure 4, and Figure 5, Figure 6  
were made using the standard buck-boost evaluation board from AN-1985 (SNVA403).  
100  
95  
90  
85  
80  
100  
95  
90  
85  
80  
75  
70  
0
16  
32  
48  
(V)  
64  
80  
10  
15  
20  
(V)  
25  
30  
V
IN  
V
IN  
Figure 2. Buck-Boost Efficiency vs Input Voltage  
VO = 20 V (6 LEDs)  
Figure 1. Boost Efficiency vs Input Voltage  
VO = 32 V (9 LEDs)  
1.05  
1.03  
1.01  
0.99  
0.97  
1.00  
0.99  
0.98  
0.97  
0.96  
0
16  
32  
48  
64  
80  
5
10  
15  
V
20  
25  
30  
(V)  
V
(V)  
IN  
IN  
Figure 3. Boost LED Current vs Input Voltage  
Figure 4. Buck-boost LED Current vs Input Voltage  
VO = 32 V (9 LEDs)  
VO = 20 V (6 LEDs)  
1.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.8  
0.6  
500 Hz  
0.4  
100 Hz  
0.2  
0.0  
0
0
20  
40  
60  
(éA)  
80  
100  
20  
40  
60  
80  
100  
I
CSH  
DUTY CYCLE (%)  
Figure 5. Analog Dimming  
VO = 20 V (6 LEDs)  
Figure 6. PWM Dimming  
VO = 20V (6 LEDs)  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM3429 LM3429-Q1  
 
 
 
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Characteristics (continued)  
TA= 25°C and VIN = 14 V unless otherwise specified. The measurements for Figure 1 and Figure 3 were made using the  
standard boost evaluation board from AN-1986 (SNVA404). The measurements for Figure 2, Figure 4, and Figure 5, Figure 6  
were made using the standard buck-boost evaluation board from AN-1985 (SNVA403).  
1.250  
1.245  
1.240  
1.235  
1.230  
1.225  
1.220  
7.10  
7.05  
7.00  
6.95  
6.90  
6.85  
6.80  
-50  
-14  
22  
58  
94  
130  
-50  
-14  
22  
58  
94  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 7. VCSH vs. Junction Temperature  
569  
Figure 8. VCC vs. Junction Temperature  
246  
568  
567  
566  
565  
564  
244  
242  
240  
238  
-50  
-14  
22  
58  
94  
130  
-50  
-14  
22  
58  
94  
130  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 10. VLIM vs. Junction Temperature  
Figure 9. VRCT vs. Junction Temperature  
280  
275  
270  
265  
260  
255  
250  
-50  
-14  
22  
58  
94  
130  
TEMPERATURE (°C)  
Figure 11. tON-MIN vs. Junction Temperature  
8
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
7 Detailed Description  
7.1 Overview  
The LM3429 is an N-channel MosFET (NFET) controller for buck, boost and buck-boost current regulators which  
are ideal for driving LED loads. The controller has wide input voltage range allowing for regulation of a variety of  
LED loads. The high-side differential current sense, with low adjustable threshold voltage, provides an excellent  
method for regulating output current while maintaining high system efficiency. The LM3429 uses a Predictive Off-  
time (PRO) control architecture that allows the regulator to be operated using minimal external control loop  
compensation, while providing an inherent cycle-by-cycle current limit. The adjustable current sense threshold  
provides the capability to amplitude (analog) dim the LED current and the output enable/disable function allows  
for PWM dimming using no external components. When designing, the maximum attainable LED current is not  
internally limited because the LM3429 is a controller. Instead it is a function of the system operating point,  
component choices, and switching frequency allowing the LM3429 to easily provide constant currents up to 5A.  
This simple controller contains all the features necessary to implement a high-efficiency versatile LED driver.  
7.2 Functional Block Diagram  
V
IN  
6.9V LDO  
Regulator  
V
CC  
VccUVLO  
UVLO  
Standby  
UVLO  
HYSTERESIS  
1.24V  
REFERENCE  
TLIM  
20 PA  
Thermal  
nDIM  
RCT  
Limit  
Dimming  
1.24V  
V
/25  
IN  
Reset  
Dominant  
V
CC  
Start new on time  
GATE  
PGND  
S
R
Q
QB  
COMP  
CSH  
OVP  
HYSTERESIS  
PWM  
1.24V  
20 PA  
OVP  
1.24V  
800 mV  
HSP  
HSN  
LOGIC  
AGND  
CURRENT  
LIMIT  
IS  
245 mV  
LEB  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
7.3 Feature Description  
7.3.1 Current Regulators  
Current regulators can be designed to accomplish three basic functions: buck, boost, and buck-boost. All three  
topologies in their most basic form contain a main switching MosFET, a recirculating diode, an inductor and  
capacitors. The LM3429 is designed to drive a ground referenced NFET which is perfect for a standard boost  
regulator. Buck and buck-boost regulators, on the other hand, usually have a high-side switch. When driving an  
LED load, a ground referenced load is often not necessary, therefore a ground referenced switch can be used to  
drive a floating load instead. The LM3429 can then be used to drive all three basic topologies as shown in the  
Typical Applications section.  
Looking at the buck-boost design, the basic operation of a current regulator can be analyzed. During the time  
that the NFET (Q1) is turned on (tON), the input voltage source stores energy in the inductor (L1) while the output  
capacitor (CO) provides energy to the LED load. When Q1 is turned off (tOFF), the re-circulating diode (D1)  
becomes forward biased and L1 provides energy to both CO and the LED load. Figure 12 shows the inductor  
current (iL(t)) waveform for a regulator operating in CCM.  
iL (t)  
I
L-MAX  
Âi  
L-PP  
I
L
I
L-MIN  
t
= DT  
t
= (1-D)T  
OFF S  
ON  
S
0
t
T
S
Figure 12. Ideal CCM Regulator Inductor Current iL(t)  
The average output LED current (ILED) is proportional to the average inductor current (IL) , therefore if IL is tightly  
controlled, ILED will be well regulated. As the system changes input voltage or output voltage, the ideal duty cycle  
(D) is varied to regulate IL and ultimately ILED. For any current regulator, D is a function of the conversion ratio:  
Buck  
VO  
D =  
V
IN  
(1)  
Boost  
VO - V  
IN  
D =  
VO  
(2)  
Buck-Boost  
VO  
D
=
VO + V  
IN  
(3)  
7.3.2 Predictive Off-Time (PRO) Control  
PRO control is used by the LM3429 to control ILED. It is a combination of average peak current control and a one-  
shot off-timer that varies with input voltage. The LM3429 uses peak current control to regulate the average LED  
current through an array of HBLEDs. This method of control uses a series resistor in the LED path to sense LED  
current and can use either a series resistor in the MosFET path or the MosFET RDS-ON for both cycle-by-cycle  
current limit and input voltage feed forward. D is indirectly controlled by changes in both tOFF and tON, which vary  
depending on the operating point.  
10  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
 
 
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Feature Description (continued)  
Even though the off-time control is quasi-hysteretic, the input voltage proportionality in the off-timer creates an  
essentially constant switching frequency over the entire operating range for boost and buck-boost topologies.  
The buck topology can be designed to give constant ripple over either input voltage or output voltage, however  
switching frequency is only constant at a specific operating point .  
This type of control minimizes the control loop compensation necessary in many switching regulators, simplifying  
the design process. The averaging mechanism in the peak detection control loop provides extremely accurate  
LED current regulation over the entire operating range.  
PRO control was designed to mitigate “current mode instability” (also called “sub-harmonic oscillation”) found in  
standard peak current mode control when operating near or above 50% duty cycles. When using standard peak  
current mode control with a fixed switching frequency, this condition is present, regardless of the topology.  
However, using a constant off-time approach, current mode instability cannot occur, enabling easier design and  
control.  
Predictive off-time advantages:  
There is no current mode instability at any duty cycle.  
Higher duty cycles / voltage transformation ratios are possible, especially in the boost regulator.  
The only disadvantage is that synchronization to an external reference frequency is generally not available.  
7.3.3 Switching Frequency  
An external resistor (RT) connected between the RCT pin and the switch node (where D1, Q1, and L1 connect),  
in combination with a capacitor (CT) between the RCT and AGND pins, sets the off-time (tOFF) as shown in  
Figure 13. For boost and buck-boost topologies, the VIN proportionality ensures a virtually constant switching  
frequency (fSW).  
V
SW  
LM3429  
V
IN  
/25  
Start tON  
R
T
RCT  
C
T
Reset timer  
Figure 13. Off-timer Circuitry for Boost and Buck-boost Regulators  
For a buck topology, RT and CT are also used to set tOFF, however the VIN proportionality will not ensure a  
constant switching frequency. Instead, constant ripple operation can be achieved. Changing the connection of RT  
in Figure 13 from VSW to VIN will provide a constant ripple over varying VIN. Adding a PNP transistor as shown in  
Figure 14 will provide constant ripple over varying VO.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM3429 LM3429-Q1  
 
