LM3535TME/NOPB [TI]

具有环境光感应和动态背光控制兼容性的多显示屏 LED 驱动器 | YFQ | 20 | -30 to 85;
LM3535TME/NOPB
型号: LM3535TME/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有环境光感应和动态背光控制兼容性的多显示屏 LED 驱动器 | YFQ | 20 | -30 to 85

驱动 驱动器
文件: 总36页 (文件大小:1085K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
具有环境光感应和动态背光控制兼容性的 LM3535  
多显示 LED 驱动器  
1 特性  
3 说明  
1
驱动多达 8 LED,每个 LED 具有高达 25mA 的  
二极管电流  
LM3535 器件是高度集成的 LED 驱动器,能够驱动大  
型显示屏 应用中的 8 个并联 LED。利用独立的 LED  
控制,可以选择 6 个主显示屏 LED 的某个子集以用于  
局部照明 应用。除一组主要 LED(共 6 个)之  
外,LM3535 还能够驱动其他 2 个独立受控的 LED 以  
用于指示灯 应用。  
用于实现动态背光控制的外部 PWM 输入  
多区域环境光感应 (ALS)  
ALS 中断报告  
针对所有电流阱进行独立的开/关控制  
针对 A 组(多达 6 LED)实现 128 个指数调光  
步进并具有 600:1 的调光比  
LED 驱动器电流阱分为三个独立的受控组。可以将主  
要的组配置为驱动多达六个 LED,以用于主手机显示  
屏。B 组和 C 组用于驱动辅助显示屏、键盘和指示灯  
LED。所有 LED 电流源都可以独立打开和关闭,从而  
灵活地满足不同应用要求。  
针对 B 组(多达 3 LED)和 D1C1 LED)  
实现 8 种线性调光状态  
可编程自动调光功能  
效率高达 90%  
精度为 0.55% 的电流匹配  
宽输入电压范围(2.7V 5.5V)  
高电平有效硬件使能  
LM3535 可提供多区域环境光感应功能,从而能够在环  
境光条件发生变化时实现自主背光强度控制。还提供了  
PWM 输入,以便用户能够根据显示的内容动态调节背  
光强度。  
总解决方案尺寸 < 16mm2  
薄型 20 引脚 DSBGA 封装  
LM3535 能够以 3/2 的增益或以直通模式运行电荷泵,  
从而无需使用电感器即可提供出色的效率。系统会根据  
LED 正向电压选择用于维持电流调节的正确增益,以  
便在输入电压范围上最大程度地提高效率。  
2 待机功耗  
智能手机 LED 背光  
大尺寸 LCD 背光  
通用 LED 照明  
LM3535 采用微型 20 引脚 0.4mm 间距薄型 DSBGA  
封装。  
器件信息(1)  
器件型号  
LM3535  
封装  
封装尺寸(最大值)  
DSBGA (20)  
2.045mm × 1.64mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
典型应用  
GROUP A  
GROUP B  
GROUP C  
VIO  
O
R
D1B/  
INT  
D1AD2AD3AD4A  
VIN  
D1C/  
ALS  
D53 D62  
VOUT  
C1+  
1µF  
1µF  
1µF  
1µF  
LM3535  
C1-  
C2+  
GND  
PWM  
C2-  
HWEN SDIO SCL  
I2C  
Control  
Signals  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVS598  
 
 
 
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
目录  
7.4 Device Functional Modes........................................ 12  
7.5 Programming........................................................... 12  
Application and Implementation ........................ 19  
8.1 Application Information............................................ 19  
8.2 Typical Application ................................................. 19  
Power Supply Recommendations...................... 28  
1
2
3
4
5
6
特性.......................................................................... 1  
待机功耗................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Typical Characteristics.............................................. 7  
Detailed Description ............................................ 10  
7.1 Overview ................................................................. 10  
7.2 Functional Block Diagram ....................................... 10  
7.3 Feature Description................................................. 11  
8
9
10 Layout................................................................... 29  
10.1 Layout Guidelines ................................................. 29  
10.2 Layout Example .................................................... 29  
11 器件和文档支持 ..................................................... 30  
11.1 接收文档更新通知 ................................................. 30  
11.2 社区资源................................................................ 30  
11.3 ....................................................................... 30  
11.4 静电放电警告......................................................... 30  
11.5 Glossary................................................................ 30  
12 机械、封装和可订购信息....................................... 30  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision A (May 2013) to Revision B  
Page  
已添加 引脚配置和功能 部分、ESD 额定值 表、特性 说明器件功能模式应用和实施电源相关建议布局器件  
和文档支持以及机械、封装和可订购信息 ............................................................................................................................... 1  
已删除 删除了所有“ALS2”选项................................................................................................................................................ 1  
Changed ALS resistor accuracy values from –5% and 5% to –9% and 9% ......................................................................... 6  
Changes from Original (May 2013) to Revision A  
Page  
Changed layout of National Data Sheet to TI format ........................................................................................................... 27  
2
Copyright © 2010–2018, Texas Instruments Incorporated  
 
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
5 Pin Configuration and Functions  
YFQ Package  
20-Pin DSBGA  
Top View  
4
3
2
1
4
3
2
1
A
B
C
D
E
E
D
C
B
A
Top View  
Bottom View  
Pin Functions  
PIN  
DESCRIPTION  
TYPE  
NO.  
NAME  
A1, C1, B1, B2  
C1+, C1–, C2+,  
C2–  
Flying capacitor connections  
Charge pump output voltage  
Power  
A2  
A3  
A4  
VOUT  
VIN  
Power  
Power  
Power  
Input voltage; input range: 2.7 V to 5.5 V  
Ground  
GND  
LED driver/ ALS interrupt - GroupB current sink or ALS interrupt pin. In ALS Interrupt  
mode, a pullup resistor is required. A zero (0) means a change has occurred, while  
a one (1) means no ALS adjustment has been made.  
Input /  
Output  
B3  
D1B / INT  
B4, C4  
C2  
D53, D62  
SDIO  
Output  
LED drivers - configurable current sinks. Can be assigned to GroupA or GroupB  
Serial data input/output pin  
Input /  
Output  
C3  
D1C / ALS  
Input /  
Output  
LED driver / ALS input - indicator LED current sink or ambient light sensor input  
Ground  
D1  
D2  
GND  
PWM  
Power  
External PWM input - allows the current sinks to be turned on and off at a frequency  
and duty cycle externally controlled. Minimum on-time pulse width = 15 µsec.  
Input  
D3, E3, E4, D4  
D1A-D4A  
HWEN  
SCL  
Output  
Input  
LED drivers - GroupA  
E1  
E2  
Hardware enable pin. High = normal operation, Low = RESET  
Serial clock pin  
Input  
Copyright © 2010–2018, Texas Instruments Incorporated  
3
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
MAX  
UNIT  
VIN pin voltage  
–0.3  
6
V
(VIN + 0.3 V) with 6 V  
maximum  
SCL, SDIO, HWEN, PWM pin voltages  
–0.3  
–0.3  
V
V
(VVOUT + 0.3 V) with 6 V  
maximum  
IDxx pin voltages  
Continuous power dissipation(4)  
Junction temperature, tJ-MAX  
Internally limited  
150  
°C  
°C  
°C  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
See(5)  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications. All voltages are with respect to the potential at the GND pins.  
(4) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ = 150°C (typical) and  
disengages at TJ = 125°C (typical).  
(5) For detailed soldering specifications and information, see Texas Instruments Application Report AN-1112 DSBGA Wafer Level Chip  
Scale Package.  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)(2)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) The human body model is a 100-pF capacitor discharged through a 1.5-kΩ resistor into each pin. (MIL-STD-883 3015.7).  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)(2)  
MIN  
2.7  
2
MAX  
5.5  
4
UNIT  
V
Input voltage  
LED voltage  
V
Junction temperature, TJ  
Ambient temperature, TA  
–30  
–30  
110  
85  
°C  
°C  
(3)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Recommended Operating Ratings are  
conditions under which operation of the device is ensured. Recommended Operating Ratings do not imply ensured performance limits.  
For ensured performance limits and associated test conditions, see the Electrical Characteristics tables.  
(2) All voltages are with respect to the potential at the GND pins.  
(3) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
110°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to ambient thermal resistance of the  
device/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
4
Copyright © 2010–2018, Texas Instruments Incorporated  
 
