LM3671MFX-1.5 [TI]

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter;
LM3671MFX-1.5
型号: LM3671MFX-1.5
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter

开关 光电二极管
文件: 总38页 (文件大小:6811K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter  
Check for Samples: LM3671, LM3671Q  
1
FEATURES  
APPLICATIONS  
2
16 µA Typical Quiescent Current  
Mobile Phones  
PDAs  
600 mA Maximum Load Capability  
2 MHz PWM Fixed Switching Frequency (typ.)  
Automatic PFM/PWM Mode Switching  
MP3 Players  
W-LAN  
Internal Synchronous Rectification for High  
Efficiency  
Portable Instruments  
Digital Still Cameras  
Portable Hard Disk Drives  
Automotive  
Internal Soft Start  
0.01 µA Typical Shutdown Current  
Operates from a Single Li-Ion Cell Battery  
DESCRIPTION  
Only Three Tiny Surface-Mount External  
Components Required (One Inductor, Two  
Ceramic Capacitors)  
The LM3671 step-down DC-DC converter is  
optimized for powering low voltage circuits from a  
single Li-Ion cell battery and input voltage rails from  
2.7V to 5.5V. It provides up to 600 mA load current,  
over the entire input voltage range. There are several  
different fixed voltage output options available as well  
as an adjustable output voltage version range from  
1.1V to 3.3V.  
Current Overload and Thermal Shutdown  
Protection  
Available in Fixed Output Voltages and  
Adjustable Version  
LM3671Q is an Automotive Grade Product that  
is AEC-Q100 Grade 1 Qualified  
The device offers superior features and performance  
for mobile phones and similar portable systems.  
Automatic intelligent switching between PWM low-  
noise and PFM low-current mode offers improved  
system control. During PWM mode, the device  
operates at a fixed-frequency of 2 MHz (typ.).  
Hysteretic PFM mode extends the battery life by  
reducing the quiescent current to 16 µA (typ.) during  
light load and standby operation. Internal  
synchronous rectification provides high efficiency  
during PWM mode operation. In shutdown mode, the  
device turns off and reduces battery consumption to  
0.01 µA (typ.).  
SOT-23, 5-Bump DSBGA and 6-Pin USON  
Packages  
TYPICAL APPLICATION CIRCUITS  
V
IN  
L1: 2.2 PH  
2.7V to 5.5V  
V
V
OUT  
IN  
SW  
1
2
3
5
C
OUT  
C
IN  
LM3671  
10 PF  
GND  
EN  
4.7 PF  
FB  
4
Figure 1. Typical Application Circuit  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2004–2013, Texas Instruments Incorporated  
 
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
DESCRIPTION (CONTINUED)  
The LM3671 is available in SOT-23, tiny 5-bump DSBGA, and a 6-pin USON packages in leaded (PB) and lead-  
free (NO PB) versions. A high-switching frequency of 2 MHz (typ.) allows use of tiny surface-mount components.  
Only three external surface-mount components, an inductor and two ceramic capacitors, are required.  
V
IN  
L1: 2.2 PH  
V
OUT  
2.7V to 5.5V  
V
IN  
SW  
1
5
C
OUT  
C
LM3671-  
ADJ  
IN  
R1  
R2  
C1  
C2  
10 PF  
4.7 PF  
GND  
EN  
2
FB  
3
4
Figure 2. Typical Application Circuit for ADJ version  
Connection Diagrams  
SW  
5
FB  
4
VIN  
1
GND  
2
EN  
3
Figure 3. Top View  
SOT-23 Package  
See Package Number DBV (2.92 mm x 2.84 mm x 1.2 mm)  
GND  
V
A1  
A3  
A1  
V
IN  
GND  
IN  
A3  
C3  
B2  
SW  
EN  
B2  
SW  
EN  
FB  
C1  
FB  
C3  
C1  
Top View  
Bottom View  
Figure 4. 5-Bump DSBGA Package  
See Package Number YZR0005 (1.05 mm x 1.38 mm x 0.6 mm)  
2
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
 
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
6
5
4
En  
1
2
Fb  
Pgnd  
Sgnd  
Sw  
Vin  
3
TOP VIEW  
Figure 5. 6-Pin USON Package  
See Package Number NKH0006B (2 mm x 2 mm x 0.6 mm)  
PIN DESCRIPTIONS (SOT-23)  
Pin #  
Name  
VIN  
Description  
1
2
3
Power supply input. Connect to the input filter capacitor (Figure 1).  
Ground pin.  
GND  
EN  
Enable pin. The device is in shutdown mode when voltage to this pin is <0.4V and enabled  
when >1.0V. Do not leave this pin floating.  
4
5
FB  
Feedback analog input. Connect directly to the output filter capacitor for fixed voltage  
versions. For adjustable version external resistor dividers are required (Figure 2). The  
internal resistor dividers are disabled for the adjustable version.  
SW  
Switching node connection to the internal PFET switch and NFET synchronous rectifier.  
PIN DESCRIPTIONS (5-Bump DSBGA)  
Pin #  
A1  
Name  
VIN  
Description  
Power supply input. Connect to the input filter capacitor (Figure 1).  
Ground pin.  
A3  
GND  
EN  
C1  
Enable pin. The device is in shutdown mode when voltage to this pin is <0.4V and enabled  
when >1.0V. Do not leave this pin floating.  
C3  
B2  
FB  
Feedback analog input. Connect directly to the output filter capacitor for fixed voltage  
versions. For adjustable version external resistor dividers are required (Figure 2). The  
internal resistor dividers are disabled for the adjustable version.  
SW  
Switching node connection to the internal PFET switch and NFET synchronous rectifier.  
PIN DESCRIPTIONS (6-Pin USON)  
Pin #  
Name  
Description  
1
EN  
Enable pin. The device is in shutdown mode when voltage to this pin is <0.4V and enabled  
when >1.0V. Do not leave this pin floating.  
2
3
4
5
6
Pgnd  
VIN  
Ground pin.  
Power supply input. Connect to the input filter capacitor (Figure 1).  
Switching node connection to the internal PFET switch and NFET synchronous rectifier.  
Singnal ground (feedback ground).  
SW  
Sgnd  
FB  
Feedback analog input. Connect directly to the output filter capacitor for fixed voltage  
versions. For adjustable version external resistor dividers are required (Figure 2). The  
internal resistor dividers are disabled for the adjustable version.  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
ORDERING INFORMATION(1)(2)  
Orderable  
Voltage Option (V)  
SOT-23 Package  
LM3671MF-1.2  
LM3671MFX-1.2  
LM3671MF-1.2/NOPB  
LM3671MFX-1.2/NOPB  
LM3671QMF-1.2  
1.2  
LM3671QMFX-1.2  
LM3671QMF-1.2/NOPB  
LM3671QMFX-1.2/NOPB  
LM3671MF-1.25/NOPB  
LM3671MFX-1.25/NOPB  
LM3671MF-1.375/NOPB  
LM3671MFX-1.375/NOPB  
LM3671MF-1.5/NOPB  
LM3671MFX-1.5/NOPB  
LM3671MF-1.6/NOPB  
LM3671MFX-1.6/NOPB  
LM3671MF-1.8/NOPB  
LM3671MFX-1.8/NOPB  
LM3671MF-1.875/NOPB  
LM3671MFX-1.875/NOPB  
LM3671MF-2.5/NOPB  
LM3671MFX-2.5/NOPB  
LM3671MF-2.8/NOPB  
LM3671MFX-2.8/NOPB  
LM3671MF-3.3/NOPB  
LM3671MFX-3.3/NOPB  
LM3671MF-ADJ/NOPB  
LM3671MFX-ADJ/NOPB  
1.25  
1.375  
1.5  
1.6  
1.8  
1.875  
2.5  
2.8  
3.3  
Adjustable  
(1) For the most current package and ordering information, see the Package Option Addendum at the end  
of this document, or see the TI web site at www.ti.com.  
(2) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.  
4
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
 
