LM3642TLE/NOPB [TI]

具有高侧电流的 1.5A 同步升压 LED 闪光灯驱动器 | YZR | 9 | -40 to 85;
LM3642TLE/NOPB
型号: LM3642TLE/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有高侧电流的 1.5A 同步升压 LED 闪光灯驱动器 | YZR | 9 | -40 to 85

驱动 闪光灯 驱动器
文件: 总30页 (文件大小:765K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
LM3642 具有高侧电流源的 1.5A 同步升压 LED 闪光灯驱动器  
1 特性  
3 说明  
1
适用于单 LED 1.5A 高侧电流源  
LM3642 是一款适用于高电流白色 LED 4MHz 固定  
频率同步升压转换器及 1.5A 恒流驱动器。高侧电流源  
支持 LED 阴极接地操作,提供的闪光灯电流最高可达  
1.5A。自适应调节方法可确保电流源持续处于可调节  
状态,并且实现了效率最大化。  
手电筒模式(电流为 100mA)和闪存模式(电流为  
1A 1.5A)下的效率超过 85%  
93mA 1.5A 精确可编程闪光灯 LED 电流  
精确的可编程手电筒 LED 电流:  
48.4mA 375mA  
LM3642 由一个兼容 I2C 的接口控制。相关特性 包括  
硬件闪光使能 (STROBE),允许通过逻辑输入触发闪  
光灯脉冲,其 TX 输入可强制闪光灯脉冲进入低电流手  
电筒模式,支持与 RF 功率放大器事件或其他高电流条  
件实现同步。  
24mA 187mALT 选项)  
小型解决方案尺寸:< 20mm2  
用于电池保护的软启动运行  
硬件选通脉冲使能  
针对射频 (RF) 功率放大器脉冲事件的同步输入  
VIN 闪光灯监视器优化  
400kHz I2C 兼容接口  
该器件的开关频率为 4MHz,具备过压保护和可调节限  
流设置,因此可采用微型超薄电感和 10μF 陶瓷电容。  
该器件采用 9 凸点小型 DSBGA 封装,工作温度范围  
–40°C 85°C。  
0.5mm 间距,9 凸点芯片尺寸球状引脚栅格阵列  
(DSBGA) 封装  
器件信息(1)  
2 应用  
器件型号  
LM3642  
封装  
封装尺寸(最大值)  
可拍照手机 LED 闪光灯  
DSBGA (9)  
1.69mm x 1.64mm  
(1) 要了解所有可用封装,请见数据表末尾的可订购产品附录。  
简化电路原理图  
1 mH  
SW  
OUT  
LED  
IN  
2.5V to 5.5V  
10 mF  
10 mF  
STROBE  
TX/TORCH  
SDA  
SCL  
Flash  
LED  
GND  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SNVS891  
 
 
 
 
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
目录  
7.5 Programming........................................................... 12  
7.6 Register Map........................................................... 15  
Application and Implementation ........................ 18  
8.1 Application Information............................................ 18  
8.2 Typical Application ................................................. 18  
Power Supply Recommendations...................... 22  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements................................................ 6  
6.7 Typical Characteristics.............................................. 7  
Detailed Description .............................................. 9  
7.1 Overview ................................................................... 9  
7.2 Functional Block Diagram ......................................... 9  
7.3 Feature Description................................................. 10  
7.4 Device Functional Modes........................................ 11  
8
9
10 Layout................................................................... 22  
10.1 Layout Guidelines ................................................. 22  
10.2 Layout Example .................................................... 23  
11 器件和文档支持 ..................................................... 24  
11.1 器件支持................................................................ 24  
11.2 文档支持................................................................ 24  
11.3 ....................................................................... 24  
11.4 社区资源................................................................ 24  
11.5 静电放电警告......................................................... 24  
11.6 Glossary................................................................ 24  
12 机械、封装和可订购信息....................................... 24  
7
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision G (December 2014) to Revision H  
Page  
Changed Handling Ratings table to ESD Ratings table per SDS format; move Storage Temp to Abs Max table ............... 4  
Added "If an I2C command is used to terminate the flash event, TI recommends selecting a flash time-out level 100  
ms above the desired flash duration ." to end of Flash Time-Out subsection...................................................................... 10  
Changes from Revision F (December 2013) to Revision G  
Page  
已添加 引脚配置和功能部分,处理额定值表,特性 描述 部分,器件功能模式应用和实施部分,电源相关建议部  
分,布局部分,器件和文档支持部分以及机械、封装和可订购信息部分 ................................................................................ 1  
Added updated full Thermal Information ............................................................................................................................... 4  
Changes from Revision E (May 2013) to Revision F  
Page  
Deleted TX interrupt ............................................................................................................................................................... 9  
2
Copyright © 2012–2015, Texas Instruments Incorporated  
 
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
5 Pin Configuration and Functions  
YZR Package  
9-Pin DSBGA  
Top View  
Top View  
A1  
B1  
A2  
A3  
B3  
C3  
B2  
C2  
C1  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Step-up DC-DC converter output. Connect a 10-µF ceramic capacitor between this pin  
and GND.  
A1  
OUT  
Power  
A2  
A3  
B1  
SW  
GND  
LED  
Power  
Ground  
Output  
Drain connection for internal NMOS and synchronous PMOS switches.  
Ground  
High-side current source output for Flash LED.  
Active high hardware Flash enable. Drive STROBE high to turn on Flash pulse. Has an  
internal pulldown resistor of 300 kbetween STROBE and GND.  
B2  
B3  
C1  
STROBE  
IN  
Input  
Power  
Input  
Input voltage connection. Connect IN to the input supply, and bypass to GND with a 10-  
µF or larger ceramic capacitor.  
Configurable power amplifier synchronization input or configurable active high Torch  
enable. Has an internal pulldown resistor of 300 kbetween TX and GND.  
TX/TORCH  
C2  
C3  
SDA  
SCL  
Input/Output  
Input  
Serial data input/output.  
Serial clock input.  