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
6.4 Thermal Information  
LM3535  
THERMAL METRIC(1)  
YFQ (WCSP)  
20 PINS  
70.5  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.6  
16.7  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
16.9  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
Typical limits are TA = 25°C, and minimum and maximum limits in apply over the full operating temperature range (–30°C to  
+85°C). Unless otherwise specified: VIN = 3.6 V; VHWEN = VIN; VPWM = 0 V; VDxA = VDxB = VDxC = 0.4 V; GroupA = GroupB =  
GroupC = full-scale current; ENxA, ENxB, ENxC bits = 1; 53A, 62A bits = 0; C1 = C2 = CIN = COUT= 1 µF.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2.7 V VIN 5.5 V  
EN1A to EN4A = 1, 53A = 62A = 0, EN53  
= EN62 = ENxB = ENxC = 0  
4 LEDs in GroupA  
23.6  
(–5.6%)  
26.3  
(5.2%)  
mA  
(%)  
25  
Output current regulation  
GroupA  
2.7 V VIN 5.5 V  
EN1A to EN4A = EN53 = EN62 = 1, 53A =  
62A = 1, ENxB = ENxC = 0  
6 LEDs in GroupA  
23.2  
(–7.2%)  
26.3  
5.2%  
mA  
(%)  
25  
2.7 V VIN 5.5 V  
Output current regulation  
GroupB  
EN1B = EN53 = EN62 = 1, 53A = 62A = 0,  
ENxA = ENC = 0  
3 LEDs in GroupB  
23.3  
(–6.8%)  
mA  
(%)  
25  
25  
(+4%)  
IDxx  
Output current regulation  
IDC  
2.7 V VIN 5.5 V  
ENC = 1, ENxA = ENxB = 0  
23.8  
(–4.8%)  
26.8  
(7.2%)  
mA  
(%)  
25  
DxA  
Output current regulation  
GroupA, GroupB, and GroupC  
enabled  
3.2 V VIN 5.5V  
VLED = 3.6 V  
25  
DxB  
mA  
25  
DxC  
GroupA (4  
LEDs)  
0.25%  
0.55%  
0.25%  
130  
2.4%  
2.78  
IDxx-  
MATCH  
GroupA (6  
2.7 V VIN 5.5 V  
LED current matching(4)  
LEDs)  
GroupB (3  
LEDs)  
2.41%  
VDxx 1x to 3/2x gain transition  
threshold  
VDxTH  
VHR  
VDxA and/or VDxB falling  
mV  
mV  
Current sink headroom voltage  
requirement(5)  
IDxx = 95% ×IDxx (nominal)  
(IDxx (nominal) = 25 mA)  
100  
(1) All voltages are with respect to the potential at the GND pins.  
(2) Minimum and maximum limits are ensured by design, test, or statistical analysis. Typical numbers are not ensured, but do represent the  
most likely norm.  
(3) CIN, CVOUT, C1, and C2 : Low-ESR surface-mount ceramic capacitors (MLCCs) used in setting electrical characteristics  
(4) For the two groups of current sinks on a part (GroupA and GroupB), the following are determined: the maximum sink current in the  
group (MAX), the minimum sink current in the group (MIN), and the average sink current of the group (AVG). For each group, two  
matching numbers are calculated: (MAX-AVG)/AVG and (AVG-MIN)/AVG. The largest number of the two (worst case) is considered the  
matching figure for the Group. The matching figure for a given part is considered to be the highest matching figure of the two Groups.  
The typical specification provided is the most likely norm of the matching figure for all parts.  
(5) For each Dxxpin, headroom voltage is the voltage across the internal current sink connected to that pin. For Group A, B, and C current  
sinks, VHRx = VOUT – VLED. If headroom voltage requirement is not met, LED current regulation will be compromised.  
Copyright © 2010–2018, Texas Instruments Incorporated  
5
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
Electrical Characteristics (continued)  
Typical limits are TA = 25°C, and minimum and maximum limits in apply over the full operating temperature range (–30°C to  
+85°C). Unless otherwise specified: VIN = 3.6 V; VHWEN = VIN; VPWM = 0 V; VDxA = VDxB = VDxC = 0.4 V; GroupA = GroupB =  
GroupC = full-scale current; ENxA, ENxB, ENxC bits = 1; 53A, 62A bits = 0; C1 = C2 = CIN = COUT= 1 µF.(1)(2)(3)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
2.4  
MAX  
UNIT  
Gain = 3/2  
Gain = 1  
Open-loop charge pump output  
resistance  
ROUT  
0.5  
Gain = 3/2, no load  
Gain = 1, no load  
2.86  
1.09  
4.38  
2.31  
IQ  
ISB  
ISD  
Quiescent supply current  
mA  
2.7 V VIN 5.5 V  
HWEN = VIN, all ENx bits = 0  
Standby supply current  
Shutdown supply current  
1.7  
1.7  
4
µA  
µA  
2.7 V VIN 5.5 V  
HWEN = 0 V, All ENx bits = 0  
4
fSW  
Switching frequency  
Start-up time  
1.1  
1.33  
250  
1.56  
MHz  
µs  
tSTART  
VOUT = 90% steady state  
0.95  
(–5%)  
1.05  
5%  
VALS  
RALS  
ALS reference voltage accuracy  
ALS resistor accuracy  
1
V
RALS = 9.08 kΩ  
RALS = 5.46 kΩ  
–9%  
–9%  
0
9%  
9%  
Reset  
0.45  
VHWEN  
HWEN voltage thresholds  
PWM voltage thresholds  
2.7 V VIN 5.5 V  
2.7 V VIN 5.5 V  
V
V
Normal  
operation  
1.2  
VIN  
Diodes off  
Diodes on  
0
0.45  
VIN  
VPWM  
1.2  
VOL-INT  
Interrupt output logic low 0  
ILOAD = 3 mA  
400  
mV  
I2C-COMPATIBLE INTERFACE VOLTAGE SPECIFICATIONS (SCL, SDIO)  
VIL  
Input logic low 0  
2.7 V VIN 5.5 V  
2.7 V VIN 5.5 V  
ILOAD = 3 mA  
0
0.45  
VIN  
V
V
VIH  
VOL  
Input logic high 1  
1.2  
SDIO output logic low 0  
400  
mV  
I2C-COMPATIBLE INTERFACE TIMING SPECIFICATIONS (SCL, SDIO)  
t1  
t2  
t3  
SCL (clock period)  
See(6)  
2.5  
100  
0
µs  
ns  
ns  
Data in setup time to SCL high  
Data out stable after SCL low  
SDIO low setup time to SCL low  
(start)  
t4  
t5  
100  
100  
ns  
ns  
SDIO high hold time after SCL high  
(stop)  
(6) SCL is tested with a 50% duty-cycle clock.  
Figure 1. I2C Timing Diagram  
6
Copyright © 2010–2018, Texas Instruments Incorporated  
 
