LM34966-Q1 [TI]

500kHz 宽输入电压非同步升压、反激式和 SEPIC 控制器;
LM34966-Q1
型号: LM34966-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

500kHz 宽输入电压非同步升压、反激式和 SEPIC 控制器

控制器
文件: 总45页 (文件大小:2047K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
LM34966-Q1 500kHz 宽输入电压范围非同步升压/SEPIC/反激式控制器  
电池供电的升压、SEPIC 和反激式应用  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
LM34966-Q1 是一款采用峰值电流模式控制的宽输入  
范围非同步升压控制器。该器件可用于升压、SEPIC  
和反激式拓扑。如果 BIAS 引脚连接到 VCC 引脚该  
器件可由单节电池低电压 2.97V动。如果  
BIAS 引脚大于 3.5V它运行的输入供电电压可低至  
1.5V。内部 VCC 稳压器还支持 BIAS 引脚在高达 40V  
45V 绝对上限的电压下运行适用于汽车负载突  
降。用户可通过外部电阻器对开关频率进行动态编程,  
编程范围100kHz 500 kHz。  
– 温度等140°C +125°C TA  
– 运行温度上150°C TJ  
提供功能安全  
可帮助进行功能安全系统设计的文档  
• 适用于具有宽输入工作范围的汽车电池应用  
3.5V 40V 工作电压范围绝对最大45V)  
BIAS = VCC 2.97V 16V  
BIAS 电压大于等3.5V 时最小升压电源电压为  
1.5V  
– 高45 V 的输入瞬态保护  
– 最小电池消耗  
器件信息  
封装(1)  
封装尺寸标称值)  
器件型号  
• 低关断电(IQ 2.6µA)  
• 低工作电(IQ 490µA)  
• 解决方案尺寸小、成本低  
LM34966-Q1  
HTSSOP (14)  
5.0mm × 4.4mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 集成的误差放大器支持在没有光耦合器的情况下  
进行初级侧稳压反激)  
VSUPPLY  
VLOAD  
– 启动期间下冲最小化启停应用)  
• 低功耗、高效率  
VDD VCC  
100mV ±7% 精确限流阈值  
– 强大1.0A 峰值标MOSFET 驱动器  
– 支持外VCC 电源  
GATE  
CS  
BIAS  
UVLO/SYNC  
PGND  
FB  
• 避AM 频带干扰和串扰  
AGND  
– 可选的时钟同步  
100kHz 500 kHz 的动态可编程开关频率  
• 集成型保护特性  
PGOOD  
RT  
SS COMP  
– 在输入电压范围内具有恒定峰值电流限制  
– 断续模式过载保护  
– 可编程线UVLO  
OVP 保护  
– 热关断保护  
典型升压应用  
• 精确±1% 精度反馈基准  
• 可编程额外斜率补偿  
• 可调软启动  
PGOOD 指示器  
14 HTSSOP (5.0mm × 4.4mm)  
• 使LM34966-Q1 并借WEBENCH® Power  
Designer 创建定制设计方案  
2 应用  
12V 电池应用  
汽车启停应用  
高电压激光雷达电源  
无光耦合器的多输出反激式应用  
汽车尾LED 偏置电源  
宽输入升压、SEPIC 和反激式电源模块  
音频放大器应用  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNVSBU7  
 
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
Table of Contents  
9 Application and Implementation..................................24  
9.1 Power-On Hours (POH)............................................24  
9.2 Application Information............................................. 24  
9.3 Typical Application.................................................... 24  
9.4 System Examples..................................................... 29  
10 Power Supply Recommendations..............................34  
11 Layout...........................................................................35  
11.1 Layout Guidelines................................................... 35  
11.2 Layout Examples.....................................................36  
12 Device and Documentation Support..........................38  
12.1 Device Support....................................................... 38  
12.2 接收文档更新通知................................................... 38  
12.3 支持资源..................................................................38  
12.4 Trademarks.............................................................38  
12.5 静电放电警告.......................................................... 38  
12.6 术语表..................................................................... 39  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明.........................................................................2  
6 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
7 Specifications.................................................................. 4  
7.1 Absolute Maximum Ratings........................................ 4  
7.2 ESD Ratings............................................................... 4  
7.3 Recommended Operating Conditions.........................5  
7.4 Thermal Information....................................................5  
7.5 Electrical Characteristics.............................................5  
7.6 Typical Characteristics................................................7  
8 Detailed Description......................................................10  
8.1 Overview...................................................................10  
8.2 Functional Block Diagram.........................................10  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................23  
Information.................................................................... 40  
4 Revision History  
DATE  
REVISION  
NOTES  
September 2020  
*
Initial release.  
5 说明)  
该器件具1.0A MOSFET 驱动器100mV 的低电流限制阈值。该器件还支持使用外部 VCC 电源来提高效  
率。运行低电流和脉冲跳跃模式可在轻负载时提高效率。该器件具有内置保护特性例如逐周期电流限制、过压  
保护、线路 UVLO、热关断和断续模式过载保护。附加特性包括低关断 IQ、可编程软启动、可编程斜坡补偿、  
精密基准、电源正常指示器以及外部时钟同步。  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
1
2
3
14  
13  
12  
11  
EN/UVLO/SYNC  
BIAS  
NC  
PGOOD  
RT  
VCC  
SS  
GATE  
PGND  
AGND  
CS  
EP  
4
5
6
FB  
10  
9
VDD  
8
COMP  
7
6-1. 14-Pin HTSSOP PWP Package (Transparent Top View)  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
BIAS  
NC  
P
-
Supply voltage input to the VCC regulator. Connect a bypass capacitor from this pin to PGND.  
No electrical contact  
2
Output of the internal VCC regulator and supply voltage input of the MOSFET driver. Connect a  
ceramic bypass capacitor from this pin to PGND.  
3
4
VCC  
P
N-channel MOSFET gate drive output. Connect directly to the gate of the N-channel MOSFET  
through a short, low inductance path.  
GATE  
O
Power ground pin. Connect directly to the ground connection of the sense resistor through a low  
inductance wide and short path.  
5
6
7
PGND  
AGND  
CS  
G
G
I
Analog ground pin. Connect directly to the analog ground plane through a wide and short path.  
Current sense input pin. Connect to the positive side of the current sense resistor through a short  
path.  
Output of the internal transconductance error amplifier. Connect the loop compensation components  
between this pin and ground plane.  
8
9
COMP  
VDD  
O
I
Input of the internal logic. Connect directly to VCC.  
Inverting input of the error amplifier. Connect a voltage divider from the output to this pin to set output  
voltage in boost/SEPIC/non-isolated flyback topologies. Connect the low-side feedback resistor to  
AGND.  
10  
11  
FB  
SS  
I
I
Soft-start time programming pin. An external capacitor and an internal current source set the ramp  
rate of the internal error amplifier reference during soft start. Connect the ground connection of the  
capacitor to AGND.  
Switching frequency setting pin. The switching frequency is programmed by a single resistor  
between RT and AGND.  
12  
13  
RT  
I
Power-good indicator. An open-drain output which goes low if FB is below the undervoltage  
threshold. Connect a pullup resistor to the system voltage rail. If not used, leave the pin floating.  
PGOOD  
O
Undervoltage lockout programming pin. The converter start-up and shutdown levels can be  
programmed by connecting this pin to the supply voltage through a resistor divider. The internal clock  
can be synchronized to an external clock by applying a negative pulse signal into the EN/UVLO/  
SYNC pin. This pin must not be left floating. Connect to BIAS pin if not used. Connect the low-side  
UVLO resistor to AGND.  
EN/UVLO/  
SYNC  
14  
I
Exposed pad of the package. The exposed pad must be connected to AGND and the large ground  
copper plane to decrease thermal resistance.  
EP  
(1) G = Ground, I = Input, O = Output, P = Power  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: LM34966-Q1  
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
Over the recommended operating junction temperature range(1)  
MIN  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
1  
MAX  
45  
UNIT  
BIAS to AGND  
UVLO to AGND  
SS to AGND(2)  
RT to AGND(2)  
VBIAS+0.3  
3.8  
3.8  
Input  
V
FB to AGND  
4.0  
CS to AGND(DC)  
0.3  
CS to AGND (50ns transient)  
PGND to AGND  
-0.3  
0.3  
18  
VDD to AGND  
-0.3  
VCC to AGND  
18(3)  
0.3  
1  
GATE to AGND (50ns transient)  
PGOOD to AGND(4)  
Output  
V
18  
0.3  
0.3  
40  
55  
COMP to AGND(5)  
(6)  
Junction temperature, TJ  
Storage temperature, Tstg  
150  
150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) This pin is not specified to have an external voltage applied.  
(3) 18 V or VBIAS + 0.3 V whichever is lower  
(4) The maximum current sink is limited to 1 mA when VPGOOD>VBIAS  
.
(5) This pin has an internal max voltage clamp which can handle up to 1.6 mA.  
(6) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
All pins  
±500  
±750  
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
Corner pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
 