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
ORDERING INFORMATION(1)(2) (continued)  
Orderable  
Voltage Option (V)  
DSBGA Package  
LM3671TL-1.2/NOPB  
LM3671TLX-1.2/NOPB  
LM3671TL-1.25/NOPB  
LM3671TLX-1.25/NOPB  
LM3671TL-1.5/NOPB  
LM3671TLX-1.5/NOPB  
LM3671TL-1.8/NOPB  
LM3671TLX-1.8/NOPB  
LM3671QTL-1.8/NOPB  
LM3671QTLX-1.8/NOPB  
LM3671TL-1.875/NOPB  
LM3671TLX-1.875/NOPB  
LM3671TL-2.5/NOPB  
LM3671TLX-2.5/NOPB  
LM3671TL-2.8/NOPB  
LM3671TLX-2.8/NOPB  
LM3671TL-3.3/NOPB  
LM3671TLX-3.3/NOPB  
LM3671TL-ADJ/NOPB  
LM3671TLX-ADJ/NOPB  
1.2  
1.25  
1.5  
1.8  
1.875  
2.5  
2.8  
3.3  
Adjustable  
USON Package  
LM3671LC-1.2/NOPB  
LM3671LCX-1.2/NOPB  
LM3671LC-1.3/NOPB  
LM3671LCX-1.3/NOPB  
LM3671LC-1.6/NOPB  
LM3671LCX-1.6/NOPB  
LM3671LC-1.8/NOPB  
LM3671LCX-1.8/NOPB  
1.2  
1.3  
1.6  
1.8  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM3671 LM3671Q  
 