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
6.6 Typical Characteristics  
Unless otherwise specified: TA = 25°C; VIN = 3.6 V; VHWEN = VIN; CIN= 1 µF, COUT = 1 µF, C1 = C2 = 1 µF.  
27.5  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
27.5  
27.0  
26.5  
26.0  
25.5  
25.0  
24.5  
24.0  
23.5  
23.0  
22.5  
T
= +85°C  
D62  
A
D1A,D2A,D3A,D53  
T
= -30°C  
A
T
A
= +25°C  
23.5  
23.0  
BRC = 127  
BRC = 127  
22.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
V
V
(V)  
IN  
IN  
Figure 3. ILED vs Input Voltage  
Figure 2. ILED vs Input Voltage 6 LEDs  
30  
1.00e2  
T
= -30°C,+25°C and +85°C  
A
T
= -30°C,+25°C and +85°C  
A
25  
20  
15  
10  
5
1.00e1  
1.00  
1.00e-1  
0
0
1.00e-2  
16 32 48 64 80 96 112 128  
BRC (#)  
0
16 32 48 64 80 96 112 128  
BRC (#)  
Figure 4. ILED vs Brightness Code Linear Scale  
Figure 5. ILED vs Brightness Code Log Scale  
1.6  
4.00  
3.50  
3.00  
2.50  
2.00  
1.50  
1.00  
0.50  
0.00  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
T
= +85°C  
A
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
V
(V)  
IN  
V
IN  
(V)  
Figure 6. Switching Frequency vs Input Voltage Tri-Temp  
Figure 7. Shutdown Current vs Input Voltage VIO = 0 V  
Copyright © 2010–2018, Texas Instruments Incorporated  
7
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
Typical Characteristics (continued)  
Unless otherwise specified: TA = 25°C; VIN = 3.6 V; VHWEN = VIN; CIN= 1 µF, COUT = 1 µF, C1 = C2 = 1 µF.  
10.00  
9.00  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0.00  
T
A
= +85°C  
T
A
= +85°C  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
V
(V)  
V
(V)  
IN  
IN  
Figure 8. Shutdown Current vs Input Voltage VIO = 2.5 V  
Figure 9. Quiescent Current vs Input Voltage 1× Gain  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
T
= +85°C  
A
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
V
(V)  
IN  
Figure 11. ALS Boundary Voltage vs Boundary Code Falling  
ALS Voltage  
Figure 10. Quiescent Current vs Input Voltage 3/2× Gain  
25  
20  
15  
10  
5
f
= 8 kHz.  
PWM  
f
= 20 kHz.  
PWM  
0
0
20  
40  
60  
80  
100  
D.C. (%)  
Figure 12. ALS Boundary Voltage vs Boundary Code Falling  
ALS Voltage (Zoom)  
Figure 13. Diode Current vs PWM Duty Cycle  
8
Copyright © 2010–2018, Texas Instruments Incorporated  
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
Typical Characteristics (continued)  
Unless otherwise specified: TA = 25°C; VIN = 3.6 V; VHWEN = VIN; CIN= 1 µF, COUT = 1 µF, C1 = C2 = 1 µF.  
INT  
V
OUT  
1V/div.  
V
ALS  
200 mV/div.  
I
LEDs  
I
LEDs  
(20 mA/div.)  
(50 mA/div.)  
Time  
Time  
(100 ms/div.)  
(100 ms/div.)  
Figure 14. Ambient Light Sensor Response  
Figure 15. Diode Current Ramp-Up TSTEP = 6 ms  
V
OUT  
1V/div.  
I
LEDs  
(20 mA/div.)  
Time  
(100 ms/div.)  
Figure 16. Diode Current Ramp-Down TSTEP = 6 ms  
Copyright © 2010–2018, Texas Instruments Incorporated  
9
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The LM3535 is a white LED driver system based upon an adaptive 3/2× – 1× CMOS charge pump capable of  
supplying up to 200 mA of total output current. With three separately controlled groups of constant current sinks,  
the LM3535 is an ideal solution for platforms requiring a single white LED driver IC for main display, sub display,  
and indicator lighting. The tightly matched current sinks ensure uniform brightness from the LEDs across the  
entire small-format display.  
Each LED is configured in a common anode configuration, with the peak drive current set to 25 mA. An I2C  
compatible interface is used to enable the device and vary the brightness within the individual current sink  
Groups. For GroupA, 128 exponentially-spaced analog brightness control levels are available. GroupB and  
GroupC have 8 linearly-spaced analog brightness levels.  
Additionally, the LM3535 provides 1 inputfor an ambient light sensor to adaptively adjust the diode current based  
on ambient conditions, and a PWM pin to allow the diode current to be pulse width modulated to work with a  
display driver utilizing dynamic or content adjusted backlight control (DBC or CABC).  
7.2 Functional Block Diagram  
VIO  
COUT  
1 mF  
1 mF  
1 mF  
OR  
VOUT  
C1+  
C1-  
C2+  
C2-  
D1C/ALS  
D1A  
D2A  
D3A  
D4A  
D53  
D62  
D1B/INT  
VIN  
2.7V to 5.5V  
3/2X and 1X  
Regulated Charge Pump  
CIN  
1 mF  
GroupB  
Current  
Sinks  
INT  
D1C Current  
Sink  
GroupA Current Sinks  
ALS  
GAIN  
CONTROL  
PWM  
1.3 MHz.  
Soft  
Start  
1.25 V  
Ref.  
Switch  
Frequency  
Brightness  
Control  
Brightness  
Control  
Brightness  
Control  
SCL  
SDIO  
HWEN  
General Purpose Register  
I2C Interface  
Block  
Brightness Control Registers  
Group A and Group B  
Brightness Control Register  
D1C  
LM3535  
RSET  
GND  
10  
Copyright © 2010–2018, Texas Instruments Incorporated  
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
7.3 Feature Description  
7.3.1 Charge Pump  
The input to the 3/2× or 1× charge pump is connected to the VIN pin, and the regulated output of the charge  
pump is connected to the VOUT pin. The recommended input voltage range of the LM3535 is 2.7 V to 5.5 V. The  
device regulated charge pump has both open loop and closed loop modes of operation. When the device is in  
open loop, the voltage at VOUT is equal to the gain times the voltage at the input. When the device is in closed  
loop, the voltage at VOUT is regulated to 4.3 V (typical). The charge pump gain transitions are actively selected to  
maintain regulation based on LED forward voltage and load requirements.  
7.3.2 Diode Current Sinks  
Matched currents are ensured with the use of tightly matched internal devices and internal mismatch cancellation  
circuitry. There are eight regulated current sinks configurable into 3 different lighting regions.  
7.3.3 Ambient Light Sensing (ALS) And Interrupt  
The LM3535 provides an ambient light sensing input for use with ambient backlight control. By connecting the  
anode of a photo diode / sensor to the sensor input pins, and configuring the appropriate ALS resistors, the  
LM3535 can be configured to adjust the diode current to five unique settings, corresponding to four adjustable  
light region trip points. Additionally, when the LM3535 determines that an ambient condition has changed, the  
interrupt pin, when connected to a pullup resistor toggles to a 0 alerting the controller. See I2C Compatible  
Interface for more details regarding the register configurations.  
7.3.4 Dynamic Backlight Control Input (PWM Pin)  
The pulse width modulation (PWM) pin allows a display driver utilizing dynamic backlight control (DBC) to adjust  
the LED brightness based on the content. The PWM input can be turned on or off (Acknowledge or Ignore), and  
the polarity can be flipped (active high or active low) through the I2C interface. The current sinks of the LM3535  
require approximately 15 µs to reach steady-state target current. This turnon time sets the minimum usable PWM  
pulse width for DBC/CABC.  
7.3.5 LED Forward Voltage Monitoring  
The LM3535 has the ability to switch gains (1× or 3/2×) based on the forward voltage of the LED load. This  
ability to switch gains maximizes efficiency for a given load. Forward voltage monitoring occurs on all diode pins.  
At higher input voltages, the LM3535 operates in pass mode, allowing the VOUT voltage to track the input voltage.  
As the input voltage drops, the voltage on the Dxx pins also drops (VDXX = VVOUT – VLEDx). Once any of the active  
Dxx pins reaches a voltage approximately equal to 130 mV, the charge pump will switch to the gain of 3/2. This  
switchover ensures that the current through the LEDs never becomes pinched off due to a lack of headroom  
across the current sinks. Once a gain transition occurs, the LM3535 remains in the gain of 3/2 until an I2C write  
to the part occurs. At that time, the LM3535 re-evaluates the LED conditions and selects the appropriate gain.  
Only active Dxx pins are monitored.  
7.3.6 Configurable Gain Transition Delay  
To optimize efficiency, the LM3535 has a user selectable gain transition delay that allows the part to ignore short  
duration input voltage drops. By default, the LM3535 does not change gains if the input voltage dip is shorter  
than 3 to 6 milliseconds. There are three selectable gain transition delay ranges available on the LM3535. All  
delay ranges are set within the VF Monitor Delay Register. See Internal Registers of LM3535 for more  
information regarding the delay ranges.  
7.3.7 Hardware Enable (HWEN)  
The LM3535 has a hardware enable/reset pin (HWEN) that allows the device to be disabled by an external  
controller without requiring an I2C write command. Under normal operation, hold the HWEN pin high (logic 1) to  
prevent an unwanted reset. When the HWEN is driven low (logic 0), all internal control registers reset to the  
default states, and the device becomes disabled. See the Electrical Characteristics section of the data sheet for  
required voltage thresholds.  
Copyright © 2010–2018, Texas Instruments Incorporated  
11  
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Shutdown  
The LM3535 enters shutdown mode if HWEN pin is held low. In this mode, the LM3535 has a shutdown current  
of 1.7 µA. I2C communication is not possible when in shutdown.  
7.4.2 Standby  
The LM3535 enters standby mode if HWEN pin is held high and when the ENx bits are set to 0. In this mode, the  
LM3535 has a standby current of 1.7 µA. I2C communication is possible when in standby.  
7.4.3 Active Mode  
The LM3535 enters active mode if HWEN pin is held high and when any of the ENx bits are set to 1. When the  
LM3535 is in pass-mode operation, the typical quiescent current drawn is 1.09 mA. When the LM3535 is in  
boost-mode operation, the typical quiescent current drawn is 2.86 mA. I2C communication is possible when in  
active mode.  
7.5 Programming  
7.5.1 I2C Compatible Interface  
7.5.1.1 Data Validity  
The data on SDIO line must be stable during the HIGH period of the clock signal (SCL). In other words, state of  
the data line can only be changed when SCL is LOW.  
SCL  
SDIO  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
Figure 17. Data Validity Diagram  
A pullup resistor between the VIO line and SDIO of the controller must be greater than [(VIO – VOL) / 3 mA] to  
meet the VOL requirement on SDIO. Using a larger pullup resistor results in lower switching current with slower  
edges, while using a smaller pullup results in higher switching currents with faster edges.  
7.5.1.2 Start and Stop Conditions  
START and STOP conditions classify the beginning and the end of the I2C session. A START condition is  
defined as SDIO signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as  
the SDIO transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and  
STOP conditions. The I2C bus is considered to be busy after a START condition and free after a STOP condition.  
During data transmission, the I2C master can generate repeated START conditions. First START and repeated  
START conditions are equivalent, function-wise.  
SDIO  
SCL  
S
P
S
STOP condition  
TART condition  
Figure 18. Start and Stop Conditions  
12  
Copyright © 2010–2018, Texas Instruments Incorporated  
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
Programming (continued)  
7.5.1.3 Transferring Data  
Every byte put on the SDIO line must be eight bits long, with the most significant bit (MSB) transferred first. Each  
byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the  
master. The master releases the SDIO line (HIGH) during the acknowledge clock pulse. The LM3535 pulls down  
the SDIO line during the 9th clock pulse, signifying an acknowledge. The LM3535 generates an acknowledge  
after each byte is received. There is no acknowledge created after data is read from the LM3535.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W). The LM3535 7-bit address is 38h. For the eighth bit, a “0” indicates  
a WRITE and a “1” indicates a READ. The second byte selects the register to which the data will be written. The  
third byte contains data to write to the selected register.  
ack from slave  
ack from slave  
ack from slave  
start msb Chip Address lsb  
w
ack  
msb Register Add lsb  
ack  
msb DATA lsb  
ack stop  
SCL  
SDIO  
start  
Id = 38h  
w
ack  
addr = 10h  
ack  
address h‘3F data  
ack stop  
Figure 19. Write Cycle  
W = Write (SDIO = 0)  
R = Read (SDIO = 1)  
Ack = Acknowledge (SDIO Pulled Down by Either Master or Slave)  
Id = Chip Address, 38h For Lm3535  
7.5.1.4 I2C Compatible Chip Address  
The 7-bit chip address for LM3535 is 111000, or 0x38.  
7.5.1.5 Internal Registers of LM3535  
REGISTER  
INTERNAL HEX ADDRESS  
POWER ON VALUE  
0000 0000 (0x00)  
0000 0000 (0x00)  
0000 0000 (0x00)  
1111 0000 (0xF0)  
0000 0011 (0x03)  
0000 0000 (0x00)  
0011 0011 (0x33)  
0110 0110 (0x66)  
1001 1001 (0x99)  
1100 1100 (0xCC)  
1001 1001 (0x99)  
1011 0110 (0xB6)  
1100 1100 (0xCC)  
1110 0110 (0xE6)  
1111 1111 (0xFF)  
1000 0000 (0x80)  
1100 0000 (0xC0)  
1111 1000 (0xF8)  
Diode Enable Register  
Configuration Register  
Options Register  
0x10  
0x20  
0x30  
0x40  
0x50  
0x51  
0x60  
0x61  
0x62  
0x63  
0x70  
0x71  
0x72  
0x73  
0x74  
ALS Zone Readback  
ALS Control Register  
ALS Resistor Register  
ALS Zone Boundary #0  
ALS Zone Boundary #1  
ALS Zone Boundary #2  
ALS Zone Boundary #3  
ALS Brightness Zone #1  
ALS Brightness Zone #2  
ALS Brightness Zone #3  
ALS Brightness Zone #4  
ALS Brightness Zone #5  
Group A Brightness Control Register 0xA0  
Group B Brightness Control Register 0xB0  
Group C Brightness Control Register 0xC0  
Copyright © 2010–2018, Texas Instruments Incorporated  
13  
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
Control Register  
Register Address: 0x10  
MSB  
LSB  
ENC  
bit7  
EN1B  
bit6  
EN62  
bit5  
EN53  
bit4  
EN4A  
bit3  
EN3A  
bit2  
EN2A  
bit1  
EN1A  
bit0  
Figure 20. Diode Enable Register Description  
Internal Hex Address: 0x10  
Each ENx Bit controls the state of the corresponding current sink. Writing a 1 to these bits enables the current  
sinks. Writing a 0 disables the current sinks. In order for current to begin flowing through the BankA current  
sinks, the brightness codes stored in either the BankA Brightness register or the ALS Brightness registers (with  
ALS enabled) must be non-zero. The BankA current sinks can be disabled in two different manors. Writing 0 to  
the ENx bits when the current sinks are active will disable the current sinks without going through the ramp down  
sequence. Additionally, setting the BankA brightness code to 0 when the current sinks are active (ENx = 1) does  
force the diode current to ramp down. All ramping behavior is tied to the BankA Brightness or ALS Brightness  
Register settings. Any change in these values causes the LM3535 brightness state machine to ramp the diode  
current.  
Writing a '1 to ENC, EN1B, EN62 and EN53 (when EN62 and EN53 are assigned to BankB) by default enables  
the corresponding current sinks and drive the LEDs to the current value stored in the BankB and BankC  
brightness registers. Writing a 0 to these bits immediately disables the current sinks.  
The ENC and EN1B bits are ignored if the D1C/ALS pin is configured as an ALS input and if the D1B/INT is  
configured as an interrupt flag.  
Configuration Register  
Register Address: 0x20  
MSB  
LSB  
ALSF  
bit7  
ALS-EN ALS-ENB ALS-ENA  
bit6 bit5 bit4  
62A  
bit3  
53A  
bit2  
PWM-P PWM-EN  
bit1  
bit0  
Figure 21. Configuration Register Description  
Internal Hex Address:0x20  
PWM-EN: PWM Input Enable. Writing a 1 = Enable, and a 0 = Ignore (default).  
PWM-P: PWM Input Polarity. Writing a 0 = Active High (default) and a 1 = Active Low.  
53A: Assign D53 diode to BankA. Writing a 0 assigns D53 to BankB (default) and a 1 assigns D53 to BankA.  
62A: Assign D62 diode to BankA. Writing a 0 assigns D62 to BankB (default) and a 1 assigns D62 to BankA.  
ALS-ENA: Enable ALS on BankA. Writing a 1 enables ALS control of diode current and a 0 (default) forces  
the BankA current to the value stored in the BankA brightness register. The ALS-EN bit must be set to a 1 for  
the ALS block to control the BankA brightness.  
ALS-ENB: Enable ALS on BankB. Writing a 1 enables ALS control of diode current and a 0 (default) forces  
the BankB current to the value stored in the BankB brightness register. The ALS-EN bit must be set to a 1 for  
the ALS block to control the BankB brightness. The ALS function for BankB is different than bankA in that the  
ALS will only enable and disable the BankB diodes depending on the ALS zone chosen by the user. BankA  
utilizes the 5 different zone brightness registers (Addresses 0x70 to 0x74).  
ALS-EN: Enables ALS monitoring. Writing a 1 enables the ALS monitoring circuitry and a 0 disables it. This  
feature can be enabled without having the current sinks or charge pump active. The ALS value is updated in  
register 0x40 (ALS Zone Register)  
ALSF: ALS Interrupt Enable. Writing a 1 sets the D1B/INT pin to the ALS interrupt pin and writing a 0 (default)  
sets the pin to a BankB current sink.  
Options Register  
Register Address: 0x30  
GT1  
bit7  
GT0  
bit6  
RD2  
bit5  
RD1  
bit4  
RD0  
bit3  
RU2  
bit2  
RU1  
bit1  
RU0  
bit0  
Figure 22. Options Register  
Internal Hex Address: 0x30  
14  
Copyright © 2010–2018, Texas Instruments Incorporated  
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
RD0-RD2: Diode Current Ramp Down Step Time. : ‘000’ = 6 µs, ‘001’ = 0.77 ms, ‘010’ = 1.5 ms, ‘011’ = 3  
ms, ‘100’ = 6 ms, ‘101’ = 12 ms, ‘110’ = 25ms, ‘111’ = 50ms  
RU0-RU2: Diode Current Ramp Up Step Time. : ‘000’ = 6 µs, ‘001’ = 0.77 ms, ‘010’ = 1.5 ms, ‘011’ = 3 ms,  
‘100’ = 6 ms, ‘101’ = 12 ms, ‘110’ = 25ms, ‘111’ = 50ms  
GT0-GT1: Gain Transition Filter. The value stored in this register determines the filter time used to make a  
gain transition in the event of an input line step. Filter times = ‘00’ = 3-6 ms, ‘01’ = 0.8-1.5 ms, ‘10’ = 20 µs,  
On LM3535-2ALS, '11' = 1µs, On LM3535, ‘11’ = DO NOT USE  
The Ramp-Up and Ramp-Down times follow the equatios: TRAMP = (NStart – NTarget) × Ramp-Step Time  
DxA Brightness Control  
Register Address: 0xA0  
MSB  
LSB  
1
bit7  
DxA6  
bit6  
DxA5  
bit5  
DxA4  
bit4  
DxA3  
bit3  
DxA2  
bit2  
DxA1  
bit1  
DxA0  
bit0  
DxB Brightness Control  
Register Address: 0xB0  
MSB  
LSB  
1
bit7  
1
bit6  
ALSZT2 ALSZT1 ALSZT0  
DxB2  
bit2  
DxB1  
bit1  
DxB0  
bit0  
bit5  
bit4  
bit3  
DxC Brightness Control  
Register Address: 0xC0  
MSB  
LSB  
1
bit7  
1
bit6  
1
bit5  
1
bit4  
1
bit3  
D1C2  
bit2  
D1C1  
bit1  
D1C0  
bit0  
Figure 23. Brightness Control Register Description  
Internal Hex Address: 0xa0 (Groupa), 0xb0 (Groupb), 0xc0 (Groupc)  
NOTE  
DxA6-DxA0: Sets Brightness for DxA pins (GroupA). 1111111 = Fullscale. Code 0 in this  
register disables the BankA current sinks.  
DxB2-DxB0: Sets Brightness for DxB pins (GroupB). 111 = Fullscale  
ALSZT2-ALSZT0: Sets the Brightness Zone boundary used to enable and disable BankB  
diodes based upon ambient lighting conditions.  
DxC2-DxC0: Sets Brightness for D1C pin. 111 = Fullscale  
The BankA Current can be approximated by Equation 1 where N = BRC = the decimal  
value stored in either the BankA Brightness Register or the five different ALS Zone  
Brightness Registers:  
ILED (mA) ö 25 x 0.85[44 œ {(N+1)/2.91}]  
Or  
BRC (#) ö 127+17.9 x LN(ILED(mA)/25 mA)  
(1)  
Copyright © 2010–2018, Texas Instruments Incorporated  
15  
 