 
 
 
 
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
Over the recommended operating junction temperature range(1)  
MIN  
2.97  
2.97  
2.1  
NOM  
MAX  
40  
UNIT  
V
VBIAS  
VVCC  
VVDD  
VUVLO  
VFB  
Bias input(2)  
VCC voltage(3)  
16  
V
VDD input  
16  
V
UVLO input  
0
40  
V
FB input  
0
4.0  
500  
500  
150  
V
fSW  
Typical switching frequency  
Synchronization pulse frequency  
Operating junction temperature(4)  
100  
100  
40  
kHz  
kHz  
°C  
fSYNC  
TJ  
(1) Operating Ratings are conditions under the device is intended to be functional. For specifications and test conditions, see Electrical  
Characteristics.  
(2) BIAS pin operating range is from 2.97V to 16V when VCC is directly connected to BIAS. BIAS pin operating range is from 3.5V to 40V  
when VCC is supplied from the internal VCC regulator.  
(3) This pin voltage should be less than VBIAS + 0.3 V.  
(4) High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C.  
7.4 Thermal Information  
LM34966-Q1  
THERMAL METRIC (1)  
PWP(HTSSOP)  
UNIT  
14 PINS  
54.7  
44.1  
49.1  
20.7  
2.0  
RθJA  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance (LM34966EVM-FLY)  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter (LM34966EVM-FLY)  
Junction-to-top characterization parameter  
2.3  
ψJT  
Junction-to-board characterization parameter (LM34966EVM-FLY)  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
17.3  
20.7  
7.9  
ψJB  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
7.5 Electrical Characteristics  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = -40°C to 150°C. Unless otherwise  
stated, VBIAS = 12 V, RT = 220 kΩ  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SUPPLY CURRENT  
ISHUTDOWN(BIAS)  
BIAS shutdown current  
BIAS operating current  
VBIAS = 12 V, VUVLO = 0 V  
2.6  
6
μA  
μA  
VBIAS = 12 V, VUVLO = 2.0 V, VFB  
VREF, RT = 220 kΩ  
=
IOPERATING(BIAS)  
490  
1200  
VCC REGULATOR  
VVCC-REG  
VCC regulation  
VCC regulation  
VBIAS = 8 V, No load  
VBIAS = 8 V, IVCC = 35 mA  
VCC rising  
6.5  
6.5  
6.85  
7
V
V
VVCC-UVLO(RISING) VCC UVLO threshold  
VCC UVLO hysteresis  
2.75  
2.85  
0.063  
110  
2.95  
V
VCC falling  
V
IVCC-CL  
VCC sourcing current limit  
VBIAS = 10 V, VVCC = 0 V  
20  
mA  
ENABLE  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: LM34966-Q1  
 
 
 
 
 