Copyright © 2012–2015, Texas Instruments Incorporated  
3
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)(2)(3)  
MIN  
MAX  
UNIT  
VIN, VSW,VOUT  
–0.3  
6
V
VSCL, VSDA, VSTROBE, VTX, VLED  
the lesser of (VIN+0.3) w/  
Vmax  
–0.3  
V
Continuous power dissipation(4)  
Internally limited  
Junction temperature (TJ-MAX  
)
150  
See(5)  
150  
°C  
°C  
Maximum lead temperature (soldering)  
Storage temperature, Tstg  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) If Military/Aerospace specified devices are required, contact the TI Sales Office/Distributors for availability and specifications.  
(4) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ=150°C (typical) and  
disengages at TJ = 135°C (typical). Thermal shutdown is verified by design.  
(5) For detailed soldering specifications and information, refer to Texas Instruments Application Note 1112: DSBGA Wafer Level Chip Scale  
Package (SNVA009).  
6.2 ESD Ratings  
VALUE  
UNIT  
V(ESD)  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±2000  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
5.5  
UNIT  
V
VIN  
2.5  
–40  
–40  
Junction temperature (TJ)  
Ambient temperature (TA)(2)  
125  
85  
°C  
°C  
(1) All voltages are with respect to the potential at the GND pin.  
(2) In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may  
have to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX-OP  
=
125°C), the maximum power dissipation of the device in the application (PD-MAX), and the junction-to-ambient thermal resistance of the  
part/package in the application (RθJA), as given by the following equation: TA-MAX = TJ-MAX-OP – (RθJA × PD-MAX).  
6.4 Thermal Information  
LM3642  
THERMAL METRIC(1)  
YZR (DSBGA)  
9 PINS  
100.0  
0.7  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
16.4  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
3.2  
ψJB  
16.4  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
4
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
6.5 Electrical Characteristics  
MIN and MAX limits apply over the full operating ambient temperature range (40°C TA 85°C). Unless otherwise  
specified, TA = 25°C, VIN = 3.6 V.(1)(2)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
CURRENT SOURCE SPECIFICATIONS  
1-A flash, VOUT = 4 V  
–6%  
–8%  
1.04  
1.5  
6%  
8%  
A
A
1.5-A flash, VOUT = 4 V  
ILED  
Current source accuracy  
24-mA torch, VOUT = 4 V  
(LM3642-LT)  
–10%  
–10%  
24  
10%  
mA  
mA  
48.4 mA Torch, VOUT = 4 V  
ILED = 1.5 A  
48.4  
275  
150  
5
10%  
12%  
15%  
2.2%  
2.3%  
Flash  
Torch  
Current source regulation  
voltage  
VHR  
mV  
V
ILED = 24 mA/48.4 mA  
ON threshold  
–2.8%  
–2.7%  
Output overvoltage protection  
trip point  
VOVP  
OFF threshold  
4.88  
STEP-UP DC-DC CONVERTER SPECIFICATIONS  
RPMOS  
RNMOS  
PMOS switch on-resistance  
NMOS switch on-resistance  
IPMOS = 1 A  
INMOS = 1 A  
120  
90  
mΩ  
–17%  
–17%  
1.6  
15%  
15%  
ICL  
Input current limit  
A
V
1.88  
Input voltage flash monitor trip  
threshold  
VIVFM  
–3.2%  
2.9  
3.2%  
UVLO  
ƒSW  
IQ  
Undervoltage threhold  
Switching frequency  
Falling VIN  
–4%  
–9%  
2.8  
4
4%  
9%  
V
MHz  
mA  
µA  
Quiescent supply current  
Standby supply current  
Device not switching pass mode  
0.75  
1.6  
ISB  
Device disabled 2.5 V VIN 5.5 V  
4
Flash-to-torch LED current  
settling time  
TX low to high  
ILED = 1.5 A to 24 mA/48.4 mA  
tTX  
4
µs  
STROBE, TX VOLTAGE SPECIFICATIONS  
VIL  
VIH  
Input logic low  
Input logic high  
2.5 V VIN 5.5 V  
2.5 V VIN 5.5 V  
0
0.4  
VIN  
V
1.2  
I2C-COMPATIBLE INTERFACE SPECIFICATIONS (SCL, SDA)  
VIL  
Input logic low  
Input logic high  
Output logic low  
2.5 V VIN 5.5 V  
2.5 V VIN 4.2 V  
ILOAD = 3 mA  
0
0.4  
VIN  
V
VIH  
VOL  
1.2  
400  
mV  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Minimum (Min) and Maximum (Max) limits are specified by design, test, or statistical analysis. Typical (Typ) numbers are not verified, but  
do represent the most likely norm. Unless otherwise specified, conditions for typical specifications are: VIN = 3.6 V and TA = 25°C.  
Copyright © 2012–2015, Texas Instruments Incorporated  
5
 
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
6.6 Timing Requirements  
See Figure 1.  