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Feature Description (continued)  
V
IN  
R
SNS  
R
T
LM3429  
V
IN  
/25  
Start tON  
LED-  
RCT  
C
T
Reset timer  
Figure 14. Off-timer Circuitry for Buck Regulators  
The switching frequency is defined:  
Buck (Constant Ripple vs. VIN)  
25 x V - V  
(
)
IN  
O
fSW  
=
RT x CT X VIN  
(4)  
Buck (Constant Ripple vs. VO)  
2
(
)
25 x V x VO - VO  
IN  
fSW  
=
2
RT x CT xV  
IN  
(5)  
(6)  
Boost and Buck-Boost  
25  
fSW  
=
RT x CT  
For all topologies, the CT capacitor is recommended to be 1 nF and should be located very close to the LM3429.  
7.3.4 Average LED Current  
The LM3429 uses an external current sense resistor (RSNS) placed in series with the LED load to convert the  
LED current (ILED) into a voltage (VSNS) as shown in Figure 15. The HSP and HSN pins are the inputs to the  
high-side sense amplifier which are forced to be equal potential (VHSP=VHSN) through negative feedback.  
Because of this, the VSNS voltage is forced across RHSP to generate the signal current (ICSH) which flows out of  
the CSH pin and through the RCSH resistor. The error amplifier will regulate the CSH pin to 1.24 V, therefore ICSH  
can be calculated:  
VSNS  
RHSP  
ICSH  
=
(7)  
This means VSNS will be regulated as follows:  
RHSP  
VSNS = 1.24V x  
RCSH  
(8)  
ILED can then be calculated:  
12  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Feature Description (continued)  
VSNS  
RSNS  
1.24V RHSP  
x
ILED  
=
=
RSNS  
RCSH  
(9)  
The selection of the three resistors (RSNS, RCSH, and RHSP) is not arbitrary. For matching and noise performance,  
the suggested signal current ICSH is approximately 100 µA. This current does not flow in the LEDs and will not  
affect either the off state LED current or the regulated LED current. ICSH can be above or below this value, but  
the high-side amplifier offset characteristics may be affected slightly. In addition, to minimize the effect of the  
high-side amplifier voltage offset on LED current accuracy, the minimum VSNS is suggested to be 50 mV. Finally,  
a resistor (RHSN = RHSP) should be placed in series with the HSN pin to cancel out the effects of the input bias  
current (~10 µA) of both inputs of the high-side sense amplifier. The CSH pin can also be used as a low-side  
current sense input regulated to 1.24 V. The high-side sense amplifier is disabled if HSP and HSN are tied to  
GND.  
LM3429  
I
LED  
High-Side  
R
Sense Amplifier  
HSP  
HSP  
HSN  
I
CSH  
R
SNS  
V
SNS  
R
HSN  
Error Amplifier  
R
C
CSH  
CSH  
To PWM  
Comparator  
1.24V  
CMP  
COMP  
Figure 15. LED Current Sense Circuitry  
7.3.5 Analog Dimming  
The CSH pin can be used to analog dim the LED current by adjusting the current sense voltage (VSNS). There  
are several different methods to adjust VSNS using the CSH pin:  
1. External variable resistance : Adjust a potentiometer placed in series with RCSH to vary VSNS  
.
2. External variable current source: Source current (0 µA to ICSH) into the CSH pin to adjust VSNS  
.
In general, analog dimming applications require a lower switching frequency to minimize the effect of the leading  
edge blanking circuit. As the LED current is reduced, the output voltage and the duty cycle decreases.  
Eventually, the minimum on-time is reached. The lower the switching frequency, the wider the linear dimming  
range. Figure 16 shows how both methods are physically implemented.  
Method 1 uses an external potentiometer in the CSH path which is a simple addition to the existing circuitry.  
However, the LEDs cannot dim completely because there is always some resistance causing signal current to  
flow. This method is also susceptible to noise coupling at the CSH pin because the potentiometer increases the  
size of the signal current loop.  
Method 2 provides a complete dimming range and better noise performance, though it is more complex. It  
consists of a PNP current mirror and a bias network consisting of an NPN, 2 resistors and a potentiometer  
(RADJ), where RADJ controls the amount of current sourced into the CSH pin. A higher resistance value will source  
more current into the CSH pin causing less regulated signal current through RHSP, effectively dimming the LEDs.  
VREF should be a precise external voltage reference, while Q7 and Q8 should be a dual pair PNP for best  
matching and performance. The additional current (IADD) sourced into the CSH pin can be calculated:  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM3429 LM3429-Q1  
 
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Feature Description (continued)  
§
¨
©
·
¸
RADJ x VREF  
RADJ + RMAX  
- VBE-Q6  
¹
IADD  
=
RBIAS  
(10)  
(11)  
The corresponding ILED for a specific IADD is:  
RHSP  
§
·
¸
ILED = ICSH - IADD  
x
(
)
¨
RSNS  
©
¹
Variable Current Source  
LM3429  
VCC  
VREF  
Q8  
Q7  
R
MAX  
Q6  
R
CSH  
R
CSH  
R
BIAS  
ADJ  
Variable  
Resistance  
R
ADJ  
Figure 16. Analog Dimming Circuitry  
7.3.6 Current Sense and Current Limit  
The LM3429 achieves peak current mode control using a comparator that monitors the MosFET transistor  
current, comparing it with the COMP pin voltage as shown in Figure 17. Further, it incorporates a cycle-by-cycle  
overcurrent protection function. Current limit is accomplished by a redundant internal current sense comparator.  
If the voltage at the current sense comparator input (IS) exceeds 245 mV (typical), the on cycle is immediately  
terminated. The IS input pin has an internal N-channel MosFET which pulls it down at the conclusion of every  
cycle. The discharge device remains on an additional 250 ns (typical) after the beginning of a new cycle to blank  
the leading edge spike on the current sense signal. The leading edge blanking (LEB) determines the minimum  
achievable on-time (tON-MIN).  
14  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Feature Description (continued)  
LM3429  
COMP  
Q1  
GATE  
PWM  
800 mV  
IS  
245 mV  
I
T
R
LIM  
LEB  
PGND  
Figure 17. Current Sense / Current Limit Circuitry  
There are two possible methods to sense the transistor current. The RDS-ON of the main power MosFET can be  
used as the current sense resistance because the IS pin was designed to withstand the high voltages present on  
the drain when the MosFET is in the off state. Alternatively, a sense resistor located in the source of the MosFET  
may be used for current sensing, however a low inductance (ESL) type is suggested. The cycle-by-cycle current  
limit (ILIM) can be calulated using either method as the limiting resistance (RLIM):  
245 mV  
RLIM  
ILIM  
=
(12)  
In general, the external series resistor allows for more design flexibility, however it is important to ensure all of  
the noise sensitive low power ground connections are connected together local to the controller and a single  
connection is made to the high current PGND (sense resistor ground point).  
7.3.7 Control Loop Compensation  
The LM3429 control loop is modeled like any current mode controller. Using a first order approximation, the  
uncompensated loop can be modeled as a single pole created by the output capacitor and, in the boost and  
buck-boost topologies, a right half plane zero created by the inductor, where both have a dependence on the  
LED string dynamic resistance. There is also a high frequency pole in the model, however it is above the  
switching frequency and plays no part in the compensation design process therefore it will be neglected.  
Because ceramic capacitance is recommended for use with LED drivers due to long lifetimes and high ripple  
current rating, the ESR of the output capacitor can also be neglected in the loop analysis. Finally, there is a DC  
gain of the uncompensated loop which is dependent on internal controller gains and the external sensing  
network.  
A buck-boost regulator will be used as an example case. See the Typical Applications section for compensation  
of all topologies.  
The uncompensated loop gain for a buck-boost regulator is given by the following equation:  
§
·
¸
¸
¹
s
ZZ1  
¨ -  
1
¨
©
TU = TU0  
x
§
·
¸
¸
¹
s
ZP1  
¨
1+  
¨
©
(13)  
15  
Where the uncompensated DC loop gain of the system is described as:  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Feature Description (continued)  
c
D x 500Vx RCSH x RSNS  
c
D x 620V  
TU0  
=
=
(
)
(
)
1+D x RHSP x RLIM  
And the output pole (ωP1) is approximated:  
1+  
1+D xILED x RLIM  
(14)  
D
ZP1=  
rD x CO  
(15)  
(16)  
And the right half plane zero (ωZ1) is:  
c2  
rD xD  
ZZ1=  
DxL1  
135  
90  
100  
ö
P1  
ö
Z1  
80  
60  
40  
20  
0
GAIN  
45  
0
PHASE  
-45  
-90  
-135  
-180  
-225  
0°Phase Margin  
-20  
-40  
-60  
1e-1  
1e1  
1e3  
1e5  
1e7  
FREQUENCY (Hz)  
Figure 18. Uncompensated Loop Gain Frequency Response  
Figure 18 shows the uncompensated loop gain in a worst-case scenario when the RHP zero is below the output  
pole. This occurs at high duty cycles when the regulator is trying to boost the output voltage significantly. The  
RHP zero adds 20dB/decade of gain while loosing 45°/decade of phase which places the crossover frequency  
(when the gain is zero dB) extremely high because the gain only starts falling again due to the high frequency  
pole (not modeled or shown in figure). The phase will be below -180° at the crossover frequency which means  
there is no phase margin (180° + phase at crossover frequency) causing system instability. Even if the output  
pole is below the RHP zero, the phase will still reach -180° before the crossover frequency in most cases yielding  
instability.  
16  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
 
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Feature Description (continued)  
LM3429  
I
LED  
High-Side  
Sense Amplifier  
R
HSP  
HSP  
HSN  
C
FS  
R
V
SNS  
SNS  
R
HSN  
R
FS  
Error Amplifier  
sets ö  
R
CSH  
P3  
CSH  
To PWM  
Comparator  
1.24V  
R
O
C
CMP  
sets ö  
COMP  
P2  
Figure 19. Compensation Circuitry  
To mitigate this problem, a compensator should be designed to give adequate phase margin (above 45°) at the  
crossover frequency. A simple compensator using a single capacitor at the COMP pin (CCMP) will add a dominant  
pole to the system, which will ensure adequate phase margin if placed low enough. At high duty cycles (as  
shown in Figure 18), the RHP zero places extreme limits on the achievable bandwidth with this type of  
compensation. However, because an LED driver is essentially free of output transients (except catastrophic  
failures open or short), the dominant pole approach, even with reduced bandwidth, is usually the best approach.  
The dominant compensation pole (ωP2) is determined by CCMP and the output resistance (RO) of the error  
amplifier (typically 5 M):  
1
ZP2  
 
5x106: x CCMP  
(17)  
It may also be necessary to add one final pole at least one decade above the crossover frequency to attenuate  
switching noise and, in some cases, provide better gain margin. This pole can be placed across RSNS to filter the  
ESL of the sense resistor at the same time. Figure 19 shows how the compensation is physically implemented in  
the system.  
The high frequency pole (ωP3) can be calculated:  
1
ZP3 =  
RFS xCFS  
(18)  
The total system transfer function becomes:  
§
·
¸
¸
¹
s
ZZ1  
¨
1-  
¨
©
T = TU0  
x
§
·
¸
¸
¹
§
¨
©
·
§
¨
©
·
¸
¸
¹
s
ZP1  
s
ZP2  
s
ZP3  
¨
¨
¸
¨
1+  
x 1+  
x 1+  
¨
¸
©
¹
(19)  
The resulting compensated loop gain frequency response shown in Figure 20 indicates that the system has  
adequate phase margin (above 45°) if the dominant compensation pole is placed low enough, ensuring stability:  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM3429 LM3429-Q1  
 
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Feature Description (continued)  
90  
80  
60  
40  
20  
0
ö
P2  
45  
0
GAIN  
-45  
-90  
-135  
-180  
-225  
-270  
ö
ö
Z1  
P1  
PHASE  
ö
P3  
-20  
-40  
-60  
-80  
60°Phase Margin  
1e-1  
1e1  
1e3  
1e5  
1e7  
FREQUENCY (Hz)  
Figure 20. Compensated Loop Gain Frequency Response  
7.3.8 Output Overvoltage Lockout (OVLO)  
The LM3429 can be configured to detect an output (or input) overvoltage condition through the OVP pin. The pin  
features a precision 1.24-V threshold with 20 µA (typical) of hysteresis current as shown in Figure 21. When the  
OVLO threshold is exceeded, the GATE pin is immediately pulled low and a 20 µA current source provides  
hysteresis to the lower threshold of the OVLO hysteretic band.  
LM3429  
VO  
20 PA  
R
R
OV2  
OV1  
OVP  
OVLO  
1.24V  
Figure 21. Overvoltage Protection Circuitry  
If the LEDs are referenced to a potential other than ground (floating), as in the buck-boost and buck  
configuration, the output voltage (VO) should be sensed and translated to ground by using a single PNP as  
shown in Figure 22.  
18  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
 