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
Table 1. ILED vs Brightness Register Data  
BankA or  
ALS  
Brightness  
Data  
% of  
ILED_MAX  
BankA or ALS  
Brightness Data  
% of ILED_MAX  
BankA or ALS  
Brightness Data  
% of ILED_MAX  
BankA or ALS % of ILED_MAX  
Brightness  
Data  
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0.000%  
0.166%  
0.175%  
0.184%  
0.194%  
0.204%  
0.214%  
0.226%  
0.237%  
0.250%  
0.263%  
0.276%  
0.291%  
0.306%  
0.322%  
0.339%  
0.356%  
0.375%  
0.394%  
0.415%  
0.436%  
0.459%  
0.483%  
0.508%  
0.535%  
0.563%  
0.592%  
0.623%  
0.655%  
0.689%  
0.725%  
0.763%  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0111011  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111111  
0.803%  
0.845%  
0.889%  
0.935%  
0.984%  
1.035%  
1.089%  
1.146%  
1.205%  
1.268%  
1.334%  
1.404%  
1.477%  
1.554%  
1.635%  
1.720%  
1.809%  
1.904%  
2.003%  
2.107%  
2.217%  
2.332%  
2.454%  
2.582%  
2.716%  
2.858%  
3.007%  
3.163%  
3.328%  
3.502%  
3.684%  
3.876%  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
4.078%  
4.290%  
4.514%  
4.749%  
4.996%  
5.257%  
5.531%  
5.819%  
6.122%  
6.441%  
6.776%  
7.129%  
7.501%  
7.892%  
8.303%  
8.735%  
9.191%  
9.669%  
10.173%  
10.703%  
11.261%  
11.847%  
12.465%  
13.114%  
13.797%  
14.516%  
15.272%  
16.068%  
16.905%  
17.786%  
18.713%  
19.687%  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
20.713%  
21.792%  
22.928%  
24.122%  
25.379%  
26.701%  
28.092%  
29.556%  
31.096%  
32.716%  
34.420%  
36.213%  
38.100%  
40.085%  
42.173%  
44.371%  
46.682%  
49.114%  
51.673%  
54.365%  
57.198%  
60.178%  
63.313%  
66.611%  
70.082%  
73.733%  
77.574%  
81.616%  
85.868%  
90.341%  
95.048%  
100.000%  
GroupB and GroupC Brightness Levels = 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 25mA  
ALS Zone Register  
Register Address: 0x40  
MSB  
LSB  
1
bit7  
1
bit6  
1
bit5  
1
bit4  
FLAG  
bit3  
ZONE2 ZONE1 ZONE0  
bit2  
bit1  
bit0  
Figure 24. Als Zone Register Description  
Internal Hex Address: 0x40  
ZONE0-ZONE2: ALS Zone information: '000’ = Zone0, ‘001’ = Zone1, ‘010’ = Zone2, ‘011’ = Zone3, ‘100’ =  
Zone4. Other combinations not used  
FLAG: ALS Transition Flag. 1 = Transition has occurred. 0 = No Transition. The FLAG bit is cleared once the  
0x40 register has been read.  
16  
Copyright © 2010–2018, Texas Instruments Incorporated  
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
ALS Control / SI Rev Register  
Register Address: 0x50  
MSB  
LSB  
ALS-EN  
bit7  
AVE2  
bit6  
AVE1  
bit5  
AVE0  
bit4  
0
bit3  
0
bit2  
Rev1  
bit1  
Rev0  
bit0  
Figure 25. ALS Control / Silicon Revision Register Description  
Internal Hex Address: 0x50  
Rev0-Rev1 : Stores the Silicon Revision value. LM3535 = 11  
AVE2-AVE0: Sets Averaging Time for ALS sampling. Need two to three Averaging periods to make transition  
decision. 000 = 25 ms, 001 = 50 ms, 010 = 100 ms 011 = 200 ms, 100 = 400 ms, 101 = 800 ms 110 = 1.6 s,  
111 = 3.2s  
Internal ALS Resistor Register  
Register Address: 0x51  
MSB  
LSB  
R3  
bit7  
R2  
bit6  
R1  
bit5  
R0  
bit4  
RFU  
bit3  
RFU  
bit2  
RFU  
bit1  
RFU  
bit0  
Figure 26. ALS Resistor Control Register Description  
Internal Hex Address: 0x51  
R0-R3: Sets the internal ALS resistor value  
Table 2. Internal ALS Resistor Table  
R3  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
R2  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
R1  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
R0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
ALS RESISTOR VALUE ()  
High Impedance  
13.6 k  
9.08 k  
5.47 k  
2.32 k  
1.99 k  
1.86 k  
1.65 k  
1.18 k  
1.1 k  
1.06 k  
986  
804  
764  
745  
711  
Zone Boundary Registers  
Register Address: 0x60, 0x61, 0x62, 0x63  
MSB  
LSB  
ZB7  
bit7  
ZB6  
bit6  
ZB5  
bit5  
ZB4  
bit4  
ZB3  
bit3  
ZB2  
bit2  
ZB1  
bit1  
ZB0  
bit0  
Register Address:  
0x60 = Zone Boundary 0  
0x61 = Zone Boundary 1  
0x62 = zone Boundary 2  
0x63 = Zone Boundary 3  
Figure 27. Zone Boundary Register Descriptions  
ZB7-ZB0: Sets Zone Boundary Lines with a Falling ALS voltage.  
0xFF w/ ALS Falling = 992.3 mV (typical).  
Copyright © 2010–2018, Texas Instruments Incorporated  
17  
 