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
Typical values correspond to TJ = 25°C. Minimum and maximum limits apply over TJ = -40°C to 150°C. Unless otherwise  
stated, VBIAS = 12 V, RT = 220 kΩ  
PARAMETER  
TEST CONDITIONS  
MIN  
0.4  
TYP  
0.52  
0.49  
0.03  
MAX  
0.7  
UNIT  
VEN(RISING)  
Enable threshold  
Enable threshold  
Enable hysteresis  
EN rising  
EN falling  
EN falling  
V
V
V
VEN(FALLING)  
VEN(HYS)  
0.33  
0.63  
UVLO/SYNC  
VUVLO(RISING)  
VUVLO(FALLING)  
UVLO / SYNC threshold  
UVLO / SYNC threshold  
UVLO rising  
UVLO falling  
1.425  
1.370  
1.5  
1.575  
1.520  
V
V
1.45  
UVLO / SYNC threshold  
hysteresis  
VUVLO(HYS)  
UVLO falling  
0.05  
5
V
IUVLO  
SS  
UVLO hysteresis current  
VUVLO = 1.6 V  
4
9
6
μA  
ISS  
Soft-start current  
10  
55  
11  
μA  
SS pull-down switch rDS(on)  
Ω
PULSE WIDTH MODULATION  
fsw  
Switching frequency  
85  
90  
100  
93  
115  
96  
kHz  
%
RT = 220 kΩ, VBIAS = 4 V  
RT = 220 kΩ, VBIAS = 4 V  
DMAX  
Maximum duty cycle limit  
CURRENT SENSE  
ISLOPE  
Peak slope compensation current  
22.5  
93  
30  
37.5  
107  
RT = 220 kΩ  
μA  
Current Limit threshold (CS-  
PGND)  
VCLTH  
100  
mV  
HICCUP MODE PROTECTION  
Hiccup enable cycles  
64  
8
Cycles  
Cycles  
Hiccup timer reset cycles  
ERROR AMPLIFIER  
VREF  
Gm  
FB reference  
0.99  
1
2
1.01  
V
mA/V  
μA  
V
Transconductance  
COMP sourcing current  
COMP clamp voltage  
COMP clamp voltage  
VCOMP = 1.2V  
180  
2.5  
COMP rising (VUVLO = 2.0 V)  
COMP falling  
2.8  
1
1.15  
113  
V
OVP  
VOVTH  
Over-voltage threshold  
Over-voltage threshold  
FB rising (in reference to VREF  
)
107  
87  
110  
105  
%
%
FB falling (in reference to VREF  
)
PGOOD  
PGOOD pull-down switch rDS(on) 1 mA sinking  
90  
90  
95  
Ω
%
%
VUVTH  
Under-voltage threshold  
Under-voltage threshold  
FB falling (in reference to VREF  
)
93  
FB rising (in reference to VREF  
)
MOSFET DRIVER  
High-state voltage drop  
Low-state voltage drop  
100 mA sinking  
100 mA sourcing  
0.25  
0.15  
V
V
THERMAL SHUTDOWN  
TTSD Thermal shutdown threshold  
Thermal shutdown hysteresis  
Temperature rising  
175  
15  
°C  
°C  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics  
450  
400  
350  
300  
250  
200  
150  
100  
110  
108  
106  
104  
102  
100  
98  
96  
94  
92  
90  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
40  
60  
80  
100 120 140 160 180 200 220  
RT Resistor (kW)  
Temperature (èC)  
D002  
D001  
7-2. Frequency vs Temperature  
7-1. Frequency vs RT Resistance  
7
6
5
4
3
2
1
0
12  
10  
8
BIAS  
VCC  
6
4
2
0
0
20  
40  
60  
IVCC (mA)  
80  
100  
120  
0
2
4
6
VBIAS (V)  
8
10  
12  
D003  
D004  
7-3. VVCC vs IVCC  
7-4. VVCC vs VBIAS (No Load)  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
105  
104  
103  
102  
101  
100  
99  
RSL=0W  
RSL=1kW  
98  
97  
96  
FSW=440kHz, RS=6mW, LM=1.2mH, VLOAD=10V  
95  
0
10  
20  
30  
40  
50  
60  
Duty Cycle (%)  
70  
80  
90 100  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
D005  
D006  
7-5. Peak Current Limit vs Duty Cycle  
7-6. Current Limit Threshold vs Temperature  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: LM34966-Q1  
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
1.01  
1.008  
1.006  
1.004  
1.002  
1
0.56  
0.55  
0.54  
0.53  
0.52  
0.51  
0.5  
0.49  
0.48  
0.47  
0.46  
0.45  
0.44  
0.43  
0.998  
0.996  
0.994  
0.992  
0.99  
EN Falling  
EN Rising  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D007  
D008  
7-7. FB Reference vs Temperature  
7-8. EN Threshold vs Temperature  
530  
520  
510  
500  
490  
480  
470  
4
3.5  
3
VFB=VREF, RT=221kW, VVCC=7V, COMP=1.75V  
2.5  
2
1.5  
1
0.5  
0
5
10  
15  
20  
VBIAS (V)  
25  
30  
35  
40  
0
5
10  
15  
20  
VBIAS (V)  
25  
30  
35  
40  
D009  
D010  
7-9. IOPERATING(BIAS) Including RT Current vs  
7-10. ISHUTDOWN(BIAS) vs VBIAS  
VBIAS  
3
2.8  
2.6  
2.4  
185  
180  
175  
170  
165  
160  
155  
150  
145  
140  
135  
130  
125  
50  
100  
150  
200  
250  
Frequency (kHz)  
300  
350  
400  
450  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
D012  
D011  
7-12. tON(MIN) vs Frequency  
7-11. ISHUTDOWN vs Temperature (BIAS = 12 V)  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
11  
10.8  
10.6  
10.4  
10.2  
10  
1.56  
1.54  
1.52  
1.5  
UVLO rising  
UVLO falling  
1.48  
1.46  
1.44  
1.42  
1.4  
9.8  
9.6  
9.4  
9.2  
9
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
-40 -20  
0
20  
40  
60  
80 100 120 140 160  
Temperature (èC)  
Temperature (èC)  
D013  
D015  
7-13. ISS vs Temperature  
7-14. UVLO Threshold vs Temperature  
95  
94  
93  
92  
91  
90  
100  
150  
200  
250  
300  
Frequency (kHz)  
350  
400  
450  
500  
D016  
7-15. Maximum Duty Cycle vs Frequency  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The LM34966-Q1 is a wide input range, non-synchronous boost controller that uses peak-current-mode control.  
The device can be used in boost, SEPIC, and flyback topologies.  
The device can start up from a 1-cell battery with a minimum of 2.97 V if the BIAS pin is connected to the VCC  
pin. It can operate with the input supply voltage as low as 1.5 V if the BIAS pin is greater than 3.5 V. The internal  
VCC regulator also supports BIAS pin operation up to 40 V (45-V absolute maximum) for automotive load dump.  
The switching frequency is dynamically programmable with an external resistor from 100 kHz to 500 kHz.  
The device features a 1.0-A standard MOSFET driver and a low 100-mV current limit threshold. The device also  
supports the use of an external VCC supply to improve efficiency. Low operating current and pulse skipping  
operation improve efficiency at light loads.  
The device has built-in protection features such as cycle-by-cycle current limit, overvoltage protection, line  
UVLO, thermal shutdown, and hiccup mode overload protection. Additional features include low shutdown IQ,  
programmable soft start, programmable slope compensation, precision reference, power good indicator, and  
external clock synchronization.  
8.2 Functional Block Diagram  
D1  
VSUPPLY  
LM  
VLOAD  
CIN  
COUT  
RLOAD  
RFBT  
FB  
PGOOD  
BIAS  
RFBB  
VUVTH  
+
œ
+
œ
IUVLO  
VCC_OK  
TSD  
FB  
VSUPPLY  
œ
RUN  
VUVLO  
VDD  
OVP  
BIAS  
VOVTH  
RUVLOT  
+
SYNC  
Detector  
Clock_Sync  
VCC  
UVLO/  
SYNC  
VEN  
VCC  
Regulator  
VCC_EN  
TSD  
RUVLOB  
+
VCC_EN  
œ
VCS1  
+
Hiccup Mode  
CVCC  
VCC  
UVLO  
VCC_OK  
VCSTH  
œ
GATE  
CS  
S
R
Q
Q
C/L Comparator  
ISS  
OVP  
Q1  
SS  
VREF  
FB  
ISLOPE  
VCS2  
+
+
+
œ
œ
CSS  
PWM Comparator  
VCS1  
GCOMP  
Clock  
Generator  
Clock_Sync  
RS  
VCS2  
PGND  
AGND  
COMP  
RT  
RT  
RCOMP  
CCOMP  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Line Undervoltage Lockout (UVLO/SYNC/EN Pin)  
The device has a dual-level UVLO circuit. During power-on, if the BIAS pin voltage is greater than 2.7 V, and the  
UVLO pin voltage is in between the enable threshold (VEN) and the UVLO threshold (VUVLO) for more than 1.5 µs  
(see 8.3.5 for more details), the device starts up and an internal configuration starts. The device typically  
requires a 65-µs internal start-up delay before entering standby mode. In standby mode, VCC regulator and RT  
regulator are operational, SS pin is grounded, and no switching at the GATE output.  
IUVLO  
VSUPPLY  
œ
VUVLO  
RUN  
RUVLOT  
+
UVLO/  
SYNC  
RUVLOB  
+
VCC_EN  
VEN  
œ
8-1. Line UVLO and Enable  
When the UVLO pin voltage is above the UVLO threshold, the device enters run mode. In run mode, a soft-start  
sequence starts if the VCC voltage is greater than 4.5 V, or 50 µs after the VCC voltage exceeds the 2.85-V  
VCC UV threshold (VVCC-UVLO), whichever comes first. UVLO hysteresis is accomplished with an internal 50-mV  
voltage hysteresis and an additional 5-μA current source that is switched on or off. When the UVLO pin voltage  
exceeds the UVLO threshold, the current source is enabled to quickly raise the voltage at the UVLO pin. When  
the UVLO pin voltage falls below the UVLO threshold, the current source is disabled causing the voltage at the  
UVLO pin to fall quickly. When the UVLO pin voltage is less than the enable threshold (VEN), the device enters  
shutdown mode after a 35-µs (typical) delay with all functions disabled.  
65-µs (typical)  
50-µs  
internal start-up delay  
> 3 cycles  
VCC UV delay  
BIAS  
= VSUPPLY  
2.7 V  
1.5 V  
0.55 V  
Standby  
2.85 V  
4.5 V  
UVLO  
VCC  
Shutdown  
1 V  
1.5 µs  
SS is grounded  
with 2 cycles  
delay  
UVLO should be greater than  
0.55 V more than 1.5 µs to start-up  
SS  
GATE  
TSS  
VLOAD  
SS  
=
1 V  
VLOAD(TARGET)  
VLOAD  
8-2. Boost Start-Up Waveforms Case 1: Start-Up by 2.85-V VCC UVLO, UVLO Toggle After Start-Up  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
50-µs  
VCC UV delay  
65-µs (typical)  
internal start-up delay  
65-µs (typical)  
internal start-up delay  
> 35 µs  
BIAS  
= VSUPPLY  
2.7 V  
1.5 V  
0.52 V  
Standby  
2.85 V  
4.5 V  
UVLO  
VCC  
Shutdown  
1.5 µs  
1 V  
SS is grounded  
with 2 cycles  
delay  
UVLO should be greater than  
0.55 V more than 1.5µs to start-up  
SS  
GATE  
tSS  
VLOAD  
=
SS  
1 V  
VLOAD(TARGET)  
VLOAD  
8-3. Boost Start-Up Waveforms Case2: Start-Up When VCC > 4.5 V, EN Toggle After Start-Up  
The external UVLO resistor divider must be designed so that the voltage at the UVLO pin is greater than 1.5 V  
(typical) when the input voltage is in the desired operating range. The values of RUVLOT and RUVLOB can be  
calculated as shown in 方程1 and 方程2.  
VUVLO(FALLING)  
VSUPPLY(ON)  
ì
- VSUPPLY(OFF)  
VUVLO(RISING)  
IUVLO  
RUVLOT  
=
(1)  
where  
VSUPPLY(ON) is the desired start-up voltage of the converter.  
VSUPPLY(OFF) is the desired turnoff voltage of the converter.  
VUVLO(RISING) ìRUVLOT  
RUVLOB  
=
VSUPPLY(ON) - VUVLO(RISING)  
(2)  
UVLO capacitor (CUVLO) is required in case the input voltage drops below the VSUPPLY(OFF) momentarily during  
the start-up or during a severe load transient at the low input voltage. If the required UVLO capacitor is large, an  
additional series UVLO resistor (RUVLOS) can be used to quickly raise the voltage at the UVLO pin when the 5-  
μA hysteresis current turns on.  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
IUVLO  
VSUPPLY  
VUVLO  
œ
RUVLOT  
RUVLOS  
RUN  
+
RUVLOB  
UVLO/SYNC  
CUVLO  
8-4. Line UVLO using Three UVLO Resistors  
Do not leave the UVLO pin floating. Connect to the BIAS pin if not used.  
8.3.2 High Voltage VCC Regulator (BIAS, VCC Pin)  
The device has an internal wide input VCC regulator which is sourced from the BIAS pin. The wide input VCC  
regulator allows the BIAS pin to be connected directly to supply voltages from 3.5 V to 40 V.  
The VCC regulator turns on when the device is in standby or run mode. When the BIAS pin voltage is below the  
VCC regulation target, the VCC output tracks the BIAS with a small dropout voltage. When the BIAS pin voltage  
is greater than the VCC regulation target, the VCC regulator provides 6.85-V supply for the N-channel MOSFET  
driver.  
The VCC regulator sources current into the capacitor connected to the VCC pin with a minimum of 35-mA  
capability. The recommended VCC capacitor value is from 1 µF to 4.7 µF.  
The device supports a wide input range from 3.5 V to 40 V in normal configuration. By connecting the BIAS pin  
directly to the VCC pin, the device supports inputs from 2.97 V to 16 V. This configuration is recommended when  
the device starts up from a 1-cell battery.  
V
SUPPLY (2.97V 16V)  
VLOAD  
VDD VCC  
GATE  
CS  
BIAS  
UVLO/SYNC  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
8-5. 2.97-V Start-Up (BIAS = VCC)  
The minimum supply voltage after start-up can be further decreased by supplying the BIAS pin from the boost  
converter output or from an external power supply as shown in 8-6.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
VSUPPLY  
VLOAD  
VLOAD  
VDD VCC  
BIAS  
GATE  
CS  
UVLO > VUVLO(RISING)  
UVLO/SYNC  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
8-6. Decrease the Minimum Operating Voltage After Start-Up  
In flyback topology, the internal power dissipation of the device can be decreased by supplying the VCC using an  
additional transformer winding. In this configuration, the external VCC supply voltage must be greater than the  
VCC regulation target (VVCC-REG), and the BIAS pin voltage must be greater the VCC voltage because the VCC  
regulator includes a diode between VCC and BIAS.  
VSUPPLY  
VDD  
VCC  
GATE  
CS  
BIAS  
UVLO/SYNC  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
8-7. External VCC Supply (BIAS VCC)  
If the voltage of the external VCC bias supply is greater than the BIAS pin voltage, use an external blocking  
diode from the input power supply to the BIAS pin to prevent the external bias supply from passing current to the  
boost input supply through VCC.  
8.3.3 Soft Start (SS Pin)  
The soft-start feature helps the converter gradually reach the steady state operating point, thus reducing start-up  
stresses and surges. The device regulates the FB pin to the SS pin voltage or the internal reference, whichever  
is lower.  
At start-up, the internal 10-μA soft-start current source (ISS) turns on 50 µs after the VCC voltage exceeds the  
2.85-VCC UV threshold, or if the VCC voltage is greater than 4.5 V, whichever comes first. The soft-start current  
gradually increases the voltage on an external soft-start capacitor connected to the SS pin. This results in a  
gradual rise of the output voltage. The SS pin is pulled down to ground by an internal switch when the VCC is  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
less than VCC UVLO threshold, the UVLO is less than the UVLO threshold, during hiccup mode off-time or  
thermal shutdown.  
In boost topology, soft-start time (tSS) varies with the input supply voltage. The soft-start time in boost topology is  
calculated as shown in 方程3.  
÷
CSS  
VSUPPLY  
tSS  
=
ì 1-  
ISS  
VLOAD  
«
(3)  
In SEPIC topology, the soft-start time (tSS) is calculated as follows.  
CSS  
tSS  
=
ISS  
(4)  
TI recommends choosing the soft-start time long enough so that the converter can start up without going into an  
overcurrent state. See 8.3.10 for more detailed information.  
8-8 shows an implementation of primary side soft-start in flyback topology.  
COMP  
FB SS  
8-8. Primary-Side Soft-Start in Flyback  
8-9 shows an implementation of secondary side soft start in flyback topology.  
VLOAD  
Secondary Side  
Soft-start  
8-9. Secondary-Side Soft Start in Flyback  
8.3.4 Switching Frequency (RT Pin)  
The switching frequency of the device can be set by a single RT resistor connected between the RT and the  
AGND pins. The resistor value to set the RT switching frequency (fRT) is calculated as shown in 方程5.  
2.21ì1010  
fRT(TYPICAL)  
RT =  
- 955  
(5)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: LM34966-Q1  
 