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Feature Description (continued)  
LED+  
R
OV2  
LM3429  
LED-  
OVP  
R
OV1  
Figure 22. Floating Output OVP Circuitry  
The overvoltage turnoff threshold (VTURN-OFF) is defined as follows:  
Ground Referenced  
§
·
ROV + ROV2  
1
¨
¨
©
¸
¸
¹
VTURN-OFF = 1.24Vx  
Floating  
VTURN-OFF = 1.24Vx  
ROV1  
(20)  
(21)  
§
·
+ ROV2  
0.5 x ROV1  
¨
¨
©
¸
¸
ROV1  
¹
In the ground referenced configuration, the voltage across ROV2 is VO - 1.24 V whereas in the floating  
configuration it is VO - 620 mV where 620 mV approximates the VBE of the PNP transistor.  
The overvoltage hysteresis (VHYSO) is defined as follows:  
VHYSO = 20 PA x ROV2  
(22)  
7.3.9 Input Undervoltage Lockout (UVLO)  
The nDIM pin is a dual-function input that features an accurate 1.24 V threshold with programmable hysteresis  
as shown in Figure 23. This pin functions as both the PWM dimming input for the LEDs and as a VIN UVLO.  
When the pin voltage rises and exceeds the 1.24 V threshold, 20 µA (typical) of current is driven out of the nDIM  
pin into the resistor divider providing programmable hysteresis.  
LM3429  
VIN  
20 PA  
R
R
UV2  
UV1  
nDIM  
UVLO  
1.24V  
R
UVH  
(optional)  
Figure 23. UVLO Circuit  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM3429 LM3429-Q1  
 
 
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Feature Description (continued)  
When using the nDIM pin for UVLO and PWM dimming concurrently, the UVLO circuit can have an extra series  
resistor to set the hysteresis. This allows the standard resistor divider to have smaller resistor values minimizing  
PWM delays due to a pulldown MosFET at the nDIM pin (see PWM Dimming section). In general, at least 3V of  
hysteresis is necessary when PWM dimming if operating near the UVLO threshold.  
The turn-on threshold (VTURN-ON) is defined as follows:  
§
·
¸
¸
¹
RUV + RUV2  
1
¨
¨
©
VTURN O-N = 1.24Vx  
RUV1  
(23)  
(24)  
The hysteresis (VHYS) is defined as follows:  
UVLO Only  
VHYS 20 PA xR  
=
UV2  
PWM Dimming and UVLO  
§
¨
©
(
)·  
¸
¹
RUVH x RUV1 + RUV2  
¨
20PA x R  
VHYS  
=
+
UV2  
¸
RUV1  
(25)  
7.3.10 PWM Dimming  
The active low nDIM pin can be driven with a PWM signal which controls the main NFET (Q1). The brightness of  
the LEDs can be varied by modulating the duty cycle of this signal. LED brightness is approximately proportional  
to the PWM signal duty cycle, so 30% duty cycle equals approximately 30% LED brightness. This function can  
be ignored if PWM dimming is not required by using nDIM solely as a VIN UVLO input as described in the Input  
Undervoltage Lockout (UVLO) section or by tying it directly to VCC or VIN (if less than 76VDC).  
Inverted  
PWM  
VIN  
LM3429  
D
DIM  
R
UV2  
nDIM  
R
UVH  
R
UV1  
Q
DIM  
Standard  
PWM  
Figure 24. PWM Dimming Circuit  
Figure 24 shows two ways the PWM signal can be applied to the nDIM pin:  
1. Connect the dimming MosFET (QDIM) with the drain to the nDIM pin and the source to GND. Apply an  
external logic-level PWM signal to the gate of QDIM. A pull down resistor may be necessary to properly turn  
off QDIM if no signal is present.  
2. Connect the anode of a Schottky diode (DDIM) to the nDIM pin. Apply an external inverted logic-level PWM  
signal to the cathode of the same diode.  
A minimum on-time must be maintained in order for PWM dimming to operate in the linear region of its transfer  
function. Because the controller is disabled during dimming, the PWM pulse must be long enough such that the  
energy intercepted from the input is greater than or equal to the energy being put into the LEDs. For boost and  
buck-boost regulators, the following condition must be maintained:  
20  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
 
 
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Feature Description (continued)  
2 x ILED x VO X L1  
tPULSE  
=
2
VIN  
(26)  
In the previous equation, tPULSE is the length of the PWM pulse in seconds.  
7.3.11 Startup Regulator (VCC LDO)  
The LM3429 includes a high voltage, low dropout (LDO) bias regulator. When power is applied, the regulator is  
enabled and sources current into an external capacitor connected to the VCC pin. The VCC output voltage is 6.9V  
nominally and the supply is internally current limited to 20 mA (minimum). The recommended bypass  
capacitance range for the VCC regulator is 2.2 µF to 3.3 µF. The output of the VCC regulator is monitored by an  
internal UVLO circuit that protects the device during startup, normal operation, and shutdown from attempting to  
operate with insufficient supply voltage.  
7.3.12 Thermal Shutdown  
The LM3429 includes thermal shutdown. If the die temperature reaches approximately 165°C the device will shut  
down (GATE pin low), until it reaches approximately 140°C where it turns on again.  
7.4 Device Functional Modes  
This device has no functional modes.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.1.1 Inductor  
The inductor (L1) is the main energy storage device in a switching regulator. Depending on the topology, energy  
is stored in the inductor and transfered to the load in different ways (as an example, buck-boost operation is  
detailed in the Current Regulators section). The size of the inductor, the voltage across it, and the length of the  
switching subinterval (tON or tOFF) determines the inductor current ripple (ΔiL-PP). In the design process, L1 is  
chosen to provide a desired ΔiL-PP. For a buck regulator the inductor has a direct connection to the load, which is  
good for a current regulator. This requires little to no output capacitance therefore ΔiL-PP is basically equal to the  
LED ripple current ΔiLED-PP. However, for boost and buck-boost regulators, there is always an output capacitor  
which reduces ΔiLED-PP, therefore the inductor ripple can be larger than in the buck regulator case where output  
capacitance is minimal or completely absent.  
In general, ΔiLED-PP is recommended by manufacturers to be less than 40% of the average LED current (ILED).  
Therefore, for the buck regulator with no output capacitance, ΔiL-PP should also be less than 40% of ILED. For the  
boost and buck-boost topologies, ΔiL-PP can be much higher depending on the output capacitance value.  
However, ΔiL-PP is suggested to be less than 100% of the average inductor current (IL) to limit the RMS inductor  
current.  
L1 is also suggested to have an RMS current rating at least 25% higher than the calculated minimum allowable  
RMS inductor current (IL-RMS).  
8.1.2 LED Dynamic Resistance (rD)  
When the load is a string of LEDs, the output load resistance is the LED string dynamic resistance plus RSNS  
.
LEDs are PN junction diodes, and their dynamic resistance shifts as their forward current changes. Dividing the  
forward voltage of a single LED (VLED) by the forward current (ILED) leads to an incorrect calculation of the  
dynamic resistance of a single LED (rLED). The result can be 5 to 10 times higher than the true rLED value.  
Figure 25. Dynamic Resistance  
Obtaining rLED is accomplished by referring to the manufacturer's LED I-V characteristic. It can be calculated as  
the slope at the nominal operating point as shown in Figure 25. For any application with more than 2 series  
LEDs, RSNS can be neglected allowing rD to be approximated as the number of LEDs multiplied by rLED  
.
22  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
 