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
ABSOLUTE MAXIMUM RATINGS(1)(2)  
VIN Pin: Voltage to GND  
0.2V to 6.0V  
FB, SW, EN Pin:  
(GND0.2V) to  
(VIN + 0.2V)  
(3)  
Continuous Power Dissipation  
Internally Limited  
+125°C  
Junction Temperature (TJ-MAX  
)
Storage Temperature Range  
65°C to +150°C  
260°C  
Maximum Lead Temperature  
(Soldering, 10 sec.)  
(4)  
ESD Rating  
Human Body Model  
Machine Model  
2 kV  
200V  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings are conditions under  
which operation of the device is specified. Operating Ratings do not imply specified performance limits. For specified performance limits  
and associated test conditions, see the Electrical Characteristics tables.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office / Distributors for  
availability and specifications.  
(3) Internal thermal shutdown circuitry protects the device from permanent damage. Thermal shutdown engages at TJ= 150°C (typ.) and  
disengages at TJ= 130°C (typ.).  
(4) The Human body model is a 100 pF capacitor discharged through a 1.5 kresistor into each pin. The machine model is a 200 pF  
capacitor discharged directly into each pin. MIL-STD-883 3015.7  
OPERATING RATINGS(1) (2)  
(3)  
Input Voltage Range  
2.7V to 5.5V  
0mA to 600 mA  
40°C to +125°C  
40°C to +85°C  
Recommended Load Current  
Junction Temperature (TJ) Range  
Ambient Temperature (TA) Range  
(4)  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings are conditions under  
which operation of the device is specified. Operating Ratings do not imply specified performance limits. For specified performance limits  
and associated test conditions, see the Electrical Characteristics tables.  
(2) All voltages are with respect to the potential at the GND pin.  
(3) The input voltage range recommended for ideal applications performance for the specified output voltages are given below:VIN = 2.7V to  
4.5V for 1.1V VOUT < 1.5VVIN = 2.7V to 5.5V for 1.5V VOUT < 1.8VVIN = (VOUT+ VDROPOUT) to 5.5V for 1.8V VOUT 3.3Vwhere  
VDROPOUT = ILOAD *( RDSON, PFET + RINDUCTOR  
)
(4) In Applications where high power dissipation and/or poor package resistance is present, the maximum ambient temperature may have  
to be derated. Maximum ambient temperature (TA-MAX) is dependent on the maximum operating junction temperature (TJ-MAX), the  
maximum power dissipation of the device in the application (PD-MAX) and the junction to ambient thermal resistance of the package (θJA  
)
in the application, as given by the following equation:TA-MAX= TJ-MAX(θJAx PD-MAX). Refer to Dissipation rating table for PD-MAX values at  
different ambient temperatures.  
THERMAL PROPERTIES  
Junction-to-Ambient Thermal Resistance (θJA) (SOT-23) for 4-layer board  
(1)  
130°C/W  
85°C/W  
(1)  
(1)  
Junction-to-Ambient Thermal Resistance (θJA) (DSBGA) for 4-layer board  
Junction-to-Ambient Thermal Resistance (θJA) (USON) for 4-layer board  
165°C/W  
(1) Junction to ambient thermal resistance is highly application and board layout dependent. In applications where high power dissipation  
exists, special care must be given to thermal dissipation issues in board design. Specified value of 130 °C/W for SOT-23 is based on a 4  
layer, 4" x 3", 2/1/1/2 oz. Cu board as per JEDEC standards is used.  
6
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
ELECTRICAL CHARACTERISTICS(1)(2)(3)  
Limits in standard typeface are for TJ = 25°C. Limits in boldface type apply over the entire junction temperature range for  
operation, 40°C to +125°C. Unless otherwise noted, specifications apply to the LM3671MF/TL/LC with VIN = EN = 3.6V  
Symbol  
VIN  
Parameter  
Condition  
Min  
2.7  
4  
Typ  
Max  
5.5  
+4  
Units  
(4)  
Input Voltage  
V
Feedback Voltage (Fixed) MF  
Feedback Voltage (Fixed) TL  
Feedback Voltage (Fixed) LC  
(5)  
PWM mode  
2.5  
4  
+2.5  
+4  
%
%
Feedback Voltage (ADJ) MF  
4  
+4  
(6)  
(5)  
PWM mode  
VFB  
Feedback Voltage (ADJ) TL  
Line Regulation  
2.5  
+2.5  
2.7V VIN 5.5V  
IO = 10 mA  
0.031  
%/V  
100 mA IO 600 mA  
VIN= 3.6V  
Load Regulation  
0.0013  
%/mA  
VREF  
Internal Reference Voltage  
Shutdown Supply Current  
0.5  
V
ISHDN  
EN = 0V  
0.01  
1
µA  
No load, device is not switching (FB  
forced higher than programmed  
output voltage)  
IQ  
DC Bias Current into VIN  
16  
35  
µA  
RDSON (P)  
RDSON (N)  
ILIM  
Pin-Pin Resistance for PFET  
Pin-Pin Resistance for NFET  
Switch Peak Current Limit  
Logic High Input  
VIN= VGS= 3.6V  
VIN= VGS= 3.6V  
380  
250  
500  
400  
mΩ  
mΩ  
mA  
V
(7)  
Open Loop  
830  
1.0  
1020  
1150  
VIH  
VIL  
Logic Low Input  
0.4  
1
V
IEN  
Enable (EN) Input Current  
Internal Oscillator Frequency  
0.01  
2
µA  
MHz  
(5)  
FOSC  
PWM Mode  
1.6  
2.6  
(1) All voltages are with respect to the potential at the GND pin.  
(2) Min and Max limits are specified by design, test or statistical analysis. Typical numbers are not specified, but do represent the most  
likely norm.  
(3) The parameters in the electrical characteristic table are tested at VIN= 3.6V unless otherwise specified. For performance over the input  
voltage range refer to datasheet curves.  
(4) The input voltage range recommended for ideal applications performance for the specified output voltages are given below:VIN = 2.7V to  
4.5V for 1.1V VOUT < 1.5VVIN = 2.7V to 5.5V for 1.5V VOUT < 1.8VVIN = (VOUT+ VDROPOUT) to 5.5V for 1.8V VOUT 3.3Vwhere  
VDROPOUT = ILOAD *( RDSON, PFET + RINDUCTOR  
)
(5) Test condition: for VOUT less than 2.5V, VIN = 3.6V; for VOUT greater than or equal to 2.5V, VIN = VOUT+ 1V.  
(6) ADJ version is configured to 1.5V output. For ADJ output version: VIN = 2.7V to 4.5V for 0.90V VOUT < 1.1VVIN = 2.7V to 5.5V for 1.1V  
VOUT < 3.3V  
(7) Refer to datasheet curves for closed loop data and its variation with regards to supply voltage and temperature. Electrical Characteristic  
table reflects open loop data (FB=0V and current drawn from SW pin ramped up until cycle by cycle current limit is activated). Closed  
loop current limit is the peak inductor current measured in the application circuit by increasing output current until output voltage drops  
by 10%.  
DISSIPATION RATING TABLE  
θJA  
TA25°C  
TA= 60°C  
TA= 85°C  
Power Rating  
Power Rating  
Power Rating  
130°C/W (4 layer board) SOT-23  
770 mW  
500 mW  
765 mW  
310 mW  
470 mW  
85°C/W (4 layer board) 5-bump  
DSBGA  
1179 mW  
165°C/W (4 layer board) 6-pin  
USON  
606 mW  
394 mW  
242 mW  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
BLOCK DIAGRAM  
V
EN  
SW  
IN  
Current Limit  
Comparator  
+
Undervoltage  
Lockout  
Ramp  
Generator  
Soft  
Start  
-
Ref1  
PFM Current  
Comparator  
Thermal  
Shutdown  
+
Bandgap  
2 MHz  
Oscillator  
-
Ref2  
PWM Comparator  
Error  
Amp  
+
-
Control Logic  
Driver  
pfm_low  
pfm_hi  
V
+
-
REF  
0.5V  
Vcomp  
1.0V  
+
-
+
-
Zero Crossing  
Comparator  
Frequency  
Compensation  
Adj Ver  
Fixed Ver  
FB  
GND  
Figure 6. Simplified Functional Diagram  
8