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
The RT pin is regulated to 0.5 V by the internal RT regulator when the device is enabled.  
8.3.5 Clock Synchronization (UVLO/SYNC/EN Pin)  
The switching frequency of the device can be synchronized to an external clock by pulling down the UVLO/  
SYNC pin. The internal clock of the device is synchronized at the falling edge, but ignores the falling edge input  
during the forced off-time which is determined by the maximum duty cycle limit. The external synchronization  
clock must pull down the UVLO/SYNC pin voltage below 1.45 V (typical). The duty cycle of the pulldown pulse is  
not limited, but the minimum pulldown pulse width must be greater than 150 ns, and the minimum pullup pulse  
width must be greater than 250 ns. 8-10 shows an implementation of the remote shutdown function. The  
UVLO pin can be pulled down by a discrete MOSFET or an open-drain output of an MCU. In this configuration,  
the device stops switching immediately after the UVLO pin is grounded, and the device shuts down 35 µs  
(typical) after the UVLO pin is grounded.  
VSUPPLY  
MCU  
UVLO/SYNC  
SHUTDOWN  
8-10. UVLO and Shutdown  
8-11 shows an implementation of shutdown and clock synchronization functions together. In this configuration,  
the device stops switching immediately when the UVLO pin is grounded, and the device shuts down if fSYNC  
stays in high logic state for longer than 35 µs (typical) (UVLO is in low logic state for more than 35 µs (typical)).  
The device runs at the fSYNC if clock pulses are provided after the device is enabled.  
VSUPPLY  
MCU  
UVLO/SYNC  
FSYNC  
8-11. UVLO, Shutdown, and Clock Synchronization  
8-13 and 8-14 show implementations of standby and clock synchronization functions together. In this  
configuration, the device stops switching immediately if fSYNC stays in high logic state and enters standby mode  
if fSYNC stays in high logic state for longer than two switching cycles. The device runs at fSYNC if clock pulses are  
provided. Because the device can be enabled when the UVLO pin voltage is greater than the enable threshold  
for more than 1.5 µs, the configurations in 8-13 and 8-14 are recommended if the external clock  
synchronization pulses are provided from the start before the device is enabled. This 1.5-µs requirement can be  
relaxed when the duty cycle of the synchronization pulse is greater than 50%. 8-12 shows the required  
minimum duty cycle to start up by synchronization pulses.  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
100  
150  
200  
250  
300  
350  
400  
450  
fSW [kHz]  
SUby  
8-12. Required Duty Cycle to Start Up by SYNC  
VSUPPLY  
MCU  
UVLO/SYNC  
>0.7V  
FSYNC  
8-13. UVLO, Standby, and Clock Synchronization (a)  
VSUPPLY  
UVLO/SYNC  
MCU  
FSYNC  
8-14. UVLO, Standby, and Clock Synchronization (b)  
If the UVLO function is not required, the shutdown and clock synchronization functions can be implemented  
together by using one push-pull output of the MCU. In this configuration, the device shuts down if fSYNC stays in  
low logic state for longer than 35 µs (typical). The device is enabled if fSYNC stays in high logic state for longer  
than 1.5 µs. The device runs at the fSYNC if clock pulses are provided after the device is enabled. Also, in this  
configuration, it is recommended to apply the external clock pulses after the BIAS is supplied. By limiting the  
current flowing into the UVLO pin below 1 mA using a current limiting resistor, the external clock pulses can be  
supplied before the BIAS is supplied (see 8-15).  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: LM34966-Q1  
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
MCU  
10  
UVLO/SYNC  
FSYNC  
8-15. Shutdown and Clock Synchronization  
8-16 shows an implementation of inverted enable using external circuit.  
VSUPPLY  
UVLO/SYNC  
LMV431  
8-16. Inverted UVLO  
The external clock frequency (fSYNC) must be within +25% and 30% of fRT(TYPICAL). Because the maximum  
duty cycle limit and the peak current limit with slope resistor (RSL) are affected by the clock synchronization, take  
extra care when using the clock synchronization function. See 8.3.6, 8.3.7, and 8.3.11 for more  
information.  
8.3.6 Current Sense and Slope Compensation (CS Pin)  
The device has a low-side current sense and provides both fixed and optional programmable slope  
compensation ramps, which help to prevent subharmonic oscillation at high duty cycle. Both fixed and  
programmable slope compensation ramps are added to the sensed inductor current input for the PWM  
operation. But, only the programmable slope compensation ramp is added to the sensed inductor current input  
(see 8-17). For an accurate peak current limit operation over the input supply voltage, TI recommends using  
only the fixed slope compensation (see 7-5).  
The device can generate the programmable slope compensation ramp using an external slope resistor (RSL) and  
a sawtooth current source with a slope of 30 μA × fRT. This current flows out of the CS pin.  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
Current Limit  
Comparator  
ISLOPE  
VCSTH  
œ
RSL  
(optional)  
CS  
RF  
(optional)  
VCS1  
+
RS  
VCS2  
COMP =0.142  
+
CF  
(optional)  
G
V
SLOPE + offset  
œ
PWM  
Comparator  
COMP  
RCOMP  
CHF  
(optional)  
CCOMP  
8-17. Current Sensing and Slope Compensation  
Programmable Slope  
Compensation Ramp  
V
ISLOPE × RSL × D  
Fixed Slope  
Compensation  
Ramp  
VSLOPE × D + 0.17V  
Sensed Inductor  
Current (RS × ILM  
)
8-18. Slope Compensation Ramp (a) at PWM Comparator Input  
V
Programmable Slope  
Compensation Ramp  
ISLOPE × RSL × D  
Sensed Inductor  
Current (RS × ILM  
)
8-19. Slope Compensation Ramp (b) at Current Limit Comparator Input  
Use 方程式 6 to calculate the value of the peak slope current (ISLOPE) and use 方程式 7 to calculate the value of  
the peak slope voltage (VSLOPE).  
fRT  
ISLOPE = 30mA ì  
fSYNC  
(6)  
fRT  
VSLOPE = 40mV ì  
fSYNC  
(7)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: LM34966-Q1  
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
where  
fSYNC = fRT if clock synchronization is not used.  
According to peak current mode control theory, the slope of the compensation ramp must be greater than half of  
the sensed inductor current falling slope to prevent subharmonic oscillation at high duty cycle. Therefore, the  
minimum amount of slope compensation in boost topology should satisfy the following inequality:  
V
+ VF - V  
(
)
LM  
LOAD  
SUPPLY  
0.5ì  
ìRS ìMargin < 40mV ì fSW  
(8)  
where  
VF is a forward voltage drop of D1, the external diode.  
The recommended margin to cover non-ideal factors is 1.2. If required, RSL can be added to further increase the  
slope of the compensation ramp. Typically 82% of the sensed inductor current falling slope is known as an  
optimal amount of the slope compensation. The RSL value to achieve 82% of the sensed inductor current falling  
slope is calculated as shown in 方程9.  
V
LOAD + VF - V  
(
)
LM  
SUPPLY  
0.82ì  
ìR = 30uA ìR + 40mV ì f  
(
)
S
SL  
SW  
(9)  
If clock synchronization is not used, the fSW frequency equals the fRT frequency. If clock synchronization is used,  
the fSW frequency equals the fSYNC frequency. The maximum value for the RSL resistance is 2 kΩ.  
8.3.7 Current Limit and Minimum On-time (CS Pin)  
The device provides cycle-by-cycle peak current limit protection that turns off the MOSFET when the sum of the  
inductor current and the programmable slope compensation ramp reaches the current limit threshold (VCLTH).  
Peak inductor current limit (IPEAK-CL) in steady state is calculated as shown in 方程10.  
fRT  
VCLTH - 30mA ìRSL  
ì
ìD  
fSYNC  
IPEAK-CL  
=
RS  
(10)  
The practical duty cycle is greater than the estimated due to voltage drops across the MOSFET and sense  
resistor. The estimated duty cycle is calculated as shown in 方程11.  
VSUPPLY  
D = 1-  
VLOAD + VF  
(11)  
Boost converters have a natural pass-through path from the supply to the load through the high-side power  
diode (D1). Because of this path and the minimum on-time limitation of the device, boost converters cannot  
provide current limit protection when the output voltage is close to or less than the input supply voltage. The  
minimum on-time is shown in 7-12 and is calculated as 方程12.  
800ì10-15  
tON(MIN)  
ö
1
+ 4ì10-6  
8ìRT  
(12)  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
If required, a small external RC filter (RF, CF) at the CS pin can be added to overcome the large leading edge  
spike of the current sense signal. Select an RF value which is in the range of 10 Ω to 200 Ω and a CF value in  
the rage of 100 pF to 2 nF. Because of the effect of this RC filter, the peak current limit is not valid when the on-  
time is less than 2 × RF × CF. To fully discharge the CF during the off-time, the RC time constant should satisfy  
the following inequality.  
1-D  
fSW  
3ìRF ìCF <  
(13)  
8.3.8 Feedback and Error Amplifier (FB, COMP Pin)  
The feedback resistor divider is connected to an internal transconductance error amplifier which features high  
output resistance (RO = 10 MΩ) and wide bandwidth (BW = 7 MHz). The internal transconductance error  
amplifier sources current, which is proportional to the difference between the FB pin and the SS pin voltage or  