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
VTRIP-LOW (typ) = [Boundary Code × 3.874mV] + 4.45mV  
For boundary codes 2 to 255. Code 0 and Code1 are mapped to equal the Code2 value.  
Each zone line has approx. 5.5mV of hysteresis between the falling and rising ALS trip points.  
Zone Boundary 0 is the line between ALS Zone 0 and Zone 1. Default Code = 0x33 or approximately 200 mV  
Zone Boundary 1 is the line between ALS Zone 1 and Zone 2. Default Code = 0x66 or approximately 400 mV  
Zone Boundary 2 is the line between ALS Zone 2 and Zone 3. Default Code = 0x99 or approximately 600 mV  
Zone Boundary 3 is the line between ALS Zone 3 and Zone 4. Default Code = 0xCC or approximately 800  
mV  
Zone Brightnes Registers  
Register Address: 0x70, 0x71, 0x72, 0x73, 0x74  
MSB  
LSB  
B7  
bit7  
B6  
bit6  
B5  
bit5  
B4  
bit4  
B3  
bit3  
B2  
bit2  
B1  
bit1  
B0  
bit0  
All Versions  
Register Address:  
0x70 = Zone 0 Brightness  
0x71 = Zone 1 Brightness  
0x72 = Zone 2 Brightness  
0x73 = Zone 3 Brightness  
0x74 = Zone 4 Brightness  
Figure 28. Zone Brightness Region Register Description  
B7-B0: Sets the ALS Zone Brightness Code. B7 always = 1 (unused). Use the formula found in the BankA  
Brightness Register Description (Figure 23) to set the desired target brightness. Default values can be  
overwritten  
Zone0 Brightness Address = 0x70. Default = 0x99 (25) or 0.084 mA  
Zone1 Brightness Address = 0x71. Default = 0xB6 (54) or 0.164 mA  
Zone2 Brightness Address = 0x72. Default = 0xCC (76) or 1.45 mA  
Zone3 Brightness Address = 0x73. Default = 0xE6 (102) or 6.17 mA  
Zone4 Brightness Address = 0x74. Default = 0xFF (127) or 25 mA  
18  
Copyright © 2010–2018, Texas Instruments Incorporated  
 
