LM3S102 [TI]

Microcontroller;
LM3S102
型号: LM3S102
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Microcontroller

微控制器
文件: 总484页 (文件大小:3882K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NRND: Not recommended for new designs.  
TEXAS INSTRUMENTS-PRODUCTION DATA  
Stellaris® LM3S102 Microcontroller  
DATA SHEET  
DS-LM3S102-12972.2532  
SPMS006I  
Copyright © 2007-2012  
Texas Instruments Incorporated  
NRND: Not recommended for new designs.  
Copyright  
Copyright © 2007-2012 Texas Instruments Incorporated All rights reserved. Stellaris and StellarisWare® are registered trademarks of Texas Instruments  
Incorporated. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the  
property of others.  
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard  
warranty. Production processing does not necessarily include testing of all parameters.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor  
products and disclaimers thereto appears at the end of this data sheet.  
Texas Instruments Incorporated  
108 Wild Basin, Suite 350  
Austin, TX 78746  
http://www.ti.com/stellaris  
http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm  
2
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table of Contents  
Revision History ............................................................................................................................. 19  
About This Document .................................................................................................................... 23  
Audience .............................................................................................................................................. 23  
About This Manual ................................................................................................................................ 23  
Related Documents ............................................................................................................................... 23  
Documentation Conventions .................................................................................................................. 24  
1
Architectural Overview .......................................................................................... 26  
Product Features .......................................................................................................... 26  
Target Applications ........................................................................................................ 31  
High-Level Block Diagram ............................................................................................. 32  
Functional Overview ...................................................................................................... 34  
1.1  
1.2  
1.3  
1.4  
1.4.1 ARM Cortex™-M3 ......................................................................................................... 34  
1.4.2 Motor Control Peripherals .............................................................................................. 35  
1.4.3 Analog Peripherals ........................................................................................................ 35  
1.4.4 Serial Communications Peripherals ................................................................................ 35  
1.4.5 System Peripherals ....................................................................................................... 37  
1.4.6 Memory Peripherals ...................................................................................................... 37  
1.4.7 Additional Features ....................................................................................................... 38  
1.4.8 Hardware Details .......................................................................................................... 38  
1.4.9 System Block Diagram .................................................................................................. 39  
2
2.1  
2.2  
The Cortex-M3 Processor ...................................................................................... 40  
Block Diagram .............................................................................................................. 41  
Overview ...................................................................................................................... 42  
2.2.1 System-Level Interface .................................................................................................. 42  
2.2.2 Integrated Configurable Debug ...................................................................................... 42  
2.2.3 Trace Port Interface Unit (TPIU) ..................................................................................... 43  
2.2.4 Cortex-M3 System Component Details ........................................................................... 43  
2.3  
Programming Model ...................................................................................................... 44  
2.3.1 Processor Mode and Privilege Levels for Software Execution ........................................... 44  
2.3.2 Stacks .......................................................................................................................... 44  
2.3.3 Register Map ................................................................................................................ 45  
2.3.4 Register Descriptions .................................................................................................... 46  
2.3.5 Exceptions and Interrupts .............................................................................................. 59  
2.3.6 Data Types ................................................................................................................... 59  
2.4  
Memory Model .............................................................................................................. 59  
2.4.1 Memory Regions, Types and Attributes ........................................................................... 60  
2.4.2 Memory System Ordering of Memory Accesses .............................................................. 61  
2.4.3 Behavior of Memory Accesses ....................................................................................... 61  
2.4.4 Software Ordering of Memory Accesses ......................................................................... 61  
2.4.5 Bit-Banding ................................................................................................................... 63  
2.4.6 Data Storage ................................................................................................................ 65  
2.4.7 Synchronization Primitives ............................................................................................. 65  
2.5  
Exception Model ........................................................................................................... 66  
2.5.1 Exception States ........................................................................................................... 67  
2.5.2 Exception Types ............................................................................................................ 67  
July 24, 2012  
3
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
2.5.3 Exception Handlers ....................................................................................................... 70  
2.5.4 Vector Table .................................................................................................................. 70  
2.5.5 Exception Priorities ....................................................................................................... 71  
2.5.6 Interrupt Priority Grouping .............................................................................................. 72  
2.5.7 Exception Entry and Return ........................................................................................... 72  
2.6  
Fault Handling .............................................................................................................. 74  
2.6.1 Fault Types ................................................................................................................... 74  
2.6.2 Fault Escalation and Hard Faults .................................................................................... 75  
2.6.3 Fault Status Registers and Fault Address Registers ........................................................ 76  
2.6.4 Lockup ......................................................................................................................... 76  
2.7  
Power Management ...................................................................................................... 76  
2.7.1 Entering Sleep Modes ................................................................................................... 76  
2.7.2 Wake Up from Sleep Mode ............................................................................................ 77  
2.8  
Instruction Set Summary ............................................................................................... 77  
3
3.1  
Cortex-M3 Peripherals ........................................................................................... 81  
Functional Description ................................................................................................... 81  
3.1.1 System Timer (SysTick) ................................................................................................. 81  
3.1.2 Nested Vectored Interrupt Controller (NVIC) .................................................................... 82  
3.1.3 System Control Block (SCB) .......................................................................................... 84  
3.2  
3.3  
3.4  
3.5  
Register Map ................................................................................................................ 84  
System Timer (SysTick) Register Descriptions ................................................................ 85  
NVIC Register Descriptions ........................................................................................... 89  
System Control Block (SCB) Register Descriptions .......................................................... 97  
4
JTAG Interface ...................................................................................................... 124  
Block Diagram ............................................................................................................ 125  
Signal Description ....................................................................................................... 125  
Functional Description ................................................................................................. 126  
4.1  
4.2  
4.3  
4.3.1 JTAG Interface Pins ..................................................................................................... 126  
4.3.2 JTAG TAP Controller ................................................................................................... 128  
4.3.3 Shift Registers ............................................................................................................ 129  
4.3.4 Operational Considerations .......................................................................................... 129  
4.4  
4.5  
Initialization and Configuration ..................................................................................... 131  
Register Descriptions .................................................................................................. 131  
4.5.1 Instruction Register (IR) ............................................................................................... 131  
4.5.2 Data Registers ............................................................................................................ 133  
5
5.1  
5.2  
System Control ..................................................................................................... 135  
Signal Description ....................................................................................................... 135  
Functional Description ................................................................................................. 135  
5.2.1 Device Identification .................................................................................................... 135  
5.2.2 Reset Control .............................................................................................................. 136  
5.2.3 Power Control ............................................................................................................. 140  
5.2.4 Clock Control .............................................................................................................. 140  
5.2.5 System Control ........................................................................................................... 143  
5.3  
5.4  
5.5  
Initialization and Configuration ..................................................................................... 145  
Register Map .............................................................................................................. 145  
Register Descriptions .................................................................................................. 146  
4
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
6
6.1  
6.2  
Internal Memory ................................................................................................... 185  
Block Diagram ............................................................................................................ 185  
Functional Description ................................................................................................. 185  
6.2.1 SRAM Memory ............................................................................................................ 185  
6.2.2 Flash Memory ............................................................................................................. 186  
6.3  
Flash Memory Initialization and Configuration ............................................................... 188  
6.3.1 Changing Flash Protection Bits .................................................................................... 188  
6.3.2 Flash Programming ..................................................................................................... 189  
6.4  
6.5  
6.6  
Register Map .............................................................................................................. 190  
Flash Register Descriptions (Flash Control Offset) ......................................................... 190  
Flash Register Descriptions (System Control Offset) ...................................................... 198  
7
General-Purpose Input/Outputs (GPIOs) ........................................................... 202  
Block Diagram ............................................................................................................ 203  
Signal Description ....................................................................................................... 203  
Functional Description ................................................................................................. 206  
7.1  
7.2  
7.3  
7.3.1 Data Control ............................................................................................................... 207  
7.3.2 Interrupt Control .......................................................................................................... 208  
7.3.3 Mode Control .............................................................................................................. 209  
7.3.4 Pad Control ................................................................................................................. 209  
7.3.5 Identification ............................................................................................................... 209  
7.4  
7.5  
7.6  
Initialization and Configuration ..................................................................................... 209  
Register Map .............................................................................................................. 210  
Register Descriptions .................................................................................................. 212  
8
General-Purpose Timers ...................................................................................... 244  
Block Diagram ............................................................................................................ 244  
Signal Description ....................................................................................................... 245  
Functional Description ................................................................................................. 246  
8.1  
8.2  
8.3  
8.3.1 GPTM Reset Conditions .............................................................................................. 246  
8.3.2 32-Bit Timer Operating Modes ...................................................................................... 246  
8.3.3 16-Bit Timer Operating Modes ...................................................................................... 247  
8.4  
Initialization and Configuration ..................................................................................... 251  
8.4.1 32-Bit One-Shot/Periodic Timer Mode ........................................................................... 251  
8.4.2 32-Bit Real-Time Clock (RTC) Mode ............................................................................. 252  
8.4.3 16-Bit One-Shot/Periodic Timer Mode ........................................................................... 252  
8.4.4 16-Bit Input Edge Count Mode ..................................................................................... 253  
8.4.5 16-Bit Input Edge Timing Mode .................................................................................... 253  
8.4.6 16-Bit PWM Mode ....................................................................................................... 254  
8.5  
8.6  
Register Map .............................................................................................................. 254  
Register Descriptions .................................................................................................. 255  
9
Watchdog Timer ................................................................................................... 280  
Block Diagram ............................................................................................................ 281  
Functional Description ................................................................................................. 281  
Initialization and Configuration ..................................................................................... 282  
Register Map .............................................................................................................. 282  
Register Descriptions .................................................................................................. 283  
9.1  
9.2  
9.3  
9.4  
9.5  
10  
10.1  
Universal Asynchronous Receivers/Transmitters (UARTs) ............................. 304  
Block Diagram ............................................................................................................ 305  
July 24, 2012  
5
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
10.2  
10.3  
Signal Description ....................................................................................................... 305  
Functional Description ................................................................................................. 306  
10.3.1 Transmit/Receive Logic ............................................................................................... 306  
10.3.2 Baud-Rate Generation ................................................................................................. 306  
10.3.3 Data Transmission ...................................................................................................... 307  
10.3.4 FIFO Operation ........................................................................................................... 307  
10.3.5 Interrupts .................................................................................................................... 308  
10.3.6 Loopback Operation .................................................................................................... 309  
10.4  
10.5  
10.6  
Initialization and Configuration ..................................................................................... 309  
Register Map .............................................................................................................. 310  
Register Descriptions .................................................................................................. 311  
11  
Synchronous Serial Interface (SSI) .................................................................... 344  
Block Diagram ............................................................................................................ 344  
Signal Description ....................................................................................................... 344  
Functional Description ................................................................................................. 345  
11.1  
11.2  
11.3  
11.3.1 Bit Rate Generation ..................................................................................................... 345  
11.3.2 FIFO Operation ........................................................................................................... 346  
11.3.3 Interrupts .................................................................................................................... 346  
11.3.4 Frame Formats ........................................................................................................... 346  
11.4  
11.5  
11.6  
Initialization and Configuration ..................................................................................... 354  
Register Map .............................................................................................................. 355  
Register Descriptions .................................................................................................. 356  
12  
Inter-Integrated Circuit (I2C) Interface ................................................................ 382  
Block Diagram ............................................................................................................ 383  
Signal Description ....................................................................................................... 383  
Functional Description ................................................................................................. 383  
12.1  
12.2  
12.3  
12.3.1 I2C Bus Functional Overview ........................................................................................ 384  
12.3.2 Available Speed Modes ............................................................................................... 386  
12.3.3 Interrupts .................................................................................................................... 386  
12.3.4 Loopback Operation .................................................................................................... 387  
12.3.5 Command Sequence Flow Charts ................................................................................ 387  
12.4  
12.5  
12.6  
12.7  
Initialization and Configuration ..................................................................................... 394  
Register Map .............................................................................................................. 395  
Register Descriptions (I2C Master) ............................................................................... 396  
Register Descriptions (I2C Slave) ................................................................................. 409  
13  
Analog Comparator .............................................................................................. 418  
Block Diagram ............................................................................................................ 418  
Signal Description ....................................................................................................... 418  
Functional Description ................................................................................................. 419  
13.1  
13.2  
13.3  
13.3.1 Internal Reference Programming .................................................................................. 420  
13.4  
13.5  
13.6  
Initialization and Configuration ..................................................................................... 421  
Register Map .............................................................................................................. 421  
Register Descriptions .................................................................................................. 422  
14  
Pin Diagram .......................................................................................................... 430  
15  
15.1  
Signal Tables ........................................................................................................ 432  
28-Pin SOIC Package Pin Tables ................................................................................. 432  
15.1.1 Signals by Pin Number ................................................................................................ 432  
6
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
15.1.2 Signals by Signal Name ............................................................................................... 433  
15.1.3 Signals by Function, Except for GPIO ........................................................................... 435  
15.1.4 GPIO Pins and Alternate Functions .............................................................................. 436  
15.2  
48-Pin Package Pin Table ............................................................................................ 436  
15.2.1 Signals by Pin Number ................................................................................................ 436  
15.2.2 Signals by Signal Name ............................................................................................... 438  
15.2.3 Signals by Function, Except for GPIO ........................................................................... 440  
15.2.4 GPIO Pins and Alternate Functions .............................................................................. 441  
15.3  
Connections for Unused Signals ................................................................................... 441  
16  
Operating Characteristics ................................................................................... 443  
17  
17.1  
Electrical Characteristics .................................................................................... 444  
DC Characteristics ...................................................................................................... 444  
17.1.1 Maximum Ratings ....................................................................................................... 444  
17.1.2 Recommended DC Operating Conditions ...................................................................... 444  
17.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics ................................................ 445  
17.1.4 GPIO Module Characteristics ....................................................................................... 445  
17.1.5 Power Specifications ................................................................................................... 445  
17.1.6 Flash Memory Characteristics ...................................................................................... 446  
17.2  
AC Characteristics ....................................................................................................... 446  
17.2.1 Load Conditions .......................................................................................................... 446  
17.2.2 Clocks ........................................................................................................................ 447  
17.2.3 JTAG and Boundary Scan ............................................................................................ 447  
17.2.4 Reset ......................................................................................................................... 449  
17.2.5 Sleep Modes ............................................................................................................... 451  
17.2.6 General-Purpose I/O (GPIO) ........................................................................................ 451  
17.2.7 Synchronous Serial Interface (SSI) ............................................................................... 452  
17.2.8 Inter-Integrated Circuit (I2C) Interface ........................................................................... 453  
17.2.9 Analog Comparator ..................................................................................................... 454  
A
A.1  
A.2  
Serial Flash Loader .............................................................................................. 455  
Serial Flash Loader ..................................................................................................... 455  
Interfaces ................................................................................................................... 455  
A.2.1 UART ......................................................................................................................... 455  
A.2.2 SSI ............................................................................................................................. 455  
A.3  
Packet Handling .......................................................................................................... 456  
A.3.1 Packet Format ............................................................................................................ 456  
A.3.2 Sending Packets ......................................................................................................... 456  
A.3.3 Receiving Packets ....................................................................................................... 456  
A.4  
Commands ................................................................................................................. 457  
A.4.1 COMMAND_PING (0X20) ............................................................................................ 457  
A.4.2 COMMAND_GET_STATUS (0x23) ............................................................................... 457  
A.4.3 COMMAND_DOWNLOAD (0x21) ................................................................................. 457  
A.4.4 COMMAND_SEND_DATA (0x24) ................................................................................. 458  
A.4.5 COMMAND_RUN (0x22) ............................................................................................. 458  
A.4.6 COMMAND_RESET (0x25) ......................................................................................... 458  
B
Register Quick Reference ................................................................................... 460  
C
C.1  
Ordering and Contact Information ..................................................................... 475  
Ordering Information .................................................................................................... 475  
July 24, 2012  
7
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
C.2  
C.3  
C.4  
Part Markings .............................................................................................................. 475  
Kits ............................................................................................................................. 476  
Support Information ..................................................................................................... 476  
D
D.1  
Package Information ............................................................................................ 477  
28-Pin SOIC Package .................................................................................................. 477  
D.1.1 Package Dimensions ................................................................................................... 477  
D.2 48-Pin LQFP Package ................................................................................................. 479  
D.2.1 Package Dimensions ................................................................................................... 479  
D.2.2 Tray Dimensions ......................................................................................................... 481  
D.2.3 Tape and Reel Dimensions .......................................................................................... 483  
8
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
List of Figures  
Figure 1-1.  
Figure 1-2.  
Figure 2-1.  
Figure 2-2.  
Figure 2-3.  
Figure 2-4.  
Figure 2-5.  
Figure 2-6.  
Figure 2-7.  
Figure 4-1.  
Figure 4-2.  
Figure 4-3.  
Figure 4-4.  
Figure 4-5.  
Figure 5-1.  
Figure 5-2.  
Figure 5-3.  
Figure 5-4.  
Figure 6-1.  
Figure 7-1.  
Figure 7-2.  
Figure 7-3.  
Figure 7-4.  
Figure 8-1.  
Figure 8-2.  
Figure 8-3.  
Figure 8-4.  
Figure 9-1.  
Stellaris LM3S102 Microcontroller High-Level Block Diagram ................................. 33  
LM3S102 Controller System-Level Block Diagram ................................................. 39  
CPU Block Diagram ............................................................................................. 42  
TPIU Block Diagram ............................................................................................ 43  
Cortex-M3 Register Set ........................................................................................ 45  
Bit-Band Mapping ................................................................................................ 64  
Data Storage ....................................................................................................... 65  
Vector Table ........................................................................................................ 71  
Exception Stack Frame ........................................................................................ 73  
JTAG Module Block Diagram .............................................................................. 125  
Test Access Port State Machine ......................................................................... 129  
IDCODE Register Format ................................................................................... 133  
BYPASS Register Format ................................................................................... 134  
Boundary Scan Register Format ......................................................................... 134  
Basic RST Configuration .................................................................................... 137  
External Circuitry to Extend Power-On Reset ....................................................... 138  
Reset Circuit Controlled by Switch ...................................................................... 138  
Main Clock Tree ................................................................................................ 141  
Flash Block Diagram .......................................................................................... 185  
GPIO Module Block Diagram .............................................................................. 203  
GPIO Port Block Diagram ................................................................................... 207  
GPIODATA Write Example ................................................................................. 208  
GPIODATA Read Example ................................................................................. 208  
GPTM Module Block Diagram ............................................................................ 245  
16-Bit Input Edge Count Mode Example .............................................................. 249  
16-Bit Input Edge Time Mode Example ............................................................... 250  
16-Bit PWM Mode Example ................................................................................ 251  
WDT Module Block Diagram .............................................................................. 281  
Figure 10-1. UART Module Block Diagram ............................................................................. 305  
Figure 10-2. UART Character Frame ..................................................................................... 306  
Figure 11-1. SSI Module Block Diagram ................................................................................. 344  
Figure 11-2. TI Synchronous Serial Frame Format (Single Transfer) ........................................ 347  
Figure 11-3. TI Synchronous Serial Frame Format (Continuous Transfer) ................................ 348  
Figure 11-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0 .......................... 348  
Figure 11-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0 .................. 349  
Figure 11-6. Freescale SPI Frame Format with SPO=0 and SPH=1 ......................................... 350  
Figure 11-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 ............... 350  
Figure 11-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 ........ 351  
Figure 11-9. Freescale SPI Frame Format with SPO=1 and SPH=1 ......................................... 352  
Figure 11-10. MICROWIRE Frame Format (Single Frame) ........................................................ 352  
Figure 11-11. MICROWIRE Frame Format (Continuous Transfer) ............................................. 353  
Figure 11-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements ............ 354  
Figure 12-1. I2C Block Diagram ............................................................................................. 383  
Figure 12-2. I2C Bus Configuration ........................................................................................ 384  
Figure 12-3. START and STOP Conditions ............................................................................. 384  
Figure 12-4. Complete Data Transfer with a 7-Bit Address ....................................................... 385  
July 24, 2012  
9
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
Figure 12-5. R/S Bit in First Byte ............................................................................................ 385  
Figure 12-6. Data Validity During Bit Transfer on the I2C Bus ................................................... 385  
Figure 12-7. Master Single SEND .......................................................................................... 388  
Figure 12-8. Master Single RECEIVE ..................................................................................... 389  
Figure 12-9. Master Burst SEND ........................................................................................... 390  
Figure 12-10. Master Burst RECEIVE ...................................................................................... 391  
Figure 12-11. Master Burst RECEIVE after Burst SEND ............................................................ 392  
Figure 12-12. Master Burst SEND after Burst RECEIVE ............................................................ 393  
Figure 12-13. Slave Command Sequence ................................................................................ 394  
Figure 13-1. Analog Comparator Module Block Diagram ......................................................... 418  
Figure 13-2. Structure of Comparator Unit .............................................................................. 419  
Figure 13-3. Comparator Internal Reference Structure ............................................................ 420  
Figure 14-1. 28-Pin SOIC Package Pin Diagram ..................................................................... 430  
Figure 14-2. 48-Pin QFP Package Pin Diagram ...................................................................... 431  
Figure 17-1. Load Conditions ................................................................................................ 447  
Figure 17-2. JTAG Test Clock Input Timing ............................................................................. 448  
Figure 17-3. JTAG Test Access Port (TAP) Timing .................................................................. 448  
Figure 17-4. JTAG TRST Timing ............................................................................................ 449  
Figure 17-5. External Reset Timing (RST) .............................................................................. 449  
Figure 17-6. Power-On Reset Timing ..................................................................................... 450  
Figure 17-7. Brown-Out Reset Timing .................................................................................... 450  
Figure 17-8. Software Reset Timing ....................................................................................... 450  
Figure 17-9. Watchdog Reset Timing ..................................................................................... 451  
Figure 17-10. LDO Reset Timing ............................................................................................. 451  
Figure 17-11. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing  
Measurement .................................................................................................... 452  
Figure 17-12. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer ................. 453  
Figure 17-13. SSI Timing for SPI Frame Format (FRF=00), with SPH=1 ..................................... 453  
Figure 17-14. I2C Timing ......................................................................................................... 454  
Figure D-1. Stellaris LM3S102 28-Pin SOIC Package ............................................................ 477  
Figure D-2. Stellaris LM3S102 48-Pin LQFP Package ........................................................... 479  
Figure D-3. 48-Pin LQFP Tray Dimensions ........................................................................... 481  
Figure D-4. 48-Pin LQFP Tape and Reel Dimensions ............................................................. 483  
10  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
List of Tables  
Table 1.  
Table 2.  
Revision History .................................................................................................. 19  
Documentation Conventions ................................................................................ 24  
Summary of Processor Mode, Privilege Level, and Stack Use ................................ 45  
Processor Register Map ....................................................................................... 45  
PSR Register Combinations ................................................................................. 51  
Memory Map ....................................................................................................... 59  
Memory Access Behavior ..................................................................................... 61  
SRAM Memory Bit-Banding Regions .................................................................... 63  
Peripheral Memory Bit-Banding Regions ............................................................... 63  
Exception Types .................................................................................................. 69  
Interrupts ............................................................................................................ 69  
Exception Return Behavior ................................................................................... 74  
Faults ................................................................................................................. 75  
Fault Status and Fault Address Registers .............................................................. 76  
Cortex-M3 Instruction Summary ........................................................................... 78  
Core Peripheral Register Regions ......................................................................... 81  
Peripherals Register Map ..................................................................................... 84  
Interrupt Priority Levels ...................................................................................... 103  
JTAG_SWD_SWO Signals (28SOIC) .................................................................. 125  
JTAG_SWD_SWO Signals (48QFP) ................................................................... 126  
JTAG Port Pins Reset State ............................................................................... 126  
JTAG Instruction Register Commands ................................................................. 131  
System Control & Clocks Signals (28SOIC) ......................................................... 135  
System Control & Clocks Signals (48QFP) .......................................................... 135  
Reset Sources ................................................................................................... 136  
Clock Source Options ........................................................................................ 141  
Possible System Clock Frequencies Using the SYSDIV Field ............................... 142  
System Control Register Map ............................................................................. 145  
PLL Mode Control .............................................................................................. 157  
Flash Protection Policy Combinations ................................................................. 186  
Flash Register Map ............................................................................................ 190  
GPIO Pins With Non-Zero Reset Values .............................................................. 204  
GPIO Pins and Alternate Functions (28SOIC) ...................................................... 204  
GPIO Pins and Alternate Functions (48QFP) ....................................................... 204  
GPIO Signals (28SOIC) ..................................................................................... 205  
GPIO Signals (48QFP) ....................................................................................... 205  
GPIO Pad Configuration Examples ..................................................................... 209  
GPIO Interrupt Configuration Example ................................................................ 210  
GPIO Register Map ........................................................................................... 211  
Available CCP Pins ............................................................................................ 245  
General-Purpose Timers Signals (28SOIC) ......................................................... 245  
General-Purpose Timers Signals (48QFP) ........................................................... 246  
16-Bit Timer With Prescaler Configurations ......................................................... 248  
Timers Register Map .......................................................................................... 254  
Watchdog Timer Register Map ............................................................................ 282  
UART Signals (28SOIC) ..................................................................................... 305  
Table 2-1.  
Table 2-2.  
Table 2-3.  
Table 2-4.  
Table 2-5.  
Table 2-6.  
Table 2-7.  
Table 2-8.  
Table 2-9.  
Table 2-10.  
Table 2-11.  
Table 2-12.  
Table 2-13.  
Table 3-1.  
Table 3-2.  
Table 3-3.  
Table 4-1.  
Table 4-2.  
Table 4-3.  
Table 4-4.  
Table 5-1.  
Table 5-2.  
Table 5-3.  
Table 5-4.  
Table 5-5.  
Table 5-6.  
Table 5-7.  
Table 6-1.  
Table 6-2.  
Table 7-1.  
Table 7-2.  
Table 7-3.  
Table 7-4.  
Table 7-5.  
Table 7-6.  
Table 7-7.  
Table 7-8.  
Table 8-1.  
Table 8-2.  
Table 8-3.  
Table 8-4.  
Table 8-5.  
Table 9-1.  
Table 10-1.  
July 24, 2012  
11  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
Table 10-2.  
Table 10-3.  
Table 11-1.  
Table 11-2.  
Table 11-3.  
Table 12-1.  
Table 12-2.  
Table 12-3.  
Table 12-4.  
Table 12-5.  
Table 13-1.  
Table 13-2.  
Table 13-3.  
Table 13-4.  
Table 13-5.  
Table 15-1.  
Table 15-2.  
Table 15-3.  
Table 15-4.  
Table 15-5.  
Table 15-6.  
Table 15-7.  
Table 15-8.  
Table 15-9.  
Table 16-1.  
Table 16-2.  
Table 16-3.  
Table 17-1.  
Table 17-2.  
Table 17-3.  
Table 17-4.  
Table 17-5.  
Table 17-6.  
Table 17-7.  
Table 17-8.  
Table 17-9.  
UART Signals (48QFP) ...................................................................................... 305  
UART Register Map ........................................................................................... 310  
SSI Signals (28SOIC) ........................................................................................ 345  
SSI Signals (48QFP) .......................................................................................... 345  
SSI Register Map .............................................................................................. 355  
I2C Signals (28SOIC) ........................................................................................ 383  
I2C Signals (48QFP) .......................................................................................... 383  
Examples of I2C Master Timer Period versus Speed Mode ................................... 386  
Inter-Integrated Circuit (I2C) Interface Register Map ............................................. 395  
Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3) .................................... 400  
Analog Comparators Signals (28SOIC) ............................................................... 419  
Analog Comparators Signals (48QFP) ................................................................ 419  
Comparator 0 Operating Modes ......................................................................... 420  
Internal Reference Voltage and ACREFCTL Field Values ..................................... 420  
Analog Comparators Register Map ..................................................................... 422  
Signals by Pin Number ....................................................................................... 432  
Signals by Signal Name ..................................................................................... 433  
Signals by Function, Except for GPIO ................................................................. 435  
GPIO Pins and Alternate Functions ..................................................................... 436  
Signals by Pin Number ....................................................................................... 436  
Signals by Signal Name ..................................................................................... 438  
Signals by Function, Except for GPIO ................................................................. 440  
GPIO Pins and Alternate Functions ..................................................................... 441  
Connections for Unused Signals ......................................................................... 442  
Temperature Characteristics ............................................................................... 443  
Thermal Characteristics ..................................................................................... 443  
ESD Absolute Maximum Ratings ........................................................................ 443  
Maximum Ratings .............................................................................................. 444  
Recommended DC Operating Conditions ............................................................ 444  
LDO Regulator Characteristics ........................................................................... 445  
GPIO Module DC Characteristics ........................................................................ 445  
Detailed Power Specifications ............................................................................ 446  
Flash Memory Characteristics ............................................................................ 446  
Phase Locked Loop (PLL) Characteristics ........................................................... 447  
Clock Characteristics ......................................................................................... 447  
JTAG Characteristics ......................................................................................... 447  
Table 17-10. Reset Characteristics ......................................................................................... 449  
Table 17-11. Sleep Modes AC Characteristics ......................................................................... 451  
Table 17-12. GPIO Characteristics ......................................................................................... 451  
Table 17-13. SSI Characteristics ............................................................................................ 452  
Table 17-14. I2C Characteristics ............................................................................................. 453  
Table 17-15. Analog Comparator Characteristics ..................................................................... 454  
Table 17-16. Analog Comparator Voltage Reference Characteristics ........................................ 454  
Table C-1.  
Part Ordering Information ................................................................................... 475  
12  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
List of Registers  
The Cortex-M3 Processor ............................................................................................................. 40  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Cortex General-Purpose Register 0 (R0) ........................................................................... 47  
Cortex General-Purpose Register 1 (R1) ........................................................................... 47  
Cortex General-Purpose Register 2 (R2) ........................................................................... 47  
Cortex General-Purpose Register 3 (R3) ........................................................................... 47  
Cortex General-Purpose Register 4 (R4) ........................................................................... 47  
Cortex General-Purpose Register 5 (R5) ........................................................................... 47  
Cortex General-Purpose Register 6 (R6) ........................................................................... 47  
Cortex General-Purpose Register 7 (R7) ........................................................................... 47  
Cortex General-Purpose Register 8 (R8) ........................................................................... 47  
Register 10: Cortex General-Purpose Register 9 (R9) ........................................................................... 47  
Register 11: Cortex General-Purpose Register 10 (R10) ....................................................................... 47  
Register 12: Cortex General-Purpose Register 11 (R11) ........................................................................ 47  
Register 13: Cortex General-Purpose Register 12 (R12) ....................................................................... 47  
Register 14: Stack Pointer (SP) ........................................................................................................... 48  
Register 15: Link Register (LR) ............................................................................................................ 49  
Register 16: Program Counter (PC) ..................................................................................................... 50  
Register 17: Program Status Register (PSR) ........................................................................................ 51  
Register 18: Priority Mask Register (PRIMASK) .................................................................................... 55  
Register 19: Fault Mask Register (FAULTMASK) .................................................................................. 56  
Register 20: Base Priority Mask Register (BASEPRI) ............................................................................ 57  
Register 21: Control Register (CONTROL) ........................................................................................... 58  
Cortex-M3 Peripherals ................................................................................................................... 81  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
SysTick Control and Status Register (STCTRL), offset 0x010 ............................................. 86  
SysTick Reload Value Register (STRELOAD), offset 0x014 ................................................ 88  
SysTick Current Value Register (STCURRENT), offset 0x018 ............................................. 89  
Interrupt 0-29 Set Enable (EN0), offset 0x100 .................................................................... 90  
Interrupt 0-29 Clear Enable (DIS0), offset 0x180 ................................................................ 91  
Interrupt 0-29 Set Pending (PEND0), offset 0x200 ............................................................. 92  
Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280 ..................................................... 93  
Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300 ............................................................... 94  
Interrupt 0-3 Priority (PRI0), offset 0x400 .......................................................................... 95  
Register 10: Interrupt 4-7 Priority (PRI1), offset 0x404 .......................................................................... 95  
Register 11: Interrupt 8-11 Priority (PRI2), offset 0x408 ......................................................................... 95  
Register 12: Interrupt 12-15 Priority (PRI3), offset 0x40C ...................................................................... 95  
Register 13: Interrupt 16-19 Priority (PRI4), offset 0x410 ....................................................................... 95  
Register 14: Interrupt 20-23 Priority (PRI5), offset 0x414 ....................................................................... 95  
Register 15: Interrupt 24-27 Priority (PRI6), offset 0x418 ....................................................................... 95  
Register 16: Interrupt 28-29 Priority (PRI7), offset 0x41C ...................................................................... 95  
Register 17: Software Trigger Interrupt (SWTRIG), offset 0xF00 ............................................................ 97  
Register 18: CPU ID Base (CPUID), offset 0xD00 ................................................................................. 98  
Register 19: Interrupt Control and State (INTCTRL), offset 0xD04 ......................................................... 99  
Register 20: Vector Table Offset (VTABLE), offset 0xD08 .................................................................... 102  
Register 21: Application Interrupt and Reset Control (APINT), offset 0xD0C ......................................... 103  
Register 22: System Control (SYSCTRL), offset 0xD10 ....................................................................... 105  
July 24, 2012  
13  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
Register 23: Configuration and Control (CFGCTRL), offset 0xD14 ....................................................... 107  
Register 24: System Handler Priority 1 (SYSPRI1), offset 0xD18 ......................................................... 109  
Register 25: System Handler Priority 2 (SYSPRI2), offset 0xD1C ........................................................ 110  
Register 26: System Handler Priority 3 (SYSPRI3), offset 0xD20 ......................................................... 111  
Register 27: System Handler Control and State (SYSHNDCTRL), offset 0xD24 .................................... 112  
Register 28: Configurable Fault Status (FAULTSTAT), offset 0xD28 ..................................................... 116  
Register 29: Hard Fault Status (HFAULTSTAT), offset 0xD2C .............................................................. 121  
Register 30: Memory Management Fault Address (MMADDR), offset 0xD34 ........................................ 122  
Register 31: Bus Fault Address (FAULTADDR), offset 0xD38 .............................................................. 123  
System Control ............................................................................................................................ 135  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Device Identification 0 (DID0), offset 0x000 ..................................................................... 147  
Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030 .................................. 149  
LDO Power Control (LDOPCTL), offset 0x034 ................................................................. 150  
Raw Interrupt Status (RIS), offset 0x050 .......................................................................... 151  
Interrupt Mask Control (IMC), offset 0x054 ...................................................................... 152  
Masked Interrupt Status and Clear (MISC), offset 0x058 .................................................. 153  
Reset Cause (RESC), offset 0x05C ................................................................................ 154  
Run-Mode Clock Configuration (RCC), offset 0x060 ......................................................... 155  
XTAL to PLL Translation (PLLCFG), offset 0x064 ............................................................. 158  
Register 10: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 ........................................ 159  
Register 11: Clock Verification Clear (CLKVCLR), offset 0x150 ............................................................ 160  
Register 12: Allow Unregulated LDO to Reset the Part (LDOARST), offset 0x160 ................................. 161  
Register 13: Device Identification 1 (DID1), offset 0x004 ..................................................................... 162  
Register 14: Device Capabilities 0 (DC0), offset 0x008 ........................................................................ 164  
Register 15: Device Capabilities 1 (DC1), offset 0x010 ........................................................................ 165  
Register 16: Device Capabilities 2 (DC2), offset 0x014 ........................................................................ 166  
Register 17: Device Capabilities 3 (DC3), offset 0x018 ........................................................................ 168  
Register 18: Device Capabilities 4 (DC4), offset 0x01C ....................................................................... 169  
Register 19: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 ................................... 170  
Register 20: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110 ................................. 171  
Register 21: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 ....................... 172  
Register 22: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 ................................... 173  
Register 23: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 ................................. 175  
Register 24: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 ....................... 177  
Register 25: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 ................................... 179  
Register 26: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 ................................. 180  
Register 27: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 ....................... 181  
Register 28: Software Reset Control 0 (SRCR0), offset 0x040 ............................................................. 182  
Register 29: Software Reset Control 1 (SRCR1), offset 0x044 ............................................................. 183  
Register 30: Software Reset Control 2 (SRCR2), offset 0x048 ............................................................. 184  
Internal Memory ........................................................................................................................... 185  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Flash Memory Address (FMA), offset 0x000 .................................................................... 191  
Flash Memory Data (FMD), offset 0x004 ......................................................................... 192  
Flash Memory Control (FMC), offset 0x008 ..................................................................... 193  
Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C ............................................ 195  
Flash Controller Interrupt Mask (FCIM), offset 0x010 ........................................................ 196  
Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 ..................... 197  
USec Reload (USECRL), offset 0x140 ............................................................................ 199  
14  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 8:  
Register 9:  
Flash Memory Protection Read Enable (FMPRE), offset 0x130 ......................................... 200  
Flash Memory Protection Program Enable (FMPPE), offset 0x134 .................................... 201  
General-Purpose Input/Outputs (GPIOs) ................................................................................... 202  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
GPIO Data (GPIODATA), offset 0x000 ............................................................................ 213  
GPIO Direction (GPIODIR), offset 0x400 ......................................................................... 214  
GPIO Interrupt Sense (GPIOIS), offset 0x404 .................................................................. 215  
GPIO Interrupt Both Edges (GPIOIBE), offset 0x408 ........................................................ 216  
GPIO Interrupt Event (GPIOIEV), offset 0x40C ................................................................ 217  
GPIO Interrupt Mask (GPIOIM), offset 0x410 ................................................................... 218  
GPIO Raw Interrupt Status (GPIORIS), offset 0x414 ........................................................ 219  
GPIO Masked Interrupt Status (GPIOMIS), offset 0x418 ................................................... 220  
GPIO Interrupt Clear (GPIOICR), offset 0x41C ................................................................ 221  
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420 ............................................ 222  
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 ........................................................ 224  
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 ........................................................ 225  
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 ........................................................ 226  
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C ......................................................... 227  
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510 ................................................................ 228  
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514 ........................................................... 229  
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518 ................................................ 230  
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C ................................................................ 231  
Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 ....................................... 232  
Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 ....................................... 233  
Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 ....................................... 234  
Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC ...................................... 235  
Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 ....................................... 236  
Register 24: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4 ....................................... 237  
Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 ....................................... 238  
Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC ...................................... 239  
Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 .......................................... 240  
Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 .......................................... 241  
Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 .......................................... 242  
Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC ......................................... 243  
General-Purpose Timers ............................................................................................................. 244  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
GPTM Configuration (GPTMCFG), offset 0x000 .............................................................. 256  
GPTM TimerA Mode (GPTMTAMR), offset 0x004 ............................................................ 257  
GPTM TimerB Mode (GPTMTBMR), offset 0x008 ............................................................ 259  
GPTM Control (GPTMCTL), offset 0x00C ........................................................................ 261  
GPTM Interrupt Mask (GPTMIMR), offset 0x018 .............................................................. 264  
GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C ..................................................... 266  
GPTM Masked Interrupt Status (GPTMMIS), offset 0x020 ................................................ 267  
GPTM Interrupt Clear (GPTMICR), offset 0x024 .............................................................. 268  
GPTM TimerA Interval Load (GPTMTAILR), offset 0x028 ................................................. 270  
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C ................................................ 271  
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030 ................................................... 272  
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034 .................................................. 273  
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038 ........................................................ 274  
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C ....................................................... 275  
July 24, 2012  
15  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040 ........................................... 276  
Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044 ........................................... 277  
Register 17: GPTM TimerA (GPTMTAR), offset 0x048 ........................................................................ 278  
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C ....................................................................... 279  
Watchdog Timer ........................................................................................................................... 280  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
Watchdog Load (WDTLOAD), offset 0x000 ...................................................................... 284  
Watchdog Value (WDTVALUE), offset 0x004 ................................................................... 285  
Watchdog Control (WDTCTL), offset 0x008 ..................................................................... 286  
Watchdog Interrupt Clear (WDTICR), offset 0x00C .......................................................... 287  
Watchdog Raw Interrupt Status (WDTRIS), offset 0x010 .................................................. 288  
Watchdog Masked Interrupt Status (WDTMIS), offset 0x014 ............................................. 289  
Watchdog Test (WDTTEST), offset 0x418 ....................................................................... 290  
Watchdog Lock (WDTLOCK), offset 0xC00 ..................................................................... 291  
Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0 ................................. 292  
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4 ................................. 293  
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8 ................................. 294  
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC ................................ 295  
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0 ................................. 296  
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4 ................................. 297  
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8 ................................. 298  
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC ................................. 299  
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0 .................................... 300  
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4 .................................... 301  
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8 .................................... 302  
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC .................................. 303  
Universal Asynchronous Receivers/Transmitters (UARTs) ..................................................... 304  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
UART Data (UARTDR), offset 0x000 ............................................................................... 312  
UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004 ........................... 314  
UART Flag (UARTFR), offset 0x018 ................................................................................ 316  
UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024 ............................................ 318  
UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028 ....................................... 319  
UART Line Control (UARTLCRH), offset 0x02C ............................................................... 320  
UART Control (UARTCTL), offset 0x030 ......................................................................... 322  
UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034 ........................................... 324  
UART Interrupt Mask (UARTIM), offset 0x038 ................................................................. 326  
Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C ...................................................... 328  
Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040 ................................................. 329  
Register 12: UART Interrupt Clear (UARTICR), offset 0x044 ............................................................... 330  
Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0 ..................................... 332  
Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4 ..................................... 333  
Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8 ..................................... 334  
Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC ..................................... 335  
Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0 ...................................... 336  
Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4 ...................................... 337  
Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8 ...................................... 338  
Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC ..................................... 339  
Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0 ........................................ 340  
Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4 ........................................ 341  
16  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8 ........................................ 342  
Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC ........................................ 343  
Synchronous Serial Interface (SSI) ............................................................................................ 344  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
SSI Control 0 (SSICR0), offset 0x000 .............................................................................. 357  
SSI Control 1 (SSICR1), offset 0x004 .............................................................................. 359  
SSI Data (SSIDR), offset 0x008 ...................................................................................... 361  
SSI Status (SSISR), offset 0x00C ................................................................................... 362  
SSI Clock Prescale (SSICPSR), offset 0x010 .................................................................. 364  
SSI Interrupt Mask (SSIIM), offset 0x014 ......................................................................... 365  
SSI Raw Interrupt Status (SSIRIS), offset 0x018 .............................................................. 367  
SSI Masked Interrupt Status (SSIMIS), offset 0x01C ........................................................ 368  
SSI Interrupt Clear (SSIICR), offset 0x020 ....................................................................... 369  
Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0 ............................................. 370  
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 ............................................. 371  
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8 ............................................. 372  
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC ............................................ 373  
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0 ............................................. 374  
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 ............................................. 375  
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8 ............................................. 376  
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC ............................................ 377  
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 ............................................... 378  
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 ............................................... 379  
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 ............................................... 380  
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC ............................................... 381  
Inter-Integrated Circuit (I2C) Interface ........................................................................................ 382  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Register 6:  
Register 7:  
Register 8:  
Register 9:  
I2C Master Slave Address (I2CMSA), offset 0x000 ........................................................... 397  
I2C Master Control/Status (I2CMCS), offset 0x004 ........................................................... 398  
I2C Master Data (I2CMDR), offset 0x008 ......................................................................... 402  
I2C Master Timer Period (I2CMTPR), offset 0x00C ........................................................... 403  
I2C Master Interrupt Mask (I2CMIMR), offset 0x010 ......................................................... 404  
I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014 ................................................. 405  
I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018 ........................................... 406  
I2C Master Interrupt Clear (I2CMICR), offset 0x01C ......................................................... 407  
I2C Master Configuration (I2CMCR), offset 0x020 ............................................................ 408  
Register 10: I2C Slave Own Address (I2CSOAR), offset 0x800 ............................................................ 410  
Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x804 ........................................................... 411  
Register 12: I2C Slave Data (I2CSDR), offset 0x808 ........................................................................... 413  
Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x80C ........................................................... 414  
Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 ................................................... 415  
Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 .............................................. 416  
Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x818 ............................................................ 417  
Analog Comparator ..................................................................................................................... 418  
Register 1:  
Register 2:  
Register 3:  
Register 4:  
Register 5:  
Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 .................................. 423  
Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 ....................................... 424  
Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 ......................................... 425  
Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 ....................... 426  
Analog Comparator Status 0 (ACSTAT0), offset 0x020 ..................................................... 427  
July 24, 2012  
17  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Table of Contents  
Register 6:  
Analog Comparator Control 0 (ACCTL0), offset 0x024 ..................................................... 428  
18  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Revision History  
The revision history table notes changes made between the indicated revisions of the LM3S102  
data sheet.  