the internal reference, whichever is lower. The internal transconductance error amplifier provides symmetrical  
sourcing and sinking capability during normal operation and reduces its sinking capability when the FB is greater  
than OVP threshold.  
To set the output regulation target, select the feedback resistor values as shown in 方程14.  
«
RFBT  
RFBB  
VLOAD = VREF  
ì
+1  
÷
(14)  
The output of the error amplifier is connected to the COMP pin, allowing the use of a Type 2 loop compensation  
network. RCOMP, CCOMP and optional CHF loop compensation components configure the error amplifier gain and  
phase characteristics to achieve a stable loop response. The absolute maximum voltage rating of the FB pin is  
4.0 V. If necessary, especially during automotive load dump transient, the feedback resistor divider input can be  
clamped with an external Zener diode.  
The COMP pin features internal clamps. The maximum COMP clamp limits the maximum COMP pin voltage  
below its absolute maximum rating even in shutdown. The minimum COMP clamp limits the minimum COMP pin  
voltage in order to start switching as soon as possible during no load to heavy load transition. The minimum  
COMP clamp is disabled when FB is connected to ground in flyback topology.  
8.3.9 Power-Good Indicator (PGOOD Pin)  
The device has a power-good indicator (PGOOD) to simplify sequencing and supervision. The PGOOD switches  
to a high impedance open-drain state when the FB pin voltage is greater than the feedback under voltage  
threshold (VUVTH), the VCC is greater than the VCC UVLO threshold and the UVLO/EN is greater than the EN  
threshold. A 25-μs deglitch filter prevents any false pulldown of the PGOOD due to transients. The  
recommended minimum pullup resistor value is 10 kΩ.  
Due to the internal diode path from the PGOOD pin to the BIAS pin, the PGOOD pin voltage cannot be greater  
than VBIAS+ 0.3 V.  
8.3.10 Hiccup Mode Overload Protection  
To further protect the converter during prolonged current limit conditions, the device provides a hiccup mode  
overload protection. The internal hiccup mode fault timer of the device counts the PWM clock cycles when the  
cycle-by-cycle current limiting occurs after soft-start is finished. When the hiccup mode fault timer detects 64  
cycles of current limiting, an internal hiccup mode off timer forces the device to stop switching and pulls down  
SS. Then, the device will restart after 32,768 cycles of hiccup mode off-time. The 64 cycle hiccup mode fault  
timer is reset if eight consecutive switching cycles occur without exceeding the current limit threshold. The soft-  
start time must be long enough not to trigger the hiccup mode protection after the soft-start is finished.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: LM34966-Q1  
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
4 cycles of  
current limit  
7 normal  
switching  
cycles  
32768 hiccup  
mode off cycles  
64 cycles of  
current limit  
60 cycles of  
current limit  
32768 hiccup  
mode off cycles  
Inductor Current  
Time  
8-20. Hiccup Mode Overload Protection  
To avoid an unexpected hiccup mode operation during a harsh load transient condition, it is recommended to  
have more margin when programming the peak-current limit.  
8.3.11 Maximum Duty Cycle Limit and Minimum Input Supply Voltage  
When designing boost converters, the maximum duty cycle should be reviewed at the minimum supply voltage.  
The minimum input supply voltage that can achieve the target output voltage is limited by the maximum duty  
cycle limit, and it can be estimated as follows.  
VSUPPLY(MIN) ö V  
+ V ì 1-D  
F ) (  
+ISUPPLY(MAX) ìRDCR +ISUPPLY(MAX) ì RDS(ON) +RS ìD  
(
)
(
)
LOAD  
MAX  
MAX  
(15)  
where  
ISUPPLY(MAX) is the maximum input current.  
RDCR is the DC resistance of the inductor.  
RDS(ON) is the on-resistance of the MOSFET.  
fSYNC  
DMAX1 = 1- 0.1ì  
fRT  
(16)  
DMAX2 = 1-100nsì fSW  
(17)  
The minimum input supply voltage can be further decreased by supplying fSYNC which is less than fRT. DMAX is  
DMAX1 or DMAX2, whichever is lower.  
8.3.12 MOSFET Driver (GATE Pin)  
The device provides an N-channel MOSFET driver that can source or sink a peak current of 1.0 A. The peak  
sourcing current is larger when supplying an external VCC that is higher than 6.75 V VCC regulation target.  
During start-up, especially when the input voltage range is below the VCC regulation target, the VCC voltage  
must be sufficient to completely enhance the MOSFET. If the MOSFET drive voltage is lower than the MOSFET  
gate plateau voltage during start-up, the boost converter may not start up properly and it can stick at the  
maximum duty cycle in a high power dissipation state. This condition can be avoided by selecting a lower  
threshold N-channel MOSFET switch and setting the VSUPPLY(ON) greater than 6 to 7 V. Because the internal  
VCC regulator has a limited sourcing capability, the MOSFET gate charge should satisfy the following inequality.  
QG@VCC ˟ fSW < 20 mA  
(18)  
An internal 1-MΩ resistor is connected between GATE and PGND to prevent a false turnon during shutdown. In  
boost topology, switch node dV/dT must be limited during the 65-µs internal start-up delay to avoid a false turn-  
on, which is caused by the coupling through CDG parasitic capacitance of the MOSFET.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
8.3.13 Overvoltage Protection (OVP)  
The device has OVP for the output voltage. OVP is sensed at the FB pin. If the voltage at the FB pin rises above  
the overvoltage threshold (VOVTH), OVP is triggered and switching stops. During OVP, the internal error amplifier  
is operational, but the maximum source and sink capability is decreased to 40 µA.  
8.3.14 Thermal Shutdown (TSD)  
An internal thermal shutdown turns off the VCC regulator, disables switching and pulls down the SS when the  
junction temperature exceeds the thermal shutdown threshold (TTSD). After the temperature is decreased by  
15°C, the VCC regulator is enabled again and the device performs a soft start.  
8.4 Device Functional Modes  
8.4.1 Shutdown Mode  
If the UVLO pin voltage is below the enable threshold for longer than 35 µs (typical), the device goes to the  
shutdown mode with all functions disabled. In shutdown mode, the device decreases the BIAS pin current  
consumption to below 2.6 μA (typical).  
8.4.2 Standby Mode  
If the UVLO pin voltage is greater than the enable threshold and below the UVLO threshold for longer than 1.5  
µs, the device is in standby mode with the VCC regulator operational, RT regulator operational, SS pin  
grounded, and no switching at the GATE output. The PGOOD is activated when the VCC voltage is greater than  
the VCC UV threshold.  
8.4.3 Run Mode  
If the UVLO pin voltage is above the UVLO threshold and the VCC voltage is sufficient, the device enters RUN  
mode. In this mode, soft start starts 50 µs after the VCC voltage exceeds the 2.85 VCC UV threshold, or if the  
VCC voltage is greater than 4.5 V, whichever comes first.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
Note  
以下应用部分的信息不属TI 组件规范TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适  
用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Power-On Hours (POH)  
The device is capable of operating at a wide temperature range including high junction temperature up to 150°C.  
It is designed to meet or exceed AEC-Q100 grade 1 specifications by accommodating additional IC junction  
temperature rise while operating at 125°C ambient temperature. The electrical specifications of the device is fully  
characterized between TJ of -40°C to 150°C to support automotive and other high junction temperature  
applications. Extended reliability test data beyond AEC-Q100 grade 1 specification is also available upon  
request.  
The device is capable of supporting product lifetime operation temperature profiles typical to many automotive  
applications. 9-1 shows an example of an application with 19340 POH at an input bias voltage of 40 V. The  
life span of a semiconductor device is a function of bias conditions, operating temperatures, and power-on time.  
Extended operation at high junction temperature degrades the product total power-on hours.  
9-1. POH Breakdown  
JUNCTION TEMPERATURE  
POWER-ON HOURS  
DISTRIBUTION  
OPERATING CONDITIONS  
-15°C  
48°C  
720 Hours  
3.7%  
6300 Hours  
32.6%  
BIAS = 40 V  
Ea = 0.7eV  
101°C  
145°C  
150°C  
11000 Hours  
1200 Hours  
56.9%  
6.2%  
120 Hours  
0.6%  
9.2 Application Information  
How to Design a Boost Converter Using LM5156x explains how to design boost converter using the device. This  
comprehensive application note includes component selections and loop response optimization.  
9.3 Typical Application  
9-1 shows all optional components to design a boost converter.  
RSNB CSNB  
VSUPPLY  
LM  
VLOAD  
RBIAS  
DG  
RG  
CVCC  
CBIAS  
COUT1 COUT2  
RLOAD  
D1  
CIN  
+
œ
RUVLOT  
VCC  
VDD  
Q1  
BIAS  
RFBT  
RUVLOS  
GATE  
CS  
UVLO/SYNC  
RF  
RSL  
RFBB  
RS  
RUVLOB  
CUVLO  
CF  
PGND  
FB  
AGND  
PGOOD  
MCU_VCC  
RPG  
RT  
SS COMP  
RCOMP  
CCOMP  
RT  
CSS  
CHF  
9-1. Typical Boost Converter Circuit With Optional Components  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
 