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
8.2 Typical Application  
The LM3535 device is a highly integrated LED driver capable of driving 8 LEDs in parallel for large display  
applications. Independent LED control allows selection of a subset of the 6 main display LEDs for partial-  
illumination applications. In addition to the main bank of 6, the LM3535 is capable of driving an additional 2  
independently controlled LEDs to support Indicator applications.  
GROUP A  
GROUP B  
GROUP C  
VIO  
O
R
D1B/  
INT  
D1AD2AD3AD4A  
D1C/  
ALS  
D53 D62  
VIN  
VOUT  
C1+  
1µF  
1µF  
1µF  
1µF  
LM3535  
C1-  
C2+  
GND  
PWM  
C2-  
HWEN SDIO SCL  
I2C  
Control  
Signals  
Figure 29. LM3535 Typical Application  
8.2.1 Design Requirements  
A detailed design procedure is described based on a design example. For this design example, use the  
parameters listed in Table 3 as the input parameters.  
Table 3. Design Example Parameters  
DESIGN PARAMETER  
Input voltage VIN  
LED current maximum per channel 25 mA  
Operating frequency 1.33 MHz  
VALUE  
2.7 V to 5.5 V  
Copyright © 2010–2018, Texas Instruments Incorporated  
19  
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
8.2.2 Detailed Design Procedure  
8.2.2.1 Ambient Light Sensing  
8.2.2.1.1 Ambient Light Sensor Block  
The LM3535 incorporates an ambient light sensing interface (ALS) which translates an analog output ambient  
light sensor to a user specified brightness level. The ambient light sensing circuit has 4 programmable  
boundaries (ZB0 – ZB3) which define 5 ambient brightness zones. Each ambient brightness zone corresponds to  
a programmable brightness threshold (Z0T – Z4T).  
Furthermore, the ambient light sensing input features 15 internal software-selectable voltage setting resistors.  
This allows the LM3535 the capability of interfacing with a wide selection of ambient light sensors. Additionally,  
the ALS inputs can be configured as high impedance, thus providing for a true shutdown during low power  
modes. The ALS resistors are selectable through the ALS Resistor Select Register (see Table 2). Figure 30  
shows a functional block diagram of the ambient light sensor input.  
Vdd  
ALS Path Functional Diagram  
Vsns  
Zone  
Averager  
(LPF)  
Discriminator  
A/D  
VOUT  
bits 8  
7 bits  
ALS Resistor  
Select Register  
8 bits  
Z0 target light  
Z1 target light  
Z2 target light  
Z3 target light  
Z4 target light  
0
1
2
3
4
0
1
2
3
Zline  
Zline  
Zline  
Zline  
Light output  
targets for  
each of 5  
ambient  
Input Light  
Zone  
Definition  
Registers  
1
0
7 bits  
7 bits  
Ramp  
Control  
7 bits  
ALSRS  
LED Driver  
light zones  
Brightness  
User Selectable w/  
Typical Defaults  
3 bits  
3 bits  
User Selectable w/  
Typical Defaults  
Ramp-Up Ramp-Down  
Rate Rate  
Selection Selection  
ALS Select  
Figure 30. Ambient Light Sensor Functional Block Diagram  
8.2.2.1.2 ALS Operation  
The ambient light sensor input has a 0 to 1 V operational input voltage range. The Specifications shows the  
LM3535 with an ambient light sensor (AVAGO, APDS-9005) and the internal ALS Resistor Select Register set to  
0x40 (2.32 k). This circuit converts 0 to 1000 LUX light into approximately a 0 to 850 mV linear output voltage.  
The voltage at the active ambient light sensor input is compared against the 8 bit values programmed into the  
Zone Boundary Registers (ZB0-ZB3). When the ambient light sensor output crosses one of the ZB0 – ZB3  
programmed thresholds the internal ALS circuitry will smoothly transition the LED current to the new 7 bit  
brightness level as programmed into the appropriate Zone Target Register (Z0T – Z4T, see Figure 28).  
With bits [6:4] of the Configuration Register set to 1 (Bit6 = ALS Block Enable, Bit5 = BankB ALS Enable, Bit4 =  
BankA ALS Enable), the LM3535 is configured for ambient light current Control. In this mode the ambient light  
sensing input (ALS) monitors the output of analog output ambient light sensing photo diode and adjusts the LED  
current depending on the ambient light. The ambient light sensing circuit has 4 configurable ambient light  
boundaries (ZB0 – ZB3) programmed through the four (8-bit) Zone Boundary Registers. These zone boundaries  
define 5 ambient brightness zones.  
On start-up the 4 Zone Boundary Registers are pre-loaded with 0x33 (51d), 0x66 (102d), 0x99 (153d), and 0xCC  
(204d). The ALS input has a 1-V active input voltage range which makes the default Zone Boundaries approx.  
set at:  
20  
Copyright © 2010–2018, Texas Instruments Incorporated  
 
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
Zone Boundary 0 = 200 mV  
Zone Boundary 1 = 400 mV  
Zone Boundary 2 = 600 mV  
Zone Boundary 3 = 800 mV  
These Zone Boundary Registers are all 8-bit (readable and writable) registers. By default, the first zone (Z0) is  
defined between 0 and 200 mV, default for Z1 is defined between 200 mV and 400 mV, Z2 is defined between  
400 mV and 600 mV, Z3 is defined between 600 mV and 800 mV, and Z4 is defined between 800 mV and 1 V.  
The default settings for the 5 Zone Target Registers are 0x19, 0x33, 0x4C, 0x66, and 0x7F. This corresponds to  
LED brightness settings of 84 µA, 164 µA, 1.45 mA, 6.17 mA and 25 mA of current, respectively. See Figure 31.  
Vals_ref  
= 1V  
Full  
Scale  
Zone 4  
ZB3  
Zone 3  
ZB2  
ZB1  
ZB0  
Zone 2  
Zone 1  
Zone 0  
Z1T  
Z2T  
Z3T  
Z0T  
Z4T  
Ambient Light (lux)  
LED Driver Input Code (0-127)  
Figure 31. ALS Zone to LED Brightness Mapping  
8.2.2.1.2.1 ALS Configuration Example  
As an example, assume that the APDS-9005 is used as the ambient light sensing photo diode with its output  
connected to the ALS input. The ALS Resistor Select Register (Address 0x51) is loaded with 0x40 which  
configures the ALS input for a 2.32-kinternal pulldown resistor (see Table 2). This gives the output of the  
APDS-9005 a typical voltage swing of 0 to 875mV with a 0 to 1k LUX change in ambient light (0.875mV/Lux).  
Next, the Configuration Register (Address 0x20) is programmed with 0xDC, the ALS Control Register (Address  
0x50) programmed to 0x40 and the Control Register is programmed to 0x3F . This configures the device ALS  
interface for:  
Ambient Light Current Control for BankA enabled  
ALS circuitry enabled  
Assigns D53 and D62 to bankA  
Sets the ALS Averaging Time to 400 ms  
Next, the Control Register (Address 0x10) is programmed with 0x3F which enables the 6 LEDs via the I2C-  
compatible interface.  
Now assume that the APDS-9005 ambient light sensor detects a 100 LUX ambient light at its input. This forces  
the ambient light sensor output (and the ALS input) to 87.5 mV corresponding to Zone 0. Since Zone 0 points to  
the brightness code programmed in Zone Target Register 0 (loaded with code 0x19), the LED current becomes:  
ILED = ILED_FS ì ZoneTarget0 = 25 mA ì 0.336% ö 84 mA.  
(2)  
Copyright © 2010–2018, Texas Instruments Incorporated  
21  
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
Next assume that the ambient light changes to 500 LUX (corresponding to an ALS voltage of 437.5 mV). This  
moves the ambient light into Zone 2 which corresponds to Zone Target Register 2 (loaded with code 0x4C) the  
LED current then becomes:  
ILED = ILED_FS ì ZoneTarget2 = 25 mA ì 5.781% ö 1.45 mA  
(3)  
8.2.2.1.3 ALS Averaging Time  
The ALS averaging time is the time over which the averager block collects samples from the A/D converter and  
then averages them to pass to the discriminator block (see Figure 32). Ambient light sensor samples are  
averaged and then further processed by the discriminator block to provide rejection of noise and transient  
signals. The averager is configurable with 8 different averaging times to provide varying amounts of noise and  
transient rejection (see Figure 25). The discriminator block algorithm has a maximum latency of two averaging  
cycles, therefore the averaging time selection determines the amount of delay that will exist between a steady  
state change in the ambient light conditions and the associated change of the backlight illumination. For  
example, the A/D converter samples the ALS inputs at 16 kHz. If the averaging time is set to 800 ms, the  
averager sends the updated zone information to the discriminator every 800 ms. This zone information contains  
the average of approximately 12800 samples (800 ms × 16 kHz). Due to the latency of 2 averaging cycles, when  
there is a steady-state change in the ambient light, the LED current begins to transition to the appropriate target  
value after approximately 1600 ms have elapsed.  
The sign and magnitude of these averager outputs are used to determine whether the LM3535 should change  
brightness zones. The averager block follows the following rules to make a zone transition:  
The averager always begins with a Zone0 reading stored at start-up. If the main display LEDs are active  
before the ALS block is enabled, it is recommended that the ALS-EN bit be enabled at least 3 averaging  
cycles times before the ALS-ENA bit is enabled.  
The averager always rounds down to the lower zone in the case of a non-integer zone average (1.2 rounds to  
1 and 1.75 also rounds to 1). Figure 32 shows an example of how the Averager will make the zone decisions  
for different ambient conditions.  
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
Zone  
Average  
1.0 1.75 3.5  
4.0 2.25 2.25 1.5  
Averager  
Output  
1
1
3
4
2
2
1
Figure 32. Averager Calculation  
The two most current averaging samples are used to make zone change decisions.  
To make a zone change, data from three averaging cycles are needed (starting value, first transition, second  
transition or rest).  
To Increase the brightness zone, a positive averager zone output must be followed by a second positive  
averager output or a repeated Averager zone. ('+' to '+' or '+' to 'Rest')  
To decrease the brightness zone, a negative averager zone output must be followed by a second negative  
averager output or a repeated Averager zone. ('-' to '-' or '-' to 'Rest')  
In the case of two increases or decreases in the averager output, the LM3535 transitions to zone equal to the  
last averager output.  
Figure 33 provides a graphical representation of the behavior of the averager.  
22  
Copyright © 2010–2018, Texas Instruments Incorporated  
 