Table 1. Revision History  
Date  
Revision Description  
July 2012  
12972.2532  
Marked 28-pin SOIC package as OBSOLETE.  
June 2012  
12972.2532  
In Reset Characteristics table, changed values and units for Internal reset timeout after hardware  
reset (R7).  
Removed 48QFN package.  
Minor data sheet clarifications and corrections.  
November 2011  
11107  
Added module-specific pin tables to each chapter in the new Signal Description sections.  
In Timer chapter, clarified that in 16-Bit Input Edge Time Mode, the timer is capable of capturing  
three types of events: rising edge, falling edge, or both.  
In UART chapter, clarified interrupt behavior.  
In SSI chapter, corrected SSIClk in the figure "Synchronous Serial Frame Format (Single Transfer)".  
In Signal Tables chapter:  
Corrected pin numbers in table "Connections for Unused Signals" (other pin tables were correct).  
In Electrical Characteristics chapter:  
Added parameter "Input voltage for a GPIO configured as an analog input" to the "Maximum  
Ratings" table.  
Corrected Nom values for parameters "TCK clock Low time" and "TCK clock High time" in "JTAG  
Characteristics" table.  
Additional minor data sheet clarifications and corrections.  
July 24, 2012  
19  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Revision History  
Table 1. Revision History (continued)  
Date  
Revision Description  
January 2011  
9102  
In Application Interrupt and Reset Control (APINT) register, changed bit name from SYSRESETREQ  
to SYSRESREQ.  
Added DEBUG (Debug Priority) bit field to System Handler Priority 3 (SYSPRI3) register.  
Added missing bit MMARV to the Configurable Fault Status (FAULTSTAT) register.  
Added "Reset Sources" table to System Control chapter.  
Removed mention of false-start bit detection in the UART chapter. This feature is not supported.  
Added note that specific module clocks must be enabled before that module's registers can be  
programmed. There must be a delay of 3 system clocks after the module clock is enabled before  
any of that module's registers are accessed.  
Changed I2C slave register base addresses and offsets to be relative to the I2C module base address  
of 0x4002.0000 , so register bases and offsets were changed for all I2C slave registers. Note that  
the hw_i2c.h file in the StellarisWare® Driver Library uses a base address of 0x4002.0800 for the  
I2C slave registers. Be aware when using registers with offsets between 0x800 and 0x818 that  
StellarisWare uses the old slave base address for these offsets.  
Added specification for maximum input voltage on a non-power pin when the microcontroller is  
unpowered (VNON parameter in Maximum Ratings table).  
Additional minor data sheet clarifications and corrections.  
September 2010  
7783  
Reorganized ARM Cortex-M3 Processor Core, Memory Map and Interrupts chapters, creating two  
new chapters, The Cortex-M3 Processor and Cortex-M3 Peripherals. Much additional content was  
added, including all the Cortex-M3 registers.  
Changed register names to be consistent with StellarisWare names: the Cortex-M3 Interrupt Control  
and Status (ICSR) register to the Interrupt Control and State (INTCTRL) register, and the  
Cortex-M3 Interrupt Set Enable (SETNA) register to the Interrupt 0-31 Set Enable (EN0) register.  
Added clarification of instruction execution during Flash operations.  
Modified Figure 7-2 on page 207 to clarify operation of the GPIO inputs when used as an alternate  
function.  
Added caution not to apply a Low value to PB7 when debugging; a Low value on the pin causes  
the JTAG controller to be reset, resulting in a loss of JTAG communication.  
In General-Purpose Timers chapter, clarified operation of the 32-bit RTC mode.  
Added missing table "Connections for Unused Signals" (Table 15-9 on page 442).  
In Electrical Characteristics chapter:  
Added ILKG parameter (GPIO input leakage current) to Table 17-4 on page 445.  
Corrected values for tCLKRF parameter (SSIClk rise/fall time) in Table 17-13 on page 452.  
Added dimensions for Tray and Tape and Reel shipping mediums.  
June 2010  
7393  
Corrected base address for SRAM in architectural overview chapter.  
Clarified system clock operation, adding content to “Clock Control” on page 140.  
In Signal Tables chapter, added table "Connections for Unused Signals."  
In "Reset Characteristics" table, corrected value for supply voltage (VDD) rise time.  
Additional minor data sheet clarifications and corrections.  
20  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 1. Revision History (continued)  
Date  
Revision Description  
April 2010  
7004  
Added caution note to the I2C Master Timer Period (I2CMTPR) register description and changed  
field width to 7 bits.  
Added note about RST signal routing.  
Clarified the function of the TnSTALL bit in the GPTMCTL register.  
Additional minor data sheet clarifications and corrections.  
January 2010  
6712  
In "System Control" section, clarified Debug Access Port operation after Sleep modes.  
Clarified wording on Flash memory access errors.  
Added section on Flash interrupts.  
Clarified operation of SSI transmit FIFO.  
Made these changes to the Operating Characteristics chapter:  
Added storage temperature ratings to "Temperature Characteristics" table  
Added "ESD Absolute Maximum Ratings" table  
Made these changes to the Electrical Characteristics chapter:  
In "Flash Memory Characteristics" table, corrected Mass erase time  
Added sleep and deep-sleep wake-up times ("Sleep Modes AC Characteristics" table)  
In "Reset Characteristics" table, corrected supply voltage (VDD) rise time  
October 2009  
6438  
The reset value for the DID1 register may change, depending on the package.  
Deleted reset value for 16-bit mode from GPTMTAILR, GPTMTAMATCHR, and GPTMTAR registers  
because the module resets in 32-bit mode.  
Made these changes to the Electrical Characteristics chapter:  
Removed VSIH and VSIL parameters from Operating Conditions table.  
Changed SSI set up and hold times to be expressed in system clocks, not ns.  
Added 48QFN and 48QFP packages.  
Additional minor data sheet clarifications and corrections.  
July 2009  
5953  
Clarified Power-on reset and RST pin operation; added new diagrams.  
Added DBG bits missing from FMPRE register. This changes register reset value.  
In ADC characteristics table, changed Max value for GAIN parameter from ±1 to ±3 and added EIR  
(Internal voltage reference error) parameter.  
Corrected ordering numbers.  
Additional minor data sheet clarifications and corrections.  
April 2009  
5369  
Added JTAG/SWD clarification (see “Communication with JTAG/SWD” on page 130).  
Added "GPIO Module DC Characteristics" table (see Table 17-4 on page 445).  
Additional minor data sheet clarifications and corrections.  
July 24, 2012  
21  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Revision History  
Table 1. Revision History (continued)  
Date  
Revision Description  
January 2009  
4644  
Incorrect bit type for RELOAD bit field in SysTick Reload Value register; changed to R/W.  
Clarification added as to what happens when the SSI in slave mode is required to transmit but there  
is no data in the TX FIFO.  
Minor corrections to comparator operating mode tables.  
Additional minor data sheet clarifications and corrections.  
November 2008  
October 2008  
4283  
4149  
Revised High-Level Block Diagram.  
Additional minor data sheet clarifications and corrections were made.  
Added note on clearing interrupts to the Interrupts chapter:  
Note:  
It may take several processor cycles after a write to clear an interrupt source in order for  
NVIC to see the interrupt source de-assert. This means if the interrupt clear is done as  
the last action in an interrupt handler, it is possible for the interrupt handler to complete  
while NVIC sees the interrupt as still asserted, causing the interrupt handler to be  
re-entered errantly. This can be avoided by either clearing the interrupt source at the  
beginning of the interrupt handler or by performing a read or write after the write to clear  
the interrupt source (and flush the write buffer)  
Bit 13 and bit 5 of the GPTM Control (GPTMCTL) register should have been marked as reserved  
for Stellaris® devices without an ADC module.  
Additional minor data sheet clarifications and corrections were made.  
June 2008  
2972  
Started tracking revision history.  
22  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
About This Document  
This data sheet provides reference information for the LM3S102 microcontroller, describing the  
functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex™-M3  
core.  
Audience  
This manual is intended for system software developers, hardware designers, and application  
developers.  
About This Manual  
This document is organized into sections that correspond to each major feature.  
Related Documents  
The following related documents are available on the Stellaris® web site at www.ti.com/stellaris:  
Stellaris® Errata  
ARM® Cortex™-M3 Errata  
Cortex™-M3/M4 Instruction Set Technical User's Manual  
Stellaris® Graphics Library User's Guide  
Stellaris® Peripheral Driver Library User's Guide  
The following related documents are also referenced:  
ARM® Debug Interface V5 Architecture Specification  
ARM® Embedded Trace Macrocell Architecture Specification  
IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture  
This documentation list was current as of publication date. Please check the web site for additional  
documentation, including application notes and white papers.  
July 24, 2012  
23  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
About This Document  
Documentation Conventions  
This document uses the conventions shown in Table 2 on page 24.  
Table 2. Documentation Conventions  
Notation  
Meaning  
General Register Notation  
REGISTER  
APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and  
Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more  
than one register. For example, SRCRn represents any (or all) of the three Software Reset Control  
registers: SRCR0, SRCR1 , and SRCR2.  
bit  
A single bit in a register.  
bit field  
offset 0xnnn  
Two or more consecutive and related bits.  
A hexadecimal increment to a register's address, relative to that module's base address as specified  
in Table 2-4 on page 59.  
Register N  
Registers are numbered consecutively throughout the document to aid in referencing them. The  
register number has no meaning to software.  
reserved  
Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to  
0; however, user software should not rely on the value of a reserved bit. To provide software  
compatibility with future products, the value of a reserved bit should be preserved across a  
read-modify-write operation.  
yy:xx  
The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in  
that register.  
Register Bit/Field  
Types  
This value in the register bit diagram indicates whether software running on the controller can  
change the value of the bit field.  
RC  
Software can read this field. The bit or field is cleared by hardware after reading the bit/field.  
Software can read this field. Always write the chip reset value.  
Software can read or write this field.  
RO  
R/W  
R/WC  
R/W1C  
Software can read or write this field. Writing to it with any value clears the register.  
Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the  
register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged.  
This register type is primarily used for clearing interrupt status bits where the read operation  
provides the interrupt status and the write of the read value clears only the interrupts being reported  
at the time the register was read.  
R/W1S  
W1C  
Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit  
value in the register.  
Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register.  
A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A  
read of the register returns no meaningful data.  
This register is typically used to clear the corresponding bit in an interrupt register.  
Only a write by software is valid; a read of the register returns no meaningful data.  
This value in the register bit diagram shows the bit/field value after any reset, unless noted.  
WO  
Register Bit/Field  
Reset Value  
0
Bit cleared to 0 on chip reset.  
Bit set to 1 on chip reset.  
Nondeterministic.  
1
-
Pin/Signal Notation  
[ ]  
Pin alternate function; a pin defaults to the signal without the brackets.  
Refers to the physical connection on the package.  
pin  
signal  
Refers to the electrical signal encoding of a pin.  
24  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 2. Documentation Conventions (continued)  
Notation  
Meaning  
assert a signal  
Change the value of the signal from the logically False state to the logically True state. For active  
High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value  
is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL  
below).  
deassert a signal  
Change the value of the signal from the logically True state to the logically False state.  
SIGNAL  
Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that  
it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.  
SIGNAL  
Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To  
assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.  
Numbers  
X
An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For  
example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and  
so on.  
0x  
Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.  
All other numbers within register tables are assumed to be binary. Within conceptual information,  
binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written  
without a prefix or suffix.  
July 24, 2012  
25  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Architectural Overview  
1
Architectural Overview  
The Stellaris® family of microcontrollers—the first ARM® Cortex™-M3 based controllers—brings  
high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These  
pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit  
devices, all in a package with a small footprint.  
The LM3S102 microcontroller is targeted for industrial applications, including test and measurement  
equipment, factory automation, HVAC and building control, motion control, medical instrumentation,  
fire and security, and power/energy.  
In addition, the LM3S102 microcontroller offers the advantages of ARM's widely available  
development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community.  
Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce  
memory requirements and, thereby, cost. Finally, the LM3S102 microcontroller is code-compatible  
to all members of the extensive Stellaris family; providing flexibility to fit our customers' precise  
needs.  
Texas Instruments offers a complete solution to get to market quickly, with evaluation and  
development boards, white papers and application notes, an easy-to-use peripheral driver library,  
and a strong support, sales, and distributor network. See “Ordering and Contact  
Information” on page 475 for ordering information for Stellaris family devices.  
1.1  
Product Features  
The LM3S102 microcontroller includes the following product features:  
■ 32-Bit RISC Performance  
32-bit ARM® Cortex™-M3 v7M architecture optimized for small-footprint embedded  
applications  
System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero  
counter with a flexible control mechanism  
Thumb®-compatible Thumb-2-only instruction set processor core for high code density  
20-MHz operation  
Hardware-division and single-cycle-multiplication  
Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt  
handling  
14 interrupts with eight priority levels  
Unaligned data access, enabling data to be efficiently packed into memory  
Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined  
peripheral control  
■ ARM® Cortex™-M3 Processor Core  
Compact core.  
26  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the  
memory size usually associated with 8- and 16-bit devices; typically in the range of a few  
kilobytes of memory for microcontroller class applications.  
Rapid application execution through Harvard architecture characterized by separate buses  
for instruction and data.  
Exceptional interrupt handling, by implementing the register manipulations required for handling  
an interrupt in hardware.  
Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining  
Migration from the ARM7™ processor family for better performance and power efficiency.  
Full-featured debug solution  
Serial Wire JTAG Debug Port (SWJ-DP)  
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints  
Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,  
and system profiling  
Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer  
Optimized for single-cycle flash usage  
Three sleep modes with clock gating for low power  
Single-cycle multiply instruction and hardware divide  
Atomic operations  
ARM Thumb2 mixed 16-/32-bit instruction set  
1.25 DMIPS/MHz  
■ JTAG  
IEEE 1149.1-1990 compatible Test Access Port (TAP) controller  
Four-bit Instruction Register (IR) chain for storing JTAG instructions  
IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST  
ARM additional instructions: APACC, DPACC and ABORT  
Integrated ARM Serial Wire Debug (SWD)  
■ Internal Memory  
8 KB single-cycle flash  
User-managed flash block protection on a 2-KB block basis  
July 24, 2012  
27  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Architectural Overview  
User-managed flash data programming  
User-defined and managed flash-protection block  
2 KB single-cycle SRAM  
■ GPIOs  
0-18 GPIOs, depending on configuration  
5-V-tolerant in input configuration  
Fast toggle capable of a change every two clock cycles  
Programmable control for GPIO interrupts  
Interrupt generation masking  
Edge-triggered on rising, falling, or both  
Level-sensitive on High or Low values  
Bit masking in both read and write operations through address lines  
Pins configured as digital inputs are Schmitt-triggered.  
Programmable control for GPIO pad configuration  
Weak pull-up or pull-down resistors  
2-mA, 4-mA, and 8-mA pad drive for digital communication  
Slew rate control for the 8-mA drive  
Open drain enables  
Digital input enables  
■ General-Purpose Timers  
Two General-Purpose Timer Modules (GPTM), each of which provides two 16-bit  
timers/counters. Each GPTM can be configured to operate independently:  
As a single 32-bit timer  
As one 32-bit Real-Time Clock (RTC) to event capture  
For Pulse Width Modulation (PWM)  
32-bit Timer modes  
Programmable one-shot timer  
Programmable periodic timer  
Real-Time Clock when using an external 32.768-KHz clock as the input  
28  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
User-enabled stalling when the controller asserts CPU Halt flag during debug  
16-bit Timer modes  
General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes  
only)  
Programmable one-shot timer  
Programmable periodic timer  
User-enabled stalling when the controller asserts CPU Halt flag during debug  
16-bit Input Capture modes  
Input edge count capture  
Input edge time capture  
16-bit PWM mode  
Simple PWM mode with software-programmable output inversion of the PWM signal  
■ ARM FiRM-compliant Watchdog Timer  
32-bit down counter with a programmable load register  
Separate watchdog clock with an enable  
Programmable interrupt generation logic with interrupt masking  
Lock register protection from runaway software  
Reset generation logic with an enable/disable  
User-enabled stalling when the controller asserts the CPU Halt flag during debug  
■ UART  
Fully programmable 16C550-type UART  
Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading  
Programmable baud-rate generator allowing speeds up to 1.25 Mbps  
Programmable FIFO length, including 1-byte deep operation providing conventional  
double-buffered interface  
FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
Standard asynchronous communication bits for start, stop, and parity  
Line-break generation and detection  
Fully programmable serial interface characteristics  
5, 6, 7, or 8 data bits  
July 24, 2012  
29  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Architectural Overview  
Even, odd, stick, or no-parity bit generation/detection  
1 or 2 stop bit generation  
■ Synchronous Serial Interface (SSI)  
Master or slave operation  
Programmable clock bit rate and prescale  
Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep  
Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments  
synchronous serial interfaces  
Programmable data frame size from 4 to 16 bits  
■ I2C  
Internal loopback test mode for diagnostic/debug testing  
Devices on the I2C bus can be designated as either a master or a slave  
Supports both sending and receiving data as either a master or a slave  
Supports simultaneous master and slave operation  
Four I2C modes  
Master transmit  
Master receive  
Slave transmit  
Slave receive  
Two transmission speeds: Standard (100 Kbps) and Fast (400 Kbps)  
Master and slave interrupt generation  
Master generates interrupts when a transmit or receive operation completes (or aborts  
due to an error)  
Slave generates interrupts when data has been sent or requested by a master  
Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing  
mode  
■ Analog Comparators  
One integrated analog comparator  
Configurable for output to drive an output pin or generate an interrupt  
Compare external pin input to external pin input or to internal programmable voltage reference  
30  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Compare a test voltage against any one of these voltages  
An individual external reference voltage  
A shared single external reference voltage  
A shared internal reference voltage  
■ Power  
On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable  
from 2.25 V to 2.75 V  
Low-power options on controller: Sleep and Deep-sleep modes  
Low-power options for peripherals: software controls shutdown of individual peripherals  
User-enabled LDO unregulated voltage detection and automatic reset  
3.3-V supply brown-out detection and reporting via interrupt or reset  
■ Flexible Reset Sources  
Power-on reset (POR)  
Reset pin assertion  
Brown-out (BOR) detector alerts to system power drops  
Software reset  
Watchdog timer reset  
Internal low drop-out (LDO) regulator output goes unregulated  
■ Industrial and extended temperature 28-pin RoHS-compliant SOIC package1  
■ Industrial and extended temperature 48-pin RoHS-compliant LQFP package  
1.2  
Target Applications  
■ Factory automation and control  
■ Industrial control power devices  
■ Building and home automation  
■ Stepper motors  
■ Brushless DC motors  
■ AC induction motors  
1OBSOLETE: TI has discontinued production of the 28-pin SOIC package for this device.  
July 24, 2012  
31  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Architectural Overview  
1.3  
High-Level Block Diagram  
Figure 1-1 on page 33 depicts the features on the Stellaris LM3S102 microcontroller.  
32  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 1-1. Stellaris LM3S102 Microcontroller High-Level Block Diagram  
JTAG/SWD  
ARM®  
Cortex™-M3  
(20MHz)  
System  
Control and  
Clocks  
Flash  
(8KB)  
DCode bus  
ICode bus  
(w/ Precis. Osc.)  
NVIC  
System Bus  
LM3S102  
SRAM  
(2KB)  
Bus Matrix  
SYSTEM PERIPHERALS  
General-  
Purpose  
Timer (2)  
Watchdog  
Timer  
(1)  
GPIOs  
(0-18)  
SERIAL PERIPHERALS  
I2C  
(1)  
UART  
(1)  
SSI  
(1)  
ANALOG PERIPHERALS  
Analog  
Comparator  
(1)  
July 24, 2012  
33  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Architectural Overview  
1.4  
Functional Overview  
The following sections provide an overview of the features of the LM3S102 microcontroller. The  
page number in parenthesis indicates where that feature is discussed in detail. Ordering and support  
information can be found in “Ordering and Contact Information” on page 475.  
1.4.1  
ARM Cortex™-M3  
1.4.1.1  
Processor Core (see page 40)  
All members of the Stellaris product family, including the LM3S102 microcontroller, are designed  
around an ARM Cortex™-M3 processor core. The ARM Cortex-M3 processor provides the core for  
a high-performance, low-cost platform that meets the needs of minimal memory implementation,  
reduced pin count, and low-power consumption, while delivering outstanding computational  
performance and exceptional system response to interrupts.  
1.4.1.2  
1.4.1.3  
Memory Map (see page 59)  
A memory map lists the location of instructions and data in memory. The memory map for the  
LM3S102 controller can be found in Table 2-4 on page 59. Register addresses are given as a  
hexadecimal increment, relative to the module's base address as shown in the memory map.  
System Timer (SysTick) (see page 81)  
Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter  
can be used in several different ways, for example:  
■ An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a  
SysTick routine.  
■ A high-speed alarm timer using the system clock.  
■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock  
used and the dynamic range of the counter.  
■ A simple counter. Software can use this to measure time to completion and time used.  
■ An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field  
in the control and status register can be used to determine if an action completed within a set  
duration, as part of a dynamic clock management control loop.  
1.4.1.4  
Nested Vectored Interrupt Controller (NVIC) (see page 82)  
The LM3S102 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the  
ARM® Cortex™-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions  
are handled in Handler Mode. The processor state is automatically stored to the stack on an  
exception, and automatically restored from the stack at the end of the Interrupt Service Routine  
(ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry.  
The processor supports tail-chaining, which enables back-to-back interrupts to be performed without  
the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions  
(system handlers) and 14 interrupts.  
34  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
1.4.1.5  
System Control Block (SCB) (see page 84)  
The SCB provides system implementation information and system control, including configuration,  
control, and reporting of system exceptions.  
1.4.2  
Motor Control Peripherals  
To enhance motor control, the LM3S102 controller features Pulse Width Modulation (PWM) outputs.  
1.4.2.1  
PWM  
Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels.  
High-resolution counters are used to generate a square wave, and the duty cycle of the square  
wave is modulated to encode an analog signal. Typical applications include switching power supplies  
and motor control.  
On the LM3S102, PWM motion control functionality can be achieved through:  
■ The motion control features of the general-purpose timers using the CCP pins  
CCP Pins (see page 250)  
The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable  
to support a simple PWM mode with a software-programmable output inversion of the PWM signal.  
1.4.3  
Analog Peripherals  
For support of analog signals, the LM3S102 microcontroller offers one analog comparator.  
1.4.3.1  
Analog Comparators (see page 418)  
An analog comparator is a peripheral that compares two analog voltages, and provides a logical  
output that signals the comparison result.  
The LM3S102 microcontroller provides one analog comparator that can be configured to drive an  
output or generate an interrupt .  
A comparator can compare a test voltage against any one of these voltages:  
■ An individual external reference voltage  
■ A shared single external reference voltage  
■ A shared internal reference voltage  
The comparator can provide its output to a device pin, acting as a replacement for an analog  
comparator on the board, or it can be used to signal the application via interrupts to cause it to start  
capturing a sample sequence.  
1.4.4  
Serial Communications Peripherals  
The LM3S102 controller supports both asynchronous and synchronous serial communications with:  
■ One fully programmable 16C550-type UART  
■ One SSI module  
■ One I2C module  
July 24, 2012  
35  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Architectural Overview  
1.4.4.1  
UART (see page 304)  
A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C  
serial communications, containing a transmitter (parallel-to-serial converter) and a receiver  
(serial-to-parallel converter), each clocked separately.  
The LM3S102 controller includes one fully programmable 16C550-type UARTthat supports data  
transfer speeds up to 1.25 Mbps. (Although similar in functionality to a 16C550 UART, it is not  
register-compatible.)  
Separate 16x8 transmit (TX) and receive (RX) FIFOs reduce CPU interrupt service loading. The  
UART can generate individually masked interrupts from the RX, TX, modem status, and error  
conditions. The module provides a single combined interrupt when any of the interrupts are asserted  
and are unmasked.  
1.4.4.2  
SSI (see page 344)  
Synchronous Serial Interface (SSI) is a four-wire bi-directional full and low-speed communications  
interface.  
The LM3S102 controller includes one SSI module that provides the functionality for synchronous  
serial communications with peripheral devices, and can be configured to use the Freescale SPI,  
MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also  
configurable, and can be set between 4 and 16 bits, inclusive.  
The SSI module performs serial-to-parallel conversion on data received from a peripheral device,  
and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths  
are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.  
The SSI module can be configured as either a master or slave device. As a slave device, the SSI  
module can also be configured to disable its output, which allows a master device to be coupled  
with multiple slave devices.  
The SSI module also includes a programmable bit rate clock divider and prescaler to generate the  
output serial clock derived from the SSI module's input clock. Bit rates are generated based on the  
input clock and the maximum bit rate is determined by the connected peripheral.  
1.4.4.3  
I2C (see page 382)  
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design  
(a serial data line SDA and a serial clock line SCL).  
The I2C bus interfaces to external I2C devices such as serial memory (RAMs and ROMs), networking  
devices, LCDs, tone generators, and so on. The I2C bus may also be used for system testing and  
diagnostic purposes in product development and manufacture.  
The LM3S102 controller includes one I2C module that provides the ability to communicate to other  
IC devices over an I2C bus. The I2C bus supports devices that can both transmit and receive (write  
and read) data.  
Devices on the I2C bus can be designated as either a master or a slave. The I2C module supports  
both sending and receiving data as either a master or a slave, and also supports the simultaneous  
operation as both a master and a slave. The four I2C modes are: Master Transmit, Master Receive,  
Slave Transmit, and Slave Receive.  
A Stellaris I2C module can operate at two speeds: Standard (100 Kbps) and Fast (400 Kbps).  
36  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Both the I2C master and slave can generate interrupts. The I2C master generates interrupts when  
a transmit or receive operation completes (or aborts due to an error). The I2C slave generates  
interrupts when data has been sent or requested by a master.  
1.4.5  
System Peripherals  
1.4.5.1  
Programmable GPIOs (see page 202)  
General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.  
The Stellaris GPIO module is comprised of three physical GPIO blocks, each corresponding to an  
individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP  
for Real-Time Microcontrollers specification) and supports 0-18 programmable input/output pins.  
The number of GPIOs available depends on the peripherals being used (see “Signal  
Tables” on page 432 for the signals available to each GPIO pin).  
The GPIO module features programmable interrupt generation as either edge-triggered or  
level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in  
both read and write operations through address lines. Pins configured as digital inputs are  
Schmitt-triggered.  
1.4.5.2  
Two Programmable Timers (see page 244)  
Programmable timers can be used to count or time external events that drive the Timer input pins.  
The Stellaris General-Purpose Timer Module (GPTM) contains two GPTM blocks. Each GPTM  
block provides two 16-bit timers/counters that can be configured to operate independently as timers  
or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).  
When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or  
periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can  
extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event  
capture or Pulse Width Modulation (PWM) generation.  
1.4.5.3  
Watchdog Timer (see page 280)  
A watchdog timer can generate an interrupt or a reset when a time-out value is reached. The  
watchdog timer is used to regain control when a system has failed due to a software error or to the  
failure of an external device to respond in the expected way.  
The Stellaris Watchdog Timer module consists of a 32-bit down counter, a programmable load  
register, interrupt generation logic, and a locking register.  
The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,  
and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured,  
the lock register can be written to prevent the timer configuration from being inadvertently altered.  
1.4.6  
Memory Peripherals  
The LM3S102 controller offers both single-cycle SRAM and single-cycle Flash memory.  
1.4.6.1  
SRAM (see page 185)  
The LM3S102 static random access memory (SRAM) controller supports 2 KB SRAM. The internal  
SRAM of the Stellaris devices starts at base address 0x2000.0000 of the device memory map. To  
reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced  
bit-banding technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain  
July 24, 2012  
37  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Architectural Overview  
regions in the memory map (SRAM and peripheral space) can use address aliases to access  
individual bits in a single, atomic operation.  
1.4.6.2  
Flash (see page 186)  
The LM3S102 Flash controller supports 8 KB of flash memory. The flash is organized as a set of  
1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block  
to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually  
protected. The blocks can be marked as read-only or execute-only, providing different levels of code  
protection. Read-only blocks cannot be erased or programmed, protecting the contents of those  
blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only  
be read by the controller instruction fetch mechanism, protecting the contents of those blocks from  
being read by either the controller or by a debugger.  
1.4.7  
Additional Features  
1.4.7.1  
JTAG TAP Controller (see page 124)  
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and  
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface  
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)  
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing  
information on the components. The JTAG Port also provides a means of accessing and controlling  
design-for-test features such as I/O pin observation and control, scan testing, and debugging.  
The JTAG port is composed of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is  
transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of  
this data is dependent on the current state of the TAP controller. For detailed information on the  
operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test  
Access Port and Boundary-Scan Architecture.  
The Stellaris JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core.  
This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG  
instructions select the ARM TDO output while Stellaris JTAG instructions select the Stellaris TDO  
outputs. The multiplexer is controlled by the Stellaris JTAG controller, which has comprehensive  
programming for the ARM, Stellaris, and unimplemented JTAG instructions.  
1.4.7.2  
1.4.8  
System Control and Clocks (see page 135)  
System control determines the overall operation of the device. It provides information about the  
device, controls the clocking of the device and individual peripherals, and handles reset detection  
and reporting.  
Hardware Details  
Details on the pins and package can be found in the following sections:  
“Pin Diagram” on page 430  
“Signal Tables” on page 432  
“Operating Characteristics” on page 443  
“Electrical Characteristics” on page 444  
“Package Information” on page 477  
38  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
1.4.9  
System Block Diagram  
Figure 1-2. LM3S102 Controller System-Level Block Diagram  
VDD_3.3V  
LDO  
VDD_2.5V  
LDO  
GND  
ARM Cortex-M3  
(20 MHz)  
CM3Core  
DCode  
ICode  
Flash  
(8 KB)  
NVIC  
Debug  
Bus  
OSC0  
OSC1  
IOSC PLL  
SRAM  
(2 KB)  
APB Bridge  
POR  
BOR  
Watchdog  
Timer  
System  
Control  
RST  
& Clocks  
GPIO Port A  
GPIO Port B  
PB7/TRST  
PB6/CCP1/C0+  
PB5/C0o  
Analog  
Comparator  
PA5/SSITx  
PA4/SSIRx  
PA3/SSIFss  
PA2/SSIClk  
PB4/C0-  
SSI  
PB3/I2CSDA  
PB2/I2CSCL  
Master  
2
I C  
Slave  
PA1/U0Tx  
PA0/U0Rx  
UART0  
PB1/32KHz  
PB0/CCP0  
GP Timer1  
GPIO Port C  
GP Timer0  
PC3/TDO/SWO  
PC2/TDI  
PC1/TMS/SWDIO  
PC0/TCK/SWCLK  
JTAG  
SWD/SWO  
LM3S102  
July 24, 2012  
39  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
2
The Cortex-M3 Processor  
The ARM® Cortex™-M3 processor provides a high-performance, low-cost platform that meets the  
system requirements of minimal memory implementation, reduced pin count, and low power  
consumption, while delivering outstanding computational performance and exceptional system  
response to interrupts. Features include:  
■ Compact core.  
■ Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory  
size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of  
memory for microcontroller class applications.  
■ Rapid application execution through Harvard architecture characterized by separate buses for  
instruction and data.  
■ Exceptional interrupt handling, by implementing the register manipulations required for handling  
an interrupt in hardware.  
■ Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining  
■ Migration from the ARM7™ processor family for better performance and power efficiency.  
■ Full-featured debug solution  
Serial Wire JTAG Debug Port (SWJ-DP)  
Flash Patch and Breakpoint (FPB) unit for implementing breakpoints  
Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources,  
and system profiling  
Instrumentation Trace Macrocell (ITM) for support of printf style debugging  
Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer  
■ Optimized for single-cycle flash usage  
■ Three sleep modes with clock gating for low power  
■ Single-cycle multiply instruction and hardware divide  
■ Atomic operations  
■ ARM Thumb2 mixed 16-/32-bit instruction set  
■ 1.25 DMIPS/MHz  
The Stellaris® family of microcontrollers builds on this core to bring high-performance 32-bit computing  
to cost-sensitive embedded microcontroller applications, such as factory automation and control,  
industrial control power devices, building and home automation, and stepper motor control.  
This chapter provides information on the Stellaris implementation of the Cortex-M3 processor,  
including the programming model, the memory model, the exception model, fault handling, and  
power management.  
40  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
For technical details on the instruction set, see the Cortex™-M3/M4 Instruction Set Technical User's  
Manual.  
2.1  
Block Diagram  
The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline  
Harvard architecture, making it ideal for demanding embedded applications. The processor delivers  
exceptional power efficiency through an efficient instruction set and extensively optimized design,  
providing high-end processing hardware including a range of single-cycle and SIMD multiplication  
and multiply-with-accumulate capabilities, saturating arithmetic and dedicated hardware division.  
To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly coupled  
system components that reduce processor area while significantly improving interrupt handling and  
system debug capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction  
set based on Thumb-2 technology, ensuring high code density and reduced program memory  
requirements. The Cortex-M3 instruction set provides the exceptional performance expected of a  
modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers.  
The Cortex-M3 processor closely integrates a nested interrupt controller (NVIC), to deliver  
industry-leading interrupt performance. The Stellaris NVIC includes a non-maskable interrupt (NMI)  
and provides eight interrupt priority levels. The tight integration of the processor core and NVIC  
provides fast execution of interrupt service routines (ISRs), dramatically reducing interrupt latency.  
The hardware stacking of registers and the ability to suspend load-multiple and store-multiple  
operations further reduce interrupt latency. Interrupt handlers do not require any assembler stubs  
which removes code overhead from the ISRs. Tail-chaining optimization also significantly reduces  
the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC  
integrates with the sleep modes, including Deep-sleep mode, which enables the entire device to be  
rapidly powered down.  
July 24, 2012  
41  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Figure 2-1. CPU Block Diagram  
Nested  
Vectored  
Interrupt  
Controller  
Interrupts  
Sleep  
Serial  
Wire  
Output  
Trace  
Port  
ARM  
Cortex-M3  
CM3 Core  
Debug  
Instructions Data  
Trace  
Port  
(SWO)  
Interface  
Unit  
Instrumentation  
Data  
Trace Macrocell  
Watchpoint  
and Trace  
Flash  
Patch and  
Breakpoint  
ROM  
Table  
Private Peripheral  
Bus  
Adv. Peripheral  
Bus  
(internal)  
I-code bus  
D-code bus  
System bus  
Bus  
Matrix  
Serial Wire JTAG  
Debug Port  
Debug  
Access Port  
2.2  
Overview  
2.2.1  
System-Level Interface  
The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide  
high-speed, low-latency memory accesses. The core supports unaligned data accesses and  
implements atomic bit manipulation that enables faster peripheral controls, system spinlocks, and  
thread-safe Boolean data handling.  
2.2.2  
Integrated Configurable Debug  
The Cortex-M3 processor implements a complete hardware debug solution, providing high system  
visibility of the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire  
Debug (SWD) port that is ideal for microcontrollers and other small package devices. The Stellaris  
implementation replaces the ARM SW-DP and JTAG-DP with the ARM CoreSight™-compliant  
Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface combines the SWD and  
JTAG debug ports into one module. See the ARM® Debug Interface V5 Architecture Specification  
for details on SWJ-DP.  
For system trace, the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data  
watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system trace  
events, a Serial Wire Viewer (SWV) can export a stream of software-generated messages, data  
trace, and profiling information through a single pin.  
The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators  
that debuggers can use. The comparators in the FPB also provide remap functions of up to eight  
words in the program code in the CODE memory region. This enables applications stored in a  
read-only area of Flash memory to be patched in another area of on-chip SRAM or Flash memory.  
42  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
If a patch is required, the application programs the FPB to remap a number of addresses. When  
those addresses are accessed, the accesses are redirected to a remap table specified in the FPB  
configuration.  
For more information on the Cortex-M3 debug capabilities, see theARM® Debug Interface V5  
Architecture Specification.  
2.2.3  
Trace Port Interface Unit (TPIU)  
The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace  
Port Analyzer, as shown in Figure 2-2 on page 43.  
Figure 2-2. TPIU Block Diagram  
Debug  
Serial Wire  
Trace Port  
(SWO)  
ATB  
Interface  
Trace Out  
(serializer)  
ATB  
Slave  
Port  
Asynchronous FIFO  
APB  
Slave  
Port  
APB  
Interface  
2.2.4  
Cortex-M3 System Component Details  
The Cortex-M3 includes the following system components:  
■ SysTick  
A 24-bit count-down timer that can be used as a Real-Time Operating System (RTOS) tick timer  
or as a simple counter (see “System Timer (SysTick)” on page 81).  
■ Nested Vectored Interrupt Controller (NVIC)  
An embedded interrupt controller that supports low latency interrupt processing (see “Nested  
Vectored Interrupt Controller (NVIC)” on page 82).  
■ System Control Block (SCB)  
The programming model interface to the processor. The SCB provides system implementation  
information and system control, including configuration, control, and reporting of system exceptions  
(see “System Control Block (SCB)” on page 84).  
July 24, 2012  
43  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
2.3  
Programming Model  
This section describes the Cortex-M3 programming model. In addition to the individual core register  
descriptions, information about the processor modes and privilege levels for software execution and  
stacks is included.  
2.3.1  
Processor Mode and Privilege Levels for Software Execution  
The Cortex-M3 has two modes of operation:  
■ Thread mode  
Used to execute application software. The processor enters Thread mode when it comes out of  
reset.  
■ Handler mode  
Used to handle exceptions. When the processor has finished exception processing, it returns to  
Thread mode.  
In addition, the Cortex-M3 has two privilege levels:  
■ Unprivileged  
In this mode, software has the following restrictions:  
Limited access to the MSR and MRS instructions and no use of the CPS instruction  
No access to the system timer, NVIC, or system control block  
Possibly restricted access to memory or peripherals  
■ Privileged  
In this mode, software can use all the instructions and has access to all resources.  
In Thread mode, the CONTROL register (see page 58) controls whether software execution is  
privileged or unprivileged. In Handler mode, software execution is always privileged.  
Only privileged software can write to the CONTROL register to change the privilege level for software  
execution in Thread mode. Unprivileged software can use the SVC instruction to make a supervisor  
call to transfer control to privileged software.  
2.3.2  
Stacks  
The processor uses a full descending stack, meaning that the stack pointer indicates the last stacked  
item on the memory. When the processor pushes a new item onto the stack, it decrements the stack  
pointer and then writes the item to the new memory location. The processor implements two stacks:  
the main stack and the process stack, with a pointer for each held in independent registers (see the  
SP register on page 48).  
In Thread mode, the CONTROL register (see page 58) controls whether the processor uses the  
main stack or the process stack. In Handler mode, the processor always uses the main stack. The  
options for processor operations are shown in Table 2-1 on page 45.  
44  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 2-1. Summary of Processor Mode, Privilege Level, and Stack Use  
Processor Mode  
Thread  
Use  
Privilege Level  
Privileged or unprivileged a  
Stack Used  
Main stack or process stack a  
Applications  
Exception handlers  
Handler  
Always privileged  
Main stack  
a. See CONTROL (page 58).  
2.3.3  
Register Map  
Figure 2-3 on page 45 shows the Cortex-M3 register set. Table 2-2 on page 45 lists the Core  
registers. The core registers are not memory mapped and are accessed by register name, so the  
base address is n/a (not applicable) and there is no offset.  
Figure 2-3. Cortex-M3 Register Set  
R0  
R1  
R2  
R3  
Low registers  
R4  
R5  
R6  
R7  
General-purpose registers  
R8  
R9  
High registers  
R10  
R11  
R12  
Banked version of SP  
Stack Pointer  
Link Register  
SP (R13)  
LR (R14)  
PC (R15)  
PSP‡  
MSP‡  
Program Counter  
PSR  
Program status register  
Exception mask registers  
PRIMASK  
FAULTMASK  
BASEPRI  
CONTROL  
Special registers  
CONTROL register  
Table 2-2. Processor Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
-
-
-
-
R0  
R1  
R2  
R3  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
Cortex General-Purpose Register 0  
Cortex General-Purpose Register 1  
Cortex General-Purpose Register 2  
Cortex General-Purpose Register 3  
47  
47  
47  
47  
July 24, 2012  
45  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Table 2-2. Processor Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
R4  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
Cortex General-Purpose Register 4  
Cortex General-Purpose Register 5  
Cortex General-Purpose Register 6  
Cortex General-Purpose Register 7  
Cortex General-Purpose Register 8  
Cortex General-Purpose Register 9  
Cortex General-Purpose Register 10  
Cortex General-Purpose Register 11  
Cortex General-Purpose Register 12  
Stack Pointer  
47  
47  
47  
47  
47  
47  
47  
47  
47  
48  
49  
50  
51  
55  
56  
57  
58  
R5  
-
R6  
-
R7  
-
R8  
-
R9  
-
R10  
-
R11  
-
R12  
-
SP  
-
LR  
0xFFFF.FFFF  
-
Link Register  
PC  
Program Counter  
PSR  
0x0100.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
Program Status Register  
PRIMASK  
FAULTMASK  
BASEPRI  
CONTROL  
Priority Mask Register  
Fault Mask Register  
Base Priority Mask Register  
Control Register  
2.3.4  
Register Descriptions  
This section lists and describes the Cortex-M3 registers, in the order shown in Figure 2-3 on page 45.  
The core registers are not memory mapped and are accessed by register name rather than offset.  
Note: The register type shown in the register descriptions refers to type during program execution  
in Thread mode and Handler mode. Debug access can differ.  
46  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 1: Cortex General-Purpose Register 0 (R0)  
Register 2: Cortex General-Purpose Register 1 (R1)  
Register 3: Cortex General-Purpose Register 2 (R2)  
Register 4: Cortex General-Purpose Register 3 (R3)  
Register 5: Cortex General-Purpose Register 4 (R4)  
Register 6: Cortex General-Purpose Register 5 (R5)  
Register 7: Cortex General-Purpose Register 6 (R6)  
Register 8: Cortex General-Purpose Register 7 (R7)  
Register 9: Cortex General-Purpose Register 8 (R8)  
Register 10: Cortex General-Purpose Register 9 (R9)  
Register 11: Cortex General-Purpose Register 10 (R10)  
Register 12: Cortex General-Purpose Register 11 (R11)  
Register 13: Cortex General-Purpose Register 12 (R12)  
The Rn registers are 32-bit general-purpose registers for data operations and can be accessed  
from either privileged or unprivileged mode.  
Cortex General-Purpose Register 0 (R0)  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DATA  
DATA  
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:0  
Name  
DATA  
Type  
R/W  
Reset  
-
Description  
Register data.  
July 24, 2012  
47  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Register 14: Stack Pointer (SP)  
The Stack Pointer (SP) is register R13. In Thread mode, the function of this register changes  
depending on the ASP bit in the Control Register (CONTROL) register. When the ASP bit is clear,  
this register is the Main Stack Pointer (MSP). When the ASP bit is set, this register is the Process  
Stack Pointer (PSP). On reset, the ASP bit is clear, and the processor loads the MSP with the value  
from address 0x0000.0000. The MSP can only be accessed in privileged mode; the PSP can be  
accessed in either privileged or unprivileged mode.  
Stack Pointer (SP)  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
SP  
SP  
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:0  
Name  
SP  
Type  
R/W  
Reset  
-
Description  
This field is the address of the stack pointer.  
48  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 15: Link Register (LR)  
The Link Register (LR) is register R14, and it stores the return information for subroutines, function  
calls, and exceptions. LR can be accessed from either privileged or unprivileged mode.  
EXC_RETURN is loaded into LR on exception entry. See Table 2-10 on page 74 for the values and  
description.  
Link Register (LR)  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
LINK  
LINK  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:0  
Name  
LINK  
Type  
R/W  
Reset  
Description  
0xFFFF.FFFF This field is the return address.  
July 24, 2012  
49  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Register 16: Program Counter (PC)  
The Program Counter (PC) is register R15, and it contains the current program address. On reset,  
the processor loads the PC with the value of the reset vector, which is at address 0x0000.0004. Bit  
0 of the reset vector is loaded into the THUMB bit of the EPSR at reset and must be 1. The PC register  
can be accessed in either privileged or unprivileged mode.  
Program Counter (PC)  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
PC  
PC  
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:0  
Name  
PC  
Type  
R/W  
Reset  
-
Description  
This field is the current program address.  
50  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 17: Program Status Register (PSR)  
Note: This register is also referred to as xPSR.  
The Program Status Register (PSR) has three functions, and the register bits are assigned to the  
different functions:  
Application Program Status Register (APSR), bits 31:27,  
Execution Program Status Register (EPSR), bits 26:24, 15:10  
Interrupt Program Status Register (IPSR), bits 5:0  
The PSR, IPSR, and EPSR registers can only be accessed in privileged mode; the APSR register  
can be accessed in either privileged or unprivileged mode.  
APSR contains the current state of the condition flags from previous instruction executions.  
EPSR contains the Thumb state bit and the execution state bits for the If-Then (IT) instruction or  
the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple  
instruction. Attempts to read the EPSR directly through application software using the MSR instruction  
always return zero. Attempts to write the EPSR using the MSR instruction in application software  
are always ignored. Fault handlers can examine the EPSR value in the stacked PSR to determine  
the operation that faulted (see “Exception Entry and Return” on page 72).  
IPSR contains the exception type number of the current Interrupt Service Routine (ISR).  
These registers can be accessed individually or as a combination of any two or all three registers,  
using the register name as an argument to the MSR or MRS instructions. For example, all of the  
registers can be read using PSR with the MRS instruction, or APSR only can be written to using  
APSR with the MSR instruction. page 51 shows the possible register combinations for the PSR. See  
the MRS and MSR instruction descriptions in the Cortex™-M3/M4 Instruction Set Technical User's  
Manual for more information about how to access the program status registers.  
Table 2-3. PSR Register Combinations  
Register  
PSR  
Type  
R/Wa  
RO  
R/Wa  
R/Wb  
Combination  
b
,
APSR, EPSR, and IPSR  
EPSR and IPSR  
APSR and IPSR  
APSR and EPSR  
IEPSR  
IAPSR  
EAPSR  
a. The processor ignores writes to the IPSR bits.  
b. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.  
Program Status Register (PSR)  
Type R/W, reset 0x0100.0000  
31  
N
30  
Z
29  
C
28  
V
27  
Q
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
ICI / IT  
THUMB  
reserved  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
ICI / IT  
reserved  
ISRNUM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
July 24, 2012  
51  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Bit/Field  
31  
Name  
N
Type  
R/W  
Reset  
0
Description  
APSR Negative or Less Flag  
Value Description  
1
0
The previous operation result was negative or less than.  
The previous operation result was positive, zero, greater than,  
or equal.  
The value of this bit is only meaningful when accessing PSR or APSR.  
30  
Z
R/W  
0
APSR Zero Flag  
Value Description  
1
0
The previous operation result was zero.  
The previous operation result was non-zero.  
The value of this bit is only meaningful when accessing PSR or APSR.  
APSR Carry or Borrow Flag  
29  
C
R/W  
0
Value Description  
1
The previous add operation resulted in a carry bit or the previous  
subtract operation did not result in a borrow bit.  
0
The previous add operation did not result in a carry bit or the  
previous subtract operation resulted in a borrow bit.  
The value of this bit is only meaningful when accessing PSR or APSR.  
28  
V
R/W  
0
APSR Overflow Flag  
Value Description  
1
0
The previous operation resulted in an overflow.  
The previous operation did not result in an overflow.  
The value of this bit is only meaningful when accessing PSR or APSR.  
APSR DSP Overflow and Saturation Flag  
Value Description  
27  
Q
R/W  
0
1
0
DSP Overflow or saturation has occurred.  
DSP overflow or saturation has not occurred since reset or since  
the bit was last cleared.  
The value of this bit is only meaningful when accessing PSR or APSR.  
This bit is cleared by software using an MRS instruction.  
52  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
26:25  
Name  
Type  
RO  
Reset  
0x0  
Description  
ICI / IT  
EPSR ICI / IT status  
These bits, along with bits 15:10, contain the Interruptible-Continuable  
Instruction (ICI) field for an interrupted load multiple or store multiple  
instruction or the execution state bits of the IT instruction.  
When EPSR holds the ICI execution state, bits 26:25 are zero.  
The If-Then block contains up to four instructions following an IT  
instruction. Each instruction in the block is conditional. The conditions  
for the instructions are either all the same, or some can be the inverse  
of others. See the Cortex™-M3/M4 Instruction Set Technical User's  
Manual for more information.  
The value of this field is only meaningful when accessing PSR or EPSR.  
24  
THUMB  
RO  
1
EPSR Thumb State  
This bit indicates the Thumb state and should always be set.  
The following can clear the THUMB bit:  
The BLX, BX and POP{PC} instructions  
Restoration from the stacked xPSR value on an exception return  
Bit 0 of the vector value on an exception entry or reset  
Attempting to execute instructions when this bit is clear results in a fault  
or lockup. See “Lockup” on page 76 for more information.  
The value of this bit is only meaningful when accessing PSR or EPSR.  
23:16  
15:10  
reserved  
ICI / IT  
RO  
RO  
0x00  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
EPSR ICI / IT status  
These bits, along with bits 26:25, contain the Interruptible-Continuable  
Instruction (ICI) field for an interrupted load multiple or store multiple  
instruction or the execution state bits of the IT instruction.  
When an interrupt occurs during the execution of an LDM, STM, PUSH  
or POP instruction, the processor stops the load multiple or store multiple  
instruction operation temporarily and stores the next register operand  
in the multiple operation to bits 15:12. After servicing the interrupt, the  
processor returns to the register pointed to by bits 15:12 and resumes  
execution of the multiple load or store instruction. When EPSR holds  
the ICI execution state, bits 11:10 are zero.  
The If-Then block contains up to four instructions following a 16-bit IT  
instruction. Each instruction in the block is conditional. The conditions  
for the instructions are either all the same, or some can be the inverse  
of others. See the Cortex™-M3/M4 Instruction Set Technical User's  
Manual for more information.  
The value of this field is only meaningful when accessing PSR or EPSR.  
9:6  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
53  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Bit/Field  
5:0  
Name  
Type  
RO  
Reset  
0x00  
Description  
ISRNUM  
IPSR ISR Number  
This field contains the exception type number of the current Interrupt  
Service Routine (ISR).  
Value  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
Description  
Thread mode  
Reserved  
NMI  
Hard fault  
Memory management fault  
Bus fault  
Usage fault  
0x07-0x0A Reserved  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
...  
SVCall  
Reserved for Debug  
Reserved  
PendSV  
SysTick  
Interrupt Vector 0  
Interrupt Vector 1  
...  
0x2D  
Interrupt Vector 29  
0x2E-0x3F Reserved  
See “Exception Types” on page 67 for more information.  
The value of this field is only meaningful when accessing PSR or IPSR.  
54  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 18: Priority Mask Register (PRIMASK)  
The PRIMASK register prevents activation of all exceptions with programmable priority. Reset,  
non-maskable interrupt (NMI), and hard fault are the only exceptions with fixed priority. Exceptions  
should be disabled when they might impact the timing of critical tasks. This register is only accessible  
in privileged mode. The MSR and MRS instructions are used to access the PRIMASK register, and  
the CPS instruction may be used to change the value of the PRIMASK register. See the  
Cortex™-M3/M4 Instruction Set Technical User's Manual for more information on these instructions.  
For more information on exception priority levels, see “Exception Types” on page 67.  
Priority Mask Register (PRIMASK)  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PRIMASK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000.000 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
PRIMASK  
R/W  
0
Priority Mask  
Value Description  
1
Prevents the activation of all exceptions with configurable  
priority.  
0
No effect.  
July 24, 2012  
55  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Register 19: Fault Mask Register (FAULTMASK)  
The FAULTMASK register prevents activation of all exceptions except for the Non-Maskable Interrupt  
(NMI). Exceptions should be disabled when they might impact the timing of critical tasks. This register  
is only accessible in privileged mode. The MSR and MRS instructions are used to access the  
FAULTMASK register, and the CPS instruction may be used to change the value of the FAULTMASK  
register. See the Cortex™-M3/M4 Instruction Set Technical User's Manual for more information on  
these instructions. For more information on exception priority levels, see “Exception  
Types” on page 67.  
Fault Mask Register (FAULTMASK)  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FAULTMASK  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000.000 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
FAULTMASK  
R/W  
0
Fault Mask  
Value Description  
1
0
Prevents the activation of all exceptions except for NMI.  
No effect.  
The processor clears the FAULTMASK bit on exit from any exception  
handler except the NMI handler.  
56  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 20: Base Priority Mask Register (BASEPRI)  
The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is  
set to a nonzero value, it prevents the activation of all exceptions with the same or lower priority  
level as the BASEPRI value. Exceptions should be disabled when they might impact the timing of  
critical tasks. This register is only accessible in privileged mode. For more information on exception  
priority levels, see “Exception Types” on page 67.  
Base Priority Mask Register (BASEPRI)  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BASEPRI  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000.00 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:5  
BASEPRI  
R/W  
0x0  
Base Priority  
Any exception that has a programmable priority level with the same or  
lower priority as the value of this field is masked. The PRIMASK register  
can be used to mask all exceptions with programmable priority levels.  
Higher priority exceptions have lower priority levels.  
Value Description  
0x0 All exceptions are unmasked.  
0x1 All exceptions with priority level 1-7 are masked.  
0x2 All exceptions with priority level 2-7 are masked.  
0x3 All exceptions with priority level 3-7 are masked.  
0x4 All exceptions with priority level 4-7 are masked.  
0x5 All exceptions with priority level 5-7 are masked.  
0x6 All exceptions with priority level 6-7 are masked.  
0x7 All exceptions with priority level 7 are masked.  
4:0  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
57  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Register 21: Control Register (CONTROL)  
The CONTROL register controls the stack used and the privilege level for software execution when  
the processor is in Thread mode. This register is only accessible in privileged mode.  
Handler mode always uses MSP, so the processor ignores explicit writes to the ASP bit of the  
CONTROL register when in Handler mode. The exception entry and return mechanisms automatically  
update the CONTROL register based on the EXC_RETURN value (see Table 2-10 on page 74).  
In an OS environment, threads running in Thread mode should use the process stack and the kernel  
and exception handlers should use the main stack. By default, Thread mode uses MSP. To switch  
the stack pointer used in Thread mode to PSP, either use the MSR instruction to set the ASP bit, as  
detailed in the Cortex™-M3/M4 Instruction Set Technical User's Manual, or perform an exception  
return to Thread mode with the appropriate EXC_RETURN value, as shown in Table 2-10 on page 74.  
Note: When changing the stack pointer, software must use an ISB instruction immediately after  
the MSR instruction, ensuring that instructions after the ISB execute use the new stack  
pointer. See the Cortex™-M3/M4 Instruction Set Technical User's Manual.  
Control Register (CONTROL)  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ASP  
TMPL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000.000 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
ASP  
R/W  
0
Active Stack Pointer  
Value Description  
1
0
PSP is the current stack pointer.  
MSP is the current stack pointer  
In Handler mode, this bit reads as zero and ignores writes. The  
Cortex-M3 updates this bit automatically on exception return.  
0
TMPL  
R/W  
0
Thread Mode Privilege Level  
Value Description  
1
0
Unprivileged software can be executed in Thread mode.  
Only privileged software can be executed in Thread mode.  
58  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
2.3.5  
Exceptions and Interrupts  
The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested  
Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the  
normal flow of software control. The processor uses Handler mode to handle all exceptions except  
for reset. See “Exception Entry and Return” on page 72 for more information.  
The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller  
(NVIC)” on page 82 for more information.  
2.3.6  
Data Types  
The Cortex-M3 supports 32-bit words, 16-bit halfwords, and 8-bit bytes. The processor also supports  
64-bit data transfer instructions. All instruction and data memory accesses are little endian. See  
“Memory Regions, Types and Attributes” on page 60 for more information.  
2.4  
Memory Model  
This section describes the processor memory map, the behavior of memory accesses, and the  
bit-banding features. The processor has a fixed memory map that provides up to 4 GB of addressable  
memory.  
The memory map for the LM3S102 controller is provided in Table 2-4 on page 59. In this manual,  
register addresses are given as a hexadecimal increment, relative to the module’s base address  
as shown in the memory map.  
The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic  
operations to bit data (see “Bit-Banding” on page 63).  
The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral  
registers (see “Cortex-M3 Peripherals” on page 81).  
Note: Within the memory map, all reserved space returns a bus fault when read or written.  
Table 2-4. Memory Map  
Start  
End  
Description  
For details,  
see page ...  
Memory  
0x0000.0000  
0x0000.2000  
0x2000.0000  
0x2000.0800  
0x2200.0000  
0x0000.1FFF  
0x1FFF.FFFF  
0x2000.07FF  
0x21FF.FFFF  
0x2200.FFFF  
On-chip Flash  
Reserved  
190  
-
Bit-banded on-chip SRAM  
Reserved  
185  
-
Bit-band alias of bit-banded on-chip SRAM starting at  
0x2000.0000  
185  
-
0x2201.0000  
FiRM Peripherals  
0x4000.0000  
0x4000.1000  
0x4000.4000  
0x4000.5000  
0x4000.6000  
0x4000.7000  
0x4000.8000  
0x3FFF.FFFF  
Reserved  
0x4000.0FFF  
0x4000.3FFF  
0x4000.4FFF  
0x4000.5FFF  
0x4000.6FFF  
0x4000.7FFF  
0x4000.8FFF  
Watchdog timer 0  
Reserved  
283  
-
GPIO Port A  
GPIO Port B  
GPIO Port C  
Reserved  
212  
212  
212  
-
SSI0  
356  
July 24, 2012  
59  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Table 2-4. Memory Map (continued)  
Start  
End  
Description  
For details,  
see page ...  
0x4000.9000  
0x4000.C000  
0x4000.D000  
Peripherals  
0x4000.BFFF  
0x4000.CFFF  
0x4001.FFFF  
Reserved  
UART0  
-
311  
-
Reserved  
0x4002.0000  
0x4002.1000  
0x4003.0000  
0x4003.1000  
0x4003.2000  
0x4003.C000  
0x4003.D000  
0x400F.D000  
0x400F.E000  
0x400F.F000  
0x4200.0000  
0x4400.0000  
Private Peripheral Bus  
0xE000.0000  
0xE000.1000  
0xE000.2000  
0xE000.3000  
0xE000.E000  
0xE000.F000  
0xE004.0000  
0xE004.1000  
0x4002.0FFF  
0x4002.FFFF  
0x4003.0FFF  
0x4003.1FFF  
0x4003.BFFF  
0x4003.CFFF  
0x400F.CFFF  
0x400F.DFFF  
0x400F.EFFF  
0x41FF.FFFF  
0x43FF.FFFF  
0xDFFF.FFFF  
I2C 0  
396  
Reserved  
-
Timer 0  
255  
Timer 1  
255  
Reserved  
-
Analog Comparators  
418  
Reserved  
-
Flash memory control  
190  
System control  
146  
Reserved  
-
-
-
Bit-banded alias of 0x4000.0000 through 0x400F.FFFF  
Reserved  
0xE000.0FFF  
0xE000.1FFF  
0xE000.2FFF  
0xE000.DFFF  
0xE000.EFFF  
0xE003.FFFF  
0xE004.0FFF  
0xFFFF.FFFF  
Instrumentation Trace Macrocell (ITM)  
Data Watchpoint and Trace (DWT)  
Flash Patch and Breakpoint (FPB)  
Reserved  
42  
42  
42  
-
Cortex-M3 Peripherals (SysTick, NVIC and SCB)  
Reserved  
84  
-
Trace Port Interface Unit (TPIU)  
Reserved  
43  
-
2.4.1  
Memory Regions, Types and Attributes  
The memory map splits the memory map into regions. Each region has a defined memory type,  
and some regions have additional memory attributes. The memory type and attributes determine  
the behavior of accesses to the region.  
The memory types are:  
■ Normal: The processor can re-order transactions for efficiency and perform speculative reads.  
■ Device: The processor preserves transaction order relative to other transactions to Device or  
Strongly Ordered memory.  
■ Strongly Ordered: The processor preserves transaction order relative to all other transactions.  
The different ordering requirements for Device and Strongly Ordered memory mean that the memory  
system can buffer a write to Device memory but must not buffer a write to Strongly Ordered memory.  
60  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
An additional memory attribute is Execute Never (XN), which means the processor prevents  
instruction accesses. A fault exception is generated only on execution of an instruction executed  
from an XN region.  
2.4.2  
Memory System Ordering of Memory Accesses  
For most memory accesses caused by explicit memory access instructions, the memory system  
does not guarantee that the order in which the accesses complete matches the program order of  
the instructions, providing the order does not affect the behavior of the instruction sequence. Normally,  
if correct program execution depends on two memory accesses completing in program order,  
software must insert a memory barrier instruction between the memory access instructions (see  
“Software Ordering of Memory Accesses” on page 61).  
However, the memory system does guarantee ordering of accesses to Device and Strongly Ordered  
memory. For two memory access instructions A1 and A2, if both A1 and A2 are accesses to either  
Device or Strongly Ordered memory, and if A1 occurs before A2 in program order, A1 is always  
observed before A2.  
2.4.3  
Behavior of Memory Accesses  
Table 2-5 on page 61 shows the behavior of accesses to each region in the memory map. See  
“Memory Regions, Types and Attributes” on page 60 for more information on memory types and  
the XN attribute. Stellaris devices may have reserved memory areas within the address ranges  
shown below (refer to Table 2-4 on page 59 for more information).  
Table 2-5. Memory Access Behavior  
Address Range  
Memory Region Memory Type Execute Description  
Never  
(XN)  
0x0000.0000 - 0x1FFF.FFFF Code  
0x2000.0000 - 0x3FFF.FFFF SRAM  
Normal  
Normal  
-
This executable region is for program code.  
Data can also be stored here.  
-
This executable region is for data. Code  
can also be stored here. This region  
includes bit band and bit band alias areas  
(see Table 2-6 on page 63).  
0x4000.0000 - 0x5FFF.FFFF Peripheral  
Device  
XN  
This region includes bit band and bit band  
alias areas (see Table 2-7 on page 63).  
0x6000.0000 - 0x9FFF.FFFF External RAM  
0xA000.0000 - 0xDFFF.FFFF External device  
Normal  
Device  
-
This executable region is for data.  
XN  
XN  
This region is for external device memory.  
0xE000.0000- 0xE00F.FFFF Private peripheral Strongly  
This region includes the NVIC, system  
timer, and system control block.  
bus  
Ordered  
0xE010.0000- 0xFFFF.FFFF Reserved  
-
-
-
The Code, SRAM, and external RAM regions can hold programs. However, it is recommended that  
programs always use the Code region because the Cortex-M3 has separate buses that can perform  
instruction fetches and data accesses simultaneously.  
The Cortex-M3 prefetches instructions ahead of execution and speculatively prefetches from branch  
target addresses.  
2.4.4  
Software Ordering of Memory Accesses  
The order of instructions in the program flow does not always guarantee the order of the  
corresponding memory transactions for the following reasons:  
July 24, 2012  
61  
Texas Instruments-Production Data  
 
 
 
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
■ The processor can reorder some memory accesses to improve efficiency, providing this does  
not affect the behavior of the instruction sequence.  
■ The processor has multiple bus interfaces.  
■ Memory or devices in the memory map have different wait states.  
■ Some memory accesses are buffered or speculative.  
“Memory System Ordering of Memory Accesses” on page 61 describes the cases where the memory  
system guarantees the order of memory accesses. Otherwise, if the order of memory accesses is  
critical, software must include memory barrier instructions to force that ordering. The Cortex-M3  
has the following memory barrier instructions:  
■ The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions  
complete before subsequent memory transactions.  
■ The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions  
complete before subsequent instructions execute.  
■ The Instruction Synchronization Barrier (ISB) instruction ensures that the effect of all completed  
memory transactions is recognizable by subsequent instructions.  
Memory barrier instructions can be used in the following situations:  
■ Vector table  
If the program changes an entry in the vector table and then enables the corresponding exception,  
use a DMB instruction between the operations. The DMB instruction ensures that if the exception  
is taken immediately after being enabled, the processor uses the new exception vector.  
■ Self-modifying code  
If a program contains self-modifying code, use an ISB instruction immediately after the code  
modification in the program. The ISB instruction ensures subsequent instruction execution uses  
the updated program.  
■ Memory map switching  
If the system contains a memory map switching mechanism, use a DSB instruction after switching  
the memory map in the program. The DSB instruction ensures subsequent instruction execution  
uses the updated memory map.  
■ Dynamic exception priority change  
When an exception priority has to change when the exception is pending or active, use DSB  
instructions after the change. The change then takes effect on completion of the DSB instruction.  
Memory accesses to Strongly Ordered memory, such as the System Control Block, do not require  
the use of DMB instructions.  
For more information on the memory barrier instructions, see the Cortex™-M3/M4 Instruction Set  
Technical User's Manual.  
62  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
2.4.5  
Bit-Banding  
A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region.  
The bit-band regions occupy the lowest 1 MB of the SRAM and peripheral memory regions. Accesses  
to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band region, as shown in Table  
2-6 on page 63. Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral bit-band  
region, as shown in Table 2-7 on page 63. For the specific address range of the bit-band regions,  
see Table 2-4 on page 59.  
Note: A word access to the SRAM or the peripheral bit-band alias region maps to a single bit in  
the SRAM or peripheral bit-band region.  
A word access to a bit band address results in a word access to the underlying memory,  
and similarly for halfword and byte accesses. This allows bit band accesses to match the  
access requirements of the underlying peripheral.  
Table 2-6. SRAM Memory Bit-Banding Regions  
Address Range  
Memory Region  
Instruction and Data Accesses  
Start  
End  
0x2000.0000  
0x2000.07FF  
SRAM bit-band region Direct accesses to this memory range behave as SRAM  
memory accesses, but this region is also bit addressable  
through bit-band alias.  
0x2200.0000  
0x2200.FFFF  
SRAM bit-band alias Data accesses to this region are remapped to bit band  
region. A write operation is performed as  
read-modify-write. Instruction accesses are not remapped.  
Table 2-7. Peripheral Memory Bit-Banding Regions  
Address Range  
Memory Region  
Instruction and Data Accesses  
Start  
End  
0x4000.0000  
0x400F.FFFF  
Peripheral bit-band  
region  
Direct accesses to this memory range behave as  
peripheral memory accesses, but this region is also bit  
addressable through bit-band alias.  
0x4200.0000  
0x43FF.FFFF  
Peripheral bit-band alias Data accesses to this region are remapped to bit band  
region. A write operation is performed as  
read-modify-write. Instruction accesses are not permitted.  
The following formula shows how the alias region maps onto the bit-band region:  
bit_word_offset = (byte_offset x 32) + (bit_number x 4)  
bit_word_addr = bit_band_base + bit_word_offset  
where:  
bit_word_offset  
The position of the target bit in the bit-band memory region.  
bit_word_addr  
The address of the word in the alias memory region that maps to the targeted bit.  
bit_band_base  
The starting address of the alias region.  
July 24, 2012  
63  
Texas Instruments-Production Data  
 
 
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
byte_offset  
The number of the byte in the bit-band region that contains the targeted bit.  
bit_number  
The bit position, 0-7, of the targeted bit.  