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
9.3.1 Design Requirements  
9-2 shows the intended input, output, and performance parameters for this application example.  
9-2. Design Example Parameters  
DESIGN PARAMETER  
VALUE  
Minimum input supply voltage (VSUPPLY(MIN)  
)
6 V  
Target output voltage (VLOAD  
Maximum load current (ILOAD  
Typical switching frequency (fSW  
)
24 V  
)
2 A (48 Watt)  
440 kHz  
)
9.3.2 Detailed Design Procedure  
Use the Quick Start Calculator to expedite the process of designing of a regulator for a given application based  
on the device. Download the Quick Start Calculator for more information on loop response and component  
selection  
LM5155x / LM5156x Boost Quick Start Calculator  
The device is also WEBENCH® Designer enabled. The WEBENCH software uses an iterative design procedure  
and accesses comprehensive data bases of components when generating a design.  
9.3.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the LM34966-Q1 device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
9.3.2.2 Recommended Components  
9-3 shows a recommended list of materials for this typical application.  
9-3. List of Materials  
REFERENCE  
DESIGNATOR  
MANUFACTURER  
QTY.  
SPECIFICATION  
PART NUMBER  
(1)  
RT  
1
1
1
RES, 49.9 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603  
RES, 47.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603  
RES, 2.0 k, 5%, 0.1 W, AEC-Q200 Grade 0, 0603  
Vishay-Dale  
Vishay-Dale  
Vishay-Dale  
CRCW060349K9FKEA  
CRCW060347K0FKEA  
CRCW06032K00JNEA  
RFBT  
RFBB  
Inductor, Shielded, Composite, 6.8 μH, 18.5 A, 0.01 Ω,  
LM  
1
Coilcraft  
XAL1010-682MEB  
SMD  
RS  
RSL  
1
1
3
RES, 0.008, 1%, 3 W, AEC-Q200 Grade 0, 2512 WIDE  
RES, 0, 5%, 0.1 W, 0603  
Susumu  
Yageo America  
TDK  
KRL6432E-M-R008-F-T1  
RC0603JR-070RL  
COUT1  
C3225X7R1H475K250AB  
CAP, CERM, 4.7 μF, 50 V, ±10%, X7R, 1210  
CAP, Aluminum Polymer, 100 μF, 50 V, ±20%, 0.025 Ω,  
COUT2 (Bulk)  
CIN1  
2
6
Chemi-Con  
MuRata  
HHXB500ARA101MJA0G  
GRM32ER71H106KA12L  
AEC-Q200 Grade 2, D10xL10mm SMD  
CAP, CERM, 10 μF, 50 V, ±10%, X7R, 1210  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: LM34966-Q1  
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
9-3. List of Materials (continued)  
REFERENCE  
QTY.  
MANUFACTURER  
SPECIFICATION  
PART NUMBER  
(1)  
DESIGNATOR  
CAP, Polymer Hybrid, 100 μF, 50 V, ±20%, 28 Ω, 10x10  
CIN2 (Bulk)  
1
Panasonic  
EEHZC1H101P  
SMD  
Q1  
D1  
1
1
1
MOSFET, N-CH, 40 V, 50 A, AEC-Q101, SON-8  
Schottky, 60 V, 10 A, AEC-Q101, CFP15  
Infineon  
Nexperia  
IPC50N04S5L5R5ATMA1  
PMEG060V100EPDZ  
CRCW060311K3FKEA  
RCOMP  
RES, 11.3 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603  
Vishay-Dale  
CAP, CERM, 0.022 μF, 100 V, ±10%, X7R, AEC-Q200  
CCOMP  
CHF  
1
1
TDK  
TDK  
CGA3E2X7R2A223K080AA  
CGA3E2C0G1H221J080AA  
Grade 1, 0603  
CAP, CERM, 220 pF, 20 V, ±5%, C0G/NP0, AEC-Q200  
Grade 1, 0603  
RUVLOT  
RUVLOB  
RUVLOS  
1
1
0
RES, 21.0 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603  
RES, 7.32 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0603  
N/A  
Vishay-Dale  
Vishay-Dale  
N/A  
CRCW060321K0FKEA  
CRCW06037K32FKEA  
N/A  
CAP, CERM, 0.22 uF, 50 V, ±10%, X7R, AEC-Q200  
Grade 1, 0603  
CSS  
1
TDK  
CGA3E3X7R1H224K080AB  
DG  
RG  
0
1
1
1
0
0
1
N/A  
RES, 0, 5%, 0.1 W, 0603  
CAP, CERM, 100 pF, 50 V, ±1%, C0G/NP0, 0603  
RES, 100, 1%, 0.1 W, 0603  
N/A  
N/A  
Yageo America  
Kemet  
N/A  
RC0603JR-070RL  
C0603C101F5GACTU  
RC0603FR-07100RL  
N/A  
CF  
RF  
Yageo America  
N/A  
RSNB  
CSNB  
RBIAS  
N/A  
N/A  
N/A  
RES, 0, 5%, 0.1 W, AEC-Q200 Grade 0, 0603  
Panasonic  
ERJ-3GEY0R00V  
Samsung Electro-  
Mechanics  
CBIAS  
1
CL10B103KB8NCNC  
CAP, CERM, 0.01 μF, 50 V, ±10%, X7R, 0603  
CAP, CERM, 1 μF, 16 V, ±20%, X7R, AEC-Q200 Grade  
CVCC  
RPG  
1
1
MuRata  
GCM188R71C105MA64D  
RC0603FR-0724K9L  
1, 0603  
RES, 24.9 k, 1%, 0.1 W, 0603  
Yageo America  
(1) See 12.1.1  
9.3.2.3 Inductor Selection (LM)  
When selecting the inductor, consider three key parameters: inductor current ripple ratio (RR), falling slope of the  
inductor current, and RHP zero frequency (fRHP).  
Inductor current ripple ratio is selected to have a balance between core loss and copper loss. The falling slope of  
the inductor current must be low enough to prevent subharmonic oscillation at high duty cycle (additional RSL  
resistor is required if not). Higher fRHP (= lower inductance) allows a higher crossover frequency and is always  
preferred when using a small value output capacitor.  
The inductance value can be selected to set the inductor current ripple between 30% and 70% of the average  
inductor current as a good compromise between RR, FRHP and inductor falling slope.  
9.3.2.4 Output Capacitor (COUT  
)
There are a few ways to select the proper value of output capacitor (COUT). The output capacitor value can be  
selected based on output voltage ripple, output overshoot, or undershoot due to load transient.  
The ripple current rating of the output capacitors must be enough to handle the output ripple current. By using  
multiple output capacitors, the ripple current can be split. In practice, ceramic capacitors are placed closer to the  
diode and the MOSFET than the bulk aluminum capacitors to absorb the majority of the ripple current.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
9.3.2.5 Input Capacitor  
The input capacitors decrease the input voltage ripple. The required input capacitor value is a function of the  
impedance of the source power supply. More input capacitors are required if the impedance of the source power  
supply is not low enough.  
9.3.2.6 MOSFET Selection  
The MOSFET gate driver of the device is sourced from the VCC. The maximum gate charge is limited by the 35-  
mA VCC sourcing current limit.  
A leadless package is preferred for high switching-frequency designs. The MOSFET gate capacitance should be  
small enough so that the gate voltage is fully discharged during the off-time.  
9.3.2.7 Diode Selection  
A Schottky is the preferred type for D1 diode due to its low forward voltage drop and small reverse recovery  
charge. Low reverse leakage current is important parameter when selecting the Schottky diode. The diode must  
be rated to handle the maximum output voltage plus any switching node ringing. Also, it must be able to handle  
the average output current.  
9.3.2.8 Efficiency Estimation  
The total loss of the boost converter (PTOTAL) can be expressed as the sum of the losses in the device (PIC),  
MOSFET power losses (PQ), diode power losses (PD), inductor power losses (PL), and the loss in the sense  
resistor (PRS).  
PTOTAL = P +PQ +PD +P +PRS  
IC  
L
(19)  
PIC can be separated into gate driving loss (PG) and the losses caused by quiescent current (PIQ).  
= PG + P  
P
IC  
IQ  
(20)  
Each power loss is approximately calculated as follows:  
PG = QG(@VCC) ì VBIAS ì fSW  
(21)  
(22)  
P
= VBIAS ìIBIAS  
IQ  
IVIN and IVOUT values in each mode can be found in the supply current section of 7.5.  
PQ can be separated into switching loss (PQ(SW)) and conduction loss (PQ(COND)).  
PQ = PQ(SW) + PQ(COND)  
(23)  
(24)  
Each power loss is approximately calculated as follows:  
PQ(SW) = 0.5ì(VLOAD + VF )ìISUPPLY ì(tR + tF )ì fSW  
tR and tF are the rise and fall times of the low-side N-channel MOSFET device. ISUPPLY is the input supply current  
of the boost converter.  
PQ(COND) = DìISUPPLY2 ìRDS(ON)  
(25)  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
RDS(ON) is the on-resistance of the MOSFET and is specified in the MOSFET data sheet. Consider the RDS(ON)  
increase due to self-heating.  
PD can be separated into diode conduction loss (PVF) and reverse recovery loss (PRR).  
PD = PVF + PRR  
(26)  
Each power loss is approximately calculated as follows:  
PVF = (1-D)ì VF ìISUPPLY  
(27)  
PRR = VLOAD ìQRR ì fSW  
(28)  
QRR is the reverse recovery charge of the diode and is specified in the diode data sheet. Reverse recovery  
characteristics of the diode strongly affect efficiency, especially when the output voltage is high.  
PL is the sum of DCR loss (PDCR) and AC core loss (PAC). DCR is the DC resistance of inductor which is  
mentioned in the inductor data sheet.  
P = PDCR + PAC  
L
(29)  
Each power loss is approximately calculated as follows:  
PDCR = ISUPPLY2 ìRDCR  
(30)  
a
PAC = K ì DIb ì fSW  
(31)  
1