 
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Application Information (continued)  
8.1.3 Output Capacitor  
For boost and buck-boost regulators, the output capacitor (CO) provides energy to the load when the recirculating  
diode (D1) is reverse biased during the first switching subinterval. An output capacitor in a buck topology will  
simply reduce the LED current ripple (ΔiLED-PP) below the inductor current ripple (ΔiL-PP). In all cases, CO is sized  
to provide a desired ΔiLED-PP. As mentioned in the Inductor section, ΔiLED-PP is recommended by manufacturers to  
be less than 40% of the average LED current (ILED).  
CO should be carefully chosen to account for derating due to temperature and operating voltage. It must also  
have the necessary RMS current rating. Ceramic capacitors are the best choice due to their high ripple current  
rating, long lifetime, and good temperature performance. An X7R dieletric rating is suggested.  
8.1.4 Input Capacitors  
The input capacitance (CIN) provides energy during the discontinuous portions of the switching period. For buck  
and buck-boost regulators, CIN provides energy during tON and during tOFF, the input voltage source charges up  
CIN with the average input current (IIN). For boost regulators, CIN only needs to provide the ripple current due to  
the direct connection to the inductor. CIN is selected given the maximum input voltage ripple (ΔvIN-PP) which can  
be tolerated. ΔvIN-PP is suggested to be less than 10% of the input voltage (VIN).  
An input capacitance at least 100% greater than the calculated CIN value is recommended to account for derating  
due to temperature and operating voltage. When PWM dimming, even more capacitance can be helpful to  
minimize the large current draw from the input voltage source during the rising transition of the LED current  
waveform.  
The chosen input capacitors must also have the necessary RMS current rating. Ceramic capacitors are again the  
best choice due to their high ripple current rating, long lifetime, and good temperature performance. An X7R  
dieletric rating is suggested.  
For most applications, TI recommends bypassing the VIN pin with an 0.1-µF ceramic capacitor placed as close as  
possible to the pin. In situations where the bulk input capacitance may be far from the LM3429 device, a 10-Ω  
series resistor can be placed between the bulk input capacitance and the bypass capacitor, creating a 150 kHz  
filter to eliminate undesired high frequency noise coupling.  
8.1.5 N-Channel MosFET (NFET)  
The LM3429 requires an external NFET (Q1) as the main power MosFET for the switching regulator. Q1 is  
recommended to have a voltage rating at least 15% higher than the maximum transistor voltage to ensure safe  
operation during the ringing of the switch node. In practice, all switching regulators have some ringing at the  
switch node due to the diode parasitic capacitance and the lead inductance. The current rating is recommended  
to be at least 10% higher than the average transistor current. The power rating is then verified by calculating the  
power loss given the RMS transistor current and the NFET on-resistance (RDS-ON).  
In general, the NFET should be chosen to minimize total gate charge (Qg) whenever switching frequencies are  
high and minimize RDS-ON otherwise. This will minimize the dominant power losses in the system. Frequently,  
higher current NFETs in larger packages are chosen for better thermal performance.  
8.1.6 Re-Circulating Diode  
A re-circulating diode (D1) is required to carry the inductor current during tOFF. The most efficient choice for D1 is  
a Schottky diode due to low forward voltage drop and near-zero reverse recovery time. Similar to Q1, D1 is  
recommended to have a voltage rating at least 15% higher than the maximum transistor voltage to ensure safe  
operation during the ringing of the switch node and a current rating at least 10% higher than the average diode  
current. The power rating is verified by calculating the power loss through the diode. This is accomplished by  
checking the typical diode forward voltage from the I-V curve on the product data sheet and multiplying by the  
average diode current. In general, higher current diodes have a lower forward voltage and come in better  
performing packages minimizing both power losses and temperature rise.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
8.2 Typical Applications  
8.2.1 Basic Topology Schematics  
L1  
D1  
VIN  
C
IN  
R
T
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
C
FS  
R
SNS  
C
CMP  
R
HSP  
C
O
COMP  
CSH  
R
FS  
R
CSH  
ILED  
C
T
RCT  
V
CC  
C
BYP  
10  
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
9
R
R
R
LIM  
UV2  
R
R
OV2  
OV1  
DAP  
R
UVH  
8
nDIM  
C
OV  
UV1  
Q3  
PWM  
Figure 26. Boost Regulator (VIN < VO)  
24  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
VIN  
C
IN  
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
C
R
T
FS  
R
R
SNS  
R
HSP  
C
O
COMP  
CSH  
C
CMP  
FS  
D1  
ILED  
L1  
R
CSH  
RCT  
V
CC  
C
T
C
BYP  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
OV2  
R
R
R
LIM  
UV2  
Q2  
DAP  
R
UVH  
8
nDIM  
R
OV1  
C
OV  
UV1  
Q3  
PWM  
Figure 27. Buck Regulator (VIN > VO)  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
L1  
D1  
VIN  
C
IN  
R
T
ILED  
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
C
O
V
HSN  
HSP  
IS  
IN  
LM3429  
C
FS  
R
SNS  
C
R
HSP  
CMP  
COMP  
CSH  
VIN  
R
FS  
R
CSH  
C
T
RCT  
V
CC  
C
BYP  
10  
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
R
OV2  
9
R
R
UV2  
LIM  
Q2  
VIN  
DAP  
R
UVH  
8
nDIM  
R
C
OV  
OV1  
UV1  
Q3  
PWM  
Figure 28. Buck-Boost Regulator  
8.2.1.1 Design Requirements  
Number of series LEDs: N  
Single LED forward voltage: VLED  
Single LED dynamic resistance: rLED  
Nominal input voltage: VIN  
Input voltage range: VIN-MAX, VIN-MIN  
Switching frequency: fSW  
Current sense voltage: VSNS  
Average LED current: ILED  
Inductor current ripple: ΔiL-PP  
LED current ripple: ΔiLED-PP  
Peak current limit: ILIM  
Input voltage ripple: ΔvIN-PP  
Output OVLO characteristics: VTURN-OFF, VHYSO  
Input UVLO characteristics: VTURN-ON, VHYS  
26  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
8.2.1.2 Detailed Design Procedure  
8.2.1.2.1 Operating Point  
Given the number of series LEDs (N), the forward voltage (VLED) and dynamic resistance (rLED) for a single LED,  
solve for the nominal output voltage (VO) and the nominal LED string dynamic resistance (rD):  
VO = N x VLED  
(27)  
rD = N x rLED  
(28)  
Solve for the ideal nominal duty cycle (D):  
Buck  
VO  
D =  
V
IN  
(29)  
Boost  
VO - V  
IN  
D =  
VO  
(30)  
Buck-boost  
VO  
D
=
VO + V  
IN  
(31)  
Using the same equations, find the minimum duty cycle (DMIN) using maximum input voltage (VIN-MAX) and the  
maximum duty cycle (DMAX) using the minimum input voltage (VIN-MIN). Also, remember that D' = 1 - D.  
8.2.1.2.2 Switching Frequency  
Set the switching frequency (fSW) by assuming a CT value of 1 nF and solving for RT:  
Buck (Constant Ripple vs. VIN)  
25 x V - V  
(
)
IN  
O
RT =  
fSW x CT X VIN  
(32)  
Buck (Constant Ripple vs. VO)  
2
O
x (V x VO V )  
25  
-
IN  
RT  
=
2
fSW x CT x V  
IN  
(33)  
(34)  
Boost and Buck-Boost  
25  
RT =  
fSW x CT  
8.2.1.2.3 Average LED Current  
For all topologies, set the average LED current (ILED) knowing the desired current sense voltage (VSNS) and  
solving for RSNS  
:
VSNS  
ILED  
RSNS  
=
(35)  
If the calculated RSNS is too far from a desired standard value, then VSNS must be adjusted to obtain a standard  
value.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
Setup the suggested signal current of 100 µA by assuming RCSH = 12.4 kand solving for RHSP  
:
ILED x RCSH x RSNS  
RHSP  
=
1.24V  
(36)  
If the calculated RHSP is too far from a desired standard value, then RCSH can be adjusted to obtain a standard  
value.  
8.2.1.2.4 Inductor Ripple Current  
Set the nominal inductor ripple current (ΔiL-PP) by solving for the appropriate inductor (L1):  
Buck  
(VIN  VO)xD  
L1  
'iLPP x fSW  
(37)  
(38)  
Boost and Buck-Boost  
V x D  
IN  
L1  
'iLPP x fSW  
To set the worst case inductor ripple current, use VIN-MAX and DMIN when solving for L1.  
The minimum allowable inductor RMS current rating (IL-RMS) can be calculated as:  
Buck  
2
'IL-PP  
§
¨
©
·
1
12  
IL-RMS = ILED  
x
1 +  
x
¸
ILED  
¹
(39)  
(40)  
Boost and Buck-Boost  
2
'IL-PP x D'  
¨
ILED  
§
·
¸
1
12  
x 1 +  
x
IL-RMS  
=
ILED  
D'  
©
¹
8.2.1.2.5 LED Ripple Current  
Set the nominal LED ripple current (ΔiLED-PP), by solving for the output capacitance (CO):  
Buck  
'iL-PP  
8 x fSW x rD x 'iLED-PP  
CO =  
(41)  
(42)  
Boost and Buck-Boost  
ILED x D  
Co   
rD x 'iLEDPP  
To set the worst case LED ripple current, use DMAX when solving for CO.  
The minimum allowable RMS output capacitor current rating (ICO-RMS) can be approximated:  
Buck  
üiLED-PP  
ICO- RMS  
=
12  
(43)  
28  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
Boost and Buck-boost  
DMAX  
ICO-RMS = ILED  
x
1-DMAX  
(44)  
8.2.1.2.6 Peak Current Limit  