Figure 2-4 on page 64 shows examples of bit-band mapping between the SRAM bit-band alias  
region and the SRAM bit-band region:  
■ The alias word at 0x23FF.FFE0 maps to bit 0 of the bit-band byte at 0x200F.FFFF:  
0x23FF.FFE0 = 0x2200.0000 + (0x000F.FFFF*32) + (0*4)  
■ The alias word at 0x23FF.FFFC maps to bit 7 of the bit-band byte at 0x200F.FFFF:  
0x23FF.FFFC = 0x2200.0000 + (0x000F.FFFF*32) + (7*4)  
■ The alias word at 0x2200.0000 maps to bit 0 of the bit-band byte at 0x2000.0000:  
0x2200.0000 = 0x2200.0000 + (0*32) + (0*4)  
■ The alias word at 0x2200.001C maps to bit 7 of the bit-band byte at 0x2000.0000:  
0x2200.001C = 0x2200.0000+ (0*32) + (7*4)  
Figure 2-4. Bit-Band Mapping  
32-MB Alias Region  
0x23FF.FFFC  
0x2200.001C  
0x23FF.FFF8  
0x2200.0018  
0x23FF.FFF4  
0x2200.0014  
0x23FF.FFF0  
0x23FF.FFEC 0x23FF.FFE8  
0x23FF.FFE4  
0x2200.0004  
0x23FF.FFE0  
0x2200.0000  
0x2200.0010  
0x2200.000C  
0x2200.0008  
1-MB SRAM Bit-Band Region  
7
7
6
6
5
4
3
2
1
1
0
0
7
7
6
6
5
4
3
2
1
0
7
7
6
6
5
4
3
2
1
1
0
0
7
7
6
6
5
4
3
2
1
1
0
0
0x200F.FFFF  
0x200F.FFFE  
0x200F.FFFD  
0x200F.FFFC  
5
4
3
2
5
4
3
2
1
0
5
4
3
2
5
4
3
2
0x2000.0003  
0x2000.0002  
0x2000.0001  
0x2000.0000  
2.4.5.1  
Directly Accessing an Alias Region  
Writing to a word in the alias region updates a single bit in the bit-band region.  
64  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit 0 of the value written to a word in the alias region determines the value written to the targeted  
bit in the bit-band region. Writing a value with bit 0 set writes a 1 to the bit-band bit, and writing a  
value with bit 0 clear writes a 0 to the bit-band bit.  
Bits 31:1 of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as  
writing 0xFF. Writing 0x00 has the same effect as writing 0x0E.  
When reading a word in the alias region, 0x0000.0000 indicates that the targeted bit in the bit-band  
region is clear and 0x0000.0001 indicates that the targeted bit in the bit-band region is set.  
2.4.5.2  
2.4.6  
Directly Accessing a Bit-Band Region  
“Behavior of Memory Accesses” on page 61 describes the behavior of direct byte, halfword, or word  
accesses to the bit-band regions.  
Data Storage  
The processor views memory as a linear collection of bytes numbered in ascending order from zero.  
For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Data  
is stored in little-endian format, with the least-significant byte (lsbyte) of a word stored at the  
lowest-numbered byte, and the most-significant byte (msbyte) stored at the highest-numbered byte.  
Figure 2-5 on page 65 illustrates how data is stored.  
Figure 2-5. Data Storage  
Memory  
Register  
1615  
7
0
31  
2423  
8 7  
0
Address A  
A+1  
B0  
B1  
B2  
B3  
lsbyte  
B3  
B2  
B1  
B0  
A+2  
A+3  
msbyte  
2.4.7  
Synchronization Primitives  
The Cortex-M3 instruction set includes pairs of synchronization primitives which provide a  
non-blocking mechanism that a thread or process can use to obtain exclusive access to a memory  
location. Software can use these primitives to perform a guaranteed read-modify-write memory  
update sequence or for a semaphore mechanism.  
A pair of synchronization primitives consists of:  
■ A Load-Exclusive instruction, which is used to read the value of a memory location and requests  
exclusive access to that location.  
■ A Store-Exclusive instruction, which is used to attempt to write to the same memory location and  
returns a status bit to a register. If this status bit is clear, it indicates that the thread or process  
gained exclusive access to the memory and the write succeeds; if this status bit is set, it indicates  
that the thread or process did not gain exclusive access to the memory and no write was  
performed.  
The pairs of Load-Exclusive and Store-Exclusive instructions are:  
July 24, 2012  
65  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
■ The word instructions LDREX and STREX  
■ The halfword instructions LDREXH and STREXH  
■ The byte instructions LDREXB and STREXB  
Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction.  
To perform an exclusive read-modify-write of a memory location, software must:  
1. Use a Load-Exclusive instruction to read the value of the location.  
2. Modify the value, as required.  
3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location.  
4. Test the returned status bit.  
If the status bit is clear, the read-modify-write completed successfully. If the status bit is set, no  
write was performed, which indicates that the value returned at step 1 might be out of date. The  
software must retry the entire read-modify-write sequence.  
Software can use the synchronization primitives to implement a semaphore as follows:  
1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the  
semaphore is free.  
2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore  
address.  
3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded, then the  
software has claimed the semaphore. However, if the Store-Exclusive failed, another process  
might have claimed the semaphore after the software performed step 1.  
The Cortex-M3 includes an exclusive access monitor that tags the fact that the processor has  
executed a Load-Exclusive instruction. The processor removes its exclusive access tag if:  
■ It executes a CLREX instruction.  
■ It executes a Store-Exclusive instruction, regardless of whether the write succeeds.  
■ An exception occurs, which means the processor can resolve semaphore conflicts between  
different threads.  
For more information about the synchronization primitive instructions, see the Cortex™-M3/M4  
Instruction Set Technical User's Manual.  
2.5  
Exception Model  
The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and  
handle all exceptions in Handler Mode. The processor state is automatically stored to the stack on  
an exception and automatically restored from the stack at the end of the Interrupt Service Routine  
(ISR). The vector is fetched in parallel to the state saving, enabling efficient interrupt entry. The  
processor supports tail-chaining, which enables back-to-back interrupts to be performed without the  
overhead of state saving and restoration.  
66  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 2-8 on page 69 lists all exception types. Software can set eight priority levels on seven of  
these exceptions (system handlers) as well as on 14 interrupts (listed in Table 2-9 on page 69).  
Priorities on the system handlers are set with the NVIC System Handler Priority n (SYSPRIn)  
registers. Interrupts are enabled through the NVIC Interrupt Set Enable n (ENn) register and  
prioritized with the NVIC Interrupt Priority n (PRIn) registers. Priorities can be grouped by splitting  
priority levels into preemption priorities and subpriorities. All the interrupt registers are described in  
“Nested Vectored Interrupt Controller (NVIC)” on page 82.  
Internally, the highest user-programmable priority (0) is treated as fourth priority, after a Reset,  
Non-Maskable Interrupt (NMI), and a Hard Fault, in that order. Note that 0 is the default priority for  
all the programmable priorities.  
Important: After a write to clear an interrupt source, it may take several processor cycles for the  
NVIC to see the interrupt source de-assert. Thus if the interrupt clear is done as the  
last action in an interrupt handler, it is possible for the interrupt handler to complete  
while the NVIC sees the interrupt as still asserted, causing the interrupt handler to be  
re-entered errantly. This situation can be avoided by either clearing the interrupt source  
at the beginning of the interrupt handler or by performing a read or write after the write  
to clear the interrupt source (and flush the write buffer).  
See “Nested Vectored Interrupt Controller (NVIC)” on page 82 for more information on exceptions  
and interrupts.  
2.5.1  
Exception States  
Each exception is in one of the following states:  
Inactive. The exception is not active and not pending.  
Pending. The exception is waiting to be serviced by the processor. An interrupt request from a  
peripheral or from software can change the state of the corresponding interrupt to pending.  
Active. An exception that is being serviced by the processor but has not completed.  
Note: An exception handler can interrupt the execution of another exception handler. In this  
case, both exceptions are in the active state.  
Active and Pending. The exception is being serviced by the processor, and there is a pending  
exception from the same source.  
2.5.2  
Exception Types  
The exception types are:  
Reset. Reset is invoked on power up or a warm reset. The exception model treats reset as a  
special form of exception. When reset is asserted, the operation of the processor stops, potentially  
at any point in an instruction. When reset is deasserted, execution restarts from the address  
provided by the reset entry in the vector table. Execution restarts as privileged execution in  
Thread mode.  
NMI. A non-maskable Interrupt (NMI) can be signaled using the NMI signal or triggered by  
software using the Interrupt Control and State (INTCTRL) register. This exception has the  
highest priority other than reset. NMI is permanently enabled and has a fixed priority of -2. NMIs  
cannot be masked or prevented from activation by any other exception or preempted by any  
exception other than reset.  
July 24, 2012  
67  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Hard Fault. A hard fault is an exception that occurs because of an error during exception  
processing, or because an exception cannot be managed by any other exception mechanism.  
Hard faults have a fixed priority of -1, meaning they have higher priority than any exception with  
configurable priority.  
Memory Management Fault. A memory management fault is an exception that occurs because  
of a memory protection related fault, including access violation and no match. The fixed memory  
protection constraints determine this fault, for both instruction and data memory transactions.  
This fault is used to abort instruction accesses to Execute Never (XN) memory regions.  
Bus Fault. A bus fault is an exception that occurs because of a memory-related fault for an  
instruction or data memory transaction such as a prefetch fault or a memory access fault. This  
fault can be enabled or disabled.  
Usage Fault. A usage fault is an exception that occurs because of a fault related to instruction  
execution, such as:  
An undefined instruction  
An illegal unaligned access  
Invalid state on instruction execution  
An error on exception return  
An unaligned address on a word or halfword memory access or division by zero can cause a  
usage fault when the core is properly configured.  
SVCall. A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an  
OS environment, applications can use SVC instructions to access OS kernel functions and device  
drivers.  
Debug Monitor. This exception is caused by the debug monitor (when not halting). This exception  
is only active when enabled. This exception does not activate if it is a lower priority than the  
current activation.  
PendSV. PendSV is a pendable, interrupt-driven request for system-level service. In an OS  
environment, use PendSV for context switching when no other exception is active. PendSV is  
triggered using the Interrupt Control and State (INTCTRL) register.  
SysTick. A SysTick exception is an exception that the system timer generates when it reaches  
zero when it is enabled to generate an interrupt. Software can also generate a SysTick exception  
using the Interrupt Control and State (INTCTRL) register. In an OS environment, the processor  
can use this exception as system tick.  
Interrupt (IRQ). An interrupt, or IRQ, is an exception signaled by a peripheral or generated by  
a software request and fed through the NVIC (prioritized). All interrupts are asynchronous to  
instruction execution. In the system, peripherals use interrupts to communicate with the processor.  
Table 2-9 on page 69 lists the interrupts on the LM3S102 controller.  
For an asynchronous exception, other than reset, the processor can execute another instruction  
between when the exception is triggered and when the processor enters the exception handler.  
Privileged software can disable the exceptions that Table 2-8 on page 69 shows as having  
configurable priority (see the SYSHNDCTRL register on page 112 and the DIS0 register on page 91).  
68  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
For more information about hard faults, memory management faults, bus faults, and usage faults,  
see “Fault Handling” on page 74.  
Table 2-8. Exception Types  
Exception Type  
Vector  
Number  
Prioritya  
Vector Address or  
Offsetb  
Activation  
-
0
-
0x0000.0000  
Stack top is loaded from the first  
entry of the vector table on reset.  
Reset  
1
2
-3 (highest)  
-2  
0x0000.0004  
0x0000.0008  
Asynchronous  
Asynchronous  
Non-Maskable Interrupt  
(NMI)  
Hard Fault  
3
4
5
-1  
0x0000.000C  
0x0000.0010  
0x0000.0014  
-
Memory Management  
Bus Fault  
programmablec  
programmablec  
Synchronous  
Synchronous when precise and  
asynchronous when imprecise  
Usage Fault  
-
6
programmablec  
-
0x0000.0018  
-
Synchronous  
Reserved  
7-10  
SVCall  
11  
programmablec  
programmablec  
-
0x0000.002C  
0x0000.0030  
-
Synchronous  
Synchronous  
Reserved  
Debug Monitor  
-
12  
13  
PendSV  
SysTick  
Interrupts  
14  
15  
programmablec  
programmablec  
programmabled  
0x0000.0038  
0x0000.003C  
Asynchronous  
Asynchronous  
16 and above  
0x0000.0040 and above Asynchronous  
a. 0 is the default priority for all the programmable priorities.  
b. See “Vector Table” on page 70.  
c. See SYSPRI1 on page 109.  
d. See PRIn registers on page 95.  
Table 2-9. Interrupts  
Vector Number  
Interrupt Number (Bit Vector Address or Description  
in Interrupt Registers)  
Offset  
0-15  
-
0x0000.0000 -  
0x0000.003C  
Processor exceptions  
16  
17  
0
1
0x0000.0040  
0x0000.0044  
0x0000.0048  
-
GPIO Port A  
GPIO Port B  
GPIO Port C  
Reserved  
UART0  
18  
2
19-20  
21  
3-4  
5
0x0000.0054  
-
22  
6
Reserved  
SSI0  
23  
7
0x0000.005C  
0x0000.0060  
-
24  
8
I2C0  
25-33  
34  
9-17  
18  
19  
20  
21  
Reserved  
Watchdog Timer 0  
Timer 0A  
Timer 0B  
Timer 1A  
0x0000.0088  
0x0000.008C  
0x0000.0090  
0x0000.0094  
35  
36  
37  
July 24, 2012  
69  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Table 2-9. Interrupts (continued)  
Vector Number  
Interrupt Number (Bit Vector Address or Description  
in Interrupt Registers)  
Offset  
0x0000.0098  
-
38  
39-40  
41  
22  
23-24  
25  
Timer 1B  
Reserved  
0x0000.00A4  
-
Analog Comparator 0  
Reserved  
42-43  
44  
26-27  
28  
0x0000.00B0  
0x0000.00B4  
System Control  
Flash Memory Control  
45  
29  
2.5.3  
Exception Handlers  
The processor handles exceptions using:  
Interrupt Service Routines (ISRs). Interrupts (IRQx) are the exceptions handled by ISRs.  
Fault Handlers. Hard fault, memory management fault, usage fault, and bus fault are fault  
exceptions handled by the fault handlers.  
System Handlers. NMI, PendSV, SVCall, SysTick, and the fault exceptions are all system  
exceptions that are handled by system handlers.  
2.5.4  
Vector Table  
The vector table contains the reset value of the stack pointer and the start addresses, also called  
exception vectors, for all exception handlers. The vector table is constructed using the vector address  
or offset shown in Table 2-8 on page 69. Figure 2-6 on page 71 shows the order of the exception  
vectors in the vector table. The least-significant bit of each vector must be 1, indicating that the  
exception handler is Thumb code  
70  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 2-6. Vector Table  
Exception number IRQ number Offset  
Vector  
IRQ29  
45  
29  
0x00B4  
.
.
.
.
.
.
.
.
.
0x004C  
0x0048  
0x0044  
0x0040  
0x003C  
0x0038  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
2
1
IRQ2  
IRQ1  
0
IRQ0  
-1  
-2  
Systick  
PendSV  
Reserved  
Reserved for Debug  
SVCall  
-5  
0x002C  
Reserved  
8
7
6
-10  
-11  
-12  
-13  
-14  
Usage fault  
Bus fault  
0x0018  
0x0014  
0x0010  
0x000C  
0x0008  
0x0004  
0x0000  
5
4
Memory management fault  
Hard fault  
3
2
NMI  
1
Reset  
Initial SP value  
On system reset, the vector table is fixed at address 0x0000.0000. Privileged software can write to  
the Vector Table Offset (VTABLE) register to relocate the vector table start address to a different  
memory location, in the range 0x0000.0100 to 0x3FFF.FF00 (see “Vector Table” on page 70). Note  
that when configuring the VTABLE register, the offset must be aligned on a 256-byte boundary.  
2.5.5  
Exception Priorities  
As Table 2-8 on page 69 shows, all exceptions have an associated priority, with a lower priority  
value indicating a higher priority and configurable priorities for all exceptions except Reset, Hard  
fault, and NMI. If software does not configure any priorities, then all exceptions with a configurable  
priority have a priority of 0. For information about configuring exception priorities, see page 109 and  
page 95.  
Note: Configurable priority values for the Stellaris implementation are in the range 0-7. This means  
that the Reset, Hard fault, and NMI exceptions, with fixed negative priority values, always  
have higher priority than any other exception.  
For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means  
that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed  
before IRQ[0].  
July 24, 2012  
71  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
If multiple pending exceptions have the same priority, the pending exception with the lowest exception  
number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same  
priority, then IRQ[0] is processed before IRQ[1].  
When the processor is executing an exception handler, the exception handler is preempted if a  
higher priority exception occurs. If an exception occurs with the same priority as the exception being  
handled, the handler is not preempted, irrespective of the exception number. However, the status  
of the new interrupt changes to pending.  
2.5.6  
Interrupt Priority Grouping  
To increase priority control in systems with interrupts, the NVIC supports priority grouping. This  
grouping divides each interrupt priority register entry into two fields:  
■ An upper field that defines the group priority  
■ A lower field that defines a subpriority within the group  
Only the group priority determines preemption of interrupt exceptions. When the processor is  
executing an interrupt exception handler, another interrupt with the same group priority as the  
interrupt being handled does not preempt the handler.  
If multiple pending interrupts have the same group priority, the subpriority field determines the order  
in which they are processed. If multiple pending interrupts have the same group priority and  
subpriority, the interrupt with the lowest IRQ number is processed first.  
For information about splitting the interrupt priority fields into group priority and subpriority, see  
page 103.  
2.5.7  
Exception Entry and Return  
Descriptions of exception handling use the following terms:  
Preemption. When the processor is executing an exception handler, an exception can preempt  
the exception handler if its priority is higher than the priority of the exception being handled. See  
“Interrupt Priority Grouping” on page 72 for more information about preemption by an interrupt.  
When one exception preempts another, the exceptions are called nested exceptions. See  
“Exception Entry” on page 73 more information.  
Return. Return occurs when the exception handler is completed, and there is no pending  
exception with sufficient priority to be serviced and the completed exception handler was not  
handling a late-arriving exception. The processor pops the stack and restores the processor  
state to the state it had before the interrupt occurred. See “Exception Return” on page 74 for  
more information.  
Tail-Chaining. This mechanism speeds up exception servicing. On completion of an exception  
handler, if there is a pending exception that meets the requirements for exception entry, the  
stack pop is skipped and control transfers to the new exception handler.  
Late-Arriving. This mechanism speeds up preemption. If a higher priority exception occurs  
during state saving for a previous exception, the processor switches to handle the higher priority  
exception and initiates the vector fetch for that exception. State saving is not affected by late  
arrival because the state saved is the same for both exceptions. Therefore, the state saving  
continues uninterrupted. The processor can accept a late arriving exception until the first instruction  
of the exception handler of the original exception enters the execute stage of the processor. On  
72  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
return from the exception handler of the late-arriving exception, the normal tail-chaining rules  
apply.  
2.5.7.1  
Exception Entry  
Exception entry occurs when there is a pending exception with sufficient priority and either the  
processor is in Thread mode or the new exception is of higher priority than the exception being  
handled, in which case the new exception preempts the original exception.  
When one exception preempts another, the exceptions are nested.  
Sufficient priority means the exception has more priority than any limits set by the mask registers  
(see PRIMASK on page 55, FAULTMASK on page 56, and BASEPRI on page 57). An exception  
with less priority than this is pending but is not handled by the processor.  
When the processor takes an exception, unless the exception is a tail-chained or a late-arriving  
exception, the processor pushes information onto the current stack. This operation is referred to as  
stacking and the structure of eight data words is referred to as stack frame.  
Figure 2-7. Exception Stack Frame  
...  
Pre-IRQ top of stack  
{aligner}  
xPSR  
PC  
LR  
R12  
R3  
R2  
R1  
R0  
IRQ top of stack  
Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. Unless  
stack alignment is disabled, the stack frame is aligned to a double-word address. If the STKALIGN  
bit of the Configuration Control (CCR) register is set, stack align adjustment is performed during  
stacking.  
The stack frame includes the return address, which is the address of the next instruction in the  
interrupted program. This value is restored to the PC at exception return so that the interrupted  
program resumes.  
In parallel to the stacking operation, the processor performs a vector fetch that reads the exception  
handler start address from the vector table. When stacking is complete, the processor starts executing  
the exception handler. At the same time, the processor writes an EXC_RETURN value to the LR,  
indicating which stack pointer corresponds to the stack frame and what operation mode the processor  
was in before the entry occurred.  
If no higher-priority exception occurs during exception entry, the processor starts executing the  
exception handler and automatically changes the status of the corresponding pending interrupt to  
active.  
If another higher-priority exception occurs during exception entry, known as late arrival, the processor  
starts executing the exception handler for this exception and does not change the pending status  
of the earlier exception.  
July 24, 2012  
73  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
2.5.7.2  
Exception Return  
Exception return occurs when the processor is in Handler mode and executes one of the following  
instructions to load the EXC_RETURN value into the PC:  
■ An LDM or POP instruction that loads the PC  
■ A BX instruction using any register  
■ An LDR instruction with the PC as the destination  
EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies  
on this value to detect when the processor has completed an exception handler. The lowest four  
bits of this value provide information on the return stack and processor mode. Table 2-10 on page 74  
shows the EXC_RETURN values with a description of the exception return behavior.  
EXC_RETURN bits 31:4 are all set. When this value is loaded into the PC, it indicates to the processor  
that the exception is complete, and the processor initiates the appropriate exception return sequence.  
Table 2-10. Exception Return Behavior  
EXC_RETURN[31:0]  
0xFFFF.FFF0  
Description  
Reserved  
0xFFFF.FFF1  
Return to Handler mode.  
Exception return uses state from MSP.  
Execution uses MSP after return.  
0xFFFF.FFF2 - 0xFFFF.FFF8  
0xFFFF.FFF9  
Reserved  
Return to Thread mode.  
Exception return uses state from MSP.  
Execution uses MSP after return.  
0xFFFF.FFFA - 0xFFFF.FFFC  
0xFFFF.FFFD  
Reserved  
Return to Thread mode.  
Exception return uses state from PSP.  
Execution uses PSP after return.  
0xFFFF.FFFE - 0xFFFF.FFFF  
Reserved  
2.6  
Fault Handling  
Faults are a subset of the exceptions (see “Exception Model” on page 66). The following conditions  
generate a fault:  
■ A bus error on an instruction fetch or vector table load or a data access.  
■ An internally detected error such as an undefined instruction or an attempt to change state with  
a BX instruction.  
■ Attempting to execute an instruction from a memory region marked as Non-Executable (XN).  
2.6.1  
Fault Types  
Table 2-11 on page 75 shows the types of fault, the handler used for the fault, the corresponding  
fault status register, and the register bit that indicates the fault has occurred. See page 116 for more  
information about the fault status registers.  
74  
July 24, 2012  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 2-11. Faults  
Fault  
Handler  
Fault Status Register  
Bit Name  
VECT  
Bus error on a vector read  
Fault escalated to a hard fault  
Hard fault  
Hard fault  
Hard Fault Status (HFAULTSTAT)  
Hard Fault Status (HFAULTSTAT)  
FORCED  
IERR a  
Default memory mismatch on  
instruction access  
Memory management Memory Management Fault Status  
fault  
(MFAULTSTAT)  
Bus error during exception stacking Bus fault  
Bus error during exception unstacking Bus fault  
Bus error during instruction prefetch Bus fault  
Bus Fault Status (BFAULTSTAT)  
Bus Fault Status (BFAULTSTAT)  
Bus Fault Status (BFAULTSTAT)  
Bus Fault Status (BFAULTSTAT)  
Bus Fault Status (BFAULTSTAT)  
Usage Fault Status (UFAULTSTAT)  
Usage Fault Status (UFAULTSTAT)  
Usage Fault Status (UFAULTSTAT)  
BSTKE  
BUSTKE  
IBUS  
Precise data bus error  
Bus fault  
PRECISE  
IMPRE  
NOCP  
Imprecise data bus error  
Attempt to access a coprocessor  
Undefined instruction  
Bus fault  
Usage fault  
Usage fault  
UNDEF  
INVSTAT  
Attempt to enter an invalid instruction Usage fault  
set state b  
Invalid EXC_RETURN value  
Illegal unaligned load or store  
Divide by 0  
Usage fault  
Usage fault  
Usage fault  
Usage Fault Status (UFAULTSTAT)  
Usage Fault Status (UFAULTSTAT)  
Usage Fault Status (UFAULTSTAT)  
INVPC  
UNALIGN  
DIV0  
a. Occurs on an access to an XN region.  
b. Attempting to use an instruction set other than the Thumb instruction set, or returning to a non load-store-multiple instruction  
with ICI continuation.  
2.6.2  
Fault Escalation and Hard Faults  
All fault exceptions except for hard fault have configurable exception priority (see SYSPRI1 on  
page 109). Software can disable execution of the handlers for these faults (see SYSHNDCTRL on  
page 112).  
Usually, the exception priority, together with the values of the exception mask registers, determines  
whether the processor enters the fault handler, and whether a fault handler can preempt another  
fault handler as described in “Exception Model” on page 66.  
In some situations, a fault with configurable priority is treated as a hard fault. This process is called  
priority escalation, and the fault is described as escalated to hard fault. Escalation to hard fault  
occurs when:  
■ A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard  
fault occurs because a fault handler cannot preempt itself because it must have the same priority  
as the current priority level.  
■ A fault handler causes a fault with the same or lower priority as the fault it is servicing. This  
situation happens because the handler for the new fault cannot preempt the currently executing  
fault handler.  
■ An exception handler causes a fault for which the priority is the same as or lower than the currently  
executing exception.  
■ A fault occurs and the handler for that fault is not enabled.  
If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not  
escalate to a hard fault. Thus if a corrupted stack causes a fault, the fault handler executes even  
July 24, 2012  
75  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
though the stack push for the handler failed. The fault handler operates but the stack contents are  
corrupted.  
Note: Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any  
exception other than Reset, NMI, or another hard fault.  
2.6.3  
Fault Status Registers and Fault Address Registers  
The fault status registers indicate the cause of a fault. For bus faults and memory management  
faults, the fault address register indicates the address accessed by the operation that caused the  
fault, as shown in Table 2-12 on page 76.  
Table 2-12. Fault Status and Fault Address Registers  
Handler  
Status Register Name  
Address Register Name  
Register Description  
Hard fault  
Hard Fault Status (HFAULTSTAT)  
-
page 121  
Memory management Memory Management Fault Status  
Memory Management Fault page 116  
fault  
(MFAULTSTAT)  
Address (MMADDR)  
page 122  
Bus fault  
Bus Fault Status (BFAULTSTAT)  
Bus Fault Address  
(FAULTADDR)  
page 116  
page 123  
Usage fault  
Usage Fault Status (UFAULTSTAT)  
-
page 116  
2.6.4  
Lockup  
The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault  
handlers. When the processor is in the lockup state, it does not execute any instructions. The  
processor remains in lockup state until it is reset, an NMI occurs, or it is halted by a debugger.  
Note: If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the  
processor to leave the lockup state.  
2.7  
Power Management  
The Cortex-M3 processor sleep modes reduce power consumption:  
■ Sleep mode stops the processor clock.  
■ Deep-sleep mode stops the system clock and switches off the PLL and Flash memory.  
The SLEEPDEEP bit of the System Control (SYSCTRL) register selects which sleep mode is used  
(see page 105). For more information about the behavior of the sleep modes, see “System  
Control” on page 143.  
This section describes the mechanisms for entering sleep mode and the conditions for waking up  
from sleep mode, both of which apply to Sleep mode and Deep-sleep mode.  
2.7.1  
Entering Sleep Modes  
This section describes the mechanisms software can use to put the processor into one of the sleep  
modes.  
The system can generate spurious wake-up events, for example a debug operation wakes up the  
processor. Therefore, software must be able to put the processor back into sleep mode after such  
an event. A program might have an idle loop to put the processor back to sleep mode.  
76  
July 24, 2012  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
2.7.1.1  
2.7.1.2  
Wait for Interrupt  
The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wake-up  
condition is true (see “Wake Up from WFI or Sleep-on-Exit” on page 77). When the processor  
executes a WFI instruction, it stops executing instructions and enters sleep mode. See the  
Cortex™-M3/M4 Instruction Set Technical User's Manual for more information.  
Wait for Event  
The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of a one-bit  
event register. When the processor executes a WFE instruction, it checks the event register. If the  
register is 0, the processor stops executing instructions and enters sleep mode. If the register is 1,  
the processor clears the register and continues executing instructions without entering sleep mode.  
If the event register is 1, the processor must not enter sleep mode on execution of a WFE instruction.  
Typically, this situation occurs if an SEV instruction has been executed. Software cannot access  
this register directly.  
See the Cortex™-M3/M4 Instruction Set Technical User's Manual for more information.  
2.7.1.3  
Sleep-on-Exit  
If the SLEEPEXIT bit of the SYSCTRL register is set, when the processor completes the execution  
of all exception handlers, it returns to Thread mode and immediately enters sleep mode. This  
mechanism can be used in applications that only require the processor to run when an exception  
occurs.  
2.7.2  
Wake Up from Sleep Mode  
The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep  
mode.  
2.7.2.1  
Wake Up from WFI or Sleep-on-Exit  
Normally, the processor wakes up only when the NVIC detects an exception with sufficient priority  
to cause exception entry. Some embedded systems might have to execute system restore tasks  
after the processor wakes up and before executing an interrupt handler. Entry to the interrupt handler  
can be delayed by setting the PRIMASK bit and clearing the FAULTMASK bit. If an interrupt arrives  
that is enabled and has a higher priority than current exception priority, the processor wakes up but  
does not execute the interrupt handler until the processor clears PRIMASK. For more information  
about PRIMASK and FAULTMASK, see page 55 and page 56.  
2.7.2.2  
Wake Up from WFE  
The processor wakes up if it detects an exception with sufficient priority to cause exception entry.  
In addition, if the SEVONPEND bit in the SYSCTRL register is set, any new pending interrupt triggers  
an event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to  
cause exception entry. For more information about SYSCTRL, see page 105.  
2.8  
Instruction Set Summary  
The processor implements a version of the Thumb instruction set. Table 2-13 on page 78 lists the  
supported instructions.  
Note: In Table 2-13 on page 78:  
■ Angle brackets, <>, enclose alternative forms of the operand  
July 24, 2012  
77  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
■ Braces, {}, enclose optional operands  
■ The Operands column is not exhaustive  
Op2 is a flexible second operand that can be either a register or a constant  
■ Most instructions can use an optional condition code suffix  
For more information on the instructions and operands, see the instruction descriptions in  
the Cortex™-M3/M4 Instruction Set Technical User's Manual.  
Table 2-13. Cortex-M3 Instruction Summary  
Mnemonic  
ADC, ADCS  
ADD, ADDS  
ADD, ADDW  
ADR  
Operands  
Brief Description  
Add with carry  
Add  
Flags  
{Rd,} Rn, Op2  
{Rd,} Rn, Op2  
{Rd,} Rn , #imm12  
Rd, label  
{Rd,} Rn, Op2  
Rd, Rm, <Rs|#n>  
label  
N,Z,C,V  
N,Z,C,V  
Add  
N,Z,C,V  
Load PC-relative address  
Logical AND  
-
AND, ANDS  
ASR, ASRS  
B
N,Z,C  
Arithmetic shift right  
Branch  
N,Z,C  
-
BFC  
Rd, #lsb, #width  
Rd, Rn, #lsb, #width  
{Rd,} Rn, Op2  
#imm  
Bit field clear  
-
BFI  
Bit field insert  
-
BIC, BICS  
BKPT  
Bit clear  
N,Z,C  
Breakpoint  
-
BL  
label  
Branch with link  
Branch indirect with link  
Branch indirect  
Compare and branch if non-zero  
Compare and branch if zero  
Clear exclusive  
Count leading zeros  
Compare negative  
Compare  
-
BLX  
Rm  
-
BX  
Rm  
-
CBNZ  
Rn, label  
Rn, label  
-
-
CBZ  
-
CLREX  
CLZ  
-
Rd, Rm  
-
CMN  
Rn, Op2  
N,Z,C,V  
N,Z,C,V  
-
CMP  
Rn, Op2  
CPSID  
i
Change processor state, disable  
interrupts  
CPSIE  
i
Change processor state, enable  
interrupts  
-
DMB  
-
Data memory barrier  
-
DSB  
-
Data synchronization barrier  
Exclusive OR  
-
EOR, EORS  
{Rd,} Rn, Op2  
N,Z,C  
ISB  
-
Instruction synchronization barrier  
If-Then condition block  
-
-
-
-
IT  
-
LDM  
Rn{!}, reglist  
Rn{!}, reglist  
Load multiple registers, increment after  
LDMDB, LDMEA  
Load multiple registers, decrement  
before  
LDMFD, LDMIA  
LDR  
Rn{!}, reglist  
Load multiple registers, increment after  
Load register with word  
-
-
-
-
Rt, [Rn, #offset]  
Rt, [Rn, #offset]  
Rt, Rt2, [Rn, #offset]  
LDRB, LDRBT  
LDRD  
Load register with byte  
Load register with two bytes  
78  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 2-13. Cortex-M3 Instruction Summary (continued)  
Mnemonic  
LDREX  
Operands  
Brief Description  
Flags  
Rt, [Rn, #offset]  
Rt, [Rn]  
Load register exclusive  
Load register exclusive with byte  
Load register exclusive with halfword  
Load register with halfword  
Load register with signed byte  
Load register with signed halfword  
Load register with word  
Logical shift left  
-
LDREXB  
-
LDREXH  
Rt, [Rn]  
-
LDRH, LDRHT  
LDRSB, LDRSBT  
LDRSH, LDRSHT  
LDRT  
Rt, [Rn, #offset]  
Rt, [Rn, #offset]  
Rt, [Rn, #offset]  
Rt, [Rn, #offset]  
Rd, Rm, <Rs|#n>  
Rd, Rm, <Rs|#n>  
Rd, Rn, Rm, Ra  
Rd, Rn, Rm, Ra  
Rd, Op2  
-
-
-
-
LSL, LSLS  
LSR, LSRS  
MLA  
N,Z,C  
Logical shift right  
N,Z,C  
Multiply with accumulate, 32-bit result  
Multiply and subtract, 32-bit result  
Move  
-
MLS  
-
MOV, MOVS  
MOV, MOVW  
MOVT  
N,Z,C  
Rd, #imm16  
Move 16-bit constant  
N,Z,C  
Rd, #imm16  
Move top  
-
-
MRS  
Rd, spec_reg  
Move from special register to general  
register  
MSR  
spec_reg, Rm  
Move from general register to special  
register  
N,Z,C,V  
MUL, MULS  
MVN, MVNS  
NOP  
{Rd,} Rn, Rm  
Rd, Op2  
-
Multiply, 32-bit result  
Move NOT  
N,Z  
N,Z,C  
No operation  
-
ORN, ORNS  
ORR, ORRS  
POP  
{Rd,} Rn, Op2  
{Rd,} Rn, Op2  
reglist  
reglist  
Rd, Rn  
Logical OR NOT  
N,Z,C  
Logical OR  
N,Z,C  
Pop registers from stack  
Push registers onto stack  
Reverse bits  
-
-
-
-
-
-
PUSH  
RBIT  
REV  
Rd, Rn  
Reverse byte order in a word  
Reverse byte order in each halfword  
REV16  
Rd, Rn  
REVSH  
Rd, Rn  
Reverse byte order in bottom halfword  
and sign extend  
ROR, RORS  
RRX, RRXS  
RSB, RSBS  
SBC, SBCS  
SBFX  
Rd, Rm, <Rs|#n>  
Rd, Rm  
Rotate right  
N,Z,C  
Rotate right with extend  
Reverse subtract  
Subtract with carry  
Signed bit field extract  
Signed divide  
N,Z,C  
{Rd,} Rn, Op2  
{Rd,} Rn, Op2  
Rd, Rn, #lsb, #width  
{Rd,} Rn, Rm  
-
N,Z,C,V  
N,Z,C,V  
-
-
-
-
SDIV  
SEV  
Send event  
SMLAL  
RdLo, RdHi, Rn, Rm  
Signed multiply with accumulate  
(32x32+64), 64-bit result  
SMULL  
SSAT  
STM  
RdLo, RdHi, Rn, Rm  
Rd, #n, Rm {,shift #s}  
Rn{!}, reglist  
Signed multiply (32x32), 64-bit result  
Signed saturate  
-
Q
Store multiple registers, increment after -  
July 24, 2012  
79  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
The Cortex-M3 Processor  
Table 2-13. Cortex-M3 Instruction Summary (continued)  
Mnemonic  
Operands  
Brief Description  
Flags  
STMDB, STMEA  
Rn{!}, reglist  
Store multiple registers, decrement  
before  
-
STMFD, STMIA  
STR  
Rn{!}, reglist  
Store multiple registers, increment after -  
Rt, [Rn {, #offset}]  
Rt, [Rn {, #offset}]  
Rt, Rt2, [Rn {, #offset}]  
Rt, Rt, [Rn {, #offset}]  
Rd, Rt, [Rn]  
Store register word  
Store register byte  
-
STRB, STRBT  
STRD  
-
Store register two words  
Store register exclusive  
Store register exclusive byte  
Store register exclusive halfword  
Store register halfword  
Store register signed byte  
Store register signed halfword  
Store register word  
Subtract  
-
STREX  
-
STREXB  
STREXH  
STRH, STRHT  
STRSB, STRSBT  
STRSH, STRSHT  
STRT  
-
Rd, Rt, [Rn]  
-
Rt, [Rn {, #offset}]  
Rt, [Rn {, #offset}]  
Rt, [Rn {, #offset}]  
Rt, [Rn {, #offset}]  
{Rd,} Rn, Op2  
-
-
-
-
SUB, SUBS  
SUB, SUBW  
SVC  
N,Z,C,V  
{Rd,} Rn, #imm12  
#imm  
Subtract 12-bit constant  
Supervisor call  
N,Z,C,V  
-
SXTB  
{Rd,} Rm {,ROR #n}  
{Rd,} Rm {,ROR #n}  
[Rn, Rm]  
Sign extend a byte  
-
SXTH  
Sign extend a halfword  
Table branch byte  
-
TBB  
-
TBH  
[Rn, Rm, LSL #1]  
Rn, Op2  
Table branch halfword  
Test equivalence  
-
TEQ  
N,Z,C  
TST  
Rn, Op2  
Test  
N,Z,C  
UBFX  
Rd, Rn, #lsb, #width  
{Rd,} Rn, Rm  
Unsigned bit field extract  
Unsigned divide  
-
-
-
UDIV  
UMLAL  
RdLo, RdHi, Rn, Rm  
Unsigned multiply with accumulate  
(32x32+32+32), 64-bit result  
UMULL  
USAT  
UXTB  
UXTH  
WFE  
RdLo, RdHi, Rn, Rm  
Unsigned multiply (32x 2), 64-bit result  
Unsigned Saturate  
-
Rd, #n, Rm {,shift #s}  
Q
-
{Rd,} Rm, {,ROR #n}  
Zero extend a Byte  
{Rd,} Rm, {,ROR #n}  
Zero extend a Halfword  
Wait for event  
-
-
-
-
WFI  
Wait for interrupt  
-
80  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
3
Cortex-M3 Peripherals  
This chapter provides information on the Stellaris® implementation of the Cortex-M3 processor  
peripherals, including:  
■ SysTick (see page 81)  
Provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible  
control mechanism.  