VSUPPLY ìDì  
fSW  
DI =  
LM  
(32)  
I is the peak-to-peak inductor current ripple. K, α, and βare core dependent factors which can be provided by  
the inductor manufacturer.  
PRS is calculated as follows:  
PRS = DìISUPPLY2 ìRS  
(33)  
Efficiency of the power converter can be estimated as follows:  
VLOAD ìILOAD  
Efficiency =  
PTOTAL + VLOAD ìILOAD  
(34)  
Copyright © 2021 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
9.3.3 Application Curve  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
78  
76  
VSUPPLY=18V  
VSUPPLY=12V  
VSUPPLY=9V  
VSUPPLY=6V  
0
0.2 0.4 0.6 0.8  
1
ILOAD [A]  
1.2 1.4 1.6 1.8  
2
BSTE  
9-2. Efficiency  
9.4 System Examples  
VSUPPLY  
VLOAD  
VDD VCC  
GATE  
CS  
BIAS  
UVLO/SYNC  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
9-3. Typical Boost Application  
VSUPPLY = 3.5V - 40V  
VLOAD  
-
+
Car  
Battery  
VDD VCC  
GATE  
CS  
BIAS  
To MCU  
PGOOD  
From MCU  
PGND  
FB  
UVLO/SYNC  
AGND  
RT  
SS COMP  
9-4. Typical Start-Stop Application  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
VSUPPLY = 2.97V - 16V  
= 12V / 24V  
VLOAD  
+
1-cell or  
2-cell  
Battery  
GATE  
CS  
VCC  
VDD  
BIAS  
-
PGOOD  
From MCU  
PGND  
FB  
UVLO/SYNC  
AGND  
RT  
SS COMP  
9-5. Emergency-call / Boost On-Demand / Portable Speaker  
VSUPPLY  
VLOAD  
VDD VCC GATE  
BIAS  
CS  
UVLO/SYNC  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
9-6. Typical SEPIC Application  
Inductance should be small enough  
to operate in DCM at full load  
VSUPPLY  
= 30V-150V  
VLOAD  
VDD VCC GATE  
BIAS  
CS  
UVLO/SYNC  
From MCU  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
9-7. LIDAR Bias Supply 1  
Copyright © 2021 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
> 150V-200V  
VLOAD  
Voltage  
Tripler  
Inductance should be big enough  
to operate in CCM  
VSUPPLY  
VDD  
VCC  
GATE  
CS  
BIAS  
UVLO/SYNC  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
9-8. LIDAR Bias Supply 2  
VSUPPLY  
VLOAD  
VDD VCC  
GATE  
BIAS  
CS  
UVLO/SYNC  
To MCU  
(Fault Indicator)  
System Power  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
9-9. Low-Cost LED Driver  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
VSUPPLY  
V
LOAD = 5V/12V  
BIAS  
GATE  
CS  
UVLO/SYNC  
PGND  
AGND  
VDD  
VCC  
PGOOD  
RT  
FB  
SS  
COMP  
Optional Primary-Side  
Soft-Start  
9-10. Secondary-Side Regulated Isolated Flyback  
VLOAD2 = +12V  
VSUPPLY  
VLOAD3 = -8.5V  
BIAS  
GATE  
CS  
UVLO/SYNC  
PGND  
AGND  
VDD  
VCC  
To MCU  
System Power  
PGOOD  
RT  
SS  
COMP  
FB  
VLOAD1 = 3.3V/5V +/- 2%  
9-11. Primary-Side Regulated Multiple-Output Isolated Flyback  
Copyright © 2021 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
VSUPPLY  
VLOAD  
BIAS  
GATE  
CS  
UVLO/SYNC  
PGND  
AGND  
VDD  
VCC  
To MCU  
System Power  
PGOOD  
RT  
SS  
COMP  
FB  
9-12. Typical Non-Isolated Flyback  
ILED  
VSUPPLY  
VDD VCC  
GATE  
BIAS  
CS  
UVLO/SYNC  
PGND  
FB  
AGND  
PGOOD  
RT  
SS COMP  
9-13. LED Driver with High-Side Current Sensing  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
VDD VCC  
BIAS  
GATE  
CS  
UVLO/SYNC  
PGND  
FB  
To MCU  
(Fault Indicator)  
AGND  
System Power  
PGOOD  
RT  
SS COMP  
TAIL  
BRAKE  
TURN  
BACKUP  
TPS9261x  
TPS9261x  
TPS9261x  
TPS9261x  
9-14. Dual-Stage Automotive Rear-Lights LED Driver  
10 Power Supply Recommendations  
The device is designed to operate from a power supply or a battery whose voltage range is from 1.5 V to 45 V.  
The input power supply must be able to supply the maximum boost supply voltage and handle the maximum  
input current at 1.5 V. The impedance of the power supply and battery including cables must be low enough that  
an input current transient does not cause an excessive drop. Additional input ceramic capacitors may be  
required at the supply input of the converter.  
Copyright © 2021 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
The performance of switching converters heavily depends on the quality of the PCB layout. The following  
guidelines will help users design a PCB with the best power conversion performance, thermal performance, and  
minimize generation of unwanted EMI.  
Put the Q1, D1, and RS components on the board first.  
Use a small size ceramic capacitor for COUT  
.
Make the switching loop (COUT to D1 to Q1 to RS to COUT) as small as possible.  
Leave a copper area near the D1 diode for thermal dissipation.  
Put the device near the RS resistor.  
Put the CVCC capacitor as near the device as possible between the VCC and PGND pins.  
Use a wide and short trace to connect the PGND pin directly to the center of the sense resistor.  
Connect the CS pin to the center of the sense resistor. If necessary, use vias.  
Connect a filter capacitor between CS pin and power ground trace.  
Connect the COMP pin to the compensation components (RCOMP and CCOMP).  
Connect the CCOMP capacitor to the power ground trace.  
Connect the AGND pin directly to the analog ground plane. Connect the AGND pin to the RUVLOB, RT, CSS  
and RFBB components.  
,
Connect the exposed pad to the AGND pin under the device.  
Connect the GATE pin to the gate of the Q1 FET. If necessary, use vias.  
Make the switching signal loop (GATE to Q1 to RS to PGND to GATE) as small as possible.  
Add several vias under the exposed pad to help conduct heat away from the device. Connect the vias to a  
large ground plane on the bottom layer.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: LM34966-Q1  
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
11.2 Layout Examples  
VSUPPLY  
GND  
LM  
CVIN  
Do not connect input and  
output capacitor grounds  
underneath the device  
Connect  
to VSUPPLY  
Connect  
to VSUPPLY  
CVIN  
1
2
3
14  
13  
12  
11  
UVLO  
PGOOD  
RT  
BIAS  
NC  
RUVLOB  
VCC  
GATE  
PGND  
AGND  
CS  
RT  
RS  
SS  
EP  
4
5
6
CSS  
CVCC  
Q1  
RFBB  
FB  
10  
9
to VCC  
CF  
VDD  
RF  
8
COMP  
7
CCOMP  
RCOMP  
Do not connect input and  
output capacitor grounds  
underneath the device  
COUT1  
D1  
COUT2  
Thermal Dissipation  
Area  
VLOAD  
GND  
11-1. PCB Layout Example 1  
Copyright © 2021 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
LM  
VSUPPLY  
CVIN  
GND  
Q1  
Do not connect input and  
output capacitor grounds  
underneath the device  
Connect  
to VSUPPLY  
VLOAD  
D1  
Connect to VSUPPLY  
1
2
3
14  
13  
12  
11  
UVLO  
PGOOD  
RT  
BIAS  
RUVLOB  
NC  
VCC  
RS  
RT  
GND  
CVCC  
GATE  
SS  
EP  
4
5
6
CSS  
COUT1  
RFBB  
PGND  
AGND  
CS  
FB  
VDD  
10  
9
COUT2  
CF  
to VCC  
Power Ground Plane  
(Connect to EP via GND pin)  
8
COMP  
7
CCOMP  
RCOMP  
RF  
Do not connect input and  
output capacitor grounds  
underneath the device  
11-2. PCB Layout Example 2  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: LM34966-Q1  
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
12.1.2 Development Support  
For development support see the following:  
LM5155x / LM5156x Boost Quick Start Calculator  
LM5155x / LM5156x Flyback Quick Start Calculator  
LM5155x / LM5156x SEPIC Quick Start Calculator  
How to Design a Boost Converter Using LM5156x  
How to Design an Isolated Flyback Converter Using LM5156x  
How to Design a SEPIC Converter Using LM5156x  
12.1.2.1 Custom Design With WEBENCH® Tools  
Click here to create a custom design using the device with the WEBENCH® Power Designer.  
1. Start by entering the input voltage (VIN), output voltage (VOUT), and output current (IOUT) requirements.  
2. Optimize the design for key parameters such as efficiency, footprint, and cost using the optimizer dial.  
3. Compare the generated design with other possible solutions from Texas Instruments.  
The WEBENCH Power Designer provides a customized schematic along with a list of materials with real-time  
pricing and component availability.  
In most cases, these actions are available:  
Run electrical simulations to see important waveforms and circuit performance  
Run thermal simulations to understand board thermal performance  
Export customized schematic and layout into popular CAD formats  
Print PDF reports for the design, and share the design with colleagues  
Get more information about WEBENCH tools at www.ti.com/WEBENCH.  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
WEBENCH® is a registered trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
Copyright © 2021 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
 