Set the peak current limit (ILIM) by solving for the transistor path sense resistor (RLIM):  
245 mV  
RLIM  
=
ILIM  
(45)  
8.2.1.2.7 Loop Compensation  
Using a simple first order peak current mode control model, neglecting any output capacitor ESR dynamics, the  
necessary loop compensation can be determined.  
First, the uncompensated loop gain (TU) of the regulator can be approximated:  
Buck  
1
TU = TU0  
x
§
·
¸
¸
¹
s
¨
1+  
¨
ZP1  
©
(46)  
(47)  
Boost and Buck-Boost  
§
·
¸
¸
¹
·
¸
¸
¹
s
ZZ1  
¨ -  
1
¨
©
TU = TU0  
x
§
s
ZP1  
¨
1+  
¨
©
Where the pole (ωP1) is approximated:  
Buck  
1
ZP1=  
rD x CO  
(48)  
(49)  
(50)  
Boost  
2
ZP1=  
rD x CO  
Buck-Boost  
1+D  
rD x CO  
ZP1=  
And the RHP zero (ωZ1) is approximated:  
Boost  
c2  
rD xD  
L1  
ZZ1=  
(51)  
Buck-Boost  
c2  
rD xD  
ZZ1=  
DxL1  
(52)  
29  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
And the uncompensated DC loop gain (TU0) is approximated:  
Buck  
500Vx RCSH x RSNS  
RHSP x RLIM  
620V  
ILED x RLIM  
TU0  
=
=
(53)  
(54)  
Boost  
TU0  
Buck-Boost  
c
D x 500V x RCSH x RSNS  
c
D x 310V  
=
=
2 x RHSP x RLIM  
ILED x RLIM  
c
D x 500Vx RCSH x RSNS  
c
D x 620V  
TU0  
=
=
(
)
(
)
1+D x RHSP x RLIM  
1+D xILED x RLIM  
(55)  
For all topologies, the primary method of compensation is to place a low-frequency dominant pole (ωP2) which  
will ensure that there is ample phase margin at the crossover frequency. This is accomplished by placing a  
capacitor (CCMP) from the COMP pin to GND, which is calculated according to the lower value of the pole and the  
RHP zero of the system (shown as a minimizing function):  
min(ZP1,ZZ1)  
ZP2  
=
5 xTU0  
(56)  
(57)  
1
CCMP  
=
ѠP2  
×
5×106  
If analog dimming is used, CCMP should be approximately 4x larger to maintain stability as the LEDs are dimmed  
to zero.  
A high frequency compensation pole (ωP3) can be used to attenuate switching noise and provide better gain  
margin. Assuming RFS = 10 , CFS is calculated according to the higher value of the pole and the RHP zero of  
the system (shown as a maximizing function):  
(
)
ZP3 max Z ,Z x10  
=
P1  
Z1  
(58)  
(59)  
1
CFS  
=
10 xZP3  
The total system loop gain (T) can then be written as:  
Buck  
1
T = TU0  
x
§
·
¸
¸
¹
§
¨
©
·
¸
¸
¹
§
¨
©
·
¸
¸
¹
s
ZP1  
s
s
ZP3  
¨
¨
¨
1+  
x 1+  
x 1+  
¨
ZP2  
©
(60)  
(61)  
Boost and Buck-boost  
§
·
¸
¸
¹
s
ZZ1  
¨
1-  
¨
©
T = TU0  
x
§
·
¸
¸
¹
§
¨
©
·
§
·
¸
¸
¹
s
ZP1  
s
ZP2  
s
ZP3  
¨
¨
¸
¨
1+  
x 1+  
x 1+  
¨
¸
¨
©
©
¹
8.2.1.2.8 Input Capacitance  
Set the nominal input voltage ripple (ΔvIN-PP) by solving for the required capacitance (CIN):  
Buck  
30  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
ILED x (1 - D) x D  
CIN  
Boost  
CIN  
=
'VIN-PP x fSW  
(62)  
(63)  
(64)  
'iL-PP  
=
8 x 'VIN-PP x fSW  
Buck-Boost  
CIN  
ILED x D  
=
'VIN-PP x fSW  
Use DMAX to set the worst case input voltage ripple, when solving for CIN in a buck-boost regulator and DMID = 0.5  
when solving for CIN in a buck regulator.  
The minimum allowable RMS input current rating (ICIN-RMS) can be approximated:  
Buck  
I
CIN- RMS = ILED x DMID x(1-DMID  
)
(65)  
(66)  
(67)  
Boost  
'iL-PP  
ICIN-RMS  
Buck-Boost  
ICIN-RMS = ILED  
=
12  
DMAX  
x
1-DMAX  
8.2.1.2.9 NFET  
The NFET voltage rating should be at least 15% higher than the maximum NFET drain-to-source voltage (VT-  
MAX):  
Buck  
VT- MAX = V  
IN- MAX  
(68)  
Boost  
V
T- MAX = VO  
(69)  
(70)  
Buck-Boost  
V
T- MAX = VIN- MAX + VO  
The current rating should be at least 10% higher than the maximum average NFET current (IT-MAX):  
Buck  
IT-MAX = DMAX x ILED  
(71)  
Boost and Buck-Boost  
DMAX  
IT-MAX  
=
x ILED  
1 - DMAX  
(72)  
31  
Approximate the nominal RMS transistor current (IT-RMS) :  
Buck  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
I
T- RMS = ILED x D  
(73)  
Boost and Buck-Boost  
I
LED x D  
IT- RMS  
=
c
D
(74)  
(75)  
Given an NFET with on-resistance (RDS-ON), solve for the nominal power dissipation (PT):  
P = IT- RMS2 x RDSON  
T
8.2.1.2.10 Diode  
The Schottky diode voltage rating should be at least 15% higher than the maximum blocking voltage (VRD-MAX):  
Buck  
VRD-MAX = VIN-MAX  
(76)  
Boost  
VRD-MAX = VO  
(77)  
(78)  
Buck-Boost  
VRD-MAX = VIN-MAX + VO  
The current rating should be at least 10% higher than the maximum average diode current (ID-MAX):  
Buck  
ID-MAX = (1 - DMIN) x ILED  
(79)  
(80)  
Boost and Buck-Boost  
ID-MAX = ILED  
Replace DMAX with D in the ID-MAX equation to solve for the average diode current (ID). Given a diode with forward  
voltage (VFD), solve for the nominal power dissipation (PD):  
PD = ID xVFD  
(81)  
8.2.1.2.11 Output OVLO  
For boost and buck-boost regulators, output OVLO is programmed with the turn-off threshold voltage (VTURN-OFF  
)
and the desired hysteresis (VHYSO). To set VHYSO, solve for ROV2  
:
VHYSO  
ROV2  
=
20PA  
(82)  
To set VTURN-OFF, solve for ROV1  
:
Boost  
1.24V x ROV2  
ROV1  
Buck-Boost  
ROV1  
=
VTURN-OFF - 1.24V  
(83)  
1.24V x ROV2  
=
VTURN- OFF - 620 mV  
(84)  
32  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
A small filter capacitor (COVP = 47 pF) should be added from the OVP pin to ground to reduce coupled switching  
noise.  
8.2.1.2.12 Input UVLO  
For all topologies, input UVLO is programmed with the turn-on threshold voltage (VTURN-ON) and the desired  
hysteresis (VHYS).  
Method #1: If no PWM dimming is required, a two resistor network can be used. To set VHYS, solve for RUV2  
:
VHYS  
20 PA  
RUV2  
=
(85)  
To set VTURN-ON, solve for RUV1  
:
1.24Vx RUV2  
RUV1  
=
VTURN- ON - 1.24V  
(86)  
Method #2: If PWM dimming is required, a three resistor network is suggested. To set VTURN-ON, assume RUV2  
10 kand solve for RUV1 as in Method #1. To set VHYS, solve for RUVH  
=
:
(
)
RUV1 x VHYS - 20 PA x RUV2  
RUVH  
=
(
)
20 PA x RUV1 + RUV2  
(87)  
8.2.1.2.13 PWM Dimming Method  
PWM dimming can be performed several ways:  
Method #1: Connect the dimming MosFET (Q3) with the drain to the nDIM pin and the source to GND. Apply an  
external PWM signal to the gate of QDIM. A pull down resistor may be necessary to properly turn off Q3.  
Method #2: Connect the anode of a Schottky diode to the nDIM pin. Apply an external inverted PWM signal to  
the cathode of the same diode.  
8.2.1.2.14 Analog Dimming Method  
Analog dimming can be performed several ways:  
Method #1: Place a potentiometer in series with the RCSH resistor to dim the LED current from the nominal ILED  
to near zero.  
Method #2: Connect a controlled current source as detailed in the Analog Dimming section to the CSH pin.  
Increasing the current sourced into the CSH node will decrease the LEDs from the nominal ILED to zero current.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
8.2.2 Buck-Boost Application - 6 LEDs at 1 A  
L1  
D1  
10V ± 70V  
VIN  
C
IN  
R
T
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
1A  
ILED  
C
CMP  
R
HSP  
C
O
COMP  
CSH  
R
CSH  
C
FS  
R
SNS  
C
T
RCT  
V
CC  
VIN  
C
BYP  
R
FS  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
OV2  
R
UV2  
R
LIM  
Q2  
VIN  
DAP  
8
nDIM  
C
R
OV1  
OV  
R
UV1  
Figure 29. Buck-Boost Application - 6 LEDs at 1 A Schematic  
8.2.2.1 Design Requirements  
N = 6  
VLED = 3.5 V  
rLED = 325 mΩ  
VIN = 24 V  
VIN-MIN = 10 V  
VIN-MAX = 70 V  
fSW = 700 kHz  
VSNS = 100 mV  
ILED = 1A  
ΔiL-PP = 500 mA  
ΔiLED-PP = 50 mA  
ΔvIN-PP = 100 mV  
ILIM = 6A  
VTURN-ON = 10 V  
VHYS = 3 V  
34  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
VTURN-OFF = 40 V  
VHYSO = 10 V  
8.2.2.2 Detailed Design Procedure  
8.2.2.2.1 Operating Point  
Solve for VO and rD:  
VO Nx V  
6x 3.5V 21V  
=
=
=
LED  
(88)  
(89)  
rD N x r  
6 x 325 m: 1.95:  
=
=
=
LED  
Solve for D, D', DMAX, and DMIN  
:
VO  
21V  
21V + 24V  
D =  
=
= 0.467  
VO +V  
IN  
(90)  
(91)  
D' 1- D 1- 0.467 0.533  
=
=
=
VO  
21V  
=
DMIN  
=
= 0.231  
VO + VIN-MAX  
21V + 70V  
(92)  
(93)  
VO  
=
21V  
21V +10V  
DMAX  
=
= 0.677  
VO + V  
IN-MIN  
8.2.2.2.2 Switching Frequency  
Assume CT = 1 nF and solve for RT:  
25  
fSW x CT  
25  
=
RT =  
= 35.7 k:  
700 kHz x 1 nF  
(94)  
(95)  
(96)  
The closest standard resistor is actually 35.7 ktherefore the fSW is:  
25  
RT x CT  
25  
=
fSW  
=
= 700 kHz  
35.7 k: x 1 nF  
The chosen components from step 2 are:  
CT = 1 nF  
RT = 35.7 k:  
8.2.2.2.3 Average LED Current  
Solve for RSNS  
:
V
ILED  
100 mV  
1A  
SNS  
RSNS  
0.1:  
=
=
=
(97)  
(98)  
Assume RCSH = 12.4 kand solve for RHSP  
:
ILED xRCSH x RSNS  
1.24V  
1Ax12.4 k: x 0.1:  
RHSP  
=
=
=1.0 k:  
1.24V  
The closest standard resistor for RSNS is actually 0.1and for RHSP is actually 1 ktherefore ILED is:  
1.24Vx RHSP  
RSNS x RCSH  
1.24V x1.0 k:  
0.1: x12.4 k:  
ILED  
=
=
=1.0A  
(99)  
35  
The chosen components from step 3 are:  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
RSNS 0.1:  
=
RCSH 12.4 k:  
=
RHSP  
R
1k:  
=
=
HSN  
(100)  
8.2.2.2.4 Inductor Ripple Current  
Solve for L1:  
V x D  
24Vx0.467  
'iL-PP x fSW 500 mA x700kHz  
IN  
32 PH  
=
L1=  
=
(101)  
(102)  
The closest standard inductor is 33 µH therefore the actual ΔiL-PP is:  