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
TYPICAL PERFORMANCE CHARACTERISTICS  
LM3671MF/TL/LC, Circuit of Figure 1, VIN= 3.6V, VOUT= 1.5V, TA= 25°C, unless otherwise noted.  
Quiescent Supply Current vs. Supply Voltage  
20  
Shutdown Current vs. Temp  
EN = GND  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
EN = V  
IN  
I
= 0 mA  
OUT  
T
= 85°C  
= 25°C  
A
18  
16  
14  
12  
10  
T
A
T
A
= -30°C  
V
= 5.5V  
IN  
V
= 3.6V  
IN  
V
= 2.7V  
IN  
-30  
-10  
10  
30  
50  
70  
90  
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
Figure 7.  
Figure 8.  
Feedback Bias Current vs. Temp  
Switching Frequency vs. Temperature  
Figure 9.  
Figure 10.  
RDS(ON) vs. Temperature  
Open/Closed Loop Current Limit vs. Temperature  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
V
IN  
= 2.7V  
V
= 4.5V  
IN  
V
IN  
= 3.6V  
= 2.7V  
PFET  
V
IN  
V
IN  
= 4.5V  
NFET  
V
= 3.6V  
10  
IN  
-30 -10  
30  
50  
70  
90 110  
TEMPERATURE (oC)  
Figure 11.  
Figure 12.  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
LM3671MF/TL/LC, Circuit of Figure 1, VIN= 3.6V, VOUT= 1.5V, TA= 25°C, unless otherwise noted.  
Output Voltage vs. Supply Voltage  
Output Voltage vs. Supply Voltage  
(VOUT = 1.5V)  
(VOUT = 2.5V)  
1.5300  
1.5200  
1.5100  
1.5000  
1.4900  
1.4800  
V
= 1.5 V  
OUT  
I
= 10 mA  
OUT  
I
= 300 mA  
OUT  
I
= 500 mA  
OUT  
I
= 600 mA  
OUT  
3.5  
2.5  
3
4
4.5  
5
5.5  
SUPPLY VOLTAGE(V)  
Figure 13.  
Figure 14.  
Output Voltage vs. Temperature  
(VOUT = 1.5V)  
Output Voltage vs. Temperature  
(VOUT = 2.5V)  
1.5300  
1.5250  
1.5200  
1.5150  
1.5100  
1.5050  
1.5000  
1.4950  
1.4900  
1.4850  
1.4800  
PFM Mode  
I
= 10 mA  
OUT  
I
= 300 mA  
OUT  
PWM Mode  
V
V
= 3.6V  
IN  
= 1.5V  
I
= 600 mA  
OUT  
OUT  
-30  
-10  
10  
30  
50  
70  
90  
TEMPERATURE (oC)  
Figure 15.  
Figure 16.  
Output Voltage vs. Output Current  
(VOUT = 1.5V)  
Output Voltage vs. Output Current  
(VOUT = 2.5V)  
1.54  
1.52  
1.5  
V
V
= 3.6V  
IN  
= 1.5V  
OUT  
PFM Mode  
PWM Mode  
1.48  
0
100  
200  
300  
400  
500  
600  
OUTPUT CURRENT (mA)  
Figure 17.  
Figure 18.  
10  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
LM3671MF/TL/LC, Circuit of Figure 1, VIN= 3.6V, VOUT= 1.5V, TA= 25°C, unless otherwise noted.  
Efficiency vs. Output Current  
(VOUT = 1.5V, L= 2.2 µH)  
Efficiency vs. Output Current  
(VOUT = 1.8V, L= 2.2 µH)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
100  
90  
80  
70  
60  
50  
40  
30  
20  
V
OUT  
= 1.8V  
V
OUT  
= 1.5V  
V
= 2.7V  
V
= 3.0V  
IN  
IN  
V
IN  
= 3.0V  
V
IN  
= 2.7V  
V
= 4.5V  
IN  
V
IN  
= 4.5V  
V
= 3.6V  
IN  
V
= 3.6V  
IN  
0.01  
0.10  
1.00  
10.00 100.00 1000.00  
0.01  
0.10  
1.00  
10.00 100.00 1000.00  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
Figure 19.  
Figure 20.  
Efficiency vs. Output Current  
(VOUT = 2.5V, L= 2.2 µH)  
Efficiency vs. Output Current  
(VOUT = 3.3V, L= 2.2 µH)  
Figure 21.  
Figure 22.  
Line Transient Response  
VOUT = 1.5V (PWM Mode)  
Line Transient Response  
VOUT = 2.5V (PWM Mode)  
20 mV/DIV  
V
OUT  
AC Coupled  
3.6V  
3.0V  
V
IN  
V
OUT  
= 1.5V  
I
= 400 mA  
OUT  
40 Ps/DIV  
Figure 23.  
Figure 24.  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
LM3671MF/TL/LC, Circuit of Figure 1, VIN= 3.6V, VOUT= 1.5V, TA= 25°C, unless otherwise noted.  
Load Transient Response  
VOUT = 1.5V (PWM Mode)  
Load Transient Response  
VOUT = 2.5V (PWM Mode)  
Figure 25.  
Figure 26.  
Load Transient Response (VOUT = 1.5V)  
(PFM Mode 0.5 mA to 50 mA)  
Load Transient Response (VOUT = 1.5V)  
(PFM Mode 50 mA to 0.5 mA)  
Figure 27.  
Figure 28.  
Load Transient Response (VOUT = 2.5V)  
(PFM Mode 0.5 mA to 50 mA)  
Load Transient Response (VOUT = 2.5V)  
(PFM Mode 50 mA to 0.5 mA)  
Figure 29.  
Figure 30.  
12  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
LM3671MF/TL/LC, Circuit of Figure 1, VIN= 3.6V, VOUT= 1.5V, TA= 25°C, unless otherwise noted.  
Mode Change by Load Transients  
Mode Change by Load Transients  
VOUT = 1.5V (PFM to PWM)  
VOUT = 1.5V (PWM to PFM)  
Figure 31.  
Figure 32.  
Mode Change by Load Transients  
VOUT = 2.5V (PFM to PWM)  
Mode Change by Load Transients  
VOUT = 2.5V (PWM to PFM)  
Figure 33.  
Figure 34.  
Start Up into PWM Mode  
VOUT = 1.5V (Output Current= 300 mA)  
Start Up into PWM Mode  
VOUT = 2.5V (Output Current= 300 mA)  
2V/DIV  
V
SW  
I
= 300 mA  
OUT  
500 mA/DIV  
1V/DIV  
I
L
V
= 3.6V  
IN  
V
OUT  
EN  
V
OUT  
= 1.5V  
2V/DIV  
TIME (100 Ps/DIV)  
Figure 35.  
Figure 36.  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
LM3671MF/TL/LC, Circuit of Figure 1, VIN= 3.6V, VOUT= 1.5V, TA= 25°C, unless otherwise noted.  
Start Up into PFM Mode  
VOUT = 1.5V (Output Current= 1mA)  
Start Up into PFM Mode  
VOUT = 2.5V (Output Current= 1mA)  
2V/DIV  
V
SW  
500 mV/DIV  
V
OUT  
EN  
V
V
= 3.6V  
IN  
OUT  
= 1 mA  
= 1.5V  
I
OUT  
2V/DIV  
TIME (100 Ps/DIV)  
Figure 37.  
Figure 38.  
14  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
OPERATION DESCRIPTION  
Device Information  
The LM3671, a high-efficiency step-down DC-DC switching buck converter, delivers a constant voltage from a  
single Li-Ion battery and input voltage rails from 2.7V to 5.5V to portable devices such as cell phones and PDAs.  
Using a voltage mode architecture with synchronous rectification, the LM3671 has the ability to deliver up to 600  
mA depending on the input voltage, output voltage, ambient temperature and the inductor chosen.  
There are three modes of operation depending on the current required - PWM (Pulse Width Modulation), PFM  
(Pulse Frequency Modulation), and shutdown. The device operates in PWM mode at load current of  
approximately 80 mA or higher. Lighter load current cause the device to automatically switch into PFM for  
reduced current consumption (IQ = 16 µA typ) and a longer battery life. Shutdown mode turns off the device,  
offering the lowest current consumption (ISHUTDOWN = 0.01 µA typ).  
Additional features include soft-start, under-voltage protection, current overload protection, and thermal shutdown  
protection. As shown in Figure 1, only three external power components are required for implementation.  
The part uses an internal reference voltage of 0.5V. It is recommended to keep the part in shutdown until the  
input voltage is 2.7V or higher.  
Circuit Operation  
During the first portion of each switching cycle, the control block in the LM3671 turns on the internal PFET  
switch. This allows current to flow from the input through the inductor to the output filter capacitor and load. The  
inductor limits the current to a ramp with a slope of (VIN–VOUT)/L, by storing energy in a magnetic field.  
During the second portion of each cycle, the controller turns the PFET switch off, blocking current flow from the  
input, and then turns the NFET synchronous rectifier on. The inductor draws current from ground through the  
NFET to the output filter capacitor and load, which ramps the inductor current down with a slope of - VOUT/L.  