MIN  
2.4  
100  
0
NOM  
MAX  
UNIT  
ns  
t1  
t2  
t3  
t4  
t5  
SCL clock frequency  
Data In setup time to SCL High  
Data out stable after SCL Low  
SDA low setup time to SCL low (start)  
SDA high hold time after SCL high (stop)  
ns  
ns  
100  
100  
ns  
ns  
t
1
SCL  
SDA_IN  
t
t
5
4
t
2
SDA_OUT  
t
3
Figure 1. I2C-Compatible Interface Specifications  
6
Copyright © 2012–2015, Texas Instruments Incorporated  
 
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
6.7 Typical Characteristics  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
0.400  
0.393  
0.386  
0.379  
0.372  
0.365  
0.358  
0.351  
+25°C  
0.344  
0.337  
0.330  
1.15  
+25°C  
+85°C  
- 40°C  
+85°C  
-40°C  
1.10  
1.05  
1.00  
2.5 2.7 2.9 3.1 3.2 3.4 3.6 3.7 3.9 4.1 4.2  
2.8 3.0 3.2 3.4 3.5 3.7 3.9 4.0 4.2 4.4 4.5  
VIN(V)  
VIN (V)  
Figure 2. Flash LED Current vs. VIN  
VLED = 3.8 V, ILED = 1.5 A  
Figure 3. Torch LED Current vs. VIN  
VLED = 3.7 V, ILED = 375 mA  
0.40  
1.60  
0.38  
0.35  
0.33  
0.30  
0.28  
0.25  
0.23  
0.20  
0.18  
0.15  
1.54  
1.48  
1.42  
1.36  
1.30  
1.24  
1.18  
1.12  
1.06  
1.00  
1.5A  
1.4A  
1.31A  
1.22A  
+25°C  
+85°C  
-40°C  
1.1125A  
2.8 3.1 3.4 3.7 3.9 4.2 4.5 4.7 5.0 5.3 5.5  
2.8 3.0 3.1 3.3 3.4 3.5 3.7 3.8 4.0 4.1 4.2  
VIN (V)  
VIN (V)  
Figure 5. Flash Headroom Voltage vs. VIN  
VLED = 3.8 V, ILED = 1 A  
Figure 4. High Codes Flash LED Current vs. VIN  
VLED = 3.8 V, Temp = 25°C  
0.20  
0.19  
0.18  
0.17  
0.16  
0.15  
0.15  
0.13  
0.12  
0.11  
5.30  
5.27  
5.24  
5.21  
5.18  
5.15  
5.12  
5.09  
5.06  
5.03  
5.00  
+25°C  
+85°C  
-40°C  
0.10  
2.5 2.7 2.9 3.1 3.2 3.4 3.6 3.7 3.9 4.1 4.2  
2.7 3.0 3.3 3.6 3.9 4.1 4.4 4.7 5.0 5.3 5.5  
VIN (V)  
VIN (V)  
Figure 6. Torch Headroom Voltage vs. VIN  
VLED = 3.7 V, ILED = 375 mA  
Figure 7. Output Voltage vs. VIN  
VLED = 3.8 V  
Copyright © 2012–2015, Texas Instruments Incorporated  
7
 
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
Typical Characteristics (continued)  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.80  
1.79  
1.78  
1.77  
1.76  
1.74  
1.73  
1.72  
1.71  
1.70  
1.68  
1.90  
+25°C  
+85°C  
- 40°C  
+25°C  
1.85  
+85°C  
- 40°C  
1.80  
1.75  
2.6 2.8 3.0 3.1 3.3 3.4 3.6 3.8 3.9 4.1 4.2  
VIN (V)  
2.6 2.8 3.0 3.1 3.3 3.4 3.6 3.8 3.9 4.1 4.2  
VIN (V)  
Figure 8. Peak Input Current Limit vs. VIN  
VLED = 3.8V, IIN Setting = 1.9 A  
Figure 9. Peak Input Current Limit vs. VIN  
VLED = 3.8 V, IIN Setting = 1.7 A  
2.00  
1.95  
1.90  
1.85  
1.80  
1.75  
1.70  
4.10  
4.09  
4.08  
4.07  
4.06  
4.05  
4.04  
4.03  
4.02  
4.01  
4.00  
+25°C  
+85°C  
- 40°C  
1.65  
+25°C  
+85°C  
-40°C  
1.60  
1.55  
1.50  
2.8 3.0 3.1 3.3 3.4 3.5 3.7 3.8 4.0 4.1 4.2  
2.7 2.9 3.1 3.3 3.5 3.6 3.8 4.0 4.2 4.4 4.5  
VIN (V)  
VIN (V)  
Figure 10. Average Input Current Limit vs. VIN  
VLED = 3.8 V, IIN Setting = 1.9 A  
Figure 11. Switching Frequency vs. VIN  
VLED = 3.8 V  
8
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
7 Detailed Description  
7.1 Overview  
The LM3642 is a high-power white LED flash driver capable of delivering up to 1.5 A into a single high-powered  
LED. The device incorporates a 4-MHz constant frequency-synchronous current-mode PWM boost converter and  
a single high-side current source to regulate the LED current over the 2.5-V to 5.5-V input voltage range.  
The LM3642 PWM converter switches and maintains at least VHR across the current source (LED). This  
minimum headroom voltage ensures that the current source remains in regulation. If the input voltage is above  
the LED voltage + current source headroom voltage, the device does not switch and turns the PFET on  
continuously (Pass Mode). In Pass Mode the difference between (VIN – ILED × RPMOS) and the voltage across the  
LED is dropped across the current source.  
The LM3642 has two logic inputs including a hardware Flash Enable (STROBE) and a Flash Interrupt input  
(TX/TORCH) designed to interrupt the flash pulse during high battery current conditions. Both logic inputs have  
internal 300-k(typical) pulldown resistors to GND.  
Control of the LM3642 is done via an I2C-compatible interface. This includes adjustment of the Flash and Torch  
current levels, changing the Flash Timeout Duration and changing the switch current limit. Additionally, there are  
flag and status bits that indicate flash current time-out, LED failure (open/short), device thermal shutdown, and  
VIN undervoltage conditions.  
7.2 Functional Block Diagram  
SW  
Over Voltage  
Comparator  
IN  
4 MHz  
Oscillator  
-
+
V
REF  
V
OVP  
80 mW  
OUT  
Input Voltage  
Flash Monitor  
UVLO  
I
LED  
PWM  
Control  
80 mW  
Thermal  
Shutdown  
+150oC  
LED  
Error  
Amplifier  
+
-
OUT-VHR  
Current Sense/  
Current Limit  
Slope  
Compensation  
Soft-Start  
SDA  
SCL  
Control  
Logic/  
Registers  
2
I
C
Interface  
GND  
TORCH/TX  
STROBE  
Copyright © 2012–2015, Texas Instruments Incorporated  
9
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Power Amplifier Synchronization (TX/TORCH)  
The TX pin is a Power Amplifier Synchronization input. This is designed to reduce the flash LED current and thus  
limit the battery current during high battery current conditions such as PA transmit events. When the LM3642 is  
engaged in a Flash event, and the TX pin is pulled high, the LED current is forced into Torch Mode at the  
programmed Torch current setting. If the TX pin is then pulled low before the Flash pulse terminates, the LED  
current will return to the previous Flash current level. At the end of the Flash time-out whether the TX pin is high  
or low, the LED current will turn off.  