V x D  
24Vx 0.467  
L1x fSW 33 PHx700 kHz  
IN  
485 mA  
=
'iL- PP  
=
=
Determine minimum allowable RMS current rating:  
§
¨
¨
©
2  
'iL-PP x D  
I
1
12  
x
LED x 1+  
¸
IL-RMS  
=
¸
ILED  
c
D
¹
2
1
12  
x
485 mA x 0.533  
1A  
0.533  
§
·
x 1+  
¨
¨
¸
¸
IL-RMS  
=
=
1A  
©
¹
1.88A  
IL-RMS  
(103)  
(104)  
The chosen component from step 4 is:  
L1= 33 PH  
8.2.2.2.5 Output Capacitance  
Solve for CO:  
ILED x D  
CO =  
rD x 'iLED-PP x fSW  
1A x 0.467  
1.95: x 50 mA x700 kHz  
=
= 6.84PF  
CO  
(105)  
The closest standard capacitor is 6.8 µF therefore the actual ΔiLED-PP is:  
ILED x D  
'iLED-PP  
=
=
rD x CO x fSW  
1A x 0.467  
1.95: x x 700 kHz  
'iLED-PP  
50 mA  
=
6.8PF  
(106)  
(107)  
Determine minimum allowable RMS current rating:  
DMAX  
0.677  
x
x
I
CO-RMS =ILED  
=1A  
=1.45A  
1- DMAX  
1- 0.677  
The chosen components from step 5 are:  
CO = 6.8PF  
(108)  
36  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
8.2.2.2.6 Peak Current Limit  
Solve for RLIM  
:
245 mV 245 mV  
RLIM  
=
=
= 0.041:  
ILIM  
6A  
(109)  
The closest standard resistor is 0.04 therefore ILIM is:  
245 mV 245 mV  
ILIM  
=
=
= 6.13A  
RLIM  
0.04:  
(110)  
(111)  
The chosen component from step 6 is:  
RLIM = 0.04:  
8.2.2.2.7 Loop Compensation  
ωP1 is approximated:  
1.467  
rD x CO 1.95: x 6.8 PF  
1 + D  
rad  
sec  
=
= 110k  
ZP1  
=
(112)  
(113)  
ωZ1 is approximated:  
c2  
1.95: x0.5332  
rad  
sec  
rD x D  
ZZ1 =  
=
= 37k  
DxL1 0.467x 33PH  
TU0 is approximated:  
c
0.533x620V  
1.467x1A x 0.04:  
D x 620V  
TU0 =  
=
= 5630  
(
)
1 D xILED x RLIM  
+
(114)  
To ensure stability, calculate ωP2:  
rad  
sec  
37k  
min(ZP1,ZZ1)  
ZZ1  
rad  
sec  
ZP2=  
=
=
=1.173  
5 xTU0  
5 x5630 5 x 5630  
(115)  
(116)  
Solve for CCMP  
:
1
1
CCMP  
=
=
= 0.17µF  
rad  
ѠP2×5×106Ω  
1.173  
×5×106Ω  
sec  
To attenuate switching noise, calculate ωP3:  
ZP3 max Z ,Z x10  
ZP1 x10  
=
=
P1  
Z1  
rad  
sec  
rad  
sec  
ZP3 110k  
x10 1.1M  
=
=
(117)  
(118)  
Assume RFS = 10 and solve for CFS  
:
1
1
CFS  
=
=
= 0.091PF  
rad  
sec  
10:  
x Z  
P3  
10: x  
1.1M  
The chosen components from step 7 are:  
CCOMP = 0.22PF  
RFS =10:  
CFS = 0.1PF  
(119)  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
8.2.2.2.8 Input Capacitance  
Solve for the minimum CIN:  
ILED x D  
'vIN-PP x fSW  
1A x 0.467  
100 mV x 700kHz  
CIN =  
=
= 6.66 PF  
(120)  
To minimize power supply interaction a 200% larger capacitance of approximately 14 µF is used, therefore the  
actual ΔvIN-PP is much lower. Because high voltage ceramic capacitor selection is limited, three 4.7 µF X7R  
capacitors are chosen.  
Determine minimum allowable RMS current rating:  
DMAX  
1- DMAX  
0.677  
1- 0.677  
x
x
I
IN-RMS =ILED  
=1A  
=1.45A  
(121)  
(122)  
The chosen components from step 8 are:  
CIN = 3 x 4.7 PF  
8.2.2.2.9 NFET  
Determine minimum Q1 voltage rating and current rating:  
VT-MAX  
V
V
70V 21V 91V  
= + =  
=
+
IN- MAX  
O
(123)  
(124)  
0.677  
1- 0.677  
IT-MAX  
x1A 2.1A  
=
=
A 100-V NFET is chosen with a current rating of 32A due to the low RDS-ON = 50 m. Determine IT-RMS and PT:  
ILED  
1A  
0.533  
IT-RMS  
D
0.467 1.28A  
x
=
x
=
=
c
D
(125)  
(126)  
PT  
I
2 x RDSON 1.28A2 x 50 m: 82 mW  
= =  
T- RMS  
=
The chosen component from step 9 is:  
Q1 o 32A, 100V, DPAK  
(127)  
8.2.2.2.10 Diode  
Determine minimum D1 voltage rating and current rating:  
RD-MAX = VIN-MAX + VO = 70V +21V = 91V  
V
(128)  
(129)  
ID-MAX  
I
1A  
=
=
LED  
A 100-V diode is chosen with a current rating of 12 A and VDF = 600 mV. Determine PD:  
I x V 1A x 600 mV 600 mW  
P
=
=
FD  
=
D
D
(130)  
(131)  
The chosen component from step 10 is:  
D1 o 12A, 100V, DPAK  
8.2.2.2.11 Input UVLO  
Solve for RUV2  
:
38  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Typical Applications (continued)  
VHYS  
3V  
P
RUV2  
=
=
=150k:  
P
20 A 20 A  
(132)  
(133)  
The closest standard resistor is 150 ktherefore VHYS is:  
VHYS  
R
x20PA 150 k: x20 PA 3V  
=
=
=
UV2  
Solve for RUV1  
:
1.24Vx RUV2  
1.24Vx150k:  
10V -1.24V  
RUV1  
=
=
= 21.2 k:  
VTURN- ON -1.24V  
(134)  
The closest standard resistor is 21 kmaking VTURN-ON  
:
(
)
1.24Vx RUV1+ RUV2  
VTURN-ON  
=
=
RUV1  
(
)
1.24Vx 21k: +150k:  
VTURN-ON  
= 10.1V  
21k:  
(135)  
(136)  
The chosen components from step 11 are:  
RUV1 21k:  
=
RUV2 150 k:  
=
8.2.2.2.12 Output OVLO  
Solve for ROV2  
:
VHYSO  
10V  
P
ROV2  
=
=
= 500k:  
P
20 A 20 A  
(137)  
(138)  
The closest standard resistor is 499 ktherefore VHYSO is:  
P
P
VHYSO  
R
x 20 A 499 k: x 20 A 9.98V  
=
=
=
OV2  
Solve for ROV1  
:
1.24Vx ROV2  
1.24Vx 499k:  
40V - 0.62V  
ROV1  
=
=
=15.7k:  
VTURN-OFF- 0.62V  
(139)  
The closest standard resistor is 15.8 kmaking VTURN-OFF  
:
1.24V x (0.5 x ROV1 + ROV2  
ROV1  
)
VTURN-OFF  
=
=
1.24V x (0.5 x 15.8 k: + 499 k:)  
15.8 k:  
= 39.8V  
VTURN-OFF  
(140)  
(141)  
The chosen components from step 12 are:  
ROV1 = 15.8 k:  
ROV2 = 499 k:  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Typical Applications (continued)  
Table 1. Design 1 Bill of Materials  
QTY  
1
PART ID  
LM3429  
CCMP  
CF  
PART VALUE  
MANUFACTURER  
TI  
PART NUMBER  
Boost controller  
0.22 µF X7R 10% 25 V  
2.2 µF X7R 10% 16 V  
0.1 µF X7R 10% 25 V  
4.7 µF X7R 10% 100 V  
6.8 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1000 pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
33 µH 20% 6.3 A  
NMOS 100 V 32 A  
PNP 150 V 600 m A  
12.4 k1%  
LM3429MH  
1
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71E224KA01L  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
C5750X7R2A475K  
C4532X7R1H685K  
08055A470JAT2A  
1
1
CFS  
3
CIN  
1
CO  
TDK  
1
COV  
AVX  
1
CT  
MURATA  
VISHAY  
COILCRAFT  
FAIRCHILD  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
1
D1  
1
L1  
MSS1278-333MLB  
FDD3682  
1
Q1  
1
Q2  
MMBT5401  
1
RCSH  
RFS  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW080515K8FKEA  
CRCW0805499KFKEA  
WSL2512R1000FEA  
CRCW080535K7FKEA  
CRCW080521K0FKEA  
CRCW0805150KFKEA  
1
10 1%  
2
RHSP, RHSN  
RLIM  
ROV1  
ROV2  
RSNS  
RT  
1 k1%  
1
0.04 1% 1W  
1
15.8 k1%  
1
499 k1%  
1
0.1 1% 1W  
1
35.7 k1%  
1
RUV1  
RUV2  
21 k1%  
1
150 k1%  
8.2.2.3 Application Curve  
100  
95  
90  
85  
80  
75  
70  
0
16  
32  
48  
(V)  
64  
80  
V
IN  
Figure 30. Buck-Boost Efficiency vs Input Voltage, VO= 6 LEDs  
40  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
8.2.3 Boost PWM Dimming Application - 9 LEDs at 1 A  
L1  
D1  
8V - 28V  
VIN  
C
IN  
R
T
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
C
FS  
R
SNS  
C
R
HSP  
CMP  
COMP  
CSH  
R
FS  
C
O
R
CSH  
C
T
1A  
ILED  
RCT  
V
CC  
C
BYP  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
R
R
LIM  
UV2  
R
OV2  
DAP  
R
UVH  
8
nDIM  
R
C
OV  
OV1  
UV1  
Q2  
PWM  
Figure 31. Boost PWM Dimming Application - 9 LEDs at 1 A Schematic  
8.2.3.1 Detailed Design Procedure  
Table 2. Design 2 Bill of Materials  
QTY  
1
PART ID  
LM3429  
CCMP, CFS  
CF  
PART VALUE  
MANUFACTURER  
TI  
PART NUMBER  
Boost controller  
0.1 µF X7R 10% 25 V  
2.2 µF X7R 10% 16 V  
6.8 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1000 pF COG/NPO 5% 50 V  
Schottky 60 V 5 A  
33 µH 20% 6.3 A  
NMOS 60 V 8 A  
NMOS 60 V 115 mA  
12.4 k1%  
LM3429MH  
2
MURATA  
MURATA  
TDK  
GRM21BR71E104KA01L  
GRM21BR71C225KA12L  
C4532X7R1H685K  
08055A470JAT2A  
1
2, 1  
1
CIN, CO  
COV  
AVX  
1
CT  
MURATA  
COMCHIP  
COILCRAFT  
VISHAY  
ON SEMI  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
CDBC560-G  
1
D1  
1
L1  
MSS1278-333MLB  
SI4436DY  
1
Q1  
1
Q2  
2N7002ET1G  
2
RCSH, ROV1  
RFS  
RHSP, RHSN  
RLIM  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
WSL2512R0600FEA  
CRCW0805499KFKEA  
WSL2512R1000FEA  
CRCW080535K7FKEA  
CRCW08051K82FKEA  
CRCW080510KFKEA  
CRCW080517K8FKEA  
1
10 1%  
2
1 k1%  
1
0.06 1% 1 W  
499 k1%  
1
ROV2  
RSNS  
RT  
1
0.1 1% 1 W  
1
35.7 k1%  
1
RUV1  
1.82 k1%  
1
RUV2  
10 k1%  
1
RUVH  
17.8 k1%  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
8.2.4 Buck-Boost Analog Dimming Application - 4 LEDs at 2A  
L1  
D1  
10V ± 30V  
VIN  
C
IN  
R
T
2A  
ILED  
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
C
O
C
CMP  
R
HSP  
COMP  
CSH  
C
FS  
R
SNS  
R
CSH  
VIN  
R
ADJ  
R
FS  
C
T
RCT  
V
CC  
C
BYP  
10  
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
OV2  
9
R
R
R
LIM  
UV2  
Q2  
VIN  
DAP  
8
nDIM  
C
OV  
R
OV1  
UV1  
Figure 32. Buck-Boost Analog Dimming Application - 4 LEDs at 2 A Schematic  
8.2.4.1 Detailed Design Procedure  
Table 3. Bill of Materials  
QTY  
1
PART ID  
LM3429  
CCMP  
CF  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Boost controller  
1 µF X7R 10% 10 V  
2.2 µF X7R 10% 16 V  
0.1 µF X7R 10% 50 V  
6.8 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1000 pF COG/NPO 5% 50 V  
Schottky 60 V 5 A  
22 µH 20% 7.2 A  
NMOS 60 V 8 A  
PNP 150 V 600 mA  
1-Mpotentiometer  
12.4 k1%  
TI  
LM3429MH  
1
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71A105KA01L  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
C4532X7R1H685K  
08055A470JAT2A  