■ Nested Vectored Interrupt Controller (NVIC) (see page 82)  
Facilitates low-latency exception and interrupt handling  
Controls power management  
Implements system control registers  
■ System Control Block (SCB) (see page 84)  
Provides system implementation information and system control, including configuration, control,  
and reporting of system exceptions.  
Table 3-1 on page 81 shows the address map of the Private Peripheral Bus (PPB). Some peripheral  
register regions are split into two address regions, as indicated by two addresses listed.  
Table 3-1. Core Peripheral Register Regions  
Address  
Core Peripheral  
Description (see page ...)  
0xE000.E010-0xE000.E01F  
System Timer  
81  
82  
0xE000.E100-0xE000.E4EF  
0xE000.EF00-0xE000.EF03  
Nested Vectored Interrupt Controller  
0xE000.ED00-0xE000.ED3F  
0xE000.ED90-0xE000.ED93  
System Control Block  
MPU Type Register  
84  
Reads as zero, indicated the  
MPU is not implementeda  
a. Software can read the MPU Type Register at 0xE000.ED90 to test for the presence of a memory protection unit (MPU).  
3.1  
Functional Description  
This chapter provides information on the Stellaris implementation of the Cortex-M3 processor  
peripherals: SysTick, NVIC, SCB and MPU.  
3.1.1  
System Timer (SysTick)  
Cortex-M3 includes an integrated system timer, SysTick, which provides a simple, 24-bit  
clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter  
can be used in several different ways, for example as:  
■ An RTOS tick timer that fires at a programmable rate (for example, 100 Hz) and invokes a SysTick  
routine.  
■ A high-speed alarm timer using the system clock.  
■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock  
used and the dynamic range of the counter.  
■ A simple counter used to measure time to completion and time used.  
July 24, 2012  
81  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
■ An internal clock source control based on missing/meeting durations. The COUNT bit in the  
STCTRL control and status register can be used to determine if an action completed within a  
set duration, as part of a dynamic clock management control loop.  
The timer consists of three registers:  
SysTick Control and Status (STCTRL): A control and status counter to configure its clock,  
enable the counter, enable the SysTick interrupt, and determine counter status.  
SysTick Reload Value (STRELOAD): The reload value for the counter, used to provide the  
counter's wrap value.  
SysTick Current Value (STCURRENT): The current value of the counter.  
When enabled, the timer counts down on each clock from the reload value to zero, reloads (wraps)  
to the value in the STRELOAD register on the next clock edge, then decrements on subsequent  
clocks. Clearing the STRELOAD register disables the counter on the next wrap. When the counter  
reaches zero, the COUNT status bit is set. The COUNT bit clears on reads.  
Writing to the STCURRENT register clears the register and the COUNT status bit. The write does  
not trigger the SysTick exception logic. On a read, the current value is the value of the register at  
the time the register is accessed.  
The SysTick counter runs on the system clock. If this clock signal is stopped for low power mode,  
the SysTick counter stops. Ensure software uses aligned word accesses to access the SysTick  
registers.  
Note: When the processor is halted for debugging, the counter does not decrement.  
3.1.2  
Nested Vectored Interrupt Controller (NVIC)  
This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses.  
The NVIC supports:  
■ 14 interrupts.  
■ A programmable priority level of 0-7 for each interrupt. A higher level corresponds to a lower  
priority, so level 0 is the highest interrupt priority.  
■ Low-latency exception and interrupt handling.  
■ Level and pulse detection of interrupt signals.  
■ Dynamic reprioritization of interrupts.  
■ Grouping of priority values into group priority and subpriority fields.  
■ Interrupt tail-chaining.  
■ An external Non-maskable interrupt (NMI).  
The processor automatically stacks its state on exception entry and unstacks this state on exception  
exit, with no instruction overhead, providing low latency exception handling.  
82  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
3.1.2.1  
Level-Sensitive and Pulse Interrupts  
The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described  
as edge-triggered interrupts.  
A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically  
this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A  
pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the processor  
clock. To ensure the NVIC detects the interrupt, the peripheral must assert the interrupt signal for  
at least one clock cycle, during which the NVIC detects the pulse and latches the interrupt.  
When the processor enters the ISR, it automatically removes the pending state from the interrupt  
(see “Hardware and Software Control of Interrupts” on page 83 for more information). For a  
level-sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR,  
the interrupt becomes pending again, and the processor must execute its ISR again. As a result,  
the peripheral can hold the interrupt signal asserted until it no longer needs servicing.  
3.1.2.2  
Hardware and Software Control of Interrupts  
The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the following  
reasons:  
■ The NVIC detects that the interrupt signal is High and the interrupt is not active.  
■ The NVIC detects a rising edge on the interrupt signal.  
■ Software writes to the corresponding interrupt set-pending register bit, or to the Software Trigger  
Interrupt (SWTRIG) register to make a Software-Generated Interrupt pending. See the INT bit  
in the PEND0 register on page 92 or SWTRIG on page 97.  
A pending interrupt remains pending until one of the following:  
■ The processor enters the ISR for the interrupt, changing the state of the interrupt from pending  
to active. Then:  
For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples  
the interrupt signal. If the signal is asserted, the state of the interrupt changes to pending,  
which might cause the processor to immediately re-enter the ISR. Otherwise, the state of the  
interrupt changes to inactive.  
For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed  
the state of the interrupt changes to pending and active. In this case, when the processor  
returns from the ISR the state of the interrupt changes to pending, which might cause the  
processor to immediately re-enter the ISR.  
If the interrupt signal is not pulsed while the processor is in the ISR, when the processor  
returns from the ISR the state of the interrupt changes to inactive.  
■ Software writes to the corresponding interrupt clear-pending register bit  
For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt  
does not change. Otherwise, the state of the interrupt changes to inactive.  
For a pulse interrupt, the state of the interrupt changes to inactive, if the state was pending  
or to active, if the state was active and pending.  
July 24, 2012  
83  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
3.1.3  
System Control Block (SCB)  
The System Control Block (SCB) provides system implementation information and system control,  
including configuration, control, and reporting of the system exceptions.  
3.2  
Register Map  
Table 3-2 on page 84 lists the Cortex-M3 Peripheral SysTick, NVIC and SCB registers. The offset  
listed is a hexadecimal increment to the register's address, relative to the Core Peripherals base  
address of 0xE000.E000.  
Note: Register spaces that are not used are reserved for future or internal use. Software should  
not modify any reserved memory address.  
Table 3-2. Peripherals Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
System Timer (SysTick) Registers  
0x010  
0x014  
0x018  
STCTRL  
R/W  
R/W  
0x0000.0000  
0x0000.0000  
0x0000.0000  
SysTick Control and Status Register  
SysTick Reload Value Register  
SysTick Current Value Register  
86  
88  
89  
STRELOAD  
STCURRENT  
R/WC  
Nested Vectored Interrupt Controller (NVIC) Registers  
0x100  
0x180  
0x200  
0x280  
0x300  
0x400  
0x404  
0x408  
0x40C  
0x410  
0x414  
0x418  
0x41C  
0xF00  
EN0  
R/W  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
Interrupt 0-29 Set Enable  
Interrupt 0-29 Clear Enable  
Interrupt 0-29 Set Pending  
Interrupt 0-29 Clear Pending  
Interrupt 0-29 Active Bit  
Interrupt 0-3 Priority  
90  
91  
92  
93  
94  
95  
95  
95  
95  
95  
95  
95  
95  
97  
DIS0  
PEND0  
UNPEND0  
ACTIVE0  
PRI0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
WO  
PRI1  
Interrupt 4-7 Priority  
PRI2  
Interrupt 8-11 Priority  
PRI3  
Interrupt 12-15 Priority  
Interrupt 16-19 Priority  
Interrupt 20-23 Priority  
Interrupt 24-27 Priority  
Interrupt 28-29 Priority  
Software Trigger Interrupt  
PRI4  
PRI5  
PRI6  
PRI7  
SWTRIG  
System Control Block (SCB) Registers  
0xD00  
0xD04  
0xD08  
CPUID  
RO  
R/W  
R/W  
0x410F.C231  
0x0000.0000  
0x0000.0000  
CPU ID Base  
98  
99  
INTCTRL  
VTABLE  
Interrupt Control and State  
Vector Table Offset  
102  
84  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 3-2. Peripherals Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0xD0C  
0xD10  
0xD14  
0xD18  
0xD1C  
0xD20  
0xD24  
0xD28  
0xD2C  
0xD34  
0xD38  
APINT  
R/W  
R/W  
0xFA05.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
-
Application Interrupt and Reset Control  
System Control  
103  
105  
107  
109  
110  
111  
112  
116  
121  
122  
123  
SYSCTRL  
CFGCTRL  
SYSPRI1  
R/W  
Configuration and Control  
System Handler Priority 1  
System Handler Priority 2  
System Handler Priority 3  
System Handler Control and State  
Configurable Fault Status  
Hard Fault Status  
R/W  
SYSPRI2  
R/W  
SYSPRI3  
R/W  
SYSHNDCTRL  
FAULTSTAT  
HFAULTSTAT  
MMADDR  
FAULTADDR  
R/W  
R/W1C  
R/W1C  
R/W  
Memory Management Fault Address  
Bus Fault Address  
R/W  
-
3.3  
System Timer (SysTick) Register Descriptions  
This section lists and describes the System Timer registers, in numerical order by address offset.  
July 24, 2012  
85  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 1: SysTick Control and Status Register (STCTRL), offset 0x010  
Note: This register can only be accessed from privileged mode.  
The SysTick STCTRL register enables the SysTick features.  
SysTick Control and Status Register (STCTRL)  
Base 0xE000.E000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COUNT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CLK_SRC INTEN ENABLE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:17  
Name  
Type  
RO  
Reset  
0x000  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
16  
COUNT  
RO  
0
Count Flag  
Value  
0
Description  
The SysTick timer has not counted to 0 since the last time  
this bit was read.  
1
The SysTick timer has counted to 0 since the last time  
this bit was read.  
This bit is cleared by a read of the register or if the STCURRENT register  
is written with any value.  
If read by the debugger using the DAP, this bit is cleared only if the  
MasterType bit in the AHB-AP Control Register is clear. Otherwise,  
the COUNT bit is not changed by the debugger read. See the ARM®  
Debug Interface V5 Architecture Specification for more information on  
MasterType.  
15:3  
2
reserved  
RO  
0x000  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
CLK_SRC  
R/W  
Clock Source  
Value Description  
0
External reference clock. (Not implemented for most Stellaris  
microcontrollers.)  
1
System clock  
Because an external reference clock is not implemented, this bit must  
be set in order for SysTick to operate.  
86  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
INTEN  
Interrupt Enable  
Value  
0
Description  
Interrupt generation is disabled. Software can use the  
COUNT bit to determine if the counter has ever reached 0.  
1
An interrupt is generated to the NVIC when SysTick counts  
to 0.  
0
ENABLE  
R/W  
0
Enable  
Value  
Description  
0
1
The counter is disabled.  
Enables SysTick to operate in a multi-shot way. That is, the  
counter loads the RELOAD value and begins counting down.  
On reaching 0, the COUNT bit is set and an interrupt is  
generated if enabled by INTEN. The counter then loads the  
RELOAD value again and begins counting.  
July 24, 2012  
87  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 2: SysTick Reload Value Register (STRELOAD), offset 0x014  
Note: This register can only be accessed from privileged mode.  
The STRELOAD register specifies the start value to load into the SysTick Current Value  
(STCURRENT) register when the counter reaches 0. The start value can be between 0x1 and  
0x00FF.FFFF. A start value of 0 is possible but has no effect because the SysTick interrupt and the  
COUNT bit are activated when counting from 1 to 0.  
SysTick can be configured as a multi-shot timer, repeated over and over, firing every N+1 clock  
pulses, where N is any value from 1 to 0x00FF.FFFF. For example, if a tick interrupt is required  
every 100 clock pulses, 99 must be written into the RELOAD field.  
SysTick Reload Value Register (STRELOAD)  
Base 0xE000.E000  
Offset 0x014  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
RELOAD  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
RELOAD  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:24  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
23:0  
RELOAD  
R/W  
0x00.0000 Reload Value  
Value to load into the SysTick Current Value (STCURRENT) register  
when the counter reaches 0.  
88  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 3: SysTick Current Value Register (STCURRENT), offset 0x018  
Note: This register can only be accessed from privileged mode.  
The STCURRENT register contains the current value of the SysTick counter.  
SysTick Current Value Register (STCURRENT)  
Base 0xE000.E000  
Offset 0x018  
Type R/WC, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
CURRENT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
CURRENT  
Type  
Reset  
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
R/WC  
0
Bit/Field  
31:24  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
23:0  
CURRENT  
R/WC  
0x00.0000 Current Value  
This field contains the current value at the time the register is accessed.  
No read-modify-write protection is provided, so change with care.  
This register is write-clear. Writing to it with any value clears the register.  
Clearing this register also clears the COUNT bit of the STCTRL register.  
3.4  
NVIC Register Descriptions  
This section lists and describes the NVIC registers, in numerical order by address offset.  
The NVIC registers can only be fully accessed from privileged mode, but interrupts can be pended  
while in unprivileged mode by enabling the Configuration and Control (CFGCTRL) register. Any  
other unprivileged mode access causes a bus fault.  
Ensure software uses correctly aligned register accesses. The processor does not support unaligned  
accesses to NVIC registers.  
An interrupt can enter the pending state even if it is disabled.  
Before programming the VTABLE register to relocate the vector table, ensure the vector table  
entries of the new vector table are set up for fault handlers, NMI, and all enabled exceptions such  
as interrupts. For more information, see page 102.  
July 24, 2012  
89  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 4: Interrupt 0-29 Set Enable (EN0), offset 0x100  
Note: This register can only be accessed from privileged mode.  
The EN0 register enables interrupts and shows which interrupts are enabled. Bit 0 corresponds to  
Interrupt 0; bit 29 corresponds to Interrupt 29.  
See Table 2-9 on page 69 for interrupt assignments.  
If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt  
is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC  
never activates the interrupt, regardless of its priority.  
Interrupt 0-29 Set Enable (EN0)  
Base 0xE000.E000  
Offset 0x100  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
INT  
Type  
Reset  
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INT  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:30  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
29:0  
INT  
R/W  
0x000.0000 Interrupt Enable  
Value  
0
Description  
On a read, indicates the interrupt is disabled.  
On a write, no effect.  
1
On a read, indicates the interrupt is enabled.  
On a write, enables the interrupt.  
A bit can only be cleared by setting the corresponding INT[n] bit in  
the DISn register.  
90  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 5: Interrupt 0-29 Clear Enable (DIS0), offset 0x180  
Note: This register can only be accessed from privileged mode.  
The DIS0 register disables interrupts. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt  
29.  
See Table 2-9 on page 69 for interrupt assignments.  
Interrupt 0-29 Clear Enable (DIS0)  
Base 0xE000.E000  
Offset 0x180  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
INT  
Type  
Reset  
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INT  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:30  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
29:0  
INT  
R/W  
0x000.0000 Interrupt Disable  
Value Description  
0
On a read, indicates the interrupt is disabled.  
On a write, no effect.  
1
On a read, indicates the interrupt is enabled.  
On a write, clears the corresponding INT[n] bit in the EN0  
register, disabling interrupt [n].  
July 24, 2012  
91  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 6: Interrupt 0-29 Set Pending (PEND0), offset 0x200  
Note: This register can only be accessed from privileged mode.  
The PEND0 register forces interrupts into the pending state and shows which interrupts are pending.  
Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.  
See Table 2-9 on page 69 for interrupt assignments.  
Interrupt 0-29 Set Pending (PEND0)  
Base 0xE000.E000  
Offset 0x200  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
INT  
Type  
Reset  
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INT  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:30  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
29:0  
INT  
R/W  
0x000.0000 Interrupt Set Pending  
Value  
0
Description  
On a read, indicates that the interrupt is not pending.  
On a write, no effect.  
1
On a read, indicates that the interrupt is pending.  
On a write, the corresponding interrupt is set to pending  
even if it is disabled.  
If the corresponding interrupt is already pending, setting a bit has no  
effect.  
A bit can only be cleared by setting the corresponding INT[n] bit in  
the UNPEND0 register.  
92  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 7: Interrupt 0-29 Clear Pending (UNPEND0), offset 0x280  
Note: This register can only be accessed from privileged mode.  
The UNPEND0 register shows which interrupts are pending and removes the pending state from  
interrupts. Bit 0 corresponds to Interrupt 0; bit 29 corresponds to Interrupt 29.  
See Table 2-9 on page 69 for interrupt assignments.  
Interrupt 0-29 Clear Pending (UNPEND0)  
Base 0xE000.E000  
Offset 0x280  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
INT  
Type  
Reset  
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INT  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:30  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
29:0  
INT  
R/W  
0x000.0000 Interrupt Clear Pending  
Value Description  
0
On a read, indicates that the interrupt is not pending.  
On a write, no effect.  
1
On a read, indicates that the interrupt is pending.  
On a write, clears the corresponding INT[n] bit in the PEND0  
register, so that interrupt [n] is no longer pending.  
Setting a bit does not affect the active state of the corresponding  
interrupt.  
July 24, 2012  
93  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 8: Interrupt 0-29 Active Bit (ACTIVE0), offset 0x300  
Note: This register can only be accessed from privileged mode.  
The ACTIVE0 register indicates which interrupts are active. Bit 0 corresponds to Interrupt 0; bit 29  
corresponds to Interrupt 29.  
See Table 2-9 on page 69 for interrupt assignments.  
Caution – Do not manually set or clear the bits in this register.  
Interrupt 0-29 Active Bit (ACTIVE0)  
Base 0xE000.E000  
Offset 0x300  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
INT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:30  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
29:0  
INT  
RO  
0x000.0000 Interrupt Active  
Value Description  
0
1
The corresponding interrupt is not active.  
The corresponding interrupt is active, or active and pending.  
94  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 9: Interrupt 0-3 Priority (PRI0), offset 0x400  
Register 10: Interrupt 4-7 Priority (PRI1), offset 0x404  
Register 11: Interrupt 8-11 Priority (PRI2), offset 0x408  
Register 12: Interrupt 12-15 Priority (PRI3), offset 0x40C  
Register 13: Interrupt 16-19 Priority (PRI4), offset 0x410  
Register 14: Interrupt 20-23 Priority (PRI5), offset 0x414  
Register 15: Interrupt 24-27 Priority (PRI6), offset 0x418  
Register 16: Interrupt 28-29 Priority (PRI7), offset 0x41C  
Note: This register can only be accessed from privileged mode.  
The PRIn registers provide 3-bit priority fields for each interrupt. These registers are byte accessible.  
Each register holds four priority fields that are assigned to interrupts as follows:  
PRIn Register Bit Field  
Bits 31:29  
Interrupt  
Interrupt [4n+3]  
Interrupt [4n+2]  
Interrupt [4n+1]  
Interrupt [4n]  
Bits 23:21  
Bits 15:13  
Bits 7:5  
See Table 2-9 on page 69 for interrupt assignments.  
Each priority level can be split into separate group priority and subpriority fields. The PRIGROUP  
field in the Application Interrupt and Reset Control (APINT) register (see page 103) indicates the  
position of the binary point that splits the priority and subpriority fields.  
These registers can only be accessed from privileged mode.  
Interrupt 0-3 Priority (PRI0)  
Base 0xE000.E000  
Offset 0x400  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
INTD  
reserved  
INTC  
reserved  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
INTB  
reserved  
INTA  
reserved  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:29  
Name  
INTD  
Type  
R/W  
Reset  
0x0  
Description  
Interrupt Priority for Interrupt [4n+3]  
This field holds a priority value, 0-7, for the interrupt with the number  
[4n+3], where n is the number of the Interrupt Priority register (n=0 for  
PRI0, and so on). The lower the value, the greater the priority of the  
corresponding interrupt.  
July 24, 2012  
95  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
28:24  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
23:21  
INTC  
R/W  
0x0  
Interrupt Priority for Interrupt [4n+2]  
This field holds a priority value, 0-7, for the interrupt with the number  
[4n+2], where n is the number of the Interrupt Priority register (n=0 for  
PRI0, and so on). The lower the value, the greater the priority of the  
corresponding interrupt.  
20:16  
15:13  
reserved  
INTB  
RO  
0x0  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Interrupt Priority for Interrupt [4n+1]  
This field holds a priority value, 0-7, for the interrupt with the number  
[4n+1], where n is the number of the Interrupt Priority register (n=0 for  
PRI0, and so on). The lower the value, the greater the priority of the  
corresponding interrupt.  
12:8  
7:5  
reserved  
INTA  
RO  
0x0  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Interrupt Priority for Interrupt [4n]  
This field holds a priority value, 0-7, for the interrupt with the number  
[4n], where n is the number of the Interrupt Priority register (n=0 for  
PRI0, and so on). The lower the value, the greater the priority of the  
corresponding interrupt.  
4:0  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
96  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 17: Software Trigger Interrupt (SWTRIG), offset 0xF00  
Note: Only privileged software can enable unprivileged access to the SWTRIG register.  
Writing an interrupt number to the SWTRIG register generates a Software Generated Interrupt (SGI).  
See Table 2-9 on page 69 for interrupt assignments.  
When the MAINPEND bit in the Configuration and Control (CFGCTRL) register (see page 107) is  
set, unprivileged software can access the SWTRIG register.  
Software Trigger Interrupt (SWTRIG)  
Base 0xE000.E000  
Offset 0xF00  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
INTID  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
31:5  
Name  
Type  
Reset  
Description  
reserved  
RO  
0x0000.00 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
4:0  
INTID  
WO  
0x00  
Interrupt ID  
This field holds the interrupt ID of the required SGI. For example, a value  
of 0x3 generates an interrupt on IRQ3.  
3.5  
System Control Block (SCB) Register Descriptions  
This section lists and describes the System Control Block (SCB) registers, in numerical order by  
address offset. The SCB registers can only be accessed from privileged mode.  
All registers must be accessed with aligned word accesses except for the FAULTSTAT and  
SYSPRI1-SYSPRI3 registers, which can be accessed with byte or aligned halfword or word accesses.  
The processor does not support unaligned accesses to system control block registers.  
July 24, 2012  
97  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 18: CPU ID Base (CPUID), offset 0xD00  
Note: This register can only be accessed from privileged mode.  
The CPUID register contains the ARM® Cortex™-M3 processor part number, version, and  
implementation information.  
CPU ID Base (CPUID)  
Base 0xE000.E000  
Offset 0xD00  
Type RO, reset 0x410F.C231  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
IMP  
VAR  
CON  
REV  
Type  
Reset  
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PARTNO  
Type  
Reset  
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:24  
Name  
Type  
RO  
Reset  
0x41  
Description  
IMP  
Implementer Code  
Value Description  
0x41 ARM  
23:20  
VAR  
RO  
0x0  
Variant Number  
Value Description  
0x0 The rn value in the rnpn product revision identifier, for example,  
the 0 in r0p1.  
19:16  
15:4  
3:0  
CON  
RO  
RO  
RO  
0xF  
0xC23  
0x1  
Constant  
Value Description  
0xF Always reads as 0xF.  
PARTNO  
Part Number  
Value Description  
0xC23 Cortex-M3 processor.  
REV  
Revision Number  
Value Description  
0x1 The pn value in the rnpn product revision identifier, for example,  
the 1 in r0p1.  
98  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 19: Interrupt Control and State (INTCTRL), offset 0xD04  
Note: This register can only be accessed from privileged mode.  
The INCTRL register provides a set-pending bit for the NMI exception, and set-pending and  
clear-pending bits for the PendSV and SysTick exceptions. In addition, bits in this register indicate  
the exception number of the exception being processed, whether there are preempted active  
exceptions, the exception number of the highest priority pending exception, and whether any interrupts  
are pending.  
When writing to INCTRL, the effect is unpredictable when writing a 1 to both the PENDSV and  
UNPENDSV bits, or writing a 1 to both the PENDSTSET and PENDSTCLR bits.  
Interrupt Control and State (INTCTRL)  
Base 0xE000.E000  
Offset 0xD04  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
UNPENDSV PENDSTSET PENDSTCLR reserved  
NMISET  
reserved  
PENDSV  
ISRPRE ISRPEND  
reserved  
VECPEND  
Type  
Reset  
R/W  
0
RO  
0
RO  
0
R/W  
0
WO  
0
R/W  
0
WO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VECPEND  
RETBASE  
reserved  
VECACT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31  
Name  
Type  
Reset  
0
Description  
NMISET  
R/W  
NMI Set Pending  
Value Description  
0
On a read, indicates an NMI exception is not pending.  
On a write, no effect.  
1
On a read, indicates an NMI exception is pending.  
On a write, changes the NMI exception state to pending.  
Because NMI is the highest-priority exception, normally the processor  
enters the NMI exception handler as soon as it registers the setting of  
this bit, and clears this bit on entering the interrupt handler. A read of  
this bit by the NMI exception handler returns 1 only if the NMI signal is  
reasserted while the processor is executing that handler.  
30:29  
28  
reserved  
PENDSV  
RO  
0x0  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
PendSV Set Pending  
Value Description  
0
On a read, indicates a PendSV exception is not pending.  
On a write, no effect.  
1
On a read, indicates a PendSV exception is pending.  
On a write, changes the PendSV exception state to pending.  
Setting this bit is the only way to set the PendSV exception state to  
pending. This bit is cleared by writing a 1 to the UNPENDSV bit.  
July 24, 2012  
99  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
27  
Name  
UNPENDSV  
Type  
WO  
Reset  
0
Description  
PendSV Clear Pending  
Value Description  
0
1
On a write, no effect.  
On a write, removes the pending state from the PendSV  
exception.  
This bit is write only; on a register read, its value is unknown.  
SysTick Set Pending  
26  
PENDSTSET  
R/W  
0
Value Description  
0
On a read, indicates a SysTick exception is not pending.  
On a write, no effect.  
1
On a read, indicates a SysTick exception is pending.  
On a write, changes the SysTick exception state to pending.  
This bit is cleared by writing a 1 to the PENDSTCLR bit.  
SysTick Clear Pending  
25  
PENDSTCLR  
WO  
0
Value Description  
0
1
On a write, no effect.  
On a write, removes the pending state from the SysTick  
exception.  
This bit is write only; on a register read, its value is unknown.  
24  
23  
reserved  
ISRPRE  
RO  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
Debug Interrupt Handling  
Value Description  
0
1
The release from halt does not take an interrupt.  
The release from halt takes an interrupt.  
This bit is only meaningful in Debug mode and reads as zero when the  
processor is not in Debug mode.  
22  
ISRPEND  
RO  
0
Interrupt Pending  
Value Description  
0
1
No interrupt is pending.  
An interrupt is pending.  
This bit provides status for all interrupts excluding NMI and Faults.  
21:18  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
100  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
17:12  
Name  
Type  
RO  
Reset  
0x00  
Description  
VECPEND  
Interrupt Pending Vector Number  
This field contains the exception number of the highest priority pending  
enabled exception. The value indicated by this field includes the effect  
of the BASEPRI and FAULTMASK registers, but not any effect of the  
PRIMASK register.  
Value  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
Description  
No exceptions are pending  
Reserved  
NMI  
Hard fault  
Memory management fault  
Bus fault  
Usage fault  
0x07-0x0A Reserved  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
...  
SVCall  
Reserved for Debug  
Reserved  
PendSV  
SysTick  
Interrupt Vector 0  
Interrupt Vector 1  
...  
0x2D  
Interrupt Vector 29  
0x2E-0x3F Reserved  
11  
RETBASE  
RO  
0
Return to Base  
Value Description  
0
1
There are preempted active exceptions to execute.  
There are no active exceptions, or the currently executing  
exception is the only active exception.  
This bit provides status for all interrupts excluding NMI and Faults. This  
bit only has meaning if the processor is currently executing an ISR (the  
Interrupt Program Status (IPSR) register is non-zero).  
10:6  
5:0  
reserved  
VECACT  
RO  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0x00  
Interrupt Pending Vector Number  
This field contains the active exception number. The exception numbers  
can be found in the description for the VECPEND field. If this field is clear,  
the processor is in Thread mode. This field contains the same value as  
the ISRNUM field in the IPSR register.  
Subtract 16 from this value to obtain the IRQ number required to index  
into the Interrupt Set Enable (ENn), Interrupt Clear Enable (DISn),  
Interrupt Set Pending (PENDn), Interrupt Clear Pending (UNPENDn),  
and Interrupt Priority (PRIn) registers (see page 51).  
July 24, 2012  
101  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 20: Vector Table Offset (VTABLE), offset 0xD08  
Note: This register can only be accessed from privileged mode.  
The VTABLE register indicates the offset of the vector table base address from memory address  
0x0000.0000.  
Vector Table Offset (VTABLE)  
Base 0xE000.E000  
Offset 0xD08  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
BASE  
OFFSET  
Type  
Reset  
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
OFFSET  
reserved  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:30  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
29  
BASE  
R/W  
0
Vector Table Base  
Value Description  
0
1
The vector table is in the code memory region.  
The vector table is in the SRAM memory region.  
28:8  
7:0  
OFFSET  
reserved  
R/W  
RO  
0x000.00  
0x00  
Vector Table Offset  
When configuring the OFFSET field, the offset must be aligned to the  
number of exception entries in the vector table. Because there are 29  
interrupts, the offset must be aligned on a 256-byte boundary.  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
102  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 21: Application Interrupt and Reset Control (APINT), offset 0xD0C  
Note: This register can only be accessed from privileged mode.  
The APINT register provides priority grouping control for the exception model, endian status for  
data accesses, and reset control of the system. To write to this register, 0x05FA must be written to  
the VECTKEY field, otherwise the write is ignored.  
The PRIGROUP field indicates the position of the binary point that splits the INTx fields in the  
Interrupt Priority (PRIx) registers into separate group priority and subpriority fields. Table  
3-3 on page 103 shows how the PRIGROUP value controls this split. The bit numbers in the Group  
Priority Field and Subpriority Field columns in the table refer to the bits in the INTA field. For the  
INTB field, the corresponding bits are 15:13; for INTC, 23:21; and for INTD, 31:29.  
Note: Determining preemption of an exception uses only the group priority field.  
Table 3-3. Interrupt Priority Levels  
PRIGROUP Bit Field Binary Pointa  
Group Priority Field Subpriority Field  
Group  
Subpriorities  
Priorities  
0x0 - 0x4  
0x5  
bxxx.  
bxx.y  
bx.yy  
b.yyy  
[7:5]  
[7:6]  
[7]  
None  
[5]  
8
4
2
1
1
2
4
8
0x6  
[6:5]  
[7:5]  
0x7  
None  
a. INTx field showing the binary point. An x denotes a group priority field bit, and a y denotes a subpriority field bit.  
Application Interrupt and Reset Control (APINT)  
Base 0xE000.E000  
Offset 0xD0C  
Type R/W, reset 0xFA05.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VECTKEY  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
VECTCLRACT  
ENDIANESS  
SYSRESREQ  
VECTRESET  
reserved  
PRIGROUP  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
31:16  
Name  
Type  
R/W  
Reset  
Description  
VECTKEY  
0xFA05  
Register Key  
This field is used to guard against accidental writes to this register.  
0x05FA must be written to this field in order to change the bits in this  
register. On a read, 0xFA05 is returned.  
15  
ENDIANESS  
reserved  
RO  
RO  
0
Data Endianess  
The Stellaris implementation uses only little-endian mode so this is  
cleared to 0.  
14:11  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
103  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
10:8  
Name  
Type  
R/W  
Reset  
0x0  
Description  
PRIGROUP  
Interrupt Priority Grouping  
This field determines the split of group priority from subpriority (see  
Table 3-3 on page 103 for more information).  
7:3  
2
reserved  
RO  
0x0  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
SYSRESREQ  
WO  
System Reset Request  
Value Description  
0
1
No effect.  
Resets the core and all on-chip peripherals except the Debug  
interface.  
This bit is automatically cleared during the reset of the core and reads  
as 0.  
1
0
VECTCLRACT  
VECTRESET  
WO  
WO  
0
0
Clear Active NMI / Fault  
This bit is reserved for Debug use and reads as 0. This bit must be  
written as a 0, otherwise behavior is unpredictable.  
System Reset  
This bit is reserved for Debug use and reads as 0. This bit must be  
written as a 0, otherwise behavior is unpredictable.  
104  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 22: System Control (SYSCTRL), offset 0xD10  
Note: This register can only be accessed from privileged mode.  
The SYSCTRL register controls features of entry to and exit from low-power state.  
System Control (SYSCTRL)  
Base 0xE000.E000  
Offset 0xD10  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SEVONPEND reserved SLEEPDEEP SLEEPEXIT reserved  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
Bit/Field  
31:5  
Name  
Type  
Reset  
Description  
reserved  
RO  
0x0000.00 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
4
SEVONPEND  
R/W  
0
Wake Up on Pending  
Value Description  
0
Only enabled interrupts or events can wake up the processor;  
disabled interrupts are excluded.  
1
Enabled events and all interrupts, including disabled interrupts,  
can wake up the processor.  
When an event or interrupt enters the pending state, the event signal  
wakes up the processor from WFE. If the processor is not waiting for an  
event, the event is registered and affects the next WFE.  
The processor also wakes up on execution of a SEV instruction or an  
external event.  
3
2
reserved  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
SLEEPDEEP  
R/W  
Deep Sleep Enable  
Value Description  
0
1
Use Sleep mode as the low power mode.  
Use Deep-sleep mode as the low power mode.  
July 24, 2012  
105  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
1
Name  
SLEEPEXIT  
Type  
R/W  
Reset  
0
Description  
Sleep on ISR Exit  
Value Description  
0
When returning from Handler mode to Thread mode, do not  
sleep when returning to Thread mode.  
1
When returning from Handler mode to Thread mode, enter sleep  
or deep sleep on return from an ISR.  
Setting this bit enables an interrupt-driven application to avoid returning  
to an empty main application.  
0
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
106  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 23: Configuration and Control (CFGCTRL), offset 0xD14  
Note: This register can only be accessed from privileged mode.  
The CFGCTRL register controls entry to Thread mode and enables: the handlers for NMI, hard fault  
and faults escalated by the FAULTMASK register to ignore bus faults; trapping of divide by zero  
and unaligned accesses; and access to the SWTRIG register by unprivileged software (see page 97).  
Configuration and Control (CFGCTRL)  
Base 0xE000.E000  
Offset 0xD14  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
STKALIGN BFHFNMIGN  
UNALIGNED reserved MAINPEND  
BASETHR  
reserved  
reserved  
DIV0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000.00 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
9
STKALIGN  
R/W  
0
Stack Alignment on Exception Entry  
Value Description  
0
1
The stack is 4-byte aligned.  
The stack is 8-byte aligned.  
On exception entry, the processor uses bit 9 of the stacked PSR to  
indicate the stack alignment. On return from the exception, it uses this  
stacked bit to restore the correct stack alignment.  
8
BFHFNMIGN  
R/W  
0
Ignore Bus Fault in NMI and Fault  
This bit enables handlers with priority -1 or -2 to ignore data bus faults  
caused by load and store instructions. The setting of this bit applies to  
the hard fault, NMI, and FAULTMASK escalated handlers.  
Value Description  
0
Data bus faults caused by load and store instructions cause a  
lock-up.  
1
Handlers running at priority -1 and -2 ignore data bus faults  
caused by load and store instructions.  
Set this bit only when the handler and its data are in absolutely safe  
memory. The normal use of this bit is to probe system devices and  
bridges to detect control path problems and fix them.  
7:5  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
107  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
4
Name  
Type  
R/W  
Reset  
0
Description  
DIV0  
Trap on Divide by 0  
This bit enables faulting or halting when the processor executes an  
SDIV or UDIV instruction with a divisor of 0.  