7.3.2 Input Voltage Flash Monitor (IVFM)  
The LM3642 has the ability to adjust the flash current based upon the voltage level present at the IN pin utilizing  
an Input Voltage Flash Monitor. Upon an IVFM event, the set voltage threshold from the IVFM Mode Register  
sets the input voltage boundary that forces the LM3642 to stop ramping the flash current during start-up (Stop  
and Hold Mode).  
7.3.3 Fault and Protections  
7.3.3.1 Fault Operation  
Upon entering a fault condition, the LM3642 will set the appropriate flag in the Flags Register.  
7.3.3.2 Flash Time-Out  
The Flash Time-Out period sets the amount of time that the Flash Current is being sourced from the current  
source (LED). The LM3642 has 8 time-out levels ranging 100 ms to 800 ms in 100-ms steps. The Flash Time-  
Out period is controlled in the Flash Features Register (0x08). Flash Time-Out only applies to the Flash Mode  
operation. The mode bits in the Enable Register (0x0A) are cleared upon a Flash Time-out.  
If an I2C command is used to terminate the flash event, TI recommends selecting a flash time-out level 100 ms  
above the desired flash duration.  
7.3.3.3 Overvoltage Protection (OVP)  
The output voltage is limited to typically 5 V (see VOVP in Electrical Characteristics). In situations such as an open  
LED, the LM3642 will raise the output voltage in order to keep the LED current at its target value. When VOUT  
reaches 5 V (typ.) the overvoltage comparator will trip and turn off the internal NFET. When VOUT falls below the  
VOVP Off Threshold, the LM3642 begins switching again. The mode bits in the Enable Register are not cleared  
upon an OVP.  
7.3.3.4 Current Limit  
The LM3642 features selectable inductor current limits that are programmable through the Flash Feature  
Register of the I2C-compatible interface. When the inductor current limit is reached, the LM3642 will terminate  
the charging phase of the switching cycle.  
Since the current limit is sensed in the NMOS switch, there is no mechanism to limit the current when the device  
operates in Pass Mode. In Boost Mode or Pass Mode if VOUT falls below 2.3 V, the part stops switching, and the  
PFET operates as a current source limiting the current to 300 mA. This prevents damage to the LM3642 and  
excessive current draw from the battery during output short-circuit conditions. The mode bits in the Enable  
Register (0x0A) are not cleared upon a Current Limit event.  
NOTE  
Pulling additional current from the VOUT node during normal operation is not  
recommended.  
10  
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
Feature Description (continued)  
7.3.3.5 Undervoltage Lockout (UVLO)  
The LM3642 has an internal comparator that monitors the voltage at IN which will force the LM3642 into  
shutdown if the input voltage drops to 2.8 V. If the UVLO monitor threshold is tripped, the UVLO flag bit will be  
set in the Flags Register. If the input voltage rises above 2.8 V, the LM3642 will not be available for operation  
until there is an I2C read command initiated for the Flags Register. Upon a read, the flag register will be cleared,  
and normal operation can resume. This feature can be disabled by writing a ‘0’ to the UVLO EN bit in the Input  
Voltage Flash Monitor Register. The mode bits in the Enable Register are cleared upon a UVLO event.  
7.3.3.6 Thermal Shutdown (TSD)  
When the LM3642 device’s die temperature reaches 150°C the boost converter shuts down, and the NFET and  
PFET turn off, as does the current source (LED). When the thermal shutdown threshold is tripped, a '1' gets  
written to the corresponding bit of the Flags Register (Thermal Shutdown bit), and the LM3642 will go into  
standby. The LM3642 will only be allowed to restart after the Flags Register is read, clearing the fault flag. Upon  
restart, if the die temperature is still above 150°C, the LM3642 will reset the fault flag and re-enter standby. The  
mode bits in the Enable Register are cleared upon a TSD.  
7.3.3.7 LED and/or VOUT Fault  
The LED Fault flag in the Flags Register reads back a '1' if the part is active in Flash or Torch Mode and the LED  
output or the VOUT node experiences short condition. The LM3642 determines an LED open condition if the OVP  
threshold is crossed at the OUT pin while the device is in Flash or Torch Mode. An LED short condition is  
determined if the voltage at LED goes below 500 mV (typ.) while the device is in Torch or Flash Mode. There is a  
delay of 256-μs deglitch time before the LED flag is valid and 2.048 ms before the VOUT flag is valid. This delay is  
the time between when the Flash or Torch current is triggered and when the LED voltage and the output voltage  
is sampled. The LED flag can be reset by reading back the flags register. The mode bits in the Enable Register  
are cleared upon an LED and/or VOUT fault.  
7.4 Device Functional Modes  
7.4.1 Start-up (Enabling the Device)  
Turnon of the LM3642 Torch and Flash Modes can be done through the Enable Register. On start-up, when  
VOUT is less than VIN the internal synchronous PFET turns on as a current source and delivers 350 mA (typ.) to  
the output capacitor. During this time the current source (LED) is off. When the voltage across the output  
capacitor reaches 2.2V (typ.), the current source will turn on. At turnon the current source will step through each  
Flash or Torch level until the target LED current is reached. This gives the device a controlled turnon and limits  
inrush current from the VIN supply.  
7.4.2 Pass Mode  
The LM3642 starts up in Pass Mode and stays there until Boost Mode is needed to maintain regulation. If the  
voltage difference between VOUT and VLED falls below VHR, the device switches to Boost Mode. In Pass Mode the  
boost converter does not switch and the synchronous PFET turns fully on bringing VOUT up to VIN – ILED × RPMOS  
.
In Pass Mode the inductor current is not limited by the peak current limit. In this situation the output current must  
be limited to 2 A.  
7.4.3 Flash Mode  
In Flash Mode, the LED current source (LED) provides 16 target current levels from 93.75 mA to 1500 mA. The  
Flash currents are adjusted via the Current Control Register. Flash Mode is activated by the Enable Register, or  
by pulling the STROBE pin HIGH. Once the Flash sequence is activated the current source (LED) will ramp up to  
the programmed Flash current by stepping through all current steps until the programmed current is reached.  
When the part is enabled in the Flash Mode through the Enable Register, all mode bits in the Enable Register  
are cleared after a flash time-out event.  