GRM2165C1H102JA01D  
CDBC560-G  
1
1
CFS  
2, 1  
1
CIN, CO  
COV  
AVX  
1
CT  
MURATA  
VISHAY  
COILCRAFT  
VISHAY  
FAIRCHILD  
BOURNS  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
1
D1  
1
L1  
MSS1278-223MLB  
SI4436DY  
1
Q1  
1
Q2  
MMBT5401  
1
RADJ  
RCSH  
RFS  
3352P-1-105  
1
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW080518K2FKEA  
CRCW0805499KFKEA  
WSL2512R0500FEA  
CRCW080541K2FKEA  
1
10 1%  
2
RHSP, RHSN  
RLIM  
ROV1  
ROV2  
RSNS  
RT  
1 k1%  
1
0.04 1% 1 W  
1
18.2 k1%  
1
499 k1%  
1
0.05 1% 1 W  
1
41.2 k1%  
42  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Table 3. Bill of Materials (continued)  
QTY  
PART ID  
RUV1  
PART VALUE  
MANUFACTURER  
VISHAY  
PART NUMBER  
1
1
21 k1%  
CRCW080521K0FKEA  
CRCW0805150KFKEA  
RUV2  
150 k1%  
VISHAY  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
8.2.5 Boost Analog Dimming Application - 12 LEDs at 700 mA  
L1  
D1  
18V - 38V  
VIN  
C
IN  
R
T
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
C
R
FS  
R
SNS  
C
R
HSP  
CMP  
COMP  
CSH  
VREF  
FS  
Q4  
Q3  
R
MAX  
C
O
C
T
Q2  
R
RCT  
V
CC  
C
700 mA  
ILED  
BYP  
R
CSH  
R
ADJ  
BIAS  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
VIN  
R
LIM  
R
R
OV2  
R
UV2  
R
UV1  
DAP  
8
nDIM  
C
OV  
OV1  
Figure 33. Boost Analog Dimming Application - 12 LEDs at 700 mA Schematic  
8.2.5.1 Detailed Design Procedure  
Table 4. Bill of Materials  
QTY  
1
PART ID  
PART VALUE  
MANUFACTURER  
PART NUMBER  
LM3429  
Boost controller  
TI  
LM3429MH  
1
CCMP  
1 µF X7R 10% 10 V  
2.2 µF X7R 10% 16 V  
0.1 µF X7R 10% 50 V  
6.8 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1000 pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
47 µH 20% 5.3 A  
NMOS 100 V 32 A  
NPN 40 V 200 mA  
Dual PNP 40 V 200 mA  
100 kpotentiometer  
40.2 k1%  
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71A105KA01L  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
C4532X7R1H685K  
08055A470JAT2A  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
1
CF  
1
CFS  
2, 1  
1
CIN, CO  
COV  
AVX  
1
CT  
MURATA  
VISHAY  
COILCRAFT  
FAIRCHILD  
FAIRCHILD  
FAIRCHILD  
BOURNS  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
1
D1  
1
L1  
MSS1278-473MLB  
FDD3682  
1
Q1  
1
Q2  
MMBT3904  
1
Q3, Q4 (dual pack)  
FFB3906  
1
RADJ  
3352P-1-104  
1
RBIAS  
CRCW080540K2FKEA  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K05FKEA  
WSL2512R0600FEA  
CRCW08054K99FKEA  
CRCW0805499KFKEA  
WSL2512R1500FEA  
1
RCSH, ROV1, RUV1  
RFS  
RHSP, RHSN  
RLIM  
12.4 k1%  
1
10 1%  
2
1.05 k1%  
1
0.06 1% 1 W  
1
RMAX  
4.99 k1%  
1
ROV2  
499 k1%  
1
RSNS  
0.15 1% 1 W  
44  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Table 4. Bill of Materials (continued)  
QTY  
PART ID  
RT  
PART VALUE  
MANUFACTURER  
PART NUMBER  
CRCW080535K7FKEA  
CRCW0805100KFKEA  
LM4040  
1
1
1
35.7 k1%  
VISHAY  
VISHAY  
TI  
RUV2  
VREF  
100 k1%  
5 V precision reference  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
8.2.6 Buck-Boost PWM Dimming Application - 6 LEDs at 500 mA  
L1  
D1  
10V ± 70V  
VIN  
C
IN  
R
T
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
500 mA  
ILED  
C
CMP  
R
HSP  
C
O
COMP  
CSH  
R
CSH  
C
FS  
R
SNS  
C
T
RCT  
V
CC  
VIN  
C
BYP  
R
FS  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
OV2  
R
UV2  
Q2  
VIN  
DAP  
R
UVH  
8
nDIM  
D2  
C
R
OV1  
OV  
R
UV1  
PWM  
Figure 34. Buck-Boost PWM Dimming Application - 6 LEDs at 500 mA  
8.2.6.1 Detailed Design Procedure  
Table 5. Bill of Materials  
QTY  
1
PART ID  
LM3429  
CCMP  
CF  
PART VALUE  
MANUFACTURER  
PART NUMBER  
LM3429MH  
Boost controller  
TI  
1
0.68 µF X7R 10% 25 V  
2.2 µF X7R 10% 16 V  
0.1 µF X7R 10% 25 V  
4.7 µF X7R 10% 100 V  
6.8 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1000 pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
Schottky 30 V 500 mA  
68 µH 20% 4.3 A  
NMOS 100 V 32 A  
PNP 150 V 600 mA  
12.4 k1%  
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71E684KA88L  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
C5750X7R2A475K  
C4532X7R1H685K  
08055A470JAT2A  
1
1
CFS  
3
CIN  
1
CO  
TDK  
1
COV  
AVX  
1
CT  
MURATA  
VISHAY  
ON SEMI  
COILCRAFT  
VISHAY  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
1
D1  
1
D2  
BAT54T1G  
1
L1  
MSS1278-683MLB  
FDD3682  
1
Q1  
1
Q2  
MMBT5401  
1
RCSH  
RFS  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
CRCW080515K8FKEA  
CRCW0805499KFKEA  
WSL2512R2000FEA  
CRCW080535K7FKEA  
CRCW08051K43FKEA  
CRCW080510K0FKEA  
1
10 1%  
2
RHSP, RHSN  
ROV1  
ROV2  
RSNS  
RT  
1 k1%  
1
15.8 k1%  
1
499 k1%  
1
0.2 1% 1 W  
1
35.7 k1%  
1
RUV1  
RUV2  
1.43 k1%  
1
10 k1%  
46  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Table 5. Bill of Materials (continued)  
QTY  
PART ID  
PART VALUE  
17.4 k1%  
MANUFACTURER  
PART NUMBER  
1
RUVH  
VISHAY  
CRCW080517K4FKEA  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
8.2.7 Buck Application - 3 LEDS at 1.25 A  
15V ± 50V  
VIN  
C
IN  
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
C
R
T
FS  
R
R
SNS  
R
HSP  
C
O
COMP  
CSH  
C
CMP  
FS  
D1  
1.25A  
ILED  
R
CSH  
RCT  
V
CC  
L1  
C
T
C
BYP  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
OV2  
R
R
R
LIM  
UV2  
Q2  
DAP  
8
nDIM  
C
R
OV  
OV1  
UV1  
Figure 35. Buck Application - 3 LEDS at 1.25 A Schematic  
8.2.7.1 Detailed Design Procedure  
Table 6. Bill of Materials  
QTY  
1
PART ID  
LM3429  
CCMP  
CF  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Boost controller  
TI  
LM3429MH  
1
0.015 µF X7R 10% 50 V  
2.2 µF X7R 10% 16 V  
0.01 µF X7R 10% 50 V  
6.8 µF X7R 10% 50 V  
1 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1000 pF COG/NPO 5% 50 V  
Schottky 60V 5 A  
22 µH 20% 7.3 A  
NMOS 60 V 8 A  
PNP 150 V 600 mA  
12.4 k1%  
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71H153KA01L  
GRM21BR71C225KA12L  
GRM21BR71H103KA01L  
C4532X7R1H685K  
C4532X7R1H105K  
08055A470JAT2A  
1
1
CFS  
2
CIN  
1
CO  
TDK  
1
COV  
AVX  
1
CT  
MURATA  
COMCHIP  
COILCRAFT  
VISHAY  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
CDBC560-G  
1
D1  
1
L1  
MSS1278-223MLB  
SI4436DY  
1
Q1  
1
Q2  
MMBT5401  
1
RCSH  
RT  
CRCW080512K4FKEA  
CRCW080549K9FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW080521K5FKEA  
CRCW0805499KFKEA  
WSL2512R0800FEA  
1
49.9 k1%  
1
RFS  
10 1%  
2
RHSP, RHSN  
RLIM  
ROV1  
ROV2  
RSNS  
1 k1%  
1
0.04 1% 1 W  
1
21.5 k1%  
1
499 k1%  
1
0.08 1% 1 W  
48  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
Table 6. Bill of Materials (continued)  
QTY  
PART ID  
RUV1  
PART VALUE  
MANUFACTURER  
VISHAY  
PART NUMBER  
1
1
11.5 k1%  
100 k1%  
CRCW080511K5FKEA  
CRCW0805100KFKEA  
RUV2  
VISHAY  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
8.2.8 Buck-Boost Thermal Foldback Application - 8 LEDs at 2.5 A  
L1  
D1  
15V ± 60V  
VIN  
VREF  
C
IN  
R
T
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
R
GAIN  
HSN  
HSP  
IS  
V
LM3429  
IN  
2.5A  
ILED  
C
R
HSP  
CMP  
R
NTC  
COMP  
CSH  
C
O
D2  
R
R
BIAS  
C
T
CSH  
RCT  
V
CC  
C
BYP  
R
SNS  
C
FS  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
VIN  
VIN  
R
FS  
R
R
OV2  
LIM  
R
UV2  
Q2  
VIN  
DAP  
8
nDIM  
C
OV  
OV1  
R
UV1  
Figure 36. Buck-Boost Thermal Foldback Application - 8 LEDs at 2.5 A Schematic  
8.2.8.1 Detailed Design Procedure  
Table 7. Bill of Materials  
QTY  
1
PART ID  
LM3429  
CCMP  
CF  
PART VALUE  
MANUFACTURER  
PART NUMBER  
Boost controller  
TI  
LM3429MH  
1
0.1 µF X7R 10% 25 V  
2.2 µF X7R 10% 16 V  
0.1 µF X7R 10% 25 V  
4.7 µF X7R 10% 100 V  
6.8 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1000 pF COG/NPO 5% 50 V  
Schottky 100 V 12 A  
22 µH 20% 7.2 A  
NMOS 100 V 32 A  
PNP 150 V 600 mA  
12.4 k1%  
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71E104KA01L  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
C5750X7R2A475K  
1
1
CFS  
3
CIN  
1
CO  
TDK  
C4532X7R1H685K  
08055A470JAT2A  
1
COV  
AVX  
1
CT  
MURATA  
VISHAY  
COILCRAFT  
FAIRCHILD  
FAIRCHILD  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
GRM2165C1H102JA01D  
12CWQ10FNPBF  
1
D1  
1
L1  
MSS1278-223MLB  
1
Q1  
FDD3682  
1
Q2  
MMBT5401  
2
RCSH, ROV1  
RFS  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
WSL2512R0400FEA  
CRCW0805499KFKEA  
CRCW080549K9FKEA  
CRCW080513K7FKEA  
CRCW0805150KFKEA  
1
10 1%  
2
RHSP, RHSN  
RLIM, RSNS  
ROV2  
RT  
1 k1%  
2
0.04 1% 1 W  
1
499 k1%  
1
49.9 k1%  
1
RUV1  
RUV2  
13.7 k1%  
1
150 k1%  
50  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
8.2.9 SEPIC Application - 5 LEDs at 750 mA  
L1  
9V - 36V  
C
SEP  
D1  
VIN  
L2  
C
IN  
R
T
R
HSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
HSN  
HSP  
IS  
V
LM3429  
IN  
C
FS  
R
SNS  
C
R
HSP  
CMP  
COMP  
CSH  
R
FS  
C
O
R
CSH  
C
T
RCT  
V
CC  
750 mA  
ILED  
C
BYP  
10  
9
AGND  
OVP  
GATE  
PGND  
NC  
Q1  
R
R
UV2  
R
R
OV2  
DAP  
8
nDIM  
C
OV  
OV1  
UV1  
Figure 37. 5 LEDs at 750 mA  
Table 8. Bill of Materials  
8.2.9.1 Detailed Design Procedure  
QTY  
1
PART ID  
LM3429  
CCMP  
CF  
PART VALUE  
MANUFACTURER  
TI  
PART NUMBER  