Value Description  
0
Do not trap on divide by 0. A divide by zero returns a quotient  
of 0.  
1
Trap on divide by 0.  
3
UNALIGNED  
R/W  
0
Trap on Unaligned Access  
Value Description  
0
1
Do not trap on unaligned halfword and word accesses.  
Trap on unaligned halfword and word accesses. An unaligned  
access generates a usage fault.  
Unaligned LDM, STM, LDRD, and STRD instructions always fault  
regardless of whether UNALIGNED is set.  
2
1
reserved  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
MAINPEND  
R/W  
Allow Main Interrupt Trigger  
Value Description  
0
1
Disables unprivileged software access to the SWTRIG register.  
Enables unprivileged software access to the SWTRIG register  
(see page 97).  
0
BASETHR  
R/W  
0
Thread State Control  
Value Description  
0
The processor can enter Thread mode only when no exception  
is active.  
1
The processor can enter Thread mode from any level under the  
control of an EXC_RETURN value (see “Exception  
Return” on page 74 for more information).  
108  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 24: System Handler Priority 1 (SYSPRI1), offset 0xD18  
Note: This register can only be accessed from privileged mode.  
The SYSPRI1 register configures the priority level, 0 to 7 of the usage fault and bus fault exception  
handlers. This register is byte-accessible.  
System Handler Priority 1 (SYSPRI1)  
Base 0xE000.E000  
Offset 0xD18  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
USAGE  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BUS  
reserved  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:24  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
23:21  
USAGE  
R/W  
0x0  
Usage Fault Priority  
This field configures the priority level of the usage fault. Configurable  
priority values are in the range 0-7, with lower values having higher  
priority.  
20:16  
15:13  
reserved  
BUS  
RO  
0x0  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Bus Fault Priority  
This field configures the priority level of the bus fault. Configurable priority  
values are in the range 0-7, with lower values having higher priority.  
12:0  
reserved  
RO  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
109  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 25: System Handler Priority 2 (SYSPRI2), offset 0xD1C  
Note: This register can only be accessed from privileged mode.  
The SYSPRI2 register configures the priority level, 0 to 7 of the SVCall handler. This register is  
byte-accessible.  
System Handler Priority 2 (SYSPRI2)  
Base 0xE000.E000  
Offset 0xD1C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
SVC  
reserved  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:29  
Name  
SVC  
Type  
R/W  
Reset  
0x0  
Description  
SVCall Priority  
This field configures the priority level of SVCall. Configurable priority  
values are in the range 0-7, with lower values having higher priority.  
28:0  
reserved  
RO  
0x000.0000 Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
110  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 26: System Handler Priority 3 (SYSPRI3), offset 0xD20  
Note: This register can only be accessed from privileged mode.  
The SYSPRI3 register configures the priority level, 0 to 7 of the SysTick exception and PendSV  
handlers. This register is byte-accessible.  
System Handler Priority 3 (SYSPRI3)  
Base 0xE000.E000  
Offset 0xD20  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TICK  
reserved  
PENDSV  
reserved  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DEBUG  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:29  
Name  
TICK  
Type  
Reset  
0x0  
Description  
R/W  
SysTick Exception Priority  
This field configures the priority level of the SysTick exception.  
Configurable priority values are in the range 0-7, with lower values  
having higher priority.  
28:24  
23:21  
reserved  
PENDSV  
RO  
0x0  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
PendSV Priority  
This field configures the priority level of PendSV. Configurable priority  
values are in the range 0-7, with lower values having higher priority.  
20:8  
7:5  
reserved  
DEBUG  
RO  
0x000  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Debug Priority  
This field configures the priority level of Debug. Configurable priority  
values are in the range 0-7, with lower values having higher priority.  
4:0  
reserved  
RO  
0x0.0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
111  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 27: System Handler Control and State (SYSHNDCTRL), offset 0xD24  
Note: This register can only be accessed from privileged mode.  
The SYSHNDCTRL register enables the system handlers, and indicates the pending status of the  
usage fault, bus fault, memory management fault, and SVC exceptions as well as the active status  
of the system handlers.  
If a system handler is disabled and the corresponding fault occurs, the processor treats the fault as  
a hard fault.  
This register can be modified to change the pending or active status of system exceptions. An OS  
kernel can write to the active bits to perform a context switch that changes the current exception  
type.  
Caution – Software that changes the value of an active bit in this register without correct adjustment  
to the stacked content can cause the processor to generate a fault exception. Ensure software that writes  
to this register retains and subsequently restores the current active status.  
If the value of a bit in this register must be modified after enabling the system handlers, a  
read-modify-write procedure must be used to ensure that only the required bit is modified.  
System Handler Control and State (SYSHNDCTRL)  
Base 0xE000.E000  
Offset 0xD24  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
USAGE  
BUS  
MEM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
SVC  
BUSP  
MEMP USAGEP  
TICK  
PNDSV  
MON  
SVCA  
reserved  
USGA  
BUSA  
MEMA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:19  
Name  
Type  
Reset  
0x000  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
18  
USAGE  
R/W  
0
Usage Fault Enable  
Value Description  
0
1
Disables the usage fault exception.  
Enables the usage fault exception.  
17  
BUS  
R/W  
0
Bus Fault Enable  
Value Description  
0
1
Disables the bus fault exception.  
Enables the bus fault exception.  
112  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
16  
Name  
MEM  
Type  
R/W  
Reset  
0
Description  
Memory Management Fault Enable  
Value Description  
0
1
Disables the memory management fault exception.  
Enables the memory management fault exception.  
15  
14  
13  
12  
11  
SVC  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
SVC Call Pending  
Value Description  
0
1
An SVC call exception is not pending.  
An SVC call exception is pending.  
This bit can be modified to change the pending status of the SVC call  
exception.  
BUSP  
Bus Fault Pending  
Value Description  
0
1
A bus fault exception is not pending.  
A bus fault exception is pending.  
This bit can be modified to change the pending status of the bus fault  
exception.  
MEMP  
USAGEP  
TICK  
Memory Management Fault Pending  
Value Description  
0
1
A memory management fault exception is not pending.  
A memory management fault exception is pending.  
This bit can be modified to change the pending status of the memory  
management fault exception.  
Usage Fault Pending  
Value Description  
0
1
A usage fault exception is not pending.  
A usage fault exception is pending.  
This bit can be modified to change the pending status of the usage fault  
exception.  
SysTick Exception Active  
Value Description  
0
1
A SysTick exception is not active.  
A SysTick exception is active.  
This bit can be modified to change the active status of the SysTick  
exception, however, see the Caution above before setting this bit.  
July 24, 2012  
113  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
10  
Name  
Type  
R/W  
Reset  
0
Description  
PNDSV  
PendSV Exception Active  
Value Description  
0
1
A PendSV exception is not active.  
A PendSV exception is active.  
This bit can be modified to change the active status of the PendSV  
exception, however, see the Caution above before setting this bit.  
9
8
reserved  
MON  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Debug Monitor Active  
Value Description  
0
1
The Debug monitor is not active.  
The Debug monitor is active.  
7
SVCA  
R/W  
0
SVC Call Active  
Value Description  
0
1
SVC call is not active.  
SVC call is active.  
This bit can be modified to change the active status of the SVC call  
exception, however, see the Caution above before setting this bit.  
6:4  
3
reserved  
USGA  
RO  
0x0  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Usage Fault Active  
Value Description  
0
1
Usage fault is not active.  
Usage fault is active.  
This bit can be modified to change the active status of the usage fault  
exception, however, see the Caution above before setting this bit.  
2
1
reserved  
BUSA  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Bus Fault Active  
Value Description  
0
1
Bus fault is not active.  
Bus fault is active.  
This bit can be modified to change the active status of the bus fault  
exception, however, see the Caution above before setting this bit.  
114  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
0
Name  
Type  
R/W  
Reset  
0
Description  
MEMA  
Memory Management Fault Active  
Value Description  
0
1
Memory management fault is not active.  
Memory management fault is active.  
This bit can be modified to change the active status of the memory  
management fault exception, however, see the Caution above before  
setting this bit.  
July 24, 2012  
115  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 28: Configurable Fault Status (FAULTSTAT), offset 0xD28  
Note: This register can only be accessed from privileged mode.  
The FAULTSTAT register indicates the cause of a memory management fault, bus fault, or usage  
fault. Each of these functions is assigned to a subregister as follows:  
Usage Fault Status (UFAULTSTAT), bits 31:16  
Bus Fault Status (BFAULTSTAT), bits 15:8  
Memory Management Fault Status (MFAULTSTAT), bits 7:0  
FAULTSTAT is byte accessible. FAULTSTAT or its subregisters can be accessed as follows:  
■ The complete FAULTSTAT register, with a word access to offset 0xD28  
■ The MFAULTSTAT, with a byte access to offset 0xD28  
■ The MFAULTSTAT and BFAULTSTAT, with a halfword access to offset 0xD28  
■ The BFAULTSTAT, with a byte access to offset 0xD29  
■ The UFAULTSTAT, with a halfword access to offset 0xD2A  
Bits are cleared by writing a 1 to them.  
In a fault handler, the true faulting address can be determined by:  
1. Read and save the Memory Management Fault Address (MMADDR) or Bus Fault Address  
(FAULTADDR) value.  
2. Read the MMARV bit in MFAULTSTAT, or the BFARV bit in BFAULTSTAT to determine if the  
MMADDR or FAULTADDR contents are valid.  
Software must follow this sequence because another higher priority exception might change the  
MMADDR or FAULTADDR value. For example, if a higher priority handler preempts the current  
fault handler, the other fault might change the MMADDR or FAULTADDR value.  
Configurable Fault Status (FAULTSTAT)  
Base 0xE000.E000  
Offset 0xD28  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
DIV0  
UNALIGN  
reserved  
NOCP  
INVPC INVSTAT UNDEF  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BFARV  
reserved  
BSTKE BUSTKE IMPRE PRECISE  
IBUS  
MMARV  
reserved  
IERR  
Type  
Reset  
R/W1C  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
Bit/Field  
31:26  
Name  
reserved  
Type  
RO  
Reset  
0x00  
Description  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
116  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
25  
Name  
DIV0  
Type  
Reset  
0
Description  
R/W1C  
Divide-by-Zero Usage Fault  
Value Description  
0
No divide-by-zero fault has occurred, or divide-by-zero trapping  
is not enabled.  
1
The processor has executed an SDIV or UDIV instruction with  
a divisor of 0.  
When this bit is set, the PC value stacked for the exception return points  
to the instruction that performed the divide by zero.  
Trapping on divide-by-zero is enabled by setting the DIV0 bit in the  
Configuration and Control (CFGCTRL) register (see page 107).  
This bit is cleared by writing a 1 to it.  
Unaligned Access Usage Fault  
Value Description  
24  
UNALIGN  
R/W1C  
0
0
No unaligned access fault has occurred, or unaligned access  
trapping is not enabled.  
1
The processor has made an unaligned memory access.  
Unaligned LDM, STM, LDRD, and STRD instructions always fault  
regardless of the configuration of this bit.  
Trapping on unaligned access is enabled by setting the UNALIGNED bit  
in the CFGCTRL register (see page 107).  
This bit is cleared by writing a 1 to it.  
23:20  
19  
reserved  
NOCP  
RO  
0x00  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W1C  
No Coprocessor Usage Fault  
Value Description  
0
A usage fault has not been caused by attempting to access a  
coprocessor.  
1
The processor has attempted to access a coprocessor.  
This bit is cleared by writing a 1 to it.  
Invalid PC Load Usage Fault  
Value Description  
18  
INVPC  
R/W1C  
0
0
A usage fault has not been caused by attempting to load an  
invalid PC value.  
1
The processor has attempted an illegal load of EXC_RETURN  
to the PC as a result of an invalid context or an invalid  
EXC_RETURN value.  
When this bit is set, the PC value stacked for the exception return points  
to the instruction that tried to perform the illegal load of the PC.  
This bit is cleared by writing a 1 to it.  
July 24, 2012  
117  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
17  
Name  
Type  
Reset  
0
Description  
INVSTAT  
UNDEF  
BFARV  
R/W1C  
Invalid State Usage Fault  
Value Description  
0
1
A usage fault has not been caused by an invalid state.  
The processor has attempted to execute an instruction that  
makes illegal use of the EPSR register.  
When this bit is set, the PC value stacked for the exception return points  
to the instruction that attempted the illegal use of the Execution  
Program Status Register (EPSR) register.  
This bit is not set if an undefined instruction uses the EPSR register.  
This bit is cleared by writing a 1 to it.  
16  
R/W1C  
0
Undefined Instruction Usage Fault  
Value Description  
0
1
A usage fault has not been caused by an undefined instruction.  
The processor has attempted to execute an undefined  
instruction.  
When this bit is set, the PC value stacked for the exception return points  
to the undefined instruction.  
An undefined instruction is an instruction that the processor cannot  
decode.  
This bit is cleared by writing a 1 to it.  
Bus Fault Address Register Valid  
Value Description  
15  
R/W1C  
0
0
The value in the Bus Fault Address (FAULTADDR) register  
is not a valid fault address.  
1
The FAULTADDR register is holding a valid fault address.  
This bit is set after a bus fault, where the address is known. Other faults  
can clear this bit, such as a memory management fault occurring later.  
If a bus fault occurs and is escalated to a hard fault because of priority,  
the hard fault handler must clear this bit. This action prevents problems  
if returning to a stacked active bus fault handler whose FAULTADDR  
register value has been overwritten.  
This bit is cleared by writing a 1 to it.  
14:13  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
118  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
12  
Name  
Type  
Reset  
0
Description  
BSTKE  
R/W1C  
Stack Bus Fault  
Value Description  
0
1
No bus fault has occurred on stacking for exception entry.  
Stacking for an exception entry has caused one or more bus  
faults.  
When this bit is set, the SP is still adjusted but the values in the context  
area on the stack might be incorrect. A fault address is not written to  
the FAULTADDR register.  
This bit is cleared by writing a 1 to it.  
11  
BUSTKE  
R/W1C  
0
Unstack Bus Fault  
Value Description  
0
No bus fault has occurred on unstacking for a return from  
exception.  
1
Unstacking for a return from exception has caused one or more  
bus faults.  
This fault is chained to the handler. Thus, when this bit is set, the original  
return stack is still present. The SP is not adjusted from the failing return,  
a new save is not performed, and a fault address is not written to the  
FAULTADDR register.  
This bit is cleared by writing a 1 to it.  
Imprecise Data Bus Error  
Value Description  
10  
IMPRE  
R/W1C  
0
0
1
An imprecise data bus error has not occurred.  
A data bus error has occurred, but the return address in the  
stack frame is not related to the instruction that caused the error.  
When this bit is set, a fault address is not written to the FAULTADDR  
register.  
This fault is asynchronous. Therefore, if the fault is detected when the  
priority of the current process is higher than the bus fault priority, the  
bus fault becomes pending and becomes active only when the processor  
returns from all higher-priority processes. If a precise fault occurs before  
the processor enters the handler for the imprecise bus fault, the handler  
detects that both the IMPRE bit is set and one of the precise fault status  
bits is set.  
This bit is cleared by writing a 1 to it.  
9
PRECISE  
R/W1C  
0
Precise Data Bus Error  
Value Description  
0
1
A precise data bus error has not occurred.  
A data bus error has occurred, and the PC value stacked for  
the exception return points to the instruction that caused the  
fault.  
When this bit is set, the fault address is written to the FAULTADDR  
register.  
This bit is cleared by writing a 1 to it.  
July 24, 2012  
119  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Bit/Field  
8
Name  
Type  
Reset  
0
Description  
IBUS  
R/W1C  
Instruction Bus Error  
Value Description  
0
1
An instruction bus error has not occurred.  
An instruction bus error has occurred.  
The processor detects the instruction bus error on prefetching an  
instruction, but sets this bit only if it attempts to issue the faulting  
instruction.  
When this bit is set, a fault address is not written to the FAULTADDR  
register.  
This bit is cleared by writing a 1 to it.  
Memory Management Fault Address Register Valid  
Value Description  
7
MMARV  
R/W1C  
0
0
The value in the Memory Management Fault Address  
(MMADDR) register is not a valid fault address.  
1
The MMADDR register is holding a valid fault address.  
If a memory management fault occurs and is escalated to a hard fault  
because of priority, the hard fault handler must clear this bit. This action  
prevents problems if returning to a stacked active memory management  
fault handler whose MMADDR register value has been overwritten.  
This bit is cleared by writing a 1 to it.  
6:1  
0
reserved  
IERR  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W1C  
Instruction Access Violation  
Value Description  
0
1
An instruction access violation has not occurred.  
The processor attempted an instruction fetch from a location  
that does not permit execution.  
This fault occurs on any access to an XN region.  
When this bit is set, the PC value stacked for the exception return points  
to the faulting instruction and the address of the attempted access is  
not written to the MMADDR register.  
This bit is cleared by writing a 1 to it.  
120  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 29: Hard Fault Status (HFAULTSTAT), offset 0xD2C  
Note: This register can only be accessed from privileged mode.  
The HFAULTSTAT register gives information about events that activate the hard fault handler.  
Bits are cleared by writing a 1 to them.  
Hard Fault Status (HFAULTSTAT)  
Base 0xE000.E000  
Offset 0xD2C  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DBG  
FORCED  
reserved  
Type  
Reset  
R/W1C  
0
R/W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
VECT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
RO  
0
Bit/Field  
31  
Name  
DBG  
Type  
Reset  
0
Description  
R/W1C  
Debug Event  
This bit is reserved for Debug use. This bit must be written as a 0,  
otherwise behavior is unpredictable.  
30  
FORCED  
R/W1C  
0
Forced Hard Fault  
Value Description  
0
1
No forced hard fault has occurred.  
A forced hard fault has been generated by escalation of a fault  
with configurable priority that cannot be handled, either because  
of priority or because it is disabled.  
When this bit is set, the hard fault handler must read the other fault  
status registers to find the cause of the fault.  
This bit is cleared by writing a 1 to it.  
29:2  
1
reserved  
VECT  
RO  
0x00  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W1C  
Vector Table Read Fault  
Value Description  
0
1
No bus fault has occurred on a vector table read.  
A bus fault occurred on a vector table read.  
This error is always handled by the hard fault handler.  
When this bit is set, the PC value stacked for the exception return points  
to the instruction that was preempted by the exception.  
This bit is cleared by writing a 1 to it.  
0
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
121  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Cortex-M3 Peripherals  
Register 30: Memory Management Fault Address (MMADDR), offset 0xD34  
Note: This register can only be accessed from privileged mode.  
The MMADDR register contains the address of the location that generated a memory management  
fault. When an unaligned access faults, the address in the MMADDR register is the actual address  
that faulted. Because a single read or write instruction can be split into multiple aligned accesses,  
the fault address can be any address in the range of the requested access size. Bits in the Memory  
Management Fault Status (MFAULTSTAT) register indicate the cause of the fault and whether  
the value in the MMADDR register is valid (see page 116).  
Memory Management Fault Address (MMADDR)  
Base 0xE000.E000  
Offset 0xD34  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
ADDR  
ADDR  
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:0  
Name  
ADDR  
Type  
R/W  
Reset  
-
Description  
Fault Address  
When the MMARV bit of MFAULTSTAT is set, this field holds the address  
of the location that generated the memory management fault.  
122  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 31: Bus Fault Address (FAULTADDR), offset 0xD38  
Note: This register can only be accessed from privileged mode.  
The FAULTADDR register contains the address of the location that generated a bus fault. When  
an unaligned access faults, the address in the FAULTADDR register is the one requested by the  
instruction, even if it is not the address of the fault. Bits in the Bus Fault Status (BFAULTSTAT)  
register indicate the cause of the fault and whether the value in the FAULTADDR register is valid  
(see page 116).  
Bus Fault Address (FAULTADDR)  
Base 0xE000.E000  
Offset 0xD38  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
ADDR  
ADDR  
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:0  
Name  
ADDR  
Type  
R/W  
Reset  
-
Description  
Fault Address  
When the FAULTADDRV bit of BFAULTSTAT is set, this field holds the  
address of the location that generated the bus fault.  
July 24, 2012  
123  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
JTAG Interface  
4
JTAG Interface  
The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and  
Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface  
for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR)  
can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing  
information on the components. The JTAG Port also provides a means of accessing and controlling  
design-for-test features such as I/O pin observation and control, scan testing, and debugging.  
The JTAG port is comprised of five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially  
into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent  
on the current state of the TAP controller. For detailed information on the operation of the JTAG  
port and TAP controller, please refer to the IEEE Standard 1149.1-Test Access Port and  
Boundary-Scan Architecture.  
The Stellaris® JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core.  
This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG  
instructions select the ARM TDO output while Stellaris JTAG instructions select the Stellaris TDO  
outputs. The multiplexer is controlled by the Stellaris JTAG controller, which has comprehensive  
programming for the ARM, Stellaris, and unimplemented JTAG instructions.  
The Stellaris JTAG module has the following features:  
■ IEEE 1149.1-1990 compatible Test Access Port (TAP) controller  
■ Four-bit Instruction Register (IR) chain for storing JTAG instructions  
■ IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST  
■ ARM additional instructions: APACC, DPACC and ABORT  
■ Integrated ARM Serial Wire Debug (SWD)  
See the ARM® Debug Interface V5 Architecture Specification for more information on the ARM  
JTAG controller.  
124  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
4.1  
Block Diagram  
Figure 4-1. JTAG Module Block Diagram  
TRST  
TCK  
TAP Controller  
TMS  
TDI  
Instruction Register (IR)  
BYPASS Data Register  
Boundary Scan Data Register  
IDCODE Data Register  
ABORT Data Register  
DPACC Data Register  
APACC Data Register  
TDO  
Cortex-M3  
Debug  
Port  
4.2  
Signal Description  
Table 4-1 on page 125 and Table 4-2 on page 126 list the external signals of the JTAG/SWD controller  
and describe the function of each. The JTAG/SWD controller signals are alternate functions for  
some GPIO signals, however note that the reset state of the pins is for the JTAG/SWD function.  
The column in the table below titled "Pin Assignment" lists the GPIO pin placement for the JTAG/SWD  
controller signals. The AFSEL bit in the GPIO Alternate Function Select (GPIOAFSEL) register  
(page 222) is set to choose the JTAG/SWD function. For more information on configuring GPIOs,  
see “General-Purpose Input/Outputs (GPIOs)” on page 202.  
Table 4-1. JTAG_SWD_SWO Signals (28SOIC)  
Pin Name  
SWCLK  
SWDIO  
SWO  
Pin Number  
Pin Type  
Buffer Typea Description  
28  
27  
25  
28  
26  
25  
27  
1
I
I/O  
O
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
JTAG/SWD CLK.  
JTAG TMS and SWDIO.  
JTAG TDO and SWO.  
JTAG/SWD CLK.  
TCK  
TDI  
I
JTAG TDI.  
TDO  
O
I/O  
I
JTAG TDO and SWO.  
JTAG TMS and SWDIO.  
JTAG TRST.  
TMS  
TRST  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
July 24, 2012  
125  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
JTAG Interface  
Table 4-2. JTAG_SWD_SWO Signals (48QFP)  
Pin Name  
SWCLK  
SWDIO  
SWO  
Pin Number  
Pin Type  
Buffer Typea Description  
40  
39  
37  
40  
38  
37  
39  
41  
I
I/O  
O
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
JTAG/SWD CLK.  
JTAG TMS and SWDIO.  
JTAG TDO and SWO.  
JTAG/SWD CLK.  
TCK  
TDI  
I
JTAG TDI.  
TDO  
O
I/O  
I
JTAG TDO and SWO.  
JTAG TMS and SWDIO.  
JTAG TRST.  
TMS  
TRST  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
4.3  
Functional Description  
A high-level conceptual drawing of the JTAG module is shown in Figure 4-1 on page 125. The JTAG  
module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel  
update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and  
TMS inputs. The current state of the TAP controller depends on the current value of TRST and the  
sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when  
the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel  
load registers. The current state of the TAP controller also determines whether the Instruction  
Register (IR) chain or one of the Data Register (DR) chains is being accessed.  
The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR)  
chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load  
register determines which DR chain is captured, shifted, or updated during the sequencing of the  
TAP controller.  
Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not  
capture, shift, or update any of the chains. Instructions that are not implemented decode to the  
BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see  
Table 4-4 on page 131 for a list of implemented instructions).  
See “JTAG and Boundary Scan” on page 447 for JTAG timing diagrams.  
4.3.1  
JTAG Interface Pins  
The JTAG interface consists of five standard pins: TRST,TCK, TMS, TDI, and TDO. These pins and  
their associated reset state are given in Table 4-3 on page 126. Detailed information on each pin  
follows.  
Table 4-3. JTAG Port Pins Reset State  
Pin Name  
TRST  
TCK  
Data Direction  
Input  
Internal Pull-Up Internal Pull-Down Drive Strength  
Drive Value  
N/A  
Enabled  
Enabled  
Enabled  
Enabled  
Enabled  
Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
N/A  
N/A  
Input  
N/A  
TMS  
Input  
N/A  
N/A  
TDI  
Input  
N/A  
N/A  
TDO  
Output  
2-mA driver  
High-Z  
126  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
4.3.1.1  
Test Reset Input (TRST)  
The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP  
controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the  
Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters  
the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction,  
IDCODE.  
By default, the internal pull-up resistor on the TRST pin is enabled after reset. Changes to the pull-up  
resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled  
on PB7/TRST; otherwise JTAG communication could be lost.  
4.3.1.2  
Test Clock Input (TCK)  
The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate  
independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers  
that are daisy-chained together can synchronously communicate serial test data between  
components. During normal operation, TCK is driven by a free-running clock with a nominal 50%  
duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK  
is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction  
and Data Registers is not lost.  
By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no  
clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down  
resistors can be turned off to save internal power as long as the TCK pin is constantly being driven  
by an external source.  
4.3.1.3  
Test Mode Select (TMS)  
The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge  
of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered.  
Because the TMS pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the  
value on TMS to change on the falling edge of TCK.  
Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the  
Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG  
Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can  
be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine  
can be seen in its entirety in Figure 4-2 on page 129.  
By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up  
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled  
on PC1/TMS; otherwise JTAG communication could be lost.  
4.3.1.4  
Test Data Input (TDI)  
The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is  
sampled on the rising edge of TCK and, depending on the current TAP state and the current  
instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on  
the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDI to change on the falling  
edge of TCK.  
By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up  
resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled  
on PC2/TDI; otherwise JTAG communication could be lost.  
July 24, 2012  
127  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
JTAG Interface  
4.3.1.5  
Test Data Output (TDO)  
The TDO pin provides an output stream of serial information from the IR chain or the DR chains.  
The value of TDO depends on the current TAP state, the current instruction, and the data in the  
chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin  
is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected  
to the TDI of another controller in a daisy-chain configuration, the IEEE Standard 1149.1 expects  
the value on TDO to change on the falling edge of TCK.  
By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the  
pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and  
pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable  
during certain TAP controller states.  
4.3.2  
JTAG TAP Controller  
The JTAG TAP controller state machine is shown in Figure 4-2 on page 129. The TAP controller  
state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR)  
or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module  
to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed  
information on the function of the TAP controller and the operations that occur in each state, please  
refer to IEEE Standard 1149.1.  
128  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 4-2. Test Access Port State Machine  
Test Logic Reset  
0
1
0
Run Test Idle  
Select DR Scan  
0
Select IR Scan  
1
1
1
0
Capture DR  
0
Capture IR  
1
1
0
Shift DR  
1
Shift IR  
0
1
0
1
Exit 1 DR  
0
Exit 1 IR  
1
0
Pause DR  
1
Pause IR  
0
0
1
Exit 2 DR  
1
Exit 2 IR  
0
0
1
Update DR  
Update IR  
1
0
1
0
4.3.3  
4.3.4  
Shift Registers  
The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift  
register chain samples specific information during the TAP controller’s CAPTURE states and allows  
this information to be shifted out of TDO during the TAP controller’s SHIFT states. While the sampled  
data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register  
on TDI. This new data is stored in the parallel load register during the TAP controller’s UPDATE  
states. Each of the shift registers is discussed in detail in “Register Descriptions” on page 131.  
Operational Considerations  
There are certain operational considerations when using the JTAG module. Because the JTAG pins  
can be programmed to be GPIOs, board configuration and reset conditions on these pins must be  
considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the  
method for switching between these two operational modes is described below.  
July 24, 2012  
129  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
JTAG Interface  
4.3.4.1  
GPIO Functionality  
When the microcontroller is reset with either a POR or RST, the JTAG port pins default to their JTAG  
configurations. The default configuration includes enabling the pull-up resistors (setting GPIOPUR  
to 1 for PB7 and PC[3:0]) and enabling the alternate hardware function (setting GPIOAFSEL to  
1 for PB7 and PC[3:0]) on the JTAG pins.  
It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and  
PC[3:0] in the GPIOAFSEL register. If the user does not require the JTAG port for debugging or  
board-level testing, this provides five more GPIOs for use in the design.  
Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down  
resistors connected to both of them at the same time. If both pins are pulled Low during reset, the  
controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors,  
and apply RST or power-cycle the part.  
It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris  
microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their  
GPIO functionality, the debugger may not have enough time to connect and halt the controller before  
the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided  
with a software routine that restores JTAG functionality based on an external or software trigger.  
4.3.4.2  
Communication with JTAG/SWD  
Because the debug clock and the system clock can be running at different frequencies, care must  
be taken to maintain reliable communication with the JTAG/SWD interface. In the Capture-DR state,  
the result of the previous transaction, if any, is returned, together with a 3-bit ACK response. Software  
should check the ACK response to see if the previous operation has completed before initiating a  
new transaction. Alternatively, if the system clock is at least 8 times faster than the debug clock  
(TCK or SWCLK), the previous operation has enough time to complete and the ACK bits do not have  
to be checked.  
4.3.4.3  
ARM Serial Wire Debug (SWD)  
In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire  
debugger must be able to connect to the Cortex-M3 core without having to perform, or have any  
knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the  
SWD session begins.  
The switching preamble used to enable the SWD interface of the SWJ-DP module starts with the  
TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller  
through the following states: Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR,  
Run Test Idle, Select DR, Select IR, Capture IR, Exit1 IR, Update IR, Run Test Idle, Select DR,  
Select IR, and Test-Logic-Reset states.  
Stepping through the JTAG TAP Instruction Register (IR) load sequences of the TAP state machine  
twice without shifting in a new instruction enables the SWD interface and disables the JTAG interface.  
For more information on this operation and the SWD interface, see the ARM® Debug Interface V5  
Architecture Specification.  
Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG  
TAP controller is not fully compliant to the IEEE Standard 1149.1. This is the only instance where  
the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low  
probability of this sequence occurring during normal operation of the TAP controller, it should not  
affect normal performance of the JTAG interface.  
130  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
4.4  
Initialization and Configuration  
After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for  
JTAG communication. No user-defined initialization or configuration is needed. However, if the user  
application changes these pins to their GPIO function, they must be configured back to their JTAG  
functionality before JTAG communication can be restored. This is done by enabling the five JTAG  
pins (PB7 and PC[3:0]) for their alternate function using the GPIOAFSEL register. In addition to  
enabling the alternate functions, any other changes to the GPIO pad configurations on the five JTAG  
pins (PB7 andPC[3:0]) should be reverted to their default settings.  
4.5  
Register Descriptions  
There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The  
registers within the JTAG controller are all accessed serially through the TAP Controller. The registers  
can be broken down into two main categories: Instruction Registers and Data Registers.  
4.5.1  
Instruction Register (IR)  
The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain connected between the JTAG  
TDI and TDO pins with a parallel load register. When the TAP Controller is placed in the correct  
states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the  
chain and updated, they are interpreted as the current instruction. The decode of the Instruction  
Register bits is shown in Table 4-4 on page 131. A detailed explanation of each instruction, along  
with its associated Data Register, follows.  
Table 4-4. JTAG Instruction Register Commands  
IR[3:0]  
Instruction  
Description  
0000  
EXTEST  
Drives the values preloaded into the Boundary Scan Chain by the  
SAMPLE/PRELOAD instruction onto the pads.  
0001  
0010  
INTEST  
Drives the values preloaded into the Boundary Scan Chain by the  
SAMPLE/PRELOAD instruction into the controller.  
SAMPLE / PRELOAD Captures the current I/O values and shifts the sampled values out of the  
Boundary Scan Chain while new preload data is shifted in.  
1000  
1010  
1011  
1110  
ABORT  
DPACC  
APACC  
IDCODE  
Shifts data into the ARM Debug Port Abort Register.  
Shifts data into and out of the ARM DP Access Register.  
Shifts data into and out of the ARM AC Access Register.  
Loads manufacturing information defined by the IEEE Standard 1149.1  
into the IDCODE chain and shifts it out.  
1111  
BYPASS  
Reserved  
Connects TDI to TDO through a single Shift Register chain.  
All Others  
Defaults to the BYPASS instruction to ensure that TDI is always connected  
to TDO.  
4.5.1.1  
EXTEST Instruction  
The EXTEST instruction is not associated with its own Data Register chain. The EXTEST instruction  
uses the data that has been preloaded into the Boundary Scan Data Register using the  
SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register,  
the preloaded data in the Boundary Scan Data Register associated with the outputs and output  
enables are used to drive the GPIO pads rather than the signals coming from the core. This allows  
tests to be developed that drive known values out of the controller, which can be used to verify  
connectivity. While the EXTEST instruction is present in the Instruction Register, the Boundary Scan  
July 24, 2012  
131  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
JTAG Interface  
Data Register can be accessed to sample and shift out the current data and load new data into the  
Boundary Scan Data Register.  
4.5.1.2  
INTEST Instruction  
The INTEST instruction is not associated with its own Data Register chain. The INTEST instruction  
uses the data that has been preloaded into the Boundary Scan Data Register using the  
SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register,  
the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive  
the signals going into the core rather than the signals coming from the GPIO pads. This allows tests  
to be developed that drive known values into the controller, which can be used for testing. It is  
important to note that although the RST input pin is on the Boundary Scan Data Register chain, it  
is only observable. While the INTEXT instruction is present in the Instruction Register, the Boundary  
Scan Data Register can be accessed to sample and shift out the current data and load new data  
into the Boundary Scan Data Register.  
4.5.1.3  
SAMPLE/PRELOAD Instruction  
The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between  
TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads  
new test data. Each GPIO pad has an associated input, output, and output enable signal. When the  
TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable  
signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while  
the TAP controller is in the Shift DR state and can be used for observation or comparison in various  
tests.  
While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary  
Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI.  
Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the  
parallel load registers when the TAP controller enters the Update DR state. This update of the  
parallel load register preloads data into the Boundary Scan Data Register that is associated with  
each input, output, and output enable. This preloaded data can be used with the EXTEST and  
INTEST instructions to drive data into or out of the controller. Please see “Boundary Scan Data  
Register” on page 134 for more information.  
4.5.1.4  
4.5.1.5  
ABORT Instruction  
The ABORT instruction connects the associated ABORT Data Register chain between TDI and  
TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates  
a DAP abort of a previous request. Please see the “ABORT Data Register” on page 134 for more  
information.  
DPACC Instruction  
The DPACC instruction connects the associated DPACC Data Register chain between TDI and  
TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this register and reading the data output from this  
register allows read and write access to the ARM debug and status registers. Please see “DPACC  
Data Register” on page 134 for more information.  
4.5.1.6  
APACC Instruction  
The APACC instruction connects the associated APACC Data Register chain between TDI and  
TDO. This instruction provides read and write access to the APACC Register of the ARM Debug  
Access Port (DAP). Shifting the proper data into this register and reading the data output from this  
132  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
register allows read and write access to internal components and buses through the Debug Port.  
Please see “APACC Data Register” on page 134 for more information.  
4.5.1.7  
IDCODE Instruction  
The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and  
TDO. This instruction provides information on the manufacturer, part number, and version of the  
ARM core. This information can be used by testing equipment and debuggers to automatically  
configure their input and output data streams. IDCODE is the default instruction that is loaded into  
the JTAG Instruction Register when a Power-On-Reset (POR) is asserted, TRST is asserted, or the  
Test-Logic-Reset state is entered. Please see “IDCODE Data Register” on page 133 for more  
information.  
4.5.1.8  
BYPASS Instruction  
The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and  
TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports.  
The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by  
allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain  
by loading them with the BYPASS instruction. Please see “BYPASS Data Register” on page 133 for  
more information.  
4.5.2  
Data Registers  
The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan,  
APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed  
in the following sections.  
4.5.2.1  
IDCODE Data Register  
The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in  
Figure 4-3 on page 133. The standard requires that every JTAG-compliant device implement either  
the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE  
Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB  
of 0. This allows auto configuration test tools to determine which instruction is the default instruction.  
The major uses of the JTAG port are for manufacturer testing of component assembly, and program  
development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE  
instruction outputs a value of 0x1BA0.0477. This allows the debuggers to automatically configure  
themselves to work correctly with the Cortex-M3 during debug.  
Figure 4-3. IDCODE Register Format  
31  
28 27  
12 11  
1 0  
TDI  
TDO  
Version  
Part Number  
Manufacturer ID  
1
4.5.2.2  
BYPASS Data Register  
The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in  
Figure 4-4 on page 134. The standard requires that every JTAG-compliant device implement either  
the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS  
July 24, 2012  
133  
Texas Instruments-Production Data  
 
 
 
NRND: Not recommended for new designs.  