Table 1 shows the I2C commands and the state of the mode bits, if the STROBE pin is used to enable the Flash  
Mode.  
Copyright © 2012–2015, Texas Instruments Incorporated  
11  
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
Device Functional Modes (continued)  
Table 1. Status of Mode Bits  
MODE CHANGE REQUIRED  
STATUS OF MODE BITS IN THE ENABLE REGISTER AFTER A FLASH  
Using Level Triggered STROBE to Flash  
Mode bits are cleared after a single flash. To reflash, 0x23 will have to be written  
to 0x0A.  
7.4.4 Torch Mode  
In Torch Mode, the current source (LED) is programmed via the Current Control Register. Torch Mode is  
activated by the Enable Register and/or by Enabling the part in TX/Torch pin configuration. Once the Torch Mode  
is enabled the current source will ramp up to the programmed Torch current level. The Ramp-Up and Ramp-  
Down times are independently adjustable via the Torch Ramp Register. Torch Mode is not affected by Flash  
Timeout. In the LM3642, the programmable torch current ranges from 48.4 mA to 375 mA. With the LM3642LT  
option, the programmable torch current ranges from 24 mA to 187 mA.  
7.4.5 Indicator Mode  
This mode is activated by the Enable Register. The LM3642 can be programmed to a current level that is 1/8th  
the torch current value in the Current Control Register. LM3642LT has only one setting of indicator current at 5  
mA.  
7.5 Programming  
7.5.1 I2C-Compatible Interface  
7.5.1.1 Data Validity  
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of  
the data line can only be changed when SCL is LOW.  
SCL  
SDA  
data  
change  
allowed  
data  
change  
allowed  
data  
valid  
data  
change  
allowed  
data  
valid  
Figure 12. Data Validity Diagram  
A pullup resistor between the controller's VIO line and SDA must be greater than [(VIO – VOL) / 3 mA] to meet  
the VOL requirement on SDA. Using a larger pullup resistor results in lower switching current with slower edges,  
while using a smaller pullup results in higher switching currents with faster edges.  
7.5.1.2 Start and Stop Conditions  
START and STOP conditions classify the beginning and the end of the I2C session. A START condition is  
defined as SDA signal transitioning from HIGH to LOW while SCL line is HIGH. A STOP condition is defined as  
the SDA transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and  
STOP conditions. The I2C bus is considered to be busy after a START condition and free after a STOP condition.  
During data transmission, the I2C master can generate repeated START conditions. First START and repeated  
START conditions are equivalent, function-wise.  
12  
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
Programming (continued)  
SDA  
SCL  
S
P
Start Condition  
Stop Condition  
Figure 13. Start and Stop Conditions  
7.5.1.3 Transferring Data  
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) transferred first. Each  
byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated by the  
master. The master releases the SDA line (HIGH) during the acknowledge clock pulse. The LM3642 pulls down  
the SDA line during the 9th clock pulse, signifying an acknowledge. The LM3642 generates an acknowledge  
after each byte is received. There is no acknowledge created after data is read from the LM3642.  
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an  
eighth bit which is a data direction bit (R/W). The LM3642 7-bit address is 0x63. For the eighth bit, a '0' indicates  
a WRITE and a '1' indicates a READ. The second byte selects the register to which the data will be written. The  
third byte contains data to write to the selected register.  
ack from slave  
ack from slave  
ack from slave  
start msb Chip Address lsb  
w
ack  
msb Register Add lsb  
ack  
msb DATA lsb ack stop  
SCL  
SDA  
start  
Id = 63h  
w
ack  
addr = 0Ah  
ack  
Data = 03h  
ack stop  
w = write (SDA = "0")  
r = read (SDA = "1")  
ack = acknowledge (SDA pulled down by either master or slave)  
id = chip address, 63h for LM3642  
Figure 14. Write Cycle  
7.5.1.4 I2C-Compatible Chip Address  
The device address for the LM3642 is 1100011 (63). After the START condition, the I2C-compatible master  
sends the 7-bit address followed by an eighth read or write bit (R/W). R/W = 0 indicates a WRITE, and R/W = 1  
indicates a READ. The second byte following the device address selects the register address to which the data  
will be written. The third byte contains the data for the selected register.  
MSB  
LSB  
1
Bit 7  
1
Bit 6  
0
Bit 5  
0
Bit 4  
0
Bit 3  
1
Bit 2  
1
Bit 1  
R/W  
Bit 0  
2
I C Slave Address (chip address)  
Figure 15. I2C-Compatible Device Address  
Copyright © 2012–2015, Texas Instruments Incorporated  
13  
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
Programming (continued)  
7.5.1.5 Transferring Data  
Every byte on the SDA line must be eight bits long, with the most significant bit (MSB) transferred first. Each byte  
of data must be followed by an acknowledge bit (ACK). The acknowledge related clock pulse (9th clock pulse) is  
generated by the master. The master releases SDA (HIGH) during the 9th clock pulse. The LM3642 pulls down  
SDA during the 9th clock pulse, signifying an acknowledge. An acknowledge is generated after each byte has  
been received.  
14  
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
7.6 Register Map  
7.6.1 Register Descriptions  
Register Name  
Enable Register  
Internal Hex Address  
Power On/RESET Value  
0x0A  
0x0B  
0x08  
0x09  
0x01  
0x06  
0x00  
0x00  
00  
00  
52  
0F  
80  
00  
00  
01  
Flags Register  
Flash Features Register  
Current Control Register  
IVFM Mode Register  
Torch Ramp Time Register  
Silicon Revision Register (LM3642)  
Silicon Revision Register (LM3642LT)  
7.6.1.1 Enable Register (0x0A)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IVFM  
0 = Disabled  
(default)  
1 = Stop and  
Hold Mode  
Strobe Pin  
Enable  
0 = Disabled  
(default)  
Torch Pin  
Enable  
0 = Disabled  
(default)  
Mode Bits: M1, M0  
TX Pin Enable  
0 = Disabled  
(default)  
00 = Standby (default)  
01 = Indicator  
10 = Torch  
RFU  
RFU  
1 = Enabled  
1 = Enabled  
1 = Enabled  
11 = Flash  
7.6.1.2 Flags Register (0x0B)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
LED or VOUT  
Short Flag  
Thermal  
Shutdown Fault  
RFU  
RFU  
IVFM  
UVLO Flag  
OVP Flag  
Timeout Flag  
IVFM  
IVFM down threshold crossed.  