The output filter stores charge when the inductor current is high, and releases it when inductor current is low,  
smoothing the voltage across the load.  
The output voltage is regulated by modulating the PFET switch on time to control the average current sent to the  
load. The effect is identical to sending a duty-cycle modulated rectangular wave formed by the switch and  
synchronous rectifier at the SW pin to a low-pass filter formed by the inductor and output filter capacitor. The  
output voltage is equal to the average voltage at the SW pin.  
PWM Operation  
During PWM operation the converter operates as a voltage-mode controller with input voltage feed forward. This  
allows the converter to achieve good load and line regulation. The DC gain of the power stage is proportional to  
the input voltage. To eliminate this dependence, feed forward inversely proportional to the input voltage is  
introduced.  
While in PWM mode, the output voltage is regulated by switching at a constant frequency and then modulating  
the energy per cycle to control power to the load. At the beginning of each clock cycle the PFET switch is turned  
on and the inductor current ramps up until the comparator trips and the control logic turns off the switch. The  
current limit comparator can also turn off the switch in case the current limit of the PFET is exceeded. Then the  
NFET switch is turned on and the inductor current ramps down. The next cycle is initiated by the clock turning off  
the NFET and turning on the PFET.  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
V
SW  
2V/DIV  
I
L
200 mA/DIV  
V
V
= 3.6V  
IN  
I
= 400 mA  
OUT  
= 1.5V  
OUT  
V
OUT  
10 mV/DIV  
AC Coupled  
TIME (200 ns/DIV)  
Figure 39. Typical PWM Operation  
Internal Synchronous Rectification  
While in PWM mode, the LM3671 uses an internal NFET as a synchronous rectifier to reduce rectifier forward  
voltage drop and associated power loss. Synchronous rectification provides a significant improvement in  
efficiency whenever the output voltage is relatively low compared to the voltage drop across an ordinary rectifier  
diode.  
Current Limiting  
A current limit feature allows the LM3671 to protect itself and external components during overload conditions.  
PWM mode implements current limiting using an internal comparator that trips at 1020 mA (typ.). If the output is  
shorted to ground the device enters a timed current limit mode where the NFET is turned on for a longer duration  
until the inductor current falls below a low threshold. This allows the inductor current more time to decay, thereby  
preventing runaway.  
PFM Operation  
At very light load, the converter enters PFM mode and operates with reduced switching frequency and supply  
current to maintain high efficiency.  
The part automatically transitions into PFM mode when either of two conditions occurs for a duration of 32 or  
more clock cycles:  
A. The NFET current reaches zero.  
B. The peak PMOS switch current drops below the IMODE level, (Typically IMODE < 30 mA + VIN/42).  
2V/DIV  
V
SW  
I
L
200 mA/DIV  
VIN = 3.6V  
I
= 20 mA  
OUT  
VOUT = 1.5V  
V
OUT  
20 mV/DIV  
AC Coupled  
TIME (4 Ps/DIV)  
Figure 40. Typical PFM Operation  
16  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
During PFM operation, the converter positions the output voltage slightly higher than the nominal output voltage  
during PWM operation, allowing additional headroom for voltage drop during a load transient from light to heavy  
load. The PFM comparators sense the output voltage via the feedback pin and control the switching of the output  
FETs such that the output voltage ramps between ~0.6% and ~1.7% above the nominal PWM output voltage. If  
the output voltage is below the ‘high’ PFM comparator threshold, the PMOS power switch is turned on. It remains  
on until the output voltage reaches the ‘high’ PFM threshold or the peak current exceeds the IPFM level set for  
PFM mode. The typical peak current in PFM mode is: IPFM = 112 mA + VIN/27.  
Once the PMOS power switch is turned off, the NMOS power switch is turned on until the inductor current ramps  
to zero. When the NMOS zero-current condition is detected, the NMOS power switch is turned off. If the output  
voltage is below the ‘high’ PFM comparator threshold (see Figure 41), the PMOS switch is again turned on and  
the cycle is repeated until the output reaches the desired level. Once the output reaches the ‘high’ PFM  
threshold, the NMOS switch is turned on briefly to ramp the inductor current to zero and then both output  
switches are turned off and the part enters an extremely low power mode. Quiescent supply current during this  
‘sleep’ mode is 16 µA (typ.), which allows the part to achieve high efficiency under extremely light load  
conditions.  
If the load current should increase during PFM mode (see Figure 41) causing the output voltage to fall below the  
‘low2’ PFM threshold, the part will automatically transition into fixed-frequency PWM mode. When VIN =2.7V the  
part transitions from PWM to PFM mode at ~35 mA output current and from PFM to PWM mode at ~85 mA ,  
when VIN=3.6V, PWM to PFM transition happens at ~50 mA and PFM to PWM transition happens at ~100 mA,  
when VIN =4.5V, PWM to PFM transition happens at ~65 mA and PFM to PWM transition happens at ~115 mA.  
High PFM Threshold  
PFM Mode at Light Load  
~1.017*Vout  
Load current  
increases  
Low1 PFM Threshold  
~1.006*Vout  
Current load  
increases,  
draws Vout  
towards  
Low2 PFM  
Threshold  
High PFM  
Nfet on  
drains  
inductor  
current  
until  
I inductor = 0  
Low PFM  
Threshold,  
turn on  
Pfet on  
until  
Voltage  
Threshold  
reached,  
go into  
Ipfm limit  
reached  
PFET  
Low2 PFM Threshold  
Vout  
sleep mode  
PWM Mode at  
Moderate to Heavy  
Loads  
Low2 PFM Threshold,  
switch back to PWMmode  
Figure 41. Operation in PFM Mode and Transfer to PWM Mode  
Shutdown Mode  
Setting the EN input pin low (<0.4V) places the LM3671 in shutdown mode. During shutdown the PFET switch,  
NFET switch, reference, control and bias circuitry of the LM3671 are turned off. Setting EN high (>1.0V) enables  
normal operation. It is recommended to set EN pin low to turn off the LM3671 during system power up and  
undervoltage conditions when the supply is less than 2.7V. Do not leave the EN pin floating.  
Soft Start  
The LM3671 has a soft-start circuit that limits in-rush current during startup. During startup the switch current limit  
is increased in steps. Soft start is activated only if EN goes from logic low to logic high after Vin reaches 2.7V.  
Soft start is implemented by increasing switch current limit in steps of 70 mA, 140 mA, 280 mA and 1020 mA  
(typical switch current limit). The startup time thereby depends on the output capacitor and load current  
demanded at startup. Typical startup times with a 10 µF output capacitor and 300 mA load is 400 µs and with  
1mA load is 275 µs.  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM3671 LM3671Q  
 