JTAG Interface  
Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB  
of 1. This allows auto configuration test tools to determine which instruction is the default instruction.  
Figure 4-4. BYPASS Register Format  
0
TDI  
TDO  
0
4.5.2.3  
Boundary Scan Data Register  
The format of the Boundary Scan Data Register is shown in Figure 4-5 on page 134. Each GPIO  
pin, starting with a GPIO pin next to the JTAG port pins, is included in the Boundary Scan Data  
Register. Each GPIO pin has three associated digital signals that are included in the chain. These  
signals are input, output, and output enable, and are arranged in that order as can be seen in the  
figure.  
When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the  
input, output, and output enable from each digital pad are sampled and then shifted out of the chain  
to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR  
state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain  
in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with  
the EXTEST and INTEST instructions. These instructions either force data out of the controller, with  
the EXTEST instruction, or into the controller, with the INTEST instruction.  
Figure 4-5. Boundary Scan Register Format  
O
U
T
O
U
T
O
U
T
O
U
T
TDI  
TDO  
I
N
O
E
I
N
O
E
I
I
N
O
E
I
N
O
E
...  
...  
N
GPIO PB6  
GPIO m  
RST  
GPIO m+1  
GPIO n  
4.5.2.4  
4.5.2.5  
4.5.2.6  
APACC Data Register  
The format for the 35-bit APACC Data Register defined by ARM is described in the ARM® Debug  
Interface V5 Architecture Specification.  
DPACC Data Register  
The format for the 35-bit DPACC Data Register defined by ARM is described in the ARM® Debug  
Interface V5 Architecture Specification.  
ABORT Data Register  
The format for the 35-bit ABORT Data Register defined by ARM is described in the ARM® Debug  
Interface V5 Architecture Specification.  
134  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
5
System Control  
System control determines the overall operation of the device. It provides information about the  
device, controls the clocking to the core and individual peripherals, and handles reset detection and  
reporting.  
5.1  
Signal Description  
Table 5-1 on page 135 and Table 5-2 on page 135 list the external signals of the System Control  
module and describe the function of each. The NMI signal is the alternate function for and functions  
as a GPIO after reset. under commit protection and require a special process to be configured as  
any alternate function or to subsequently return to the GPIO function. The column in the table below  
titled "Pin Assignment" lists the GPIO pin placement for the NMI signal. The AFSEL bit in the GPIO  
Alternate Function Select (GPIOAFSEL) register (page 222) should be set to choose the NMI  
function. For more information on configuring GPIOs, see “General-Purpose Input/Outputs  
(GPIOs)” on page 202. The remaining signals (with the word "fixed" in the Pin Assignment column)  
have a fixed pin assignment and function.  
Table 5-1. System Control & Clocks Signals (28SOIC)  
Pin Name  
Pin Number  
Pin Type  
Buffer Typea Description  
OSC0  
9
I
Analog  
Analog  
TTL  
Main oscillator crystal input or an external clock reference  
input.  
OSC1  
RST  
10  
5
O
I
Main oscillator crystal output. Leave unconnected when using  
a single-ended clock source.  
System reset input.  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
Table 5-2. System Control & Clocks Signals (48QFP)  
Pin Name  
Pin Number  
Pin Type  
Buffer Typea Description  
OSC0  
9
I
Analog  
Analog  
TTL  
Main oscillator crystal input or an external clock reference  
input.  
OSC1  
RST  
10  
5
O
I
Main oscillator crystal output. Leave unconnected when using  
a single-ended clock source.  
System reset input.  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
5.2  
Functional Description  
The System Control module provides the following capabilities:  
■ Device identification (see “Device Identification” on page 135)  
■ Local control, such as reset (see “Reset Control” on page 136), power (see “Power  
Control” on page 140) and clock control (see “Clock Control” on page 140)  
■ System control (Run, Sleep, and Deep-Sleep modes); see “System Control” on page 143  
5.2.1  
Device Identification  
Several read-only registers provide software with information on the microcontroller, such as version,  
part number, SRAM size, flash size, and other features. See the DID0, DID1, and DC0-DC4 registers.  
July 24, 2012  
135  
Texas Instruments-Production Data  
 
 
 
NRND: Not recommended for new designs.  
System Control  
5.2.2  
Reset Control  
This section discusses aspects of hardware functions during reset as well as system software  
requirements following the reset sequence.  
5.2.2.1  
Reset Sources  
The controller has six sources of reset:  
1. External reset input pin (RST) assertion; see “External RST Pin” on page 137.  
2. Power-on reset (POR); see “Power-On Reset (POR)” on page 136.  
3. Internal brown-out (BOR) detector; see “Brown-Out Reset (BOR)” on page 138.  
4. Software-initiated reset (with the software reset registers); see “Software Reset” on page 139.  
5. A watchdog timer reset condition violation; see “Watchdog Timer Reset” on page 139.  
6. Internal low drop-out (LDO) regulator output.  
Table 5-3 provides a summary of results of the various reset operations.  
Table 5-3. Reset Sources  
Reset Source  
Power-On Reset  
RST  
Core Reset?  
JTAG Reset?  
On-Chip Peripherals Reset?  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Pin Config Only  
Brown-Out Reset  
No  
No  
Software System Request  
Reseta  
Software Peripheral Reset  
Watchdog Reset  
LDO Reset  
No  
Yes  
Yes  
No  
No  
No  
Yesb  
Yes  
Yes  
a. By using the SYSRESREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control (APINT) register  
b. Programmable on a module-by-module basis using the Software Reset Control Registers.  
After a reset, the Reset Cause (RESC) register is set with the reset cause. The bits in this register  
are sticky and maintain their state across multiple reset sequences,except when an external reset  
is the cause, and then all the other bits in the RESC register are cleared.  
Note: The main oscillator is used for external resets and power-on resets; the internal oscillator  
is used during the internal process by internal reset and clock verification circuitry.  
5.2.2.2  
Power-On Reset (POR)  
Note: The power-on reset also resets the JTAG controller. An external reset does not.  
The internal Power-On Reset (POR) circuit monitors the power supply voltage (VDD) and generates  
a reset signal to all of the internal logic including JTAG when the power supply ramp reaches a  
threshold value (VTH). The microcontroller must be operating within the specified operating parameters  
when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the microcontroller  
must reach 3.0 V within 10 msec of VDD crossing 2.0 V to guarantee proper operation. For applications  
that require the use of an external reset signal to hold the microcontroller in reset longer than the  
internal POR, the RST input may be used as discussed in “External RST Pin” on page 137.  
136  
July 24, 2012  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
The Power-On Reset sequence is as follows:  
1. The microcontroller waits for internal POR to go inactive.  
2. The internal reset is released and the core loads from memory the initial stack pointer, the initial  
program counter, and the first instruction designated by the program counter, and then begins  
execution.  
The internal POR is only active on the initial power-up of the microcontroller. The Power-On Reset  
timing is shown in Figure 17-6 on page 450.  
5.2.2.3  
External RST Pin  
Note: It is recommended that the trace for the RST signal must be kept as short as possible. Be  
sure to place any components connected to the RST signal as close to the microcontroller  
as possible.  
If the application only uses the internal POR circuit, the RST input must be connected to the power  
supply (VDD) through an optional pull-up resistor (0 to 100K Ω) as shown in Figure 5-1 on page 137.  
Figure 5-1. Basic RST Configuration  
VDD  
Stellaris®  
RPU  
RST  
RPU = 0 to 100 kΩ  
The external reset pin (RST) resets the microcontroller including the core and all the on-chip  
peripherals except the JTAG TAP controller (see “JTAG Interface” on page 124). The external reset  
sequence is as follows:  
1. The external reset pin (RST) is asserted for the duration specified by TMIN and then de-asserted  
(see “Reset” on page 449).  
2. The internal reset is released and the core loads from memory the initial stack pointer, the initial  
program counter, and the first instruction designated by the program counter, and then begins  
execution.  
To improve noise immunity and/or to delay reset at power up, the RST input may be connected to  
an RC network as shown in Figure 5-2 on page 138.  
July 24, 2012  
137  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Figure 5-2. External Circuitry to Extend Power-On Reset  
VDD  
Stellaris®  
RPU  
RST  
C1  
RPU = 1 kΩ to 100 kΩ  
C1 = 1 nF to 10 µF  
If the application requires the use of an external reset switch, Figure 5-3 on page 138 shows the  
proper circuitry to use.  
Figure 5-3. Reset Circuit Controlled by Switch  
VDD  
Stellaris®  
RPU  
RST  
RS  
C1  
Typical RPU = 10 kΩ  
Typical RS = 470 Ω  
C1 = 10 nF  
The RPU and C1 components define the power-on delay.  
The external reset timing is shown in Figure 17-5 on page 449.  
5.2.2.4  
Brown-Out Reset (BOR)  
A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used  
to reset the controller. This is initially disabled and may be enabled by software.  
The system provides a brown-out detection circuit that triggers if the power supply (VDD) drops  
below a brown-out threshold voltage (VBTH). The circuit is provided to guard against improper  
operation of logic and peripherals that operate off the power supply voltage (VDD) and not the LDO  
voltage. If a brown-out condition is detected, the system may generate a controller interrupt or a  
system reset. The BOR circuit has a digital filter that protects against noise-related detection for the  
interrupt condition. This feature may be optionally enabled.  
Brown-out resets are controlled with the Power-On and Brown-Out Reset Control (PBORCTL)  
register. The BORIOR bit in the PBORCTL register must be set for a brown-out condition to trigger  
a reset.  
138  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
The brown-out reset sequence is as follows:  
1. When VDD drops below VBTH, an internal BOR condition is set.  
2. If the BORWT bit in the PBORCTL register is set and BORIOR is not set, the BOR condition is  
resampled, after a delay specified by BORTIM, to determine if the original condition was caused  
by noise. If the BOR condition is not met the second time, then no further action is taken.  
3. If the BOR condition exists, an internal reset is asserted.  
4. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, the first instruction designated by the program counter, and begins  
execution.  
5. The internal BOR condition is reset after 500 µs to prevent another BOR condition from being  
set before software has a chance to investigate the original cause.  
The internal Brown-Out Reset timing is shown in Figure 17-7 on page 450.  
5.2.2.5  
Software Reset  
Software can reset a specific peripheral or generate a reset to the entire system .  
Peripherals can be individually reset by software via three registers that control reset signals to each  
peripheral (see the SRCRn registers). If the bit position corresponding to a peripheral is set and  
subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with  
the encoding of the clock gating control for peripherals and on-chip functions (see “System  
Control” on page 143). Note that all reset signals for all clocks of the specified unit are asserted as  
a result of a software-initiated reset.  
The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3  
Application Interrupt and Reset Control register resets the entire system including the core. The  
software-initiated system reset sequence is as follows:  
1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3  
Application Interrupt and Reset Control register.  
2. An internal reset is asserted.  
3. The internal reset is deasserted and the controller loads from memory the initial stack pointer,  
the initial program counter, and the first instruction designated by the program counter, and  
then begins execution.  
The software-initiated system reset timing is shown in Figure 17-8 on page 450.  
5.2.2.6  
Watchdog Timer Reset  
The watchdog timer module's function is to prevent system hangs. The watchdog timer can be  
configured to generate an interrupt to the controller on its first time-out, and to generate a reset  
signal on its second time-out.  
After the first time-out event, the 32-bit counter is reloaded with the value of the Watchdog Timer  
Load (WDTLOAD) register, and the timer resumes counting down from that value. If the timer counts  
down to its zero state again before the first time-out interrupt is cleared, and the reset signal has  
been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset  
sequence is as follows:  
July 24, 2012  
139  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
System Control  
1. The watchdog timer times out for the second time without being serviced.  
2. An internal reset is asserted.  
3. The internal reset is released and the controller loads from memory the initial stack pointer, the  
initial program counter, the first instruction designated by the program counter, and begins  
execution.  
The watchdog reset timing is shown in Figure 17-9 on page 451.  
5.2.2.7  
Low Drop-Out (LDO)  
A reset can be initiated when the internal low drop-out (LDO) regulator output goes unregulated.  
This is initially disabled and may be enabled by software. LDO is controlled with the LDO Power  
Control (LDOPCTL) register. The LDO reset sequence is as follows:  
1. LDO goes unregulated and the LDOARST bit in the LDOARST register is set.  
2. An internal reset is asserted.  
3. The internal reset is released and the controller fetches and loads the initial stack pointer, the  
initial program counter, the first instruction designated by the program counter, and begins  
execution.  
The LDO reset timing is shown in Figure 17-10 on page 451.  
5.2.3  
Power Control  
The Stellaris® microcontroller provides an integrated LDO regulator that is used to provide power  
to the majority of the controller's internal logic. For power reduction, the LDO regulator provides  
software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range  
of 2.25 V to 2.75 V (inclusive)—or 2.5 V ± 10%. The adjustment is made by changing the value of  
the VADJ field in the LDO Power Control (LDOPCTL) register.  
5.2.4  
Clock Control  
System control determines the control of clocks in this part.  
5.2.4.1  
Fundamental Clock Sources  
There are multiple clock sources for use in the device:  
Internal Oscillator (IOSC). The internal oscillator is an on-chip clock source. It does not require  
the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%.  
Main Oscillator (MOSC). The main oscillator provides a frequency-accurate clock source by  
one of two means: an external single-ended clock source is connected to the OSC0 input pin, or  
an external crystal is connected across the OSC0 input and OSC1 output pins. The crystal value  
allowed depends on whether the main oscillator is used as the clock reference source to the  
PLL. If so, the crystal must be one of the supported frequencies between 3.579545 MHz through  
8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported  
frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC  
through the specified speed of the device. The supported crystals are listed in the XTAL bit field  
in the RCC register (see page 155).  
140  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
The internal system clock (SysClk), is derived from any of the above sources plus two others: the  
output of the main internal PLL, and the internal oscillator divided by four (3 MHz ± 30%). The  
frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).  
Table 5-4 on page 141 shows how the various clock sources can be used in a system.  
Table 5-4. Clock Source Options  
Clock Source  
Drive PLL?  
Used as SysClk?  
BYPASS = 0, OSCSRC = 0x1 Yes  
Internal Oscillator (12 MHz)  
Yes  
BYPASS = 1, OSCSRC = 0x1  
BYPASS = 1, OSCSRC = 0x2  
Internal Oscillator divide by 4 (3 Yes  
MHz)  
BYPASS = 0, OSCSRC = 0x2 Yes  
Main Oscillator  
Yes  
BYPASS = 0, OSCSRC = 0x0 Yes  
BYPASS = 1, OSCSRC = 0x0  
5.2.4.2  
Clock Configuration  
Nearly all of the control for the clocks is provided by the Run-Mode Clock Configuration (RCC)  
register. This register controls the following clock functionality:  
■ Source of clocks in sleep and deep-sleep modes  
■ System clock derived from PLL or other clock source  
■ Enabling/disabling of oscillators and PLL  
■ Clock divisors  
■ Crystal input selection  
Figure 5-4 on page 141 shows the logic for the main clock tree. The peripheral blocks are driven by  
the system clock signal and can be individually enabled/disabled.  
Figure 5-4. Main Clock Tree  
USESYSDIVa  
OSC1  
OSC2  
Main  
Osc  
1-8 MHz  
System Clock  
SYSDIVa  
PLL  
(200 MHz  
output)  
Internal  
Osc  
12 MHz  
÷4  
OSCSRCa  
OENa  
XTALa  
BYPASSa  
PWRDNa  
a. These are bit fields within the Run-Mode Clock Configuration (RCC) register.  
In the RCC register, the SYSDIV field specifies which divisor is used to generate the system clock  
from either the PLL output or the oscillator source (depending on how the BYPASS bit in this register  
is configured). Table 5-5 shows how the SYSDIV encoding affects the system clock frequency,  
depending on whether the PLL is used (BYPASS=0) or another clock source is used (BYPASS=1).  
July 24, 2012  
141  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
System Control  
The divisor is equivalent to the SYSDIV encoding plus 1. For a list of possible clock sources, see  
Table 5-4 on page 141.  
Table 5-5. Possible System Clock Frequencies Using the SYSDIV Field  
SYSDIV  
Divisor Frequency  
Frequency (BYPASS=1)  
StellarisWare Parametera  
(BYPASS=0)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
/1  
/2  
reserved  
Clock source frequency/2  
Clock source frequency/2  
Clock source frequency/3  
Clock source frequency/4  
Clock source frequency/5  
Clock source frequency/6  
Clock source frequency/7  
Clock source frequency/8  
Clock source frequency/9  
Clock source frequency/10  
Clock source frequency/11  
Clock source frequency/12  
Clock source frequency/13  
Clock source frequency/14  
Clock source frequency/15  
Clock source frequency/16  
SYSCTL_SYSDIV_1b  
SYSCTL_SYSDIV_2  
SYSCTL_SYSDIV_3  
SYSCTL_SYSDIV_4  
SYSCTL_SYSDIV_5  
SYSCTL_SYSDIV_6  
SYSCTL_SYSDIV_7  
SYSCTL_SYSDIV_8  
SYSCTL_SYSDIV_9  
SYSCTL_SYSDIV_10  
SYSCTL_SYSDIV_11  
SYSCTL_SYSDIV_12  
SYSCTL_SYSDIV_13  
SYSCTL_SYSDIV_14  
SYSCTL_SYSDIV_15  
SYSCTL_SYSDIV_16  
reserved  
/3  
reserved  
/4  
reserved  
/5  
reserved  
/6  
reserved  
/7  
reserved  
/8  
reserved  
/9  
reserved  
/10  
/11  
/12  
/13  
/14  
/15  
/16  
20 MHz  
18.18 MHz  
16.67 MHz  
15.38 MHz  
14.29 MHz  
13.33 MHz  
12.5 MHz (default)  
a. This parameter is used in functions such as SysCtlClockSet() in the Stellaris Peripheral Driver Library.  
b. SYSCTL_SYSDIV_1 does not set the USESYSDIV bit. As a result, using this parameter without enabling the PLL results  
in the system clock having the same frequency as the clock source.  
5.2.4.3  
Crystal Configuration for the Main Oscillator (MOSC)  
The main oscillator supports the use of a select number of crystals. If the main oscillator is used by  
the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise,  
the range of supported crystals is 1 to 8.192 MHz.  
The XTAL bit in the RCC register (see page 155) describes the available crystal choices and default  
programming values.  
Software configures the RCC register XTAL field with the crystal number. If the PLL is used in the  
design, the XTAL field value is internally translated to the PLL settings.  
5.2.4.4  
Main PLL Frequency Configuration  
The main PLL is disabled by default during power-on reset and is enabled later by software if  
required. Software configures the main PLL input reference clock source, specifies the output divisor  
to set the system clock frequency, and enables the main PLL to drive the output.  
If the main oscillator provides the clock reference to the main PLL, the translation provided by  
hardware and used to program the PLL is available for software in the XTAL to PLL Translation  
(PLLCFG) register (see page 158). The internal translation provides a translation within ± 1% of the  
targeted PLL VCO frequency.  
The Crystal Value field (XTAL) in the Run-Mode Clock Configuration (RCC) register (see page 155)  
describes the available crystal choices and default programming of the PLLCFG register. Any time  
the XTAL field changes, the new settings are translated and the internal PLL settings are updated.  
142  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
5.2.4.5  
5.2.4.6  
PLL Modes  
The PLL has two modes of operation: Normal and Power-Down  
■ Normal: The PLL multiplies the input clock reference and drives the output.  
■ Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.  
The modes are programmed using the RCC register fields (see page 155).  
PLL Operation  
If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks)  
to the new setting. The time between the configuration change and relock is TREADY (see Table  
17-7 on page 447). During the relock time, the affected PLL is not usable as a clock reference.  
PLL is changed by one of the following:  
■ Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.  
■ Change in the PLL from Power-Down to Normal mode.  
A counter is defined to measure the TREADY requirement. The counter is clocked by the main  
oscillator. The range of the main oscillator has been taken into account and the down counter is set  
to 0x1200 (that is, ~600 μs at an 8.192 MHz external oscillator clock). Hardware is provided to keep  
the PLL from being used as a system clock until the TREADY condition is met after one of the two  
changes above. It is the user's responsibility to have a stable clock source (like the main oscillator)  
before the RCC register is switched to use the PLL.  
If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system  
control hardware continues to clock the controller from the oscillator selected by the RCC register  
until the main PLL is stable (TREADY time met), after which it changes to the PLL. Software can use  
many methods to ensure that the system is clocked from the main PLL, including periodically polling  
the PLLLRIS bit in the Raw Interrupt Status (RIS) register, and enabling the PLL Lock interrupt.  
5.2.4.7  
Clock Verification Timers  
There are three identical clock verification circuits that can be enabled though software. The circuit  
checks the faster clock by a slower clock using timers:  
■ The main oscillator checks the PLL.  
■ The main oscillator checks the internal oscillator.  
■ The internal oscillator divided by 64 checks the main oscillator.  
If the verification timer function is enabled and a failure is detected, the main clock tree is immediately  
switched to a working clock and an interrupt is generated to the controller. Software can then  
determine the course of action to take. The actual failure indication and clock switching does not  
clear without a write to the CLKVCLR register, an external reset, or a POR reset. The clock  
verification timers are controlled by the PLLVER , IOSCVER , and MOSCVER bits in the RCC register.  
5.2.5  
System Control  
For power-savings purposes, the RCGCn , SCGCn , and DCGCn registers control the clock gating  
logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep  
July 24, 2012  
143  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
System Control  
mode, respectively. The DC1 , DC2 and DC4 registers act as a write mask for the RCGCn , SCGCn,  
and DCGCn registers.  
There are three levels of operation for the device defined as:  
Run Mode. In Run mode, the controller actively executes code. Run mode provides normal  
operation of the processor and all of the peripherals that are currently enabled by the RCGCn  
registers. The system clock can be any of the available clock sources including the PLL.  
Sleep Mode. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the  
processor and the memory subsystem are not clocked and therefore no longer execute code.  
Sleep mode is entered by the Cortex-M3 core executing a WFI(Wait for Interrupt)  
instruction. Any properly configured interrupt event in the system will bring the processor back  
into Run mode. See “Power Management” on page 76 for more details.  
Peripherals are clocked that are enabled in the SCGCn register when auto-clock gating is enabled  
(see the RCC register) or the RCGCn register when the auto-clock gating is disabled. The system  
clock has the same source and frequency as that during Run mode.  
Deep-Sleep Mode. In Deep-Sleep mode, the clock frequency of the active peripherals may  
change (depending on the Run mode clock configuration) in addition to the processor clock being  
stopped. An interrupt returns the device to Run mode from one of the sleep modes. Deep-Sleep  
mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system  
control register and then executing a WFI instruction. Any properly configured interrupt event in  
the system will bring the processor back into Run mode. See “Power Management” on page 76  
for more details.  
The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are  
clocked that are enabled in the DCGCn register when auto-clock gating is enabled (see the RCC  
register) or the RCGCn register when auto-clock gating is disabled. The system clock source is  
the main oscillator by default or the internal oscillator specified in the DSLPCLKCFG register if  
one is enabled. When the DSLPCLKCFG register is used, the internal oscillator is powered up,  
if necessary, and the main oscillator is powered down. If the PLL is running at the time of the  
WFI instruction, hardware will power the PLL down. When the Deep-Sleep exit event occurs,  
hardware brings the system clock back to the source and frequency it had at the onset of  
Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep  
duration.  
Caution – If the Cortex-M3 Debug Access Port (DAP) has been enabled, and the device wakes from a  
low power sleep or deep-sleep mode, the core may start executing code before all clocks to peripherals  
have been restored to their run mode configuration. The DAP is usually enabled by software tools  
accessing the JTAG or SWD interface when debugging or flash programming. If this condition occurs,  
a Hard Fault is triggered when software accesses a peripheral with an invalid clock.  
A software delay loop can be used at the beginning of the interrupt routine that is used to wake up a  
system from a WFI (Wait For Interrupt) instruction. This stalls the execution of any code that accesses  
a peripheral register that might cause a fault. This loop can be removed for production software as the  
DAP is most likely not enabled during normal execution.  
Because the DAP is disabled by default (power on reset), the user can also power-cycle the device. The  
DAP is not enabled unless it is enabled through the JTAG or SWD interface.  
144  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
5.3  
Initialization and Configuration  
The PLL is configured using direct register writes to the RCC register. The steps required to  
successfully change the PLL-based system clock are:  
1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS  
bit in the RCC register. This configures the system to run off a “raw” clock source and allows  
for the new PLL configuration to be validated before switching the system clock to the PLL.  
2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN and OEN  
bits in RCC. Setting the XTAL field automatically pulls valid PLL configuration data for the  
appropriate crystal, and clearing the PWRDN and OEN bits powers and enables the PLL and its  
output.  
3. Select the desired system divider (SYSDIV) in RCC and set the USESYS bit in RCC. The SYSDIV  
field determines the system frequency for the microcontroller.  
4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.  
5. Enable use of the PLL by clearing the BYPASS bit in RCC.  
Note: If the BYPASS bit is cleared before the PLL locks, it is possible to render the device unusable.  
5.4  
Register Map  
Table 5-6 on page 145 lists the System Control registers, grouped by function. The offset listed is a  
hexadecimal increment to the register's address, relative to the System Control base address of  
0x400F.E000.  
Note: Spaces in the System Control register space that are not used are reserved for future or  
internal use. Software should not modify any reserved memory address.  
Table 5-6. System Control Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x010  
0x014  
0x018  
0x01C  
0x030  
0x034  
0x040  
0x044  
0x048  
DID0  
RO  
RO  
-
Device Identification 0  
Device Identification 1  
Device Capabilities 0  
147  
162  
164  
165  
166  
168  
169  
149  
150  
182  
183  
184  
DID1  
-
DC0  
RO  
0x0007.0003  
0x0000.901F  
0x0103.1011  
0x8300.01C0  
0x0000.0007  
0x0000.7FFD  
0x0000.0000  
0x00000000  
0x00000000  
0x00000000  
DC1  
RO  
Device Capabilities 1  
DC2  
RO  
Device Capabilities 2  
DC3  
RO  
Device Capabilities 3  
DC4  
RO  
Device Capabilities 4  
PBORCTL  
LDOPCTL  
SRCR0  
SRCR1  
SRCR2  
R/W  
R/W  
R/W  
R/W  
R/W  
Power-On and Brown-Out Reset Control  
LDO Power Control  
Software Reset Control 0  
Software Reset Control 1  
Software Reset Control 2  
July 24, 2012  
145  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Table 5-6. System Control Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x050  
0x054  
0x058  
0x05C  
0x060  
0x064  
0x100  
0x104  
0x108  
0x110  
0x114  
0x118  
0x120  
0x124  
0x128  
0x144  
0x150  
0x160  
RIS  
RO  
R/W  
R/W1C  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
-
Raw Interrupt Status  
151  
152  
153  
154  
155  
158  
170  
173  
179  
171  
175  
180  
172  
177  
181  
159  
160  
161  
IMC  
Interrupt Mask Control  
MISC  
Masked Interrupt Status and Clear  
Reset Cause  
RESC  
RCC  
0x0780.3AC0  
-
Run-Mode Clock Configuration  
PLLCFG  
RCGC0  
RCGC1  
RCGC2  
SCGC0  
SCGC1  
SCGC2  
DCGC0  
DCGC1  
DCGC2  
DSLPCLKCFG  
CLKVCLR  
LDOARST  
XTAL to PLL Translation  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x00000040  
0x00000000  
0x00000000  
0x00000040  
0x00000000  
0x00000000  
0x00000040  
0x00000000  
0x00000000  
0x0780.0000  
0x0000.0000  
0x0000.0000  
Run Mode Clock Gating Control Register 0  
Run Mode Clock Gating Control Register 1  
Run Mode Clock Gating Control Register 2  
Sleep Mode Clock Gating Control Register 0  
Sleep Mode Clock Gating Control Register 1  
Sleep Mode Clock Gating Control Register 2  
Deep Sleep Mode Clock Gating Control Register 0  
Deep Sleep Mode Clock Gating Control Register 1  
Deep Sleep Mode Clock Gating Control Register 2  
Deep Sleep Clock Configuration  
Clock Verification Clear  
Allow Unregulated LDO to Reset the Part  
5.5  
Register Descriptions  
All addresses given are relative to the System Control base address of 0x400F.E000.  
146  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 1: Device Identification 0 (DID0), offset 0x000  
This register identifies the version of the microcontroller. Each microcontroller is uniquely identified  
by the combined values of the CLASS field in the DID0 register and the PARTNO field in the DID1  
register.  
Device Identification 0 (DID0)  
Base 0x400F.E000  
Offset 0x000  
Type RO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
VER  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MAJOR  
MINOR  
Type  
Reset  
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
Bit/Field  
31  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
30:28  
VER  
RO  
0x0  
DID0 Version  
This field defines the DID0 register format version. The version number  
is numeric. The value of the VER field is encoded as follows:  
Value Description  
0x0 Initial DID0 register format definition for Stellaris®  
Sandstorm-class devices.  
27:16  
15:8  
reserved  
MAJOR  
RO  
RO  
0x0  
-
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
Major Revision  
This field specifies the major revision number of the device. The major  
revision reflects changes to base layers of the design. The major revision  
number is indicated in the part number as a letter (A for first revision, B  
for second, and so on). This field is encoded as follows:  
Value Description  
0x0 Revision A (initial device)  
0x1 Revision B (first base layer revision)  
0x2 Revision C (second base layer revision)  
and so on.  
July 24, 2012  
147  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Bit/Field  
7:0  
Name  
Type  
RO  
Reset  
-
Description  
MINOR  
Minor Revision  
This field specifies the minor revision number of the device. The minor  
revision reflects changes to the metal layers of the design. The MINOR  
field value is reset when the MAJOR field is changed. This field is numeric  
and is encoded as follows:  
Value Description  
0x0 Initial device, or a major revision update.  
0x1 First metal layer change.  
0x2 Second metal layer change.  
and so on.  
148  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 2: Power-On and Brown-Out Reset Control (PBORCTL), offset 0x030  
This register is responsible for controlling reset conditions after initial power-on reset.  
Power-On and Brown-Out Reset Control (PBORCTL)  
Base 0x400F.E000  
Offset 0x030  
Type R/W, reset 0x0000.7FFD  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
BORTIM  
BORIOR BORWT  
Type  
Reset  
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:2  
BORTIM  
R/W  
0x1FFF  
BOR Time Delay  
This field specifies the number of internal oscillator clocks delayed before  
the BOR output is resampled if the BORWT bit is set.  
The width of this field is derived by the t BOR width of 500 μs and the  
internal oscillator (IOSC) frequency of 12 MHz ± 30%. At +30%, the  
counter value has to exceed 7,800.  
1
0
BORIOR  
BORWT  
R/W  
R/W  
0
1
BOR Interrupt or Reset  
This bit controls how a BOR event is signaled to the controller. If set, a  
reset is signaled. Otherwise, an interrupt is signaled.  
BOR Wait and Check for Noise  
This bit specifies the response to a brown-out signal assertion if BORIOR  
is not set.  
If BORWT is set to 1 and BORIOR is cleared to 0, the controller waits  
BORTIM IOSC periods and resamples the BOR output. If still asserted,  
a BOR interrupt is signalled. If no longer asserted, the initial assertion  
is suppressed (attributable to noise).  
If BORWT is 0, BOR assertions do not resample the output and any  
condition is reported immediately if enabled.  
July 24, 2012  
149  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 3: LDO Power Control (LDOPCTL), offset 0x034  
The VADJ field in this register adjusts the on-chip output voltage (VOUT).  
LDO Power Control (LDOPCTL)  
Base 0x400F.E000  
Offset 0x034  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
VADJ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5:0  
VADJ  
R/W  
0x0  
LDO Output Voltage  
This field sets the on-chip output voltage. The programming values for  
the VADJ field are provided below.  
Value  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
VOUT (V)  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
0x06-0x3F Reserved  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
2.75  
2.70  
2.65  
2.60  
2.55  
150  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 4: Raw Interrupt Status (RIS), offset 0x050  
Central location for system control raw interrupts. These are set and cleared by hardware.  
Raw Interrupt Status (RIS)  
Base 0x400F.E000  
Offset 0x050  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLRIS CLRIS  
IOFRIS MOFRIS LDORIS BORRIS PLLFRIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
5
4
3
2
1
PLLLRIS  
CLRIS  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
PLL Lock Raw Interrupt Status  
This bit is set when the PLL TREADY Timer asserts.  
Current Limit Raw Interrupt Status  
This bit is set if the LDO’s CLE output asserts.  
IOFRIS  
MOFRIS  
LDORIS  
BORRIS  
Internal Oscillator Fault Raw Interrupt Status  
This bit is set if an internal oscillator fault is detected.  
Main Oscillator Fault Raw Interrupt Status  
This bit is set if a main oscillator fault is detected.  
LDO Power Unregulated Raw Interrupt Status  
This bit is set if a LDO voltage is unregulated.  
Brown-Out Reset Raw Interrupt Status  
This bit is the raw interrupt status for any brown-out conditions. If set,  
a brown-out condition is currently active. This is an unregistered signal  
from the brown-out detection circuit. An interrupt is reported if the BORIM  
bit in the IMC register is set and the BORIOR bit in the PBORCTL register  
is cleared.  
0
PLLFRIS  
RO  
0
PLL Fault Raw Interrupt Status  
This bit is set if a PLL fault is detected (stops oscillating).  
July 24, 2012  
151  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 5: Interrupt Mask Control (IMC), offset 0x054  
Central location for system control interrupt masks.  
Interrupt Mask Control (IMC)  
Base 0x400F.E000  
Offset 0x054  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PLLLIM  
CLIM  
IOFIM  
MOFIM  
LDOIM  
BORIM  
PLLFIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
0
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
5
4
3
2
1
0
PLLLIM  
R/W  
0
0
0
0
0
0
0
PLL Lock Interrupt Mask  
This bit specifies whether a PLL Lock interrupt is promoted to a controller  
interrupt. If set, an interrupt is generated if PLLLRIS in RIS is set;  
otherwise, an interrupt is not generated.  
CLIM  
IOFIM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Current Limit Interrupt Mask  
This bit specifies whether a current limit detection is promoted to a  
controller interrupt. If set, an interrupt is generated if CLRIS is set;  
otherwise, an interrupt is not generated.  
Internal Oscillator Fault Interrupt Mask  
This bit specifies whether an internal oscillator fault detection is promoted  
to a controller interrupt. If set, an interrupt is generated if IOFRIS is set;  
otherwise, an interrupt is not generated.  
MOFIM  
LDOIM  
BORIM  
PLLFIM  
Main Oscillator Fault Interrupt Mask  
This bit specifies whether a main oscillator fault detection is promoted  
to a controller interrupt. If set, an interrupt is generated if MOFRIS is set;  
otherwise, an interrupt is not generated.  
LDO Power Unregulated Interrupt Mask  
This bit specifies whether an LDO unregulated power situation is  
promoted to a controller interrupt. If set, an interrupt is generated if  
LDORIS is set; otherwise, an interrupt is not generated.  
Brown-Out Reset Interrupt Mask  
This bit specifies whether a brown-out condition is promoted to a  
controller interrupt. If set, an interrupt is generated if BORRIS is set;  
otherwise, an interrupt is not generated.  
PLL Fault Interrupt Mask  
This bit specifies whether a PLL fault detection is promoted to a controller  
interrupt. If set, an interrupt is generated if PLLFRIS is set; otherwise,  
an interrupt is not generated.  
152  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058  
On a read, this register gives the current masked status value of the corresponding interrupt. All of  
the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS register  
(see page 151).  
Masked Interrupt Status and Clear (MISC)  
Base 0x400F.E000  
Offset 0x058  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
PLLLMIS CLMIS  
IOFMIS MOFMIS LDOMIS BORMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
R/W1C  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
5
4
3
2
1
PLLLMIS  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
PLL Lock Masked Interrupt Status  
This bit is set when the PLL TREADY timer asserts. The interrupt is cleared  
by writing a 1 to this bit.  
CLMIS  
IOFMIS  
MOFMIS  
LDOMIS  
BORMIS  
Current Limit Masked Interrupt Status  
This bit is set if the LDO’s CLE output asserts. The interrupt is cleared  
by writing a 1 to this bit.  
Internal Oscillator Fault Masked Interrupt Status  
This bit is set if an internal oscillator fault is detected. The interrupt is  
cleared by writing a 1 to this bit.  
Main Oscillator Fault Masked Interrupt Status  
This bit is set if a main oscillator fault is detected. The interrupt is cleared  
by writing a 1 to this bit.  
LDO Power Unregulated Masked Interrupt Status  
This bit is set if LDO power is unregulated. The interrupt is cleared by  
writing a 1 to this bit.  
BOR Masked Interrupt Status  
This bit is the masked interrupt status for any brown-out conditions. If  
set, a brown-out condition was detected. An interrupt is reported if the  
BORIM bit in the IMC register is set and the BORIOR bit in the PBORCTL  
register is cleared. The interrupt is cleared by writing a 1 to this bit.  
0
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
153  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 7: Reset Cause (RESC), offset 0x05C  
This field specifies the cause of the reset event to software. The reset value is determined by the  
cause of the reset. When an external reset is the cause (EXT is set), all other reset bits are cleared.  
However, if the reset is due to any other cause, the remaining bits are sticky, allowing software to  
see all causes.  
Reset Cause (RESC)  
Base 0x400F.E000  
Offset 0x05C  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
LDO  
SW  
WDT  
BOR  
POR  
EXT  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
LDO  
R/W  
-
LDO Reset  
When set, indicates the LDO circuit has lost regulation and has  
generated a reset event.  