 
 
 
 
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: LM34966-Q1  
 
LM34966-Q1  
ZHCSLI5 SEPTEMBER 2020  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: LM34966-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-Jan-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM34966QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
14  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 150  
34966Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
PWP0014H  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
12X 0.65  
14  
1
2X  
5.1  
4.9  
3.9  
NOTE 3  
7
8
0.30  
14X  
0.19  
4.5  
4.3  
B
0.1  
C A B  
SEE DETAIL A  
(0.15) TYP  
4X (0.28)  
NOTE 5  
4X (0.1)  
NOTE 5  
8
7
THERMAL  
PAD  
0.25  
GAGE PLANE  
2.86  
2.02  
15  
1.2 MAX  
0.15  
0.05  
0 - 8  
14  
1
0.75  
0.50  
DETAIL A  
(1)  
TYPICAL  
1.82  
0.98  
4224353/A 07/2018  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may differ and may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0014H  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(1.82)  
SYMM  
SEE DETAILS  
14X (1.5)  
1
14  
14X (0.45)  
(1.1)  
TYP  
15  
SYMM  
(2.86)  
(5)  
NOTE 9  
12X (0.65)  
8
7
(
0.2) TYP  
VIA  
(R0.05) TYP  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-14  
/A 07/2018  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0014H  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(1.82)  
BASED ON  
0.125 THICK  
STENCIL  
14X (1.5)  
(R0.05) TYP  
1
14  
14X (0.45)  
15  
(2.86)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
12X (0.65)  
8
7
SEE TABLE FOR  
METAL COVERED  
BY SOLDER MASK  
SYMM  
(5.8)  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
2.03 X 3.20  
1.86 X 2.86 (SHOWN)  
1.66 X 2.61  
0.125  
0.15  
0.175  
1.54 X 2.42  
4224353/A 07/2018  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

LM34966QPWPRQ1

500kHz 宽输入电压非同步升压、反激式和 SEPIC 控制器 | PWP | 14 | -40 to 150
TI

LM349J

Voltage-Feedback Operational Amplifier
ETC

LM349N/A+

Voltage-Feedback Operational Amplifier
ETC

LM349N/B+

Voltage-Feedback Operational Amplifier
ETC

LM34A

Precision Fahrenheit Temperature Sensors
NSC

LM34AH

Precision Fahrenheit Temperature Sensors
NSC

LM34AH

带华氏刻度的 ±1°F 5V 至 30V 模拟输出温度传感器 | NDV | 3 | -45 to 148
TI

LM34AH/NOPB

带华氏刻度的 ±1°F 5V 至 30V 模拟输出温度传感器 | NDV | 3 | -45 to 148
TI

LM34C

Precision Fahrenheit Temperature Sensors
NSC

LM34CA

Precision Fahrenheit Temperature Sensors
NSC

LM34CAH

Precision Fahrenheit Temperature Sensors
NSC

LM34CAH

带华氏刻度的 ±1°F 5V 至 30V 模拟输出温度传感器 | NDV | 3 | -40 to 110
TI