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
Averager Output  
”R‘ = Rest, += Increase, -= Decrease  
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
R
R
R
+
R
R
+
+
+
+
R
R
-
R
R
R
Brightness  
Zone  
0
4
0
0
4
0
1
3
4
1
3
4
3
1
4
4
0
4
4
0
1
4
0
1
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
-
-
-
-
Brightness  
Zone  
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
+
-
+
-
Brightness  
Zone  
Figure 33. Brightness Zone Change Examples  
Using the diagram for the ALS block (Figure 30), Figure 34 shows the flow of information starting with the A/D,  
transitioning to the averager, followed by the discriminator. Each state filters the previous output to help prevent  
unwanted zone to zone transitions.  
1 Ave  
Period  
ALS Input  
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
Averager Output  
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
LED Brightness  
Zone  
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
Figure 34. Ambient Light Input To Backlight Mapping  
Copyright © 2010–2018, Texas Instruments Incorporated  
23  
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
When using the ALS averaging functionality, it is important to remember that the averaging cycle is free running  
and is not synchronized with changing ambient lighting conditions. Due to the nature of the averager round down,  
an increase in brightness can take between 2 and 3 averaging cycles to change zones while a decrease in  
brightness can take between 1 and 2 averaging cycles to change. See Figure 25 for a list of possible averager  
periods. Figure 35 shows an example of how the perceived brightness change time can vary.  
1 Ave  
Period  
Zone4  
Zone3  
Zone2  
Zone1  
Zone0  
Averager  
Output  
1
1
3
4
2
2
1
t
=
BRGT-CHANGE  
2.75 Average  
Time  
t
=
BRGT-CHANGE  
1.75 Average  
Time  
Figure 35. Perceived Brightness Change Time  
8.2.2.1.4 Ambient Light Current Control + PWM  
The ambient light current control can also be a function of the PWM input duty cycle. Assume the LM3535 is  
configured as described in the previous example, but this time the Enable PWM bit set to 1 (Configuration  
Register bit [0]). Figure 36 shows how the different blocks (PWM and ALS) influence the LED current.  
Dig Code  
Active Zone  
Target  
1
Register  
7 bits  
7 bits  
LED Ramp  
Rate Control  
DAC  
7 bits  
BRT  
Register  
0
7 bits  
Note 1  
CODE  
3 bits  
A
3 bits  
Ramp Rate  
Increasing  
Ramp Rate  
Decreasing  
V
ALS Select  
OUT  
I
= 25 mA  
FS  
Full Scale  
Current  
LED  
Driver  
PWM Polarity Bit  
(0 = active high,  
1 = active low)  
I
LED  
Note 3  
EN_PWM bit  
PWM  
Note 2  
PWM  
D
Note 1: A  
Is a Scaler between 0 and 1 based on the Brightness Data or Zone Target Data Depending on the ALS Select Bit  
Is a Scaler between 0 and 1 and corresponds to the duty cycle of the PWM input signal  
CODE  
Note 2:  
D
PWM  
Note 3: For EN_PWM bit = 1  
= I x A x D  
PWM  
I
LED  
FS CODE  
For EN_PWM bit = 0  
I
= I x A  
FS CODE  
LED  
Figure 36. Current Control Block Diagram  
24  
Copyright © 2010–2018, Texas Instruments Incorporated  
 
 
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
8.2.2.1.4.1 ALS + PWM Example  
In this example, the APDS-9005 sensor detects that the ambient light has changed to 1 kLux. The voltage at the  
ALS input is now approximately 875 mV and the ambient light falls within Zone 5. This causes the LED  
brightness to be a function of Zone Target Register 5 (loaded with 0x7F). Now assume the PWM input is also  
driven with a 50% duty cycle pulsed waveform. The LED current now becomes:  
ILED = ILED_FS ì ZoneTarget5 ì D = 25 mA ì 100% ì 50% ö 12.5 mA  
(4)  
8.2.2.2 LED Configurations  
The LM3535 has a total of 8 current sinks capable of sinking 200 mA of total diode current. These 8 current sinks  
are configured to operate in three independently controlled lighting regions. GroupA has four dedicated current  
sinks, while GroupB and GroupC each have one. To add greater lighting flexibility, the LM3535 has two  
additional drivers (D53 and D62) that can be assigned to either GroupA or GroupB through a setting in the  
general purpose register.  
At start-up, the default condition is four LEDs in GroupA, three LEDs in GroupB and a single LED in GroupC  
(NOTE: GroupC only consists of a single current sink (D1C) under any configuration). Bits 53A and 62A in the  
general purpose register control where current sinks D53 and D62 are assigned. By writing a 1 to the 53A or 62A  
bits, D53 and D62 become assigned to the GroupA lighting region. Writing a 0 to these bits assigns D53 and  
D62 to the GroupB lighting region. With this added flexibility, the LM3535 is capable of supporting applications  
requiring 4, 5, or 6 LEDs for main display lighting, while still providing additional current sinks that can be used  
for a wide variety of lighting functions.  
8.2.2.3 Maximum Output Current, Maximum LED Voltage, Minimum Input Voltage  
The LM3535 can drive 8 LEDs at 25 mA each (GroupA , GroupB, GroupC) from an input voltage as low as 3.2 V,  
as long as the LEDs have a forward voltage of 3.6 V or less (room temperature).  
The statement above is a simple example of the LED drive capability of the LM3535. The statement contains the  
key application parameters that are required to validate an LED-drive design using the LM3535: LED current  
(ILEDx), number of active LEDs (Nx), LED forward voltage (VLED), and minimum input voltage (VIN-MIN).  
Equation 5 and Equation 6 can be used to estimate the maximum output current capability of the LM3535:  
ILED_MAX = [(1.5 x VIN) – VLED – (IADDITIONAL × ROUT)] / [(Nx × ROUT) + kHRx  
]
(5)  
(6)  
ILED_MAX = [(1.5 x VIN ) - VLED – (IADDITIONAL × 2.4 )] / [(Nx × 2.4 ) + kHRx  
]
IADDITIONAL is the additional current that could be delivered to the other LED groups.  
ROUT – Output resistance. This parameter models the internal losses of the charge pump that result in voltage  
droop at the pump output VOUT. Since the magnitude of the voltage droop is proportional to the total output  
current of the charge pump, the loss parameter is modeled as a resistance. The output resistance of the LM3535  
is typically 2.4 (VIN = 3.6 V, TA = 25°C) — see Equation 7:  
VVOUT = (1.5 × VIN) – [(NA × ILEDA + NB × ILEDB + NC × ILEDC) × ROUT  
]
(7)  
kHR – Headroom constant. This parameter models the minimum voltage required to be present across the current  
sinks for them to regulate properly. This minimum voltage is proportional to the programmed LED current, so the  
constant has units of mV/mA. The typical kHR of the LM3535 is 4mV/mA — see Equation 8:  
(VVOUT – VLEDx) > kHRx × ILEDx  
(8)  
(9)  
Typical Headroom Constant Values kHRA = kHRB = kHRC = 4 mV/mA  
Equation 5 is obtained from combining Equation 7 (the ROUT equation) with Equation 8 (the kHRx equation) and  
solving for ILEDx. Maximum LED current is highly dependent on minimum input voltage and LED forward voltage.  
Output current capability can be increased by raising the minimum input voltage of the application, or by  
selecting an LED with a lower forward voltage. Excessive power dissipation may also limit output current  
capability of an application.  
Copyright © 2010–2018, Texas Instruments Incorporated  
25  
 
 
 