UVLO Threshold crossed.  
UVLO Fault  
OVP Flag  
Over-voltage Protection tripped. Open Output cap or open LED.  
LED Short detected.  
LED Short Fault  
Thermal Shutdown Fault  
Time-Out Flag  
LM3642 die temperature reached thermal shutdown value.  
Flash Timer tripped.  
NOTE  
Faults require a read-back of the “Flags Register” to resume operation. Flags report an  
event occurred, but do not inhibit future functionality. A read-back of the Flags Register  
will only get updated again if the fault or flags is still present upon a restart.  
7.6.1.3 Flash Features Register (0x08)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Flash Ramp Time  
000 = 256 µs  
Flash Time-Out Time  
000 = 100 ms  
Inductor  
Current Limit  
0 = 1.6 A  
1 = 1.88 A  
(default)  
001 = 512 µs  
001 = 200 ms  
010 = 300 ms (default)  
011 = 400 ms  
010 = 1.024 ms (default)  
011 = 2.048 ms  
100 = 4.096 ms  
101 = 8.192 ms  
110 = 16.384 ms  
111 = 32.768 ms  
RFU  
100 = 500 ms  
101 =600 ms  
110 = 700 ms  
111 = 800 ms  
Copyright © 2012–2015, Texas Instruments Incorporated  
15  
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
7.6.1.4 Current Control Register (0x09)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Flash Current  
0000 = 93.75 mA  
0001 = 187.5 mA  
0010 = 281.25 mA  
0011 = 375 mA  
Torch Current (LM3642LT)  
000 = 48.4 mA (default) (24 mA)  
001 =93.74 mA (46.87 mA)  
010 =140.63 mA (70.315 mA)  
011 = 187.5 mA (93.25 mA)  
100 =234.38 mA (117.19 mA)  
101 = 281.25 mA (140.625 mA)  
110 = 328.13 mA (164.075 mA)  
111 = 375 mA (187.5 mA)  
0100 = 468.75 mA  
0101 = 562.5 mA  
0110 = 656.25 mA  
0111 = 750 mA  
1000 = 843.75 mA  
1001 = 937.5 mA  
1010 = 1031.25 mA  
1011 = 1125 mA  
RFU  
1100 = 1218.75 mA  
1101 = 1312.5 mA  
1110 = 1406.25 mA  
1111 = 1500 mA (default)  
7.6.1.5 Input Voltage Flash Monitor (IVFM) Mode Register (0x01)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
IVM-D (Down) Threshold  
000 = 2.9 V (default)  
001 = 3.0 V  
UVLO  
010 =3.1 V  
011 = 3.2 V  
100 = 3.3 V  
101 = 3.4 V  
0 = Disabled  
1= Enabled  
(default)  
RFU  
RFU  
110 = 3.5 V  
111 = 3.6 V  
Stop and Hold Mode:Stops Current Ramp and Holds the level for the remaining flash if VIN crosses IVM-D Line.  
Sets IVFM Flag in Flags Register upon crossing IVM-D Line.  
UVLO EN: If enabled and VIN drops below 2.8 V, the LM3642 will enter standby and set the UVLO flag in the  
Flags Register. Enabled = ‘1’, Disabled = ‘0’  
I
FLASH  
I
LED  
0 mA  
V
IN  
IVM-D  
Deglitch  
time  
t
Figure 16. Stop and Hold Mode  
16  
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
7.6.1.6 Torch Ramp Time Register (0x06)  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1)  
Bit 0  
Torch Ramp-Up Time  
000 = 16 ms (default)  
001 = 32 ms  
Torch Ramp-Down Time  
000 = 16 ms (default)  
001 = 32 ms  
010 = 64 ms  
010 = 64 ms  
RFU  
RFU  
011 = 128 ms  
011 = 128 ms  
100 = 256 ms  
100 = 256 ms  
101 = 512 ms  
101 = 512 ms  
110 = 1.024s  
110 = 1.024s  
111 = 2.048s  
111 = 2.048s  
7.6.1.7 Silicon Revision Register  
Bit 7  
Bit 6  
Bit 5  
RFU  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
000 = LM3642  
Copyright © 2012–2015, Texas Instruments Incorporated  
17  
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
8 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
8.1 Application Information  
The LM3642 can drive one flash LED at currents up to 1.5 A. The 4-MHz DC-DC boost regulator allows for the  
use of small value discrete external components.  
8.2 Typical Application  
1 mH  
SW  
OUT  
LED  
IN  
2.5V to 5.5V  
10 mF  
10 mF  
STROBE  
TX/TORCH  
SDA  
Flash  
LED  
SCL  
GND  
Figure 17. Typical Application Circuit  
8.2.1 Design Requirements  
Example requirements based on default register values:  
Table 2. Design Parameters  
DESIGN PARAMETER  
Input voltage range  
Brightness control  
EXAMPLE VALUE  
2.5 V to 5.5 V  
I2C Register  
1 Flash LED  
4 MHz  
LED configuration  
Boost switching frequency  
Flash brightness  
1.5 A maximum  
Table 3. Application Circuit Component List  
MANUFACTUR  
ER  
CURRENT/VOLTAGE  
RATING (RESISTANCE)  
COMPONENT  
VALUE  
PART NUMBER  
DFE201610C  
SIZE  
L
TOKO  
1 µH  
2 mm × 1.6 mm × 1 mm  
2.5 A  
COUT  
CIN  
1.6 mm × 0.8 mm × 0.8 mm  
(0603)  
Murata  
Lumiled  
10 µF  
GRM188R60J106M  
PWF-4  
6.3 V  
LED  
VF = 3.6 V, @1.5 A  
18  
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
8.2.2 Detailed Design Procedure  
8.2.2.1 Output Capacitor Selection  
The LM3642 is designed to operate with at least a 10-µF ceramic output capacitor. When the boost converter is  
running the output capacitor supplies the load current during the boost converter's on-time. When the NMOS  
switch turns off the inductor energy is discharged through the internal PMOS switch, supplying power to the load  
and restoring charge to the output capacitor. This causes a sag in the output voltage during the on-time and a  
rise in the output voltage during the off-time. The output capacitor is therefore chosen to limit the output ripple to  
an acceptable level depending on load current and input/output voltage differentials and also to ensure the  
converter remains stable.  