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
LDO - Low Dropout Operation  
The LM3671-ADJ can operate at 100% duty cycle (no switching; PMOS switch completely on) for low dropout  
support of the output voltage. In this way the output voltage will be controlled down to the lowest possible input  
voltage. When the device operates near 100% duty cycle, output voltage ripple is approximately 25 mV.  
The minimum input voltage needed to support the output voltage is  
VIN, MIN = ILOAD * (RDSON, PFET + RINDUCTOR) + VOUT  
where  
ILOAD: Load current  
RDSON, PFET: Drain to source resistance of PFET switch in the triode region  
RINDUCTOR: Inductor resistance  
(1)  
18  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
APPLICATION INFORMATION  
Output Voltage Selection for LM3671-ADJ  
The output voltage of the adjustable parts can be programmed through the resistor network connected from VOUT  
to FB, then to GND. VOUT is adjusted to make the voltage at FB equal to 0.5V. The resistor from FB to GND (R2)  
should be 200 kto keep the current drawn through this network well below the 16 µA quiescent current level  
(PFM mode) but large enough that it is not susceptible to noise. If R2 is 200 k, and VFB is 0.5V, the current  
through the resistor feedback network will be 2.5 µA. The output voltage of the adjustable parts ranges from 1.1V  
to 3.3V.  
The formula for output voltage selection is:  
R1  
R2  
·
¹
§
VOUT = VFB 1 +  
©
where  
VOUT: output voltage (volts)  
VFB : feedback voltage = 0.5V  
R1: feedback resistor from VOUT to FB  
R2: feedback resistor from FB to GND  
(2)  
For any output voltage greater than or equal to 1.1V, a zero must be added around 45 kHz for stability. The  
formula for calculation of C1 is:  
1
C1 =  
(2 * S * R1 * 45 kHz)  
(3)  
For output voltages higher than 2.5V, a pole must be placed at 45 kHz as well. If the pole and zero are at the  
same frequency the formula for calculation of C2 is:  
1
C2 =  
(2 * S * R2 * 45 kHz)  
(4)  
The formula for location of zero and pole frequency created by adding C1 and C2 is given below. By adding C1,  
a zero as well as a higher frequency pole is introduced.  
1
Fz =  
(2 * S * R1 * C1)  
(5)  
(6)  
1
Fp =  
2 * S * (R1 R2) * (C1+C2)  
See the "LM3671-ADJ configurations for various VOUT" table.  
Table 1. LM3671-ADJ Configurations For Various VOUT (Circuit of Figure 2)  
(Refer to Note 11 for VIN requirements)  
VOUT(V)  
0.90  
1.1  
R1(k)  
160  
240  
280  
320  
357  
442  
432  
464  
523  
402  
464  
562  
R2 (k)  
200  
200  
200  
200  
178  
200  
178  
178  
191  
100  
100  
100  
C1 (pF)  
22  
C2 (pF)  
none  
none  
none  
none  
none  
none  
none  
none  
none  
none  
33  
L (µH)  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
CIN (µF)  
4.7  
COUT(µF)  
10  
15  
4.7  
10  
1.2  
12  
4.7  
10  
1.3  
12  
4.7  
10  
1.5  
10  
4.7  
10  
1.6  
8.2  
8.2  
8.2  
6.8  
8.2  
8.2  
6.8  
4.7  
10  
1.7  
4.7  
10  
1.8  
4.7  
10  
1.875  
2.5  
4.7  
10  
4.7  
10  
2.8  
4.7  
10  
3.3  
33  
4.7  
10  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
Inductor Selection  
There are two main considerations when choosing an inductor; the inductor should not saturate, and the inductor  
current ripple should be small enough to achieve the desired output voltage ripple. Different saturation current  
rating specifications are followed by different manufacturers so attention must be given to details. Saturation  
current ratings are typically specified at 25°C. However, ratings at the maximum ambient temperature of  
application should be requested from the manufacturer. The minimum value of inductance to specify good  
performance is 1.76 µH at ILIM (typ.) dc current over the ambient temperature range. Shielded inductors  
radiate less noise and should be preferred.  
There are two methods to choose the inductor saturation current rating.  
Method 1:  
The saturation current should be greater than the sum of the maximum load current and the worst case average  
to peak inductor current. This can be written as  
!
ISAT IOUTMAX + IRIPPLE  
VIN - VOUT  
VOUT  
VIN  
1
§
¨
©
·§  
¸ ¨  
¹ ©  
·§ ·  
where IRIPPLE  
=
¸ ¨ ¸  
2 L  
¹ © f ¹  
where  
IRIPPLE: average to peak inductor current  
IOUTMAX: maximum load current (600 mA)  
VIN: maximum input voltage in application  
L : min inductor value including worst case tolerances (30% drop can be considered for method 1)  
f : minimum switching frequency (1.6 Mhz)  
VOUT: output voltage  
(7)  
Method 2:  
A more conservative and recommended approach is to choose an inductor that has a saturation current rating  
greater than the maximum current limit of 1150mA.  
A 2.2 µH inductor with a saturation current rating of at least 1150 mA is recommended for most applications. The  
inductor’s resistance should be less than 0.3for good efficiency. Table 2 lists suggested inductors and  
suppliers. For low-cost applications, an unshielded bobbin inductor could be considered. For noise critical  
applications, a toroidal or shielded-bobbin inductor should be used. A good practice is to lay out the board with  
overlapping footprints of both types for design flexibility. This allows substitution of a low-noise shielded inductor,  
in the event that noise from low-cost bobbin models is unacceptable.  
Input Capacitor Selection  
A ceramic input capacitor of 4.7 µF, 6.3V is sufficient for most applications. Place the input capacitor as close as  
possible to the VIN pin of the device. A larger value may be used for improved input voltage filtering. Use X7R or  
X5R types; do not use Y5V. DC bias characteristics of ceramic capacitors must be considered when selecting  
case sizes like 0805 and 0603. The minimum input capacitance to specify good performance is 2.2 µF at  
3V dc bias; 1.5 µF at 5V dc bias including tolerances and over ambient temperature range. The input filter  
capacitor supplies current to the PFET switch of the LM3671 in the first half of each cycle and reduces voltage  
ripple imposed on the input power source. A ceramic capacitor’s low ESR provides the best noise filtering of the  
input voltage spikes due to this rapidly changing current. Select a capacitor with sufficient ripple current rating.  
The input current ripple can be calculated as:  
2
VOUT  
VIN  
VOUT  
VIN  
r
§
¨
©
·
¸
¹
1 -  
+
IRMS = IOUTMAX  
12  
(VIN - VOUT  
r =  
) V  
OUT  
Lf IOUTMAX VIN  
The worst case is when VIN = 2 VOUT  
(8)  
20  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
Table 2. Suggested Inductors and Their Suppliers  
Model  
Vendor  
Coilcraft  
Coilcraft  
Panasonic  
Sumida  
Dimensions LxWxH(mm)  
3.3 x 3.3 x 1.4  
D.C.R (max)  
200 mΩ  
150 mΩ  
53 mΩ  
DO3314-222MX  
LPO3310-222MX  
ELL5GM2R2N  
3.3 x 3.3 x 1.0  
5.2 x 5.2 x 1.5  
CDRH2D14NP-2R2NC  
3.2 x 3.2 x 1.55  
94 mΩ  
Output Capacitor Selection  
A ceramic output capacitor of 10 µF, 6.3V is sufficient for most applications. Use X7R or X5R types; do not use  
Y5V. DC bias characteristics of ceramic capacitors must be considered when selecting case sizes like 0805 and  
0603. DC bias characteristics vary from manufacturer to manufacturer and dc bias curves should be requested  
from them as part of the capacitor selection process.  
The minimum output capacitance to specify good performance is 5.75 µF at 1.8V dc bias including  
tolerances and over ambient temperature range. The output filter capacitor smoothes out current flow from  
the inductor to the load, helps maintain a steady output voltage during transient load changes and reduces  
output voltage ripple. These capacitors must be selected with sufficient capacitance and sufficiently low ESR to  
perform these functions.  
The output voltage ripple is caused by the charging and discharging of the output capacitor and by the RESR and  
can be calculated as:  
Voltage peak-to-peak ripple due to capacitance can be expressed as follow:  
IRIPPLE  
=
VPP-C  
4*f*C  
(9)  
Voltage peak-to-peak ripple due to ESR can be expressed as follow:  
VPP-ESR = (2 * IRIPPLE) * RESR  
Because these two components are out of phase the rms (root mean squared) value can be used to get an  
approximate value of peak-to-peak ripple.  
The peak-to-peak ripple voltage, rms value can be expressed as follow:  
2
VPP-RMS  
=
VPP-C2 + VPP-ESR  
(10)  
Note that the output voltage ripple is dependent on the inductor current ripple and the equivalent series  
resistance of the output capacitor (RESR).  
The RESR is frequency dependent (as well as temperature dependent); make sure the value used for calculations  
is at the switching frequency of the part.  
Table 3. Suggested Capacitors and Their Suppliers  
Case Size  
Inch (mm)  
Model  
4.7 µF for CIN  
Type  
Vendor  
Voltage Rating  
C2012X5R0J475K  
JMK212BJ475K  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
TDK  
Taiyo-Yuden  
Murata  
6.3V  
6.3V  
6.3V  
6.3V  
0805 (2012)  
0805 (2012)  
0805 (2012)  
0603 (1608)  
GRM21BR60J475K  
C1608X5R0J475K  
TDK  
10 µF for COUT  
GRM21BR60J106K  
JMK212BJ106K  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Ceramic, X5R  
Murata  
Taiyo-Yuden  
TDK  
6.3V  
6.3V  
6.3V  
6.3V  
0805 (2012)  
0805 (2012)  
0805 (2012)  
0603 (1608)  
C2012X5R0J106K  
C1608X5R0J106K  
TDK  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
DSBGA Package Assembly and Use  
Use of the DSBGA package requires specialized board layout, precision mounting and careful re-flow  
techniques, as detailed in Texas Instruments Application Note AN-1112 (Literature Number SNVA009). Refer to  
the section "Surface Mount Technology (DSBGA) Assembly Considerations". For best results in assembly,  
alignment ordinals on the PC board should be used to facilitate placement of the device. The pad style used with  
DSBGA package must be the NSMD (non-solder mask defined) type. This means that the solder-mask opening  
is larger than the pad size. This prevents a lip that otherwise forms if the solder-mask and pad overlap, from  
holding the device off the surface of the board and interfering with mounting. See Application Note AN-1112  
(Literature Number SNVA009) for specific instructions how to do this. The 5-bump package used for LM3671 has  
300 micron solder balls and requires 10.82 mils pads for mounting on the circuit board. The trace to each pad  
should enter the pad with a 90° entry angle to prevent debris from being caught in deep corners. Initially, the  
trace to each pad should be 7 mil wide, for a section approximately 7 mil long or longer, as a thermal relief. Then  
each trace should neck up or down to its optimal width. The important criteria is symmetry. This ensures the  
solder bumps on the LM3671 re-flow evenly and that the device solders level to the board. In particular, special  
attention must be paid to the pads for bumps A1 and A3, because VIN and GND are typically connected to large  
copper planes, inadequate thermal relief can result in late or inadequate re-flow of these bumps.  
The DSBGA package is optimized for the smallest possible size in applications with red or infrared opaque  
cases. Because the DSBGA package lacks the plastic encapsulation characteristic of larger devices, it is  
vulnerable to light. Backside metallization and/or epoxy coating, along with front-side shading by the printed  
circuit board, reduce this sensitivity. However, the package has exposed die edges. In particular, DSBGA  
devices are sensitive to light, in the red and infrared range, shining on the package’s exposed die edges.  
BOARD LAYOUT CONSIDERATIONS  
PC board layout is an important part of DC-DC converter design. Poor board layout can disrupt the performance  
of a DC-DC converter and surrounding circuitry by contributing to EMI, ground bounce, and resistive voltage loss  
in the traces. These can send erroneous signals to the DC-DC converter IC, resulting in poor regulation or  
instability.  
Good layout for the LM3671 can be implemented by following a few simple design rules below. Refer to  
Figure 42 for top layer board layout.  
1. Place the LM3671, inductor and filter capacitors close together and make the traces short. The traces  
between these components carry relatively high switching currents and act as antennas. Following this rule  
reduces radiated noise. Special care must be given to place the input filter capacitor very close to the VIN  
and GND pin.  
2. Arrange the components so that the switching current loops curl in the same direction. During the first half of  
each cycle, current flows from the input filter capacitor through the LM3671 and inductor to the output filter  
capacitor and back through ground, forming a current loop. In the second half of each cycle, current is pulled  
up from ground through the LM3671 by the inductor to the output filter capacitor and then back through  
ground forming a second current loop. Routing these loops so the current curls in the same direction  
prevents magnetic field reversal between the two half-cycles and reduces radiated noise.  
3. Connect the ground pins of the LM3671 and filter capacitors together using generous component-side  
copper fill as a pseudo-ground plane. Then, connect this to the ground-plane (if one is used) with several  
vias. This reduces ground-plane noise by preventing the switching currents from circulating through the  
ground plane. It also reduces ground bounce at the LM3671 by giving it a low-impedance ground connection.  
4. Use wide traces between the power components and for power connections to the DC-DC converter circuit.  
This reduces voltage errors caused by resistive losses across the traces.  
5. Route noise sensitive traces, such as the voltage feedback path, away from noisy traces between the power  
components. The voltage feedback trace must remain close to the LM3671 circuit and should be direct but  
should be routed opposite to noisy components. This reduces EMI radiated onto the DC-DC converter’s own  
voltage feedback trace. A good approach is to route the feedback trace on another layer and to have a  
ground plane between the top layer and layer on which the feedback trace is routed. In the same manner for  
the adjustable part it is desired to have the feedback dividers on the bottom layer.  
6. Place noise sensitive circuitry, such as radio IF blocks, away from the DC-DC converter, CMOS digital blocks  
and other noisy circuitry. Interference with noise-sensitive circuitry in the system can be reduced through  
distance.  
22  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
LM3671  
LM3671Q  
www.ti.com  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
In mobile phones, for example, a common practice is to place the DC-DC converter on one corner of the board,  
arrange the CMOS digital circuitry around it (since this also generates noise), and then place sensitive  
preamplifiers and IF stages on the diagonally opposing corner. Often, the sensitive circuitry is shielded with a  
metal pan and power to it is post-regulated to reduce conducted noise, using low-dropout linear regulators.  
Figure 42. Top Layer Board Layout For SOT-23  
Copyright © 2004–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM3671 LM3671Q  
 