 
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
8.2.2.3.1 Total Output Current Capability  
The maximum output current that can be drawn from the LM3535 is 200 mA.  
DRIVER TYPE  
MAXIMUM Dxx CURRENT  
DxA  
DxB  
D1C  
25 mA per DxA pin  
25 mA per DxB pin  
25 mA  
8.2.2.4 Parallel Connected and Unused Outputs  
Connecting the outputs in parallel does not affect internal operation of the LM3535 and has no impact on the  
Electrical Characteristics and limits previously presented. The available diode output current, maximum diode  
voltage, and all other specifications provided in the Electrical Characteristics table apply to this parallel output  
configuration, just as they do to the standard LED application circuit.  
All Dx current sinks utilize LED forward voltage sensing circuitry to optimize the charge-pump gain for maximum  
efficiency. Due to the nature of the sensing circuitry, TI recommends not leaving any of the Dx pins open when  
the current sinks are enabled (ENx bits are set to 1). Leaving Dx pins unconnected forces the charge-pump into  
3/2× mode over the entire VIN range negating any efficiency gain that could have been achieved by switching to  
1× mode at higher input voltages.  
If the D1B or D1C drivers are not going to be used, make sure that the ENB and ENC bits in the general purpose  
register are set to 0 to ensure optimal efficiency.  
8.2.2.5 Power Efficiency  
Efficiency of LED drivers is commonly taken to be the ratio of power consumed by the LEDs (PLED) to the power  
drawn at the input of the part (PIN). With a 3/2× – 1× charge pump, the input current is equal to the charge pump  
gain times the output current (total LED current). The efficiency of the LM3535 can be predicted as follow:  
PLEDTOTAL = (VLEDA × NA × ILEDA) + (VLEDB × NB × ILEDB) + (VLEDC × ILEDC  
PIN = VIN × IIN  
)
(10)  
(11)  
(12)  
(13)  
PIN = VIN × (GAIN × ILEDTOTAL + IQ)  
E = (PLEDTOTAL / PIN)  
The LED voltage is the main contributor to the charge-pump gain selection process. Use of low forward-voltage  
LEDs (3 V to 3.5 V) allows the LM3535 to stay in the gain of 1× for a higher percentage of the lithium-ion battery  
voltage range when compared to the use of higher forward voltage LEDs (3.5 V to 4 V). See LED Forward  
Voltage Monitoring for a more detailed description of the gain selection and transition process.  
For an advanced analysis, TI recommends that power consumed by the circuit (VIN x IIN) for a given load be  
evaluated rather than power efficiency.  
8.2.2.6 Power Dissipation  
The power dissipation (PDISS) and junction temperature (TJ) can be approximated with the equations below. PIN is  
the power generated by the 3/2× – 1× charge pump, PLED is the power consumed by the LEDs, TA is the ambient  
temperature, and RθJA is the junction-to-ambient thermal resistance for the DSBGA 20-bump package. VIN is the  
input voltage to the LM3535, VLED is the nominal LED forward voltage, N is the number of LEDs and ILED is the  
programmed LED current.  
PDISS = PIN – PLEDA - PLEDB – PLEDC  
(14)  
(15)  
(16)  
PDISS= (GAIN × VIN × IGroupA + GroupB + GroupC ) – (VLEDA × NA × ILEDA) – (VLEDB × NB × ILEDB) – (VLEDC × ILEDC  
)
TJ = TA + (PDISS x RθJA  
)
The junction temperature rating takes precedence over the ambient temperature rating. The LM3535 may be  
operated outside the ambient temperature rating, so long as the junction temperature of the device does not  
exceed the maximum operating rating of 110°C. The maximum ambient temperature rating must be derated in  
applications where high power dissipation and/or poor thermal resistance causes the junction temperature to  
exceed 110°C.  
26  
Copyright © 2010–2018, Texas Instruments Incorporated  
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
8.2.2.7 Thermal Protection  
Internal thermal protection circuitry disables the LM3535 when the junction temperature exceeds 150°C (typical).  
This feature protects the device from being damaged by high die temperatures that might otherwise result from  
excessive power dissipation. The device recovers and operates normally when the junction temperature falls  
below 125°C (typical). It is important that the board layout provide good thermal conduction to keep the junction  
temperature within the specified operating ratings.  
8.2.2.8 Capacitor Selection  
The LM3535 requires 4 external capacitors for proper operation (C1 = C2 = CIN = COUT = 1 µF). Surface-mount  
multi-layer ceramic capacitors are recommended. These capacitors are small, inexpensive and have very low  
equivalent series resistance (ESR < 20 mtypical). Tantalum capacitors, OS-CON capacitors, and aluminum  
electrolytic capacitors are not recommended for use with the LM3535 due to their high ESR, as compared to  
ceramic capacitors.  
For most applications, ceramic capacitors with X7R or X5R temperature characteristic are preferred for use with  
the LM3535. These capacitors have tight capacitance tolerance (as good as ±10%) and hold their value over  
temperature (X7R: ±15% over –55°C to 125°C; X5R: ±15% over –55°C to 85°C).  
Capacitors with Y5V or Z5U temperature characteristic are generally not recommended for use with the LM3535.  
Capacitors with these temperature characteristics typically have wide capacitance tolerance (+80%, –20%) and  
vary significantly over temperature (Y5V: +22%, –82% over –30°C to +85°C range; Z5U: +22%, –56% over  
+10°C to +85°C range). Under some conditions, a nominal 1µF Y5V or Z5U capacitor could have a capacitance  
of only 0.1 µF. Such detrimental deviation is likely to cause Y5V and Z5U capacitors to fail to meet the minimum  
capacitance requirements of the LM3535.  
The recommended voltage rating for the capacitors is 10 V to account for DC bias capacitance losses.  
8.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
180  
170  
4 LEDs @ 25 mA each  
160  
150  
140  
130  
120  
110  
100  
90  
V
= 3.6V  
LED  
V
= 3.3V  
LED  
V
= 3.0V  
LED  
V
= 3.3V  
LED  
4 LEDs @ 25 mA Each  
V
= 3.0V  
LED  
80  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
V
IN  
V
IN  
Figure 37. Input Current vs Input Voltage 4 LEDs  
Figure 38. LED Drive Efficiency vs Input Voltage 4 LEDs  
Copyright © 2010–2018, Texas Instruments Incorporated  
27  
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
260  
100  
90  
80  
70  
60  
50  
6 LEDs @ 25 mA each  
240  
220  
200  
180  
160  
140  
V
= 3.6V  
LED  
V
= 3.3V  
LED  
V
= 3.0V  
LED  
V
= 3.3V  
LED  
6 LEDs @ 25 mA Each  
V
= 3.0V  
LED  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
V
(V)  
IN  
V
IN  
Figure 39. Input Current vs Input Voltage 6 LEDs  
Figure 40. LED Drive Efficiency vs Input Voltage 6 LEDs  
340  
100  
8 LEDs @ 25 mA each  
90  
300  
260  
220  
180  
V
= 3.6V  
LED  
V
= 3.3V  
LED  
80  
70  
60  
50  
V
= 3.0V  
LED  
V
= 3.3V  
LED  
V
= 3.0V  
8 LEDs @ 25 mA Each  
LED  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
V
(V)  
IN  
V
IN  
(V)  
Figure 41. Input Current vs Input Voltage 8 LEDs  
Figure 42. LED Drive Efficiency vs Input Voltage 8 LEDs  
1.0  
0.9  
0.8  
100  
6 LEDs @ 25 mA each  
V
= 3.3V  
LED  
90  
80  
70  
60  
50  
T
A
= +85°C  
0.7  
0.6  
0.5  
0.4  
0.3  
T
= -30°C  
A
T
A
= +85°C  
A
T
= +25°C  
A
0.2  
0.1  
0.0  
BRC = 127  
6 LEDs in BankA  
T
= -30°C and +25°C  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5  
(V)  
V
(V)  
IN  
V
IN  
Figure 43. LED Drive Efficiency vs Input Voltage Tri-Temp  
6 LEDs  
Figure 44. ILED Matching vs Input Voltage 6 LEDs  
9 Power Supply Recommendations  
The LM3535 is designed to operate from an input voltage supply range between 2.7 V and 5.5 V. This input  
supply must be well regulated and capable to supply the required input current. If the input supply is located far  
from the LM3535 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
28  
Copyright © 2010–2018, Texas Instruments Incorporated  
LM3535  
www.ti.com.cn  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
10 Layout  
10.1 Layout Guidelines  
Proper board layout helps to ensure optimal performance of the LM3535 circuit. The following guidelines are  
recommended:  
Place capacitors as close as possible to the LM3535, preferably on the same side of the board as the device.  
Use short, wide traces to connect the external capacitors to the LM3535 to minimize trace resistance and  
inductance.  
Use a low resistance connection between ground and the GND pins of the LM3535. Using wide traces and/or  
multiple vias to connect GND to a ground plane on the board is most advantageous.  
10.2 Layout Example  
Figure 45. Minimum Layout  
版权 © 2010–2018, Texas Instruments Incorporated  
29  
LM3535  
ZHCSHT2B AUGUST 2010REVISED MARCH 2018  
www.ti.com.cn  
11 器件和文档支持  
11.1 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com 上的器件产品文件夹。请单击右上角的提醒我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
11.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
30  
版权 © 2010–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3535TME/NOPB  
LM3535TMX/NOPB  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
YFQ  
YFQ  
20  
20  
250  
RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-30 to 85  
-30 to 85  
3535  
3535  
3000 RoHS & Green  
SNAGCU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3535TME/NOPB  
LM3535TMX/NOPB  
DSBGA  
DSBGA  
YFQ  
YFQ  
20  
20  
250  
178.0  
178.0  
8.4  
8.4  
1.89  
1.89  
2.2  
2.2  
0.76  
0.76  
4.0  
4.0  
8.0  
8.0  
Q1  
Q1  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3535TME/NOPB  
LM3535TMX/NOPB  
DSBGA  
DSBGA  
YFQ  
YFQ  
20  
20  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
3000  
Pack Materials-Page 2  
MECHANICAL DATA  
YFQ0020
D
0.600±0.075  
E
TMD20XXX (Rev D)  
D: Max = 2.045 mm, Min =1.985 mm  
E: Max = 1.64 mm, Min = 1.58 mm  
4215083/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

LM3535TMX

Multi-Display LED Driver with Ambient Light Sensing and Dynamic Backlight Control Compatibility
NSC

LM3535TMX-2ALS

Multi-Display LED Driver with Ambient Light Sensing and Dynamic Backlight Control Compatibility
NSC

LM3535TMX-2ALS/NOPB

Multi-Display LED Driver with Ambient Light Sensing and Dynamic Backlight Control Compatibility 20-DSBGA -30 to 85
TI

LM3535TMX/NOPB

具有环境光感应和动态背光控制兼容性的多显示屏 LED 驱动器 | YFQ | 20 | -30 to 85
TI

LM3537

LM3537 8-Channel WLED Driver with Four Integrated LDOs
TI

LM3537TME

LM3537 8-Channel WLED Driver with Four Integrated LDOs
TI

LM3537TME/NOPB

具有四个集成 LDO 的 8 通道 WLED 驱动器 | YFQ | 30 | -30 to 110
TI

LM3537TMX

LM3537 8-Channel WLED Driver with Four Integrated LDOs
TI

LM3537TMX/NOPB

具有四个集成 LDO 的 8 通道 WLED 驱动器 | YFQ | 30 | -30 to 110
TI

LM3538

LM3538 6-Channel WLED Driver with Four Integrated LDOs
TI

LM3538TME

LM3538 6-Channel WLED Driver with Four Integrated LDOs
TI

LM3538TME/NOPB

具有四个集成 LDO 的 6 通道 WLED 驱动器 | YFQ | 30 | -30 to 110
TI