For proper operation the output capacitor must be at least a 10-µF ceramic. Larger capacitors such as a 22-µF  
capacitor or capacitors in parallel can be used if lower output voltage ripple is desired. To estimate the output  
voltage ripple considering the ripple due to capacitor discharge (ΔVQ) and the ripple due to the capacitors ESR  
(ΔVESR) use the following equations:  
For continuous conduction mode, the output voltage ripple due to the capacitor discharge is:  
(
)
ILED x VOUT - V  
IN  
DVQ =  
fSW x VOUT x COUT  
(1)  
The output voltage ripple due to the output capacitors ESR is found by:  
ILED x VOUT  
«
+DIL  
DVESR = RESR  
x
VIN  
where  
(
)
V
x VOUT - V  
IN  
IN  
DIL =  
2x fSW x L x VOUT  
(2)  
In ceramic capacitors the ESR is very low so a close approximation is to assume that 80% of the output voltage  
ripple is due to capacitor discharge and 20% from ESR. Table 4 lists different manufacturers for various output  
capacitors and their case sizes suitable for use with the LM3642.  
8.2.2.2 Input Capacitor Selection  
Choosing the correct size and type of input capacitor helps minimize the voltage ripple caused by the switching  
of the LM3642 device’s boost converter, and reduces noise on the boost converter's input terminal that can feed  
through and disrupt internal analog signals. In the typical application circuit a 10-µF ceramic input capacitor  
works well. It is important to place the input capacitor as close as possible to the LM3642 device’s input (IN) pin.  
This reduces the series resistance and inductance that can inject noise into the device due to the input switching  
currents. Table 4 lists various input capacitors that are recommended for use with the LM3642.  
Table 4. Recommended Input and Output Capacitors (X5R/X7R Dielectric)  
MANUFACTURER  
TDK Corporation  
TDK Corporation  
TDK Corporation  
Murata  
PART NUMBER  
C1608JB0J106M  
VALUE  
10 µF  
10 µF  
22 µF  
10 µF  
10 µF  
22 µF  
CASE SIZE  
VOLTAGE RATING  
0603 (1.6 mm × 0.8 mm × 0.8 mm)  
0805 (2 mm × 1.25 mm × 1.25 mm)  
0805 (2 mm × 1.25 mm × 1.25 mm)  
0603 (1.6 mm × 0.8 mm × 0.8 mm)  
0805 (2 mm × 1.25 mm × 1.25 mm)  
0805 (2 mm × 1.25 mm × 1.25 mm)  
6.3 V  
10 V  
6.3 V  
6.3 V  
10 V  
6.3 V  
C2012JB1A106M  
C2012JB0J226M  
GRM188R60J106M  
GRM21BR61A106KE19  
GRM21BR60J226ME39L  
Murata  
Murata  
8.2.2.3 Inductor Selection  
The LM3642 is designed to use a 1-µH or 0.47-µH inductor. Table 5 lists various inductors and their  
manufacturers that can work well with the LM3642. When the device is boosting (VOUT > VIN) the inductor will  
typically be the largest area of efficiency loss in the circuit. Therefore, choosing an inductor with the lowest  
possible series resistance is important. Additionally, the saturation rating of the inductor should be greater than  
the maximum operating peak current of the LM3642. This prevents excess efficiency loss that can occur with  
inductors that operate in saturation. For proper inductor operation and circuit performance, ensure that the  
inductor saturation and the peak current limit setting of the LM3642 are greater than IPEAK in the following  
calculation:  
Copyright © 2012–2015, Texas Instruments Incorporated  
19  
 
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
( )  
IN x VOUT - V  
IN  
ILOAD VOUT  
V
IPEAK  
=
x
+DIL  
where  
DIL =  
h
V
2 x fSW x L x VOUT  
IN  
(3)  
where ƒSW = 4 MHz, and efficiency can be found in the Typical Characteristics plots.  
Table 5. Recommended Inductors  
MANUFACTURER  
TOKO  
L
PART NUMBER  
DFE252010C  
DFE252012C  
DFE201612C  
DFE201610C  
DIMENSIONS (L×W×H)  
2.5 mm × 2 mm × 1 mm  
2.5 mm × 2 mm × 1.2 mm  
2 mm × 1.6 mm × 1.2 mm  
2 mm × 1.6 mm × 1 mm  
ISAT  
2.7 A  
3 A  
RDC  
1 µH  
78 mΩ  
59 mΩ  
82 mΩ  
79 mΩ  
TOKO  
1 µH  
TOKO  
0.47 µH  
1 µH  
3.4 A  
2.5 A  
TOKO  
8.2.3 Application Curves  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
40  
+25°C  
+25°C  
+85°C  
-40°C  
50  
40  
30  
+85°C  
30  
-40°C  
20  
10  
3.5  
3.8  
4.0  
4.3  
VIN (V)  
4.5  
4.8  
5.0  
2.8 3.0 3.1 3.3 3.4 3.5 3.7 3.8 4.0 4.1 4.2  
VIN (V)  
Figure 18. Flash LED Efficiency vs. VIN  
VLED = 3.8 V, ILED = 1.5 A  
Figure 19. Torch LED Efficiency vs. VIN  
VLED = 3.7 V, ILED = 375 mA  
V
IN  
200 mV/  
DIV  
V
OUT  
5V/DIV  
500 mA/  
DIV  
I
IN  
500 mA/  
DIV  
500 mA/  
DIV  
I
LED  
I
LED  
200 ms/DIV  
200 s/DIV  
Figure 21. Flash Mode to Torch Mode Transition  
Figure 20. Input Voltage Flash Monitor Stop and Hold  
Mode with Default Settings  
20  
Copyright © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
5V/DIV  
V
OUT  
V
5V/DIV  
OUT  
500 mA/  
DIV  
500 mA/  
DIV  
I
IN  
I
IN  
500 mA/  
DIV  
500 mA/  
DIV  
I
I
LED  
LED  
200 ms/DIV  
200 ms/DIV  
Figure 22. Torch Mode to Flash Mode Transition  
Figure 23. Indicator Mode - Torch Mode - Flash Mode  
Transitions  
I
IN  
I
IN  
V
I
V
I
OUT  
OUT  
5V/DIV  
5V/DIV  
500 mA/  
DIV  
500 mA/  
DIV  
LED  
LED  
500 mA/  
DIV  
500 mA/  
DIV  
2 ms/DIV  
2 ms/DIV  
Figure 25. VOUT Short Fault  
Figure 24. VLED Short Fault  
2V/DIV  
TX  
500 mA/  
DIV  
I
IN  
LED  
500 mA/  
DIV  
CURRENT  
100 ms/DIV  
Figure 26. TX Transition Plot Behavior of LED Current Shown on Enabling the Part in a TX Event and Upon TX Interrupting  
During a Flash  
Copyright © 2012–2015, Texas Instruments Incorporated  
21  
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
9 Power Supply Recommendations  
The LM3642 is designed to operate from an input voltage supply range between 2.5 V and 5.5 V. This input  
supply must be well regulated and capable to supply the required input current. If the input supply is located far  
from the LM3642 additional bulk capacitance may be required in addition to the ceramic bypass capacitors.  