LM3671  
LM3671Q  
SNVS294Q NOVEMBER 2004REVISED NOVEMBER 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision P (May 2013) to Revision Q  
Page  
Added LM3671QTL/X-1.8/NOPB to Ordering Table ............................................................................................................. 4  
Changes from Revision O (April 2013) to Revision P  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 23  
24  
Submit Documentation Feedback  
Copyright © 2004–2013, Texas Instruments Incorporated  
Product Folder Links: LM3671 LM3671Q  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2014  
PACKAGING INFORMATION  
Orderable Device  
LM3671LC-1.2/NOPB  
LM3671LC-1.3/NOPB  
LM3671LC-1.6/NOPB  
LM3671LC-1.8/NOPB  
LM3671LCX-1.2/NOPB  
LM3671LCX-1.3/NOPB  
LM3671LCX-1.6/NOPB  
LM3671LCX-1.8/NOPB  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
ACTIVE  
USON  
USON  
USON  
USON  
USON  
USON  
USON  
USON  
NKH  
6
6
6
6
6
6
6
6
1000  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
CU NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
S39  
S40  
S41  
S42  
S39  
S40  
S41  
S42  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
1000  
1000  
1000  
4500  
4500  
4500  
4500  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LM3671MF-1.2  
NRND  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-30 to 85  
-30 to 85  
SBPB  
SBPB  
LM3671MF-1.2/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM3671MF-1.25/NOPB  
LM3671MF-1.375/NOPB  
LM3671MF-1.5/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
5
5
5
1000  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-30 to 85  
-30 to 85  
-30 to 85  
SDRB  
SEDB  
SBRB  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
LM3671MF-1.6  
NRND  
SOT-23  
SOT-23  
DBV  
DBV  
5
5
1000  
1000  
TBD  
Call TI  
CU SN  
Call TI  
-30 to 85  
-30 to 85  
SDUB  
SDUB  
LM3671MF-1.6/NOPB  
ACTIVE  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM3671MF-1.8/NOPB  
LM3671MF-1.875/NOPB  
LM3671MF-2.5/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
5
5
5
1000  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-30 to 85  
-30 to 85  
-30 to 85  
SBSB  
SDVB  
SJRB  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2014  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
1000  
1000  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LM3671MF-2.8  
NRND  
ACTIVE  
SOT-23  
SOT-23  
DBV  
5
5
TBD  
Call TI  
CU SN  
Call TI  
-30 to 85  
-30 to 85  
SJSB  
SJSB  
LM3671MF-2.8/NOPB  
DBV  
Green (RoHS  
& no Sb/Br)  
Level-1-260C-UNLIM  
LM3671MF-3.3/NOPB  
LM3671MF-ADJ/NOPB  
LM3671MFX-1.2/NOPB  
LM3671MFX-1.25/NOPB  
LM3671MFX-1.375/NOPB  
LM3671MFX-1.5/NOPB  
LM3671MFX-1.6/NOPB  
LM3671MFX-1.8/NOPB  
LM3671MFX-1.875/NOPB  
LM3671MFX-2.5/NOPB  
LM3671MFX-2.8/NOPB  
LM3671MFX-3.3/NOPB  
LM3671MFX-ADJ/NOPB  
LM3671QMF-1.2/NOPB  
LM3671QMFX-1.2/NOPB  
LM3671QTL-1.8/NOPB  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DSBGA  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
YZR  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1000  
1000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
1000  
3000  
250  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
CU SN  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-40 to 125  
-40 to 125  
-40 to 125  
SJEB  
SBTB  
SBPB  
SDRB  
SEDB  
SBRB  
SDUB  
SBSB  
SDVB  
SJRB  
SJSB  
SJEB  
SBTB  
SH4B  
SH4B  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2014  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 125  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
-30 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
LM3671QTLX-1.8/NOPB  
LM3671TL-1.2/NOPB  
LM3671TL-1.5/NOPB  
LM3671TL-1.8/NOPB  
LM3671TL-1.875/NOPB  
LM3671TL-2.5/NOPB  
LM3671TL-2.8/NOPB  
LM3671TL-3.3/NOPB  
LM3671TL-ADJ/NOPB  
LM3671TLX-1.2/NOPB  
LM3671TLX-1.5/NOPB  
LM3671TLX-1.8/NOPB  
LM3671TLX-1.875/NOPB  
LM3671TLX-2.5/NOPB  
LM3671TLX-2.8/NOPB  
LM3671TLX-3.3/NOPB  
LM3671TLX-ADJ/NOPB  
ACTIVE  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
YZR  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
3000  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
SNAGCU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
250  
250  
Green (RoHS  
& no Sb/Br)  
C
D
B
S
L
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
K
J
250  
Green (RoHS  
& no Sb/Br)  
250  
Green (RoHS  
& no Sb/Br)  
E
C
D
B
S
L
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
K
J
Green (RoHS  
& no Sb/Br)  
Green (RoHS  
& no Sb/Br)  
E
(1) The marketing status values are defined as follows:  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2014  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF LM3671, LM3671-Q1 :  
Catalog: LM3671  
Automotive: LM3671-Q1  
Addendum-Page 4  
PACKAGE OPTION ADDENDUM  
www.ti.com  
5-Feb-2014  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 5  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3671LC-1.2/NOPB  
LM3671LC-1.3/NOPB  
LM3671LC-1.6/NOPB  
LM3671LC-1.8/NOPB  
LM3671LCX-1.2/NOPB  
LM3671LCX-1.3/NOPB  
LM3671LCX-1.6/NOPB  
LM3671LCX-1.8/NOPB  
LM3671MF-1.2  
USON  
USON  
USON  
USON  
USON  
USON  
USON  
USON  
SOT-23  
SOT-23  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
1000  
1000  
1000  
1000  
4500  
4500  
4500  
4500  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
178.0  
178.0  
178.0  
178.0  
330.0  
330.0  
330.0  
330.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
12.4  
8.4  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
2.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
3.2  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
8.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
LM3671MF-1.2/NOPB  
8.4  
8.0  
LM3671MF-1.25/NOPB SOT-23  
LM3671MF-1.375/NOPB SOT-23  
8.4  
8.0  
8.4  
8.0  
LM3671MF-1.5/NOPB  
LM3671MF-1.6  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
8.4  
8.0  
8.4  
8.0  
LM3671MF-1.6/NOPB  
LM3671MF-1.8/NOPB  
8.4  
8.0  
8.4  
8.0  
LM3671MF-1.875/NOPB SOT-23  
LM3671MF-2.5/NOPB SOT-23  
8.4  
8.0  
8.4  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2013  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM3671MF-2.8  
SOT-23  
SOT-23  
SOT-23  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1000  
1000  
1000  
1000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
1000  
3000  
250  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
178.0  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
8.4  
3.2  
3.2  
3.2  
3.2  
1.4  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
LM3671MF-2.8/NOPB  
LM3671MF-3.3/NOPB  
3.2  
3.2  
1.4  
LM3671MF-ADJ/NOPB SOT-23  
LM3671MFX-1.2/NOPB SOT-23  
LM3671MFX-1.25/NOPB SOT-23  
LM3671MFX-1.375/NOPB SOT-23  
LM3671MFX-1.5/NOPB SOT-23  
LM3671MFX-1.6/NOPB SOT-23  
LM3671MFX-1.8/NOPB SOT-23  
LM3671MFX-1.875/NOPB SOT-23  
LM3671MFX-2.5/NOPB SOT-23  
LM3671MFX-2.8/NOPB SOT-23  
LM3671MFX-3.3/NOPB SOT-23  
LM3671MFX-ADJ/NOPB SOT-23  
LM3671QMF-1.2/NOPB SOT-23  
LM3671QMFX-1.2/NOPB SOT-23  
LM3671QTL-1.8/NOPB DSBGA  
LM3671QTLX-1.8/NOPB DSBGA  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
3.2  
3.2  
1.4  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.14  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
1.47  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
0.76  
3000  
250  
LM3671TL-1.2/NOPB  
LM3671TL-1.5/NOPB  
LM3671TL-1.8/NOPB  
DSBGA  
DSBGA  
DSBGA  
250  
250  
LM3671TL-1.875/NOPB DSBGA  
250  
LM3671TL-2.5/NOPB  
LM3671TL-2.8/NOPB  
LM3671TL-3.3/NOPB  
LM3671TL-ADJ/NOPB  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
250  
250  
250  
250  
LM3671TLX-1.2/NOPB DSBGA  
LM3671TLX-1.5/NOPB DSBGA  
LM3671TLX-1.8/NOPB DSBGA  
LM3671TLX-1.875/NOPB DSBGA  
LM3671TLX-2.5/NOPB DSBGA  
LM3671TLX-2.8/NOPB DSBGA  
LM3671TLX-3.3/NOPB DSBGA  
LM3671TLX-ADJ/NOPB DSBGA  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3671LC-1.2/NOPB  
LM3671LC-1.3/NOPB  
LM3671LC-1.6/NOPB  
LM3671LC-1.8/NOPB  
LM3671LCX-1.2/NOPB  
LM3671LCX-1.3/NOPB  
LM3671LCX-1.6/NOPB  
LM3671LCX-1.8/NOPB  
LM3671MF-1.2  
USON  
USON  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
NKH  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
6
6
6
6
6
6
6
6
5
5
5
5
5
5
5
5
5
5
5
5
1000  
1000  
1000  
1000  
4500  
4500  
4500  
4500  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
1000  
210.0  
210.0  
210.0  
210.0  
367.0  
367.0  
367.0  
367.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
367.0  
367.0  
367.0  
367.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
USON  
USON  
USON  
USON  
USON  
USON  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
LM3671MF-1.2/NOPB  
LM3671MF-1.25/NOPB  
LM3671MF-1.375/NOPB  
LM3671MF-1.5/NOPB  
LM3671MF-1.6  
LM3671MF-1.6/NOPB  
LM3671MF-1.8/NOPB  
LM3671MF-1.875/NOPB  
LM3671MF-2.5/NOPB  
LM3671MF-2.8  
LM3671MF-2.8/NOPB  
Pack Materials-Page 3  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
18-Dec-2013  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM3671MF-3.3/NOPB  
LM3671MF-ADJ/NOPB  
LM3671MFX-1.2/NOPB  
LM3671MFX-1.25/NOPB  
LM3671MFX-1.375/NOPB  
LM3671MFX-1.5/NOPB  
LM3671MFX-1.6/NOPB  
LM3671MFX-1.8/NOPB  
LM3671MFX-1.875/NOPB  
LM3671MFX-2.5/NOPB  
LM3671MFX-2.8/NOPB  
LM3671MFX-3.3/NOPB  
LM3671MFX-ADJ/NOPB  
LM3671QMF-1.2/NOPB  
LM3671QMFX-1.2/NOPB  
LM3671QTL-1.8/NOPB  
LM3671QTLX-1.8/NOPB  
LM3671TL-1.2/NOPB  
LM3671TL-1.5/NOPB  
LM3671TL-1.8/NOPB  
LM3671TL-1.875/NOPB  
LM3671TL-2.5/NOPB  
LM3671TL-2.8/NOPB  
LM3671TL-3.3/NOPB  
LM3671TL-ADJ/NOPB  
LM3671TLX-1.2/NOPB  
LM3671TLX-1.5/NOPB  
LM3671TLX-1.8/NOPB  
LM3671TLX-1.875/NOPB  
LM3671TLX-2.5/NOPB  
LM3671TLX-2.8/NOPB  
LM3671TLX-3.3/NOPB  
LM3671TLX-ADJ/NOPB  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DSBGA  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
DBV  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
YZR  
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
1000  
1000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
1000  
3000  
250  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
210.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
185.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
250  
250  
250  
250  
250  
250  
250  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
3000  
Pack Materials-Page 4  
MECHANICAL DATA  
NKH0006B  
LCA06B (Rev A)  
www.ti.com  
MECHANICAL DATA  
YZR0005xxx  
D
0.600±0.075  
E
TLA05XXX (Rev C)  
D: Max = 1.413 mm, Min =1.352 mm  
E: Max = 1.083 mm, Min =1.022 mm  
4215043/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