Boost controller  
LM3429MH  
1
0.47 µF X7R 10% 25 V  
2.2 µF X7R 10% 16 V  
0.1 µF X7R 10% 25 V  
6.8 µF X7R 10% 50 V  
47 pF COG/NPO 5% 50 V  
1 µF X7R 10% 100 V  
1000 pF COG/NPO 5% 50 V  
Schottky 60 V 5 A  
68 µH 20% 4.3 A  
NMOS 60 V 8 A  
NMOS 60 V 115 mA  
12.4 k1%  
MURATA  
MURATA  
MURATA  
TDK  
GRM21BR71E474KA01L  
GRM21BR71C225KA12L  
GRM21BR71E104KA01L  
C4532X7R1H685K  
08055A470JAT2A  
1
1
CFS  
2, 1  
1
CIN, CO  
COV  
AVX  
1
CSEP  
CT  
TDK  
C4532X7R2A105K  
GRM2165C1H102JA01D  
CDBC560-G  
1
MURATA  
COMCHIP  
COILCRAFT  
VISHAY  
ON SEMI  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
VISHAY  
1
D1  
1
L1, L2  
Q1  
DO3340P-683  
1
SI4436DY  
1
Q2  
2N7002ET1G  
1
RCSH  
RFS  
CRCW080512K4FKEA  
CRCW080510R0FKEA  
CRCW0805750RFKEA  
WSL2512R0400FEA  
CRCW080515K8FKEA  
CRCW0805499KFKEA  
WSL2512R1000FEA  
CRCW080549K9FKEA  
1
10 1%  
2
RHSP, RHSN  
RLIM  
750 1%  
1
0.04 1% 1 W  
2
ROV1, RUV1  
ROV2  
RSNS  
RT  
15.8 k1%  
1
499 k1%  
1
0.1 1% 1 W  
1
49.9 k1%  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
Table 8. Bill of Materials (continued)  
QTY  
PART ID  
PART VALUE  
100 k1%  
MANUFACTURER  
PART NUMBER  
1
RUV2  
VISHAY  
CRCW0805100KFKEA  
52  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
9 Power Supply Recommendations  
The device is designed to operate from an input voltage supply range from 4.5 V to 75 V. This input supply  
should be well regulated. If the input supply is located more than a few inches from the EVM or PCB, additional  
bulk capacitance may be required in addition to the ceramic bypass capacitors.  
9.1 Input Supply Current Limit  
It is important to set the output current limit of your input supply to an appropriate value to avoid delays in your  
converter analysis and optimization. If not set high enough, current limit can be tripped during start-up or when  
your converter output power is increased, causing a foldback or shut-down condition. It is a common oversight  
when powering up a converter for the first time.  
10 Layout  
10.1 Layout Guidelines  
The performance of any switching regulator depends as much upon the layout of the PCB as the component  
selection. Following a few simple guidelines will maximimize noise rejection and minimize the generation of EMI  
within the circuit.  
Discontinuous currents are the most likely to generate EMI; therefore, take care when routing these paths. The  
main path for discontinuous current in the LM3429 buck regulator contains the input capacitor (CIN), the  
recirculating diode (D1), the N-channel MosFET (Q1), and the switch sense resistor (RLIM). In the LM3429 boost  
and buck-boost regulators, the discontinuous current flows through the output capacitor (CO), D1, Q1, and RLIM  
.
In either case, this loop should be kept as small as possible and the connections between all the components  
should be short and thick to minimize parasitic inductance. In particular, the switch node (where L1, D1 and Q1  
connect) should be just large enough to connect the components. To minimize excessive heating, large copper  
pours can be placed adjacent to the short current path of the switch node.  
The RCT, COMP, CSH, IS, HSP and HSN pins are all high-impedance inputs which couple external noise easily,  
therefore the loops containing these nodes should be minimized whenever possible.  
In some applications the LED or LED array can be far away (several inches or more) from the LM3429, or on a  
separate PCB connected by a wiring harness. When an output capacitor is used and the LED array is large or  
separated from the rest of the regulator, the output capacitor should be placed close to the LEDs to reduce the  
effects of parasitic inductance on the AC impedance of the capacitor.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
10.2 Layout Example  
Note critical paths and component placement:  
Minimize power loop containing discontinuous currents  
Minimize signal current loops (components close to IC)  
xꢀ Ground plane under IC for signal routing helps minimize noise coupling  
discontinuous switching  
frequency currents  
L1  
D1  
VIN  
Input  
CIN  
RT  
Power  
RHSN  
1
2
3
4
5
6
7
14  
13  
12  
11  
VIN  
LM3429  
HSN  
HSP  
IS  
GND  
RSNS  
CFS  
CCMP  
RCSH  
CT  
RHSP  
CO  
COMP  
RFS  
ILED  
CSH  
RCT  
VCC  
CBYP  
10  
STAR GROUND  
AGND  
OVP  
nDIM  
GATE  
PGND  
NC  
Q1  
RUV2  
9
RLIM  
ROV2  
DAP  
RUVH  
8
COV  
ROV1  
RUV1  
PWM  
Q3  
Power Ground  
Figure 38. LM3429 Layout Guideline  
54  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
www.ti.com  
SNVS616H APRIL 2009REVISED JULY 2015  
11 Device and Documentation Support  
11.1 Device Support  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 Documentation Support  
11.2.1 Related Documentation  
For related documentation see the following:  
AN-1986 LM3429 Boost Evaluation Board, SNVA404  
AN-1985 LM3429 Buck-Boost Evaluation Board, SNVA403  
11.3 Related Links  
The table below lists quick access links. Categories include technical documents, support and community  
resources, tools and software, and quick access to sample or buy.  
Table 9. Related Links  
TECHNICAL  
DOCUMENTS  
TOOLS &  
SOFTWARE  
SUPPORT &  
COMMUNITY  
PARTS  
PRODUCT FOLDER  
SAMPLE & BUY  
LM3429  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
Click here  
LM3429-Q1  
11.4 Community Resources  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 Trademarks  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
Copyright © 2009–2015, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: LM3429 LM3429-Q1  
LM3429, LM3429-Q1  
SNVS616H APRIL 2009REVISED JULY 2015  
www.ti.com  
11.6 Electrostatic Discharge Caution  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
11.7 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
56  
Submit Documentation Feedback  
Copyright © 2009–2015, Texas Instruments Incorporated  
Product Folder Links: LM3429 LM3429-Q1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3429MH/NOPB  
LM3429MHX/NOPB  
LM3429Q1MH/NOPB  
LM3429Q1MHX/NOPB  
ACTIVE  
HTSSOP  
HTSSOP  
HTSSOP  
HTSSOP  
PWP  
14  
14  
14  
14  
94  
RoHS & Green  
Call TI | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
LM3429  
MH  
Samples  
Samples  
Samples  
Samples  
ACTIVE  
ACTIVE  
ACTIVE  
PWP  
2500 RoHS & Green  
94 RoHS & Green  
2500 RoHS & Green  
Call TI | SN  
Call TI | SN  
Call TI | SN  
LM3429  
MH  
PWP  
LM3429  
Q1MH  
PWP  
LM3429  
Q1MH  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
23-Jun-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM3429, LM3429-Q1 :  
Catalog : LM3429  
Automotive : LM3429-Q1  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3429MHX/NOPB  
HTSSOP PWP  
14  
14  
2500  
2500  
330.0  
330.0  
12.4  
12.4  
6.95  
6.95  
5.6  
5.6  
1.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
LM3429Q1MHX/NOPB HTSSOP PWP  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3429MHX/NOPB  
HTSSOP  
HTSSOP  
PWP  
PWP  
14  
14  
2500  
2500  
367.0  
367.0  
367.0  
367.0  
35.0  
35.0  
LM3429Q1MHX/NOPB  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM3429MH/NOPB  
PWP  
PWP  
HTSSOP  
HTSSOP  
14  
14  
94  
94  
495  
495  
8
8
2514.6  
2514.6  
4.06  
4.06  
LM3429Q1MH/NOPB  
Pack Materials-Page 3  
PACKAGE OUTLINE  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
4X (0.2)  
NOTE 5  
4X (0.05)  
NOTE 5  
8
7
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.255  
3.205  
15  
1.2 MAX  
0.15  
0.05  
0 - 8  
14  
1
0.75  
0.50  
DETAIL A  
(1)  
TYPICAL  
3.155  
3.105  
4214867/A 09/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
(3.155)  
SYMM  
SOLDER MASK  
DEFINED PAD  
SEE DETAILS  
14X (1.5)  
1
14  
14X (0.45)  
(1.1)  
TYP  
15  
SYMM  
(3.255)  
(5)  
NOTE 9  
12X (0.65)  
8
7
(
0.2) TYP  
VIA  
(R0.05) TYP  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-14  
4214867/A 09/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014A  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.155)  
BASED ON  
0.125 THICK  
STENCIL  
14X (1.5)  
(R0.05) TYP  
1
14  
14X (0.45)  
15  
(3.255)  
BASED ON  
0.125 THICK  
STENCIL  
SYMM  
12X (0.65)  
8
7
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.8)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.53 X 3.64  
3.155 X 3.255 (SHOWN)  
2.88 X 2.97  
0.125  
0.15  
0.175  
2.67 X 2.75  
4214867/A 09/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

LM3429Q1MH/NOPB

适用于恒流 LED 驱动器的汽车类简易 N 沟道控制器 | PWP | 14 | -40 to 125
TI

LM3429Q1MHX/NOPB

适用于恒流 LED 驱动器的汽车类简易 N 沟道控制器 | PWP | 14 | -40 to 125
TI

LM3429_0908

N-Channel Controller for Constant Current LED Drivers
NSC

LM342P-12

3-Terminal Positive Regulators
NSC

LM342P-15

3-Terminal Positive Regulators
NSC

LM342P-5.0

3-Terminal Positive Regulators
NSC

LM342P-5.0

5 V FIXED POSITIVE REGULATOR, PSFM3
TI

LM342P-5.0TB

Positive Fixed Voltage Regulator
ETC

LM342P12TB

IC,VOLT REGULATOR,FIXED,+12V,BIPOLAR,SIP,3PIN,PLASTIC
TI

LM342P15TB

IC,VOLT REGULATOR,FIXED,+15V,BIPOLAR,SIP,3PIN,PLASTIC
TI

LM342P5.0TB

IC,VOLT REGULATOR,FIXED,+5V,BIPOLAR,SIP,3PIN,PLASTIC
TI

LM343

High Voltage Operational Amplifier
NSC