10 Layout  
10.1 Layout Guidelines  
The high switching frequency and large switching currents of the LM3642 make the choice of layout important.  
The following steps should be used as a reference to ensure the device is stable and maintains proper LED  
current regulation across its intended operating voltage and current range.  
1. Place CIN on the top layer (same layer as the LM3642 and as close to the device as possible. The input  
capacitor conducts the driver currents during the low side MOSFET turn-on and turn-off and can see current  
spikes over 1 A in amplitude. Connecting the input capacitor through short wide traces to both the IN and  
GND pins will reduce the inductive voltage spikes that occur during switching and which can corrupt the VIN  
line.  
2. Place COUT on the top layer (same layer as the LM3642) and as close as possible to the OUT and GND pin.  
The returns for both CIN and COUT should come together at one point, and as close to the GND pin as  
possible. Connecting COUT through short wide traces will reduce the series inductance on the OUT and GND  
pins that can corrupt the VOUT and GND line and cause excessive noise in the device and surrounding  
circuitry.  
3. Connect the inductor on the top layer close to the SW pin. There should be a low-impedance connection  
from the inductor to SW due to the large DC inductor current, and at the same time the area occupied by the  
SW node should be small so as to reduce the capacitive coupling of the high dV/dt present at SW that can  
couple into nearby traces.  
4. Avoid routing logic traces near the SW node so as to avoid any capacitively coupled voltages from SW onto  
any high-impedance logic lines such as STROBE, SDA, and SCL. A good approach is to insert an inner layer  
GND plane underneath the SW node and between any nearby routed traces. This creates a shield from the  
electric field generated at SW.  
5. Terminate the Flash LED cathodes directly to the GND pin of the LM3642. If possible, route the LED returns  
with a dedicated path so as to keep the high amplitude LED currents out of the GND plane. For Flash LEDs  
that are routed relatively far away from the LM3642, a good approach is to sandwich the forward and return  
current paths over the top of each other on two layers. This will help in reducing the inductance of the LED  
current paths.  
22  
版权 © 2012–2015, Texas Instruments Incorporated  
LM3642  
www.ti.com.cn  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
10.2 Layout Example  
SW  
1 mH  
10 mF  
VIAs to GND  
tlane  
OUT  
OUT  
SW  
GND  
10 mF  
LED  
LED  
STROBE  
IN  
Lb  
TX/  
TORCH  
TX/  
TORCH  
SDA  
SCL  
SCL  
SDA  
Figure 27. Typical Layout of LM3642  
版权 © 2012–2015, Texas Instruments Incorporated  
23  
LM3642  
ZHCSC02H SEPTEMBER 2012REVISED SEPTEMBER 2015  
www.ti.com.cn  
11 器件和文档支持  
11.1 器件支持  
11.1.1 Third-Party Products Disclaimer  
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT  
CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES  
OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER  
ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.  
11.2 文档支持  
11.2.1 相关文档  
相关文档如下:  
德州仪器 (TI) 应用手册 1112DSBGA 晶圆级芯片规模封装》(文献编号:SNVA009)。  
11.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
11.4 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
11.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
11.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
12 机械、封装和可订购信息  
以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
24  
版权 © 2012–2015, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM3642TLE-LT/NOPB  
LM3642TLE/NOPB  
LM3642TLX-LT/NOPB  
LM3642TLX/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZR  
YZR  
YZR  
YZR  
9
9
9
9
250  
250  
RoHS & Green  
RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
(D2, D4)  
SNAGCU  
SNAGCU  
SNAGCU  
D2  
3000 RoHS & Green  
3000 RoHS & Green  
(D2, D4)  
D2  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3642TLE-LT/NOPB  
LM3642TLE/NOPB  
LM3642TLX-LT/NOPB  
LM3642TLX/NOPB  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZR  
YZR  
YZR  
YZR  
9
9
9
9
250  
250  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
1.78  
0.76  
0.76  
0.76  
0.76  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
Q1  
Q1  
Q1  
Q1  
3000  
3000  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3642TLE-LT/NOPB  
LM3642TLE/NOPB  
LM3642TLX-LT/NOPB  
LM3642TLX/NOPB  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZR  
YZR  
YZR  
YZR  
9
9
9
9
250  
250  
208.0  
208.0  
208.0  
208.0  
191.0  
191.0  
191.0  
191.0  
35.0  
35.0  
35.0  
35.0  
3000  
3000  
Pack Materials-Page 2  
MECHANICAL DATA  
YZR0009xxx  
D
0.600±0.075  
E
TLA09XXX (Rev C)  
D: Max = 1.69 mm, Min = 1.63 mm  
E: Max = 1.64 mm, Min = 1.58 mm  
4215046/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 202
-
VISHAY