LM3671MFX-1.5/NOPB

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter
TI

LM3671MFX-1.5/NOPB

IC 1.15 A SWITCHING REGULATOR, 2600 kHz SWITCHING FREQ-MAX, PDSO5, 2.92 X 2.84 MM, 1.20 MM HEIGHT, LEAD FREE, SOT-23, 5 PIN, Switching Regulator or Controller
NSC

LM3671MFX-1.5DD

IC SWITCHING REGULATOR, Switching Regulator or Controller
TI

LM3671MFX-1.6

2MHz , 600mA Step-Down DC-DC Converter in SOT23-5
NSC

LM3671MFX-1.6

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter
TI

LM3671MFX-1.6/NOPB

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter
TI

LM3671MFX-1.6/NOPB

IC 1.15 A SWITCHING REGULATOR, 2600 kHz SWITCHING FREQ-MAX, PDSO5, 2.92 X 2.84 MM, 1.20 MM HEIGHT, LEAD FREE, SOT-23, 5 PIN, Switching Regulator or Controller
NSC

LM3671MFX-1.8

2MHz , 600mA Step-Down DC-DC Converter in SOT23-5
NSC

LM3671MFX-1.8

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter
TI

LM3671MFX-1.8/NOPB

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter
TI

LM3671MFX-1.875

2MHz , 600mA Step-Down DC-DC Converter in SOT23-5
NSC

LM3671MFX-1.875

LM3671, LM3671Q 2MHz, 600mA Step-Down DC-DC Converter
TI