4
3
2
1
0
SW  
WDT  
BOR  
POR  
EXT  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
Software Reset  
When set, indicates a software reset is the cause of the reset event.  
Watchdog Timer Reset  
When set, indicates a watchdog reset is the cause of the reset event.  
Brown-Out Reset  
When set, indicates a brown-out reset is the cause of the reset event.  
Power-On Reset  
When set, indicates a power-on reset is the cause of the reset event.  
External Reset  
When set, indicates an external reset (RST assertion) is the cause of  
the reset event.  
154  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 8: Run-Mode Clock Configuration (RCC), offset 0x060  
This register is defined to provide source control and frequency speed.  
Run-Mode Clock Configuration (RCC)  
Base 0x400F.E000  
Offset 0x060  
Type R/W, reset 0x0780.3AC0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
USESYSDIV  
reserved  
ACG  
SYSDIV  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PWRDN  
OEN  
BYPASS PLLVER  
XTAL  
OSCSRC  
IOSCVER MOSCVER IOSCDIS MOSCDIS  
Type  
Reset  
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
0
R/W  
1
R/W  
0
R/W  
1
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:28  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
27  
ACG  
R/W  
0
Auto Clock Gating  
This bit specifies whether the system uses the Sleep-Mode Clock  
Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock  
Gating Control (DCGCn) registers if the controller enters a Sleep or  
Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers  
are used to control the clocks distributed to the peripherals when the  
controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating  
Control (RCGCn) registers are used when the controller enters a sleep  
mode.  
The RCGCn registers are always used to control the clocks in Run  
mode.  
This allows peripherals to consume less power when the controller is  
in a sleep mode and the peripheral is unused.  
26:23  
SYSDIV  
R/W  
0xF  
System Clock Divisor  
Specifies which divisor is used to generate the system clock from either  
the PLL output or the oscillator source (depending on how the BYPASS  
bit in this register is configured). See Table 5-5 on page 142 for bit  
encodings.  
The PLL VCO frequency is 200 MHz.  
If the SYSDIV value is less than MINSYSDIV (see page 165), and the  
PLL is being used, then the MINSYSDIV value is used as the divisor.  
If the PLL is not being used, the SYSDIV value can be less than  
MINSYSDIV.  
22  
USESYSDIV  
R/W  
0
Enable System Clock Divider  
Use the system clock divider as the source for the system clock. The  
system clock divider is forced to be used when the PLL is selected as  
the source.  
If the USERCC2 bit in the RCC2 register is set, then the SYSDIV2 field  
in the RCC2 register is used as the system clock divider rather than the  
SYSDIV field in this register.  
July 24, 2012  
155  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Bit/Field  
21:14  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
13  
12  
PWRDN  
OEN  
R/W  
R/W  
1
1
PLL Power Down  
This bit connects to the PLL PWRDN input. The reset value of 1 powers  
down the PLL. See Table 5-7 on page 157 for PLL mode control.  
PLL Output Enable  
This bit specifies whether the PLL output driver is enabled. If cleared,  
the driver transmits the PLL clock to the output. Otherwise, the PLL  
clock does not oscillate outside the PLL module.  
Note:  
Both PWRDN and OEN must be cleared to run the PLL.  
11  
BYPASS  
R/W  
1
PLL Bypass  
Chooses whether the system clock is derived from the PLL output or  
the OSC source. If set, the clock that drives the system is the OSC  
source. Otherwise, the clock that drives the system is the PLL output  
clock divided by the system divider.  
See Table 5-5 on page 142 for programming guidelines.  
10  
PLLVER  
XTAL  
R/W  
R/W  
0
PLL Verification  
This bit controls the PLL verification timer function. If set, the verification  
timer is enabled and an interrupt is generated if the PLL becomes  
inoperative. Otherwise, the verification timer is not enabled.  
9:6  
0xB  
Crystal Value  
This field specifies the crystal value attached to the main oscillator. The  
encoding for this field is provided below.  
Value Crystal Frequency (MHz) Not Crystal Frequency (MHz) Using  
Using the PLL  
the PLL  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
1.000  
reserved  
reserved  
reserved  
reserved  
1.8432  
2.000  
2.4576  
3.579545 MHz  
3.6864 MHz  
4 MHz  
4.096 MHz  
4.9152 MHz  
5 MHz  
5.12 MHz  
6 MHz (reset value)  
6.144 MHz  
7.3728 MHz  
8 MHz  
8.192 MHz  
156  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
5:4  
Name  
Type  
R/W  
Reset  
0x0  
Description  
OSCSRC  
Oscillator Source  
Selects the input source for the OSC. The values are:  
Value Input Source  
0x0 MOSC  
Main oscillator (default)  
0x1 IOSC  
Internal oscillator  
0x2 IOSC/4  
Internal oscillator / 4 (this is necessary if used as input to PLL)  
0x3 reserved  
3
2
IOSCVER  
R/W  
R/W  
0
0
Internal Oscillator Verification Timer  
This bit controls the internal oscillator verification timer function. If set,  
the verification timer is enabled and an interrupt is generated if the timer  
becomes inoperative. Otherwise, the verification timer is not enabled.  
MOSCVER  
Main Oscillator Verification Timer  
This bit controls the main oscillator verification timer function. If set, the  
verification timer is enabled and an interrupt is generated if the timer  
becomes inoperative. Otherwise, the verification timer is not enabled.  
1
0
IOSCDIS  
R/W  
R/W  
0
0
Internal Oscillator Disable  
0: Internal oscillator (IOSC) is enabled.  
1: Internal oscillator is disabled.  
MOSCDIS  
Main Oscillator Disable  
0: Main oscillator is enabled (default).  
1: Main oscillator is disabled .  
Table 5-7. PLL Mode Control  
PWRDN  
OEN  
Mode  
1
0
X
0
Power down  
Normal  
July 24, 2012  
157  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
System Control  
Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064  
This register provides a means of translating external crystal frequencies into the appropriate PLL  
settings. This register is initialized during the reset sequence and updated anytime that the XTAL  
field changes in the Run-Mode Clock Configuration (RCC) register (see page 155).  
The PLL frequency is calculated using the PLLCFG field values, as follows:  
PLLFreq = OSCFreq * (F + 2) / (R + 2)  
XTAL to PLL Translation (PLLCFG)  
Base 0x400F.E000  
Offset 0x064  
Type RO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
F
8
7
6
5
4
3
2
1
0
OD  
R
Type  
Reset  
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:14  
OD  
RO  
-
PLL OD Value  
This field specifies the value supplied to the PLL’s OD input.  
Value Description  
0x0 Divide by 1  
0x1 Divide by 2  
0x2 Divide by 4  
0x3 Reserved  
13:5  
4:0  
F
RO  
RO  
-
-
PLL F Value  
This field specifies the value supplied to the PLL’s F input.  
R
PLL R Value  
This field specifies the value supplied to the PLL’s R input.  
158  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 10: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144  
This register is used to automatically switch from the main oscillator to the internal oscillator when  
entering Deep-Sleep mode. The system clock source is the main oscillator by default. When this  
register is set, the internal oscillator is powered up and the main oscillator is powered down. When  
the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency  
it had at the onset of Deep-Sleep mode.  
Deep Sleep Clock Configuration (DSLPCLKCFG)  
Base 0x400F.E000  
Offset 0x144  
Type R/W, reset 0x0780.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IOSC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IOSC  
R/W  
0
IOSC Clock Source  
When set, forces IOSC to be clock source during Deep-Sleep (overrides  
DSOSCSRC field if set)  
July 24, 2012  
159  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 11: Clock Verification Clear (CLKVCLR), offset 0x150  
This register is provided as a means of clearing the clock verification circuits by software. Since the  
clock verification circuits force a known good clock to control the process, the controller is allowed  
the opportunity to solve the problem and clear the verification fault. This register clears all clock  
verification faults. To clear a clock verification fault, the VERCLR bit must be set and then cleared  
by software. This bit is not self-clearing.  
Clock Verification Clear (CLKVCLR)  
Base 0x400F.E000  
Offset 0x150  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
VERCLR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
VERCLR  
R/W  
0
Clock Verification Clear  
Clears clock verification faults.  
160  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 12: Allow Unregulated LDO to Reset the Part (LDOARST), offset  
0x160  
This register is provided as a means of allowing the LDO to reset the part if the voltage goes  
unregulated. Use this register to choose whether to automatically reset the part if the LDO goes  
unregulated, based on the design tolerance for LDO fluctuation.  
Allow Unregulated LDO to Reset the Part (LDOARST)  
Base 0x400F.E000  
Offset 0x160  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
LDOARST  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
LDOARST  
R/W  
0
LDO Reset  
When set, allows unregulated LDO output to reset the part.  
July 24, 2012  
161  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 13: Device Identification 1 (DID1), offset 0x004  
This register identifies the device family, part number, temperature range, pin count, and package  
type. Each microcontroller is uniquely identified by the combined values of the CLASS field in the  
DID0 register and the PARTNO field in the DID1 register.  
Device Identification 1 (DID1)  
Base 0x400F.E000  
Offset 0x004  
Type RO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
VER  
FAM  
PARTNO  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TEMP  
PKG  
ROHS  
QUAL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
-
RO  
-
RO  
-
RO  
-
RO  
-
RO  
1
RO  
-
RO  
-
Bit/Field  
31:28  
Name  
VER  
Type  
RO  
Reset  
0x0  
Description  
DID1 Version  
This field defines the DID1 register format version. The version number  
is numeric. The value of the VER field is encoded as follows (all other  
encodings are reserved):  
Value Description  
0x0 Initial DID1 register format definition, indicating a Stellaris  
LM3Snnn device.  
27:24  
FAM  
RO  
0x0  
Family  
This field provides the family identification of the device within the  
Luminary Micro product portfolio. The value is encoded as follows (all  
other encodings are reserved):  
Value Description  
0x0 Stellaris family of microcontollers, that is, all devices with  
external part numbers starting with LM3S.  
23:16  
PARTNO  
RO  
0x02  
Part Number  
This field provides the part number of the device within the family. The  
value is encoded as follows (all other encodings are reserved):  
Value Description  
0x02 LM3S102  
15:8  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
162  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
7:5  
Name  
TEMP  
Type  
RO  
Reset  
-
Description  
Temperature Range  
This field specifies the temperature rating of the device. The value is  
encoded as follows (all other encodings are reserved):  
Value Description  
0x0 Commercial temperature range (0°C to 70°C)  
0x1 Industrial temperature range (-40°C to 85°C)  
0x2 Extended temperature range (-40°C to 105°C)  
4:3  
PKG  
RO  
-
Package Type  
This field specifies the package type. The value is encoded as follows  
(all other encodings are reserved):  
Value Description  
0x0 28-pin SOIC package  
0x1 48-pin LQFP package  
0x3 48-pin QFN package  
2
ROHS  
QUAL  
RO  
RO  
1
-
RoHS-Compliance  
This bit specifies whether the device is RoHS-compliant. A 1 indicates  
the part is RoHS-compliant.  
1:0  
Qualification Status  
This field specifies the qualification status of the device. The value is  
encoded as follows (all other encodings are reserved):  
Value Description  
0x0 Engineering Sample (unqualified)  
0x1 Pilot Production (unqualified)  
0x2 Fully Qualified  
July 24, 2012  
163  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
System Control  
Register 14: Device Capabilities 0 (DC0), offset 0x008  
This register is predefined by the part and can be used to verify features.  
Device Capabilities 0 (DC0)  
Base 0x400F.E000  
Offset 0x008  
Type RO, reset 0x0007.0003  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
SRAMSZ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
FLASHSZ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
SRAM Size  
SRAMSZ  
FLASHSZ  
0x0007  
Indicates the size of the on-chip SRAM memory.  
Value Description  
0x0007 2 KB of SRAM  
15:0  
RO  
0x0003  
Flash Size  
Indicates the size of the on-chip flash memory.  
Value Description  
0x0003 8 KB of Flash  
164  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 15: Device Capabilities 1 (DC1), offset 0x010  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of the following family features in the specific device: PWM, ADC,  
Watchdog timer, and debug capabilities. This register also indicates the maximum clock frequency  
and maximum ADC sample rate. The format of this register is consistent with the RCGC0, SCGC0,  
and DCGC0 clock control registers and the SRCR0 software reset control register.  
Device Capabilities 1 (DC1)  
Base 0x400F.E000  
Offset 0x010  
Type RO, reset 0x0000.901F  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
MINSYSDIV  
reserved  
PLL  
WDT  
SWO  
SWD  
JTAG  
Type  
Reset  
RO  
1
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:12  
MINSYSDIV  
RO  
0x9  
System Clock Divider  
Minimum 4-bit divider value for system clock. The reset value is  
hardware-dependent. See the RCC register for how to change the  
system clock divisor using the SYSDIV bit.  
Value Description  
0x9 Specifies a 20-MHz clock with a PLL divider of 10.  
11:5  
4
reserved  
PLL  
RO  
RO  
0
1
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
PLL Present  
When set, indicates that the on-chip Phase Locked Loop (PLL) is  
present.  
3
2
WDT  
SWO  
RO  
RO  
1
1
Watchdog Timer Present  
When set, indicates that a watchdog timer is present.  
SWO Trace Port Present  
When set, indicates that the Serial Wire Output (SWO) trace port is  
present.  
1
0
SWD  
JTAG  
RO  
RO  
1
1
SWD Present  
When set, indicates that the Serial Wire Debugger (SWD) is present.  
JTAG Present  
When set, indicates that the JTAG debugger interface is present.  
July 24, 2012  
165  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 16: Device Capabilities 2 (DC2), offset 0x014  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of the following family features in the specific device: Analog  
Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register  
is consistent with the RCGC1, SCGC1, and DCGC1 clock control registers and the SRCR1 software  
reset control register.  
Device Capabilities 2 (DC2)  
Base 0x400F.E000  
Offset 0x014  
Type RO, reset 0x0103.1011  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
COMP0  
reserved  
RO  
RO  
1
0
Analog Comparator 0 Present  
When set, indicates that analog comparator 0 is present.  
23:18  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
17  
16  
TIMER1  
TIMER0  
reserved  
RO  
RO  
RO  
1
1
0
Timer 1 Present  
When set, indicates that General-Purpose Timer module 1 is present.  
Timer 0 Present  
When set, indicates that General-Purpose Timer module 0 is present.  
15:13  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12  
I2C0  
RO  
RO  
1
0
I2C Module 0 Present  
When set, indicates that I2C module 0 is present.  
11:5  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
4
SSI0  
RO  
RO  
1
0
SSI0 Present  
When set, indicates that SSI module 0 is present.  
3:1  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
166  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
0
Name  
Type  
RO  
Reset  
1
Description  
UART0  
UART0 Present  
When set, indicates that UART module 0 is present.  
July 24, 2012  
167  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
System Control  
Register 17: Device Capabilities 3 (DC3), offset 0x018  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of the following family features in the specific device: Analog  
Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.  
Device Capabilities 3 (DC3)  
Base 0x400F.E000  
Offset 0x018  
Type RO, reset 0x8300.01C0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
32KHZ  
reserved  
CCP1  
CCP0  
reserved  
Type  
Reset  
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
C0O  
C0PLUS C0MINUS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31  
Name  
Type  
RO  
Reset  
1
Description  
32KHz Input Clock Available  
32KHZ  
When set, indicates the 32KHz pin or an even CCP pin is present and  
can be used as a 32-KHz input clock.  
30:26  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
25  
24  
CCP1  
CCP0  
RO  
RO  
RO  
1
1
0
CCP1 Pin Present  
When set, indicates that Capture/Compare/PWM pin 1 is present.  
CCP0 Pin Present  
When set, indicates that Capture/Compare/PWM pin 0 is present.  
23:9  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
8
7
C0O  
RO  
RO  
RO  
RO  
1
1
1
0
C0o Pin Present  
When set, indicates that the analog comparator 0 output pin is present.  
C0PLUS  
C0MINUS  
reserved  
C0+ Pin Present  
When set, indicates that the analog comparator 0 (+) input pin is present.  
6
C0- Pin Present  
When set, indicates that the analog comparator 0 (-) input pin is present.  
5:0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
168  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 18: Device Capabilities 4 (DC4), offset 0x01C  
This register provides a list of features available in the system. The Stellaris family uses this register  
format to indicate the availability of GPIOs in the specific device. The format of this register is  
consistent with the RCGC2, SCGC2, and DCGC2 clock control registers and the SRCR2 software  
reset control register.  
Device Capabilities 4 (DC4)  
Base 0x400F.E000  
Offset 0x01C  
Type RO, reset 0x0000.0007  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
GPIOC  
GPIOB  
GPIOA  
RO  
RO  
RO  
1
1
1
GPIO Port C Present  
When set, indicates that GPIO Port C is present.  
GPIO Port B Present  
When set, indicates that GPIO Port B is present.  
GPIO Port A Present  
When set, indicates that GPIO Port A is present.  
July 24, 2012  
169  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 19: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the  
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Run Mode Clock Gating Control Register 0 (RCGC0)  
Base 0x400F.E000  
Offset 0x100  
Type R/W, reset 0x00000040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
WDT  
R/W  
RO  
0
0
WDT Clock Gating Control  
This bit controls the clock gating for the WDT module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
2:0  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
170  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 20: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset  
0x110  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the  
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Sleep Mode Clock Gating Control Register 0 (SCGC0)  
Base 0x400F.E000  
Offset 0x110  
Type R/W, reset 0x00000040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
WDT  
R/W  
RO  
0
0
WDT Clock Gating Control  
This bit controls the clock gating for the WDT module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
2:0  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
171  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 21: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0),  
offset 0x120  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC0 is the  
clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)  
Base 0x400F.E000  
Offset 0x120  
Type R/W, reset 0x00000040  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
WDT  
R/W  
RO  
0
0
WDT Clock Gating Control  
This bit controls the clock gating for the WDT module. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, a read or write to the unit generates  
a bus fault.  
2:0  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
172  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 22: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the  
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Run Mode Clock Gating Control Register 1 (RCGC1)  
Base 0x400F.E000  
Offset 0x104  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
COMP0  
R/W  
0
Analog Comparator 0 Clock Gating  
This bit controls the clock gating for analog comparator 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
23:18  
17  
reserved  
TIMER1  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Timer 1 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 1.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
16  
TIMER0  
reserved  
R/W  
RO  
0
0
Timer 0 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 0.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
15:13  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
173  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Bit/Field  
12  
Name  
I2C0  
Type  
R/W  
Reset  
0
Description  
I2C0 Clock Gating Control  
This bit controls the clock gating for I2C module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
11:5  
4
reserved  
SSI0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
SSI0 Clock Gating Control  
This bit controls the clock gating for SSI module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
3:1  
0
reserved  
UART0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART0 Clock Gating Control  
This bit controls the clock gating for UART module 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
174  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 23: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset  
0x114  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the  
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Sleep Mode Clock Gating Control Register 1 (SCGC1)  
Base 0x400F.E000  
Offset 0x114  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
COMP0  
R/W  
0
Analog Comparator 0 Clock Gating  
This bit controls the clock gating for analog comparator 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
23:18  
17  
reserved  
TIMER1  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Timer 1 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 1.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
16  
TIMER0  
R/W  
0
Timer 0 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 0.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
July 24, 2012  
175  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Bit/Field  
15:13  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12  
I2C0  
R/W  
0
I2C0 Clock Gating Control  
This bit controls the clock gating for I2C module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
11:5  
4
reserved  
SSI0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
SSI0 Clock Gating Control  
This bit controls the clock gating for SSI module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
3:1  
0
reserved  
UART0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART0 Clock Gating Control  
This bit controls the clock gating for UART module 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
176  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 24: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1),  
offset 0x124  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC1 is the  
clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)  
Base 0x400F.E000  
Offset 0x124  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
COMP0  
R/W  
0
Analog Comparator 0 Clock Gating  
This bit controls the clock gating for analog comparator 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
23:18  
17  
reserved  
TIMER1  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Timer 1 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 1.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
16  
TIMER0  
R/W  
0
Timer 0 Clock Gating Control  
This bit controls the clock gating for General-Purpose Timer module 0.  
If set, the unit receives a clock and functions. Otherwise, the unit is  
unclocked and disabled. If the unit is unclocked, reads or writes to the  
unit will generate a bus fault.  
July 24, 2012  
177  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Bit/Field  
15:13  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12  
I2C0  
R/W  
0
I2C0 Clock Gating Control  
This bit controls the clock gating for I2C module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
11:5  
4
reserved  
SSI0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
SSI0 Clock Gating Control  
This bit controls the clock gating for SSI module 0. If set, the unit receives  
a clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
3:1  
0
reserved  
UART0  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART0 Clock Gating Control  
This bit controls the clock gating for UART module 0. If set, the unit  
receives a clock and functions. Otherwise, the unit is unclocked and  
disabled. If the unit is unclocked, reads or writes to the unit will generate  
a bus fault.  
178  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 25: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the  
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Run Mode Clock Gating Control Register 2 (RCGC2)  
Base 0x400F.E000  
Offset 0x108  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
GPIOC  
R/W  
R/W  
R/W  
0
0
0
Port C Clock Gating Control  
This bit controls the clock gating for Port C. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
GPIOB  
GPIOA  
Port B Clock Gating Control  
This bit controls the clock gating for Port B. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port A Clock Gating Control  
This bit controls the clock gating for Port A. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
July 24, 2012  
179  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 26: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset  
0x118  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the  
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Sleep Mode Clock Gating Control Register 2 (SCGC2)  
Base 0x400F.E000  
Offset 0x118  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
GPIOC  
R/W  
R/W  
R/W  
0
0
0
Port C Clock Gating Control  
This bit controls the clock gating for Port C. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
GPIOB  
GPIOA  
Port B Clock Gating Control  
This bit controls the clock gating for Port B. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port A Clock Gating Control  
This bit controls the clock gating for Port A. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
180  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 27: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2),  
offset 0x128  
This register controls the clock gating logic. Each bit controls a clock enable for a given interface,  
function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and  
disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault.  
The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are  
disabled. It is the responsibility of software to enable the ports necessary for the application. Note  
that these registers may contain more bits than there are interfaces, functions, or units to control.  
This is to assure reasonable code compatibility with other family and future parts. RCGC2 is the  
clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for  
Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register  
specifies that the system uses sleep modes.  
Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)  
Base 0x400F.E000  
Offset 0x128  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
GPIOC  
R/W  
R/W  
R/W  
0
0
0
Port C Clock Gating Control  
This bit controls the clock gating for Port C. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
GPIOB  
GPIOA  
Port B Clock Gating Control  
This bit controls the clock gating for Port B. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
Port A Clock Gating Control  
This bit controls the clock gating for Port A. If set, the unit receives a  
clock and functions. Otherwise, the unit is unclocked and disabled. If  
the unit is unclocked, reads or writes to the unit will generate a bus fault.  
July 24, 2012  
181  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 28: Software Reset Control 0 (SRCR0), offset 0x040  
Writes to this register are masked by the bits in the Device Capabilities 1 (DC1) register.  
Software Reset Control 0 (SRCR0)  
Base 0x400F.E000  
Offset 0x040  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
WDT  
R/W  
RO  
0
0
WDT Reset Control  
Reset control for Watchdog unit.  
2:0  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
182  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 29: Software Reset Control 1 (SRCR1), offset 0x044  
Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register.  
Software Reset Control 1 (SRCR1)  
Base 0x400F.E000  
Offset 0x044  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
COMP0  
reserved  
TIMER1 TIMER0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
I2C0  
reserved  
SSI0  
reserved  
UART0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:25  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
24  
COMP0  
reserved  
R/W  
RO  
0
0
Analog Comp 0 Reset Control  
Reset control for analog comparator 0.  
23:18  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
17  
16  
TIMER1  
TIMER0  
reserved  
R/W  
R/W  
RO  
0
0
0
Timer 1 Reset Control  
Reset control for General-Purpose Timer module 1.  
Timer 0 Reset Control  
Reset control for General-Purpose Timer module 0.  
15:13  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12  
I2C0  
R/W  
RO  
0
0
I2C0 Reset Control  
Reset control for I2C unit 0.  
11:5  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
4
SSI0  
R/W  
RO  
0
0
SSI0 Reset Control  
Reset control for SSI unit 0.  
3:1  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
UART0  
R/W  
0
UART0 Reset Control  
Reset control for UART unit 0.  
July 24, 2012  
183  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
System Control  
Register 30: Software Reset Control 2 (SRCR2), offset 0x048  
Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.  
Software Reset Control 2 (SRCR2)  
Base 0x400F.E000  
Offset 0x048  
Type R/W, reset 0x00000000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPIOC  
GPIOB  
GPIOA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
0
GPIOC  
GPIOB  
GPIOA  
R/W  
R/W  
R/W  
0
0
0
Port C Reset Control  
Reset control for GPIO Port C.  
Port B Reset Control  
Reset control for GPIO Port B.  
Port A Reset Control  
Reset control for GPIO Port A.  
184  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
6
Internal Memory  
The LM3S102 microcontroller comes with 2 KB of bit-banded SRAM and 8 KB of flash memory.  
The flash controller provides a user-friendly interface, making flash programming a simple task.  
Flash protection can be applied to the flash memory on a 2-KB block basis.  
6.1  
Block Diagram  
Figure 6-1 on page 185 illustrates the Flash functions. The dashed boxes in the figure indicate  
registers residing in the System Control module rather than the Flash Control module.  
Figure 6-1. Flash Block Diagram  
Icode Bus  
Flash Control  
Cortex-M3  
FMA  
FMD  
Dcode Bus  
Flash Array  
FMC  
FCRIS  
FCIM  
FCMISC  
Flash Protection  
Bridge  
FMPRE  
FMPPE  
Flash Timing  
USECRL  
SRAM Array  
6.2  
Functional Description  
This section describes the functionality of the SRAM and Flash memories.  
6.2.1  
SRAM Memory  
The internal SRAM of the Stellaris® devices is located at address 0x2000.0000 of the device memory  
map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has  
introduced bit-banding technology in the Cortex-M3 processor. With a bit-band-enabled processor,  
certain regions in the memory map (SRAM and peripheral space) can use address aliases to access  
individual bits in a single, atomic operation.  
The bit-band alias is calculated by using the formula:  
bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)  
For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:  
July 24, 2012  
185  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Internal Memory  
0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C  
With the alias address calculated, an instruction performing a read/write to address 0x2202.000C  
allows direct access to only bit 3 of the byte at address 0x2000.1000.  
For details about bit-banding, see “Bit-Banding” on page 63.  
6.2.2  
Flash Memory  
The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block  
causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be  
programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB  
blocks that can be individually protected. The protection allows blocks to be marked as read-only  
or execute-only, providing different levels of code protection. Read-only blocks cannot be erased  
or programmed, protecting the contents of those blocks from being modified. Execute-only blocks  
cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism,  
protecting the contents of those blocks from being read by either the controller or by a debugger.  
See also “Serial Flash Loader” on page 455 for a preprogrammed flash-resident utility used to  
download code to the flash memory of a device without the use of a debug interface.  
6.2.2.1  
Flash Memory Timing  
The timing for the flash is automatically handled by the flash controller. However, in order to do so,  
it must know the clock rate of the system in order to time its internal signals properly. The number  
of clock cycles per microsecond must be provided to the flash controller for it to accomplish this  
timing. It is software's responsibility to keep the flash controller updated with this information via the  
USec Reload (USECRL) register.  
On reset, the USECRL register is loaded with a value that configures the flash timing so that it works  
with the maximum clock rate of the part. If software changes the system operating frequency, the  
new operating frequency minus 1 (in MHz) must be loaded into USECRL before any flash  
modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value  
of 0x13 (20-1) must be written to the USECRL register.  
6.2.2.2  
Flash Memory Protection  
The user is provided two forms of flash protection per 2-KB flash blocks in two 32-bit wide  
registers.The protection policy for each form is controlled by individual bits (per policy per block) in  
the FMPPEn and FMPREn registers.  
Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed  
(written) or erased. If cleared, the block may not be changed.  
Flash Memory Protection Read Enable (FMPREn): If a bit is set, the corresponding block may  
be executed or read by software or debuggers. If a bit is cleared, the corresponding block may  
only be executed, and contents of the memory block are prohibited from being read as data.  
The policies may be combined as shown in Table 6-1 on page 186.  
Table 6-1. Flash Protection Policy Combinations  
FMPPEn  
FMPREn  
Protection  
0
0
Execute-only protection. The block may only be executed and may not be written or erased.  
This mode is used to protect code.  
186  
July 24, 2012  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 6-1. Flash Protection Policy Combinations (continued)  
FMPPEn  
FMPREn  
Protection  
1
0
The block may be written, erased or executed, but not read. This combination is unlikely to  
be used.  
0
1
1
1
Read-only protection. The block may be read or executed but may not be written or erased.  
This mode is used to lock the block from further modification while allowing any read or  
execute access.  
No protection. The block may be written, erased, executed or read.  
A Flash memory access that attempts to read a read-protected block (FMPREn bit is set) is prohibited  
and generates a bus fault. A Flash memory access that attempts to program or erase a  
program-protected block (FMPPEn bit is set) is prohibited and can optionally generate an interrupt  
(by setting the AMASK bit in the Flash Controller Interrupt Mask (FCIM) register) to alert software  
developers of poorly behaving software during the development and debug phases.  
The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented  
banks. These settings create a policy of open access and programmability. The register bits may  
be changed by clearing the specific register bit. The changes are not permanent until the register  
is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a  
0 and not committed, it may be restored by executing a power-on reset sequence. The changes  
are committed using the Flash Memory Control (FMC) register.  
6.2.2.3  
Interrupts  
The Flash memory controller can generate interrupts when the following conditions are observed:  
■ Programming Interrupt - signals when a program or erase action is complete.  
■ Access Interrupt - signals when a program or erase action has been attempted on a 2-kB block  
of memory that is protected by its corresponding FMPPEn bit.  
The interrupt events that can trigger a controller-level interrupt are defined in the Flash Controller  
Masked Interrupt Status (FCMIS) register (see page 196) by setting the corresponding MASK bits.  
If interrupts are not used, the raw interrupt status is always visible via the Flash Controller Raw  
Interrupt Status (FCRIS) register (see page 195).  
Interrupts are always cleared (for both the FCMIS and FCRIS registers) by writing a 1 to the  
corresponding bit in the Flash Controller Masked Interrupt Status and Clear (FCMISC) register  
(see page 197).  
6.2.2.4  
Flash Memory Protection by Disabling Debug Access  
Flash memory may also be protected by permanently disabling access to the Debug Access Port  
(DAP) through the JTAG and SWD interfaces. Access is disabled by clearing the DBG field of the  
FMPRE register.  
If the DBG field in the Flash Memory Protection Read Enable (FMPRE) register is programmed  
to 0x2, access to the DAP is enabled through the JTAG and SWD interfaces. If clear, access to the  
DAP is disabled. The DBG field programming becomes permanent and irreversible after a commit  
sequence is performed.  
In the initial state provided from the factory, access is enabled in order to facilitate code development  
and debug. Access to the DAP may be disabled at the end of the manufacturing flow, once all tests  
have passed and software has been loaded. This change does not take effect until the next power-up  
July 24, 2012  
187  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Internal Memory  
of the device. Note that it is recommended that disabling access to the DAP be combined with a  
mechanism for providing end-user installable updates (if necessary) such as the Stellaris boot loader.  
Important: Once the DBG field is cleared and committed, this field can never be restored to the  
factory-programmed value—which means the JTAG/SWD interface to the debug module  
can never be re-enabled. This sequence does NOT disable the JTAG controller, it only  
disables the access of the DAP through the JTAG or SWD interfaces. The JTAG interface  
remains functional and access to the Test Access Port remains enabled, allowing the  
user to execute the IEEE JTAG-defined instructions (for example, to perform boundary  
scan operations).  
When using the FMPRE bits to protect Flash memory from being read as data (to mark sets of 2-KB  
blocks of Flash memory as execute-only), these one-time-programmable bits should be written at  
the same time that the debug disable bits are programmed. Mechanisms to execute the one-time  
code sequence to disable all debug access include:  
■ Selecting the debug disable option in the Stellaris boot loader  
■ Loading the debug disable sequence into SRAM and running it once from SRAM after  
programming the final end application code into Flash memory  
6.3  
Flash Memory Initialization and Configuration  
This section shows examples for using the flash controller to perform various operations on the  
contents of the flash memory.  
6.3.1  
Changing Flash Protection Bits  
As discussed in “Flash Memory Protection” on page 186, changes to the protection bits must be  
committed before they take effect. The sequence below is used change and commit a block protection  
bit in the FMPRE or FMPPE registers. The sequence to change and commit a bit in software is as  
follows:  
1. The Flash Memory Protection Read Enable (FMPRE) and Flash Memory Protection Program  
Enable (FMPPE) registers are written, changing the intended bit(s). The action of these changes  
can be tested by software while in this state.  
2. The Flash Memory Address (FMA) register (see page 191) bit 0 is set to 1 if the FMPPE register  
is to be committed; otherwise, a 0 commits the FMPRE register.  
3. The Flash Memory Control (FMC) register (see page 193) is written with the COMT bit set. This  
initiates a write sequence and commits the changes.  
There is a special sequence to change and commit the DBG bits in the Flash Memory Protection  
Read Enable (FMPRE) register. This sequence also sets and commits any changes from 1 to 0 in  
the block protection bits (for execute-only) in the FMPRE register.  
1. The Flash Memory Protection Read Enable (FMPRE) register is written, changing the intended  
bit(s). The action of these changes can be tested by software while in this state.  
2. The Flash Memory Address (FMA) register (see page 191) is written with a value of 0x900.  
3. The Flash Memory Control (FMC) register (see page 193) is written with the COMT bit set. This  
initiates a write sequence and commits the changes.  
188  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Below is an example code sequence to permanently disable the JTAG and SWD interface to the  
debug module using DriverLib:  
#include "hw_types.h"  
#include "hw_flash.h"  
void  
permanently_disable_jtag_swd(void)  
{
//  
// Clear the DBG field of the FMPRE register. Note that the value  
// used in this instance does not affect the state of the BlockN  
// bits, but were the value different, all bits in the FMPRE are  
// affected by this function!  
//  
HWREG(FLASH_FMPRE) &= 0x3fffffff;  
//  
// The following sequence activates the one-time  
// programming of the FMPRE register.  
//  
HWREG(FLASH_FMA) = 0x900;  
HWREG(FLASH_FMC) = (FLASH_FMC_WRKEY | FLASH_FMC_COMT);  
//  
// Wait until the operation is complete.  
//  
while (HWREG(FLASH_FMC) & FLASH_FMC_COMT)  
{
}
}
6.3.2  
Flash Programming  
The Stellaris devices provide a user-friendly interface for flash programming. All erase/program  
operations are handled via three registers: FMA, FMD, and FMC.  
During a Flash memory operation (write, page erase, or mass erase) access to the Flash memory  
is inhibited. As a result, instruction and literal fetches are held off until the Flash memory operation  
is complete. If instruction execution is required during a Flash memory operation, the code that is  
executing must be placed in SRAM and executed from there while the flash operation is in progress.  
6.3.2.1  
To program a 32-bit word  
1. Write source data to the FMD register.  
2. Write the target address to the FMA register.  
3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.  
4. Poll the FMC register until the WRITE bit is cleared.  
To perform an erase of a 1-KB page  
6.3.2.2  
1. Write the page address to the FMA register.  
2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.  
July 24, 2012  
189  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Internal Memory  
3. Poll the FMC register until the ERASE bit is cleared.  
6.3.2.3  
To perform a mass erase of the flash  
1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the FMC register.  
2. Poll the FMC register until the MERASE bit is cleared.  
6.4  
Register Map  
Table 6-2 on page 190 lists the Flash memory and control registers. The offset listed is a hexadecimal  
increment to the register's address. The FMA, FMD, FMC, FCRIS, FCIM, and FCMISC register  
offsets are relative to the Flash memory control base address of 0x400F.D000. The Flash memory  
protection register offsets are relative to the System Control base address of 0x400F.E000.  
Table 6-2. Flash Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
Flash Memory Control Registers (Flash Control Offset)  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
FMA  
R/W  
R/W  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
Flash Memory Address  
191  
192  
193  
195  
196  
197  
FMD  
Flash Memory Data  
FMC  
R/W  
Flash Memory Control  
FCRIS  
FCIM  
FCMISC  
RO  
Flash Controller Raw Interrupt Status  
Flash Controller Interrupt Mask  
Flash Controller Masked Interrupt Status and Clear  
R/W  
R/W1C  
Flash Memory Protection Registers (System Control Offset)  
0x130  
0x134  
0x140  
FMPRE  
FMPPE  
USECRL  
R/W  
R/W  
R/W  
0x8000.000F  
0x0000.000F  
0x13  
Flash Memory Protection Read Enable  
Flash Memory Protection Program Enable  
USec Reload  
200  
201  
199  
6.5  
Flash Register Descriptions (Flash Control Offset)  
This section lists and describes the Flash Memory registers, in numerical order by address offset.  
Registers in this section are relative to the Flash control base address of 0x400F.D000.  
190  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 1: Flash Memory Address (FMA), offset 0x000  
During a write operation, this register contains a 4-byte-aligned address and specifies where the  
data is written. During erase operations, this register contains a 1 KB-aligned address and specifies  
which page is erased. Note that the alignment requirements must be met by software or the results  
of the operation are unpredictable.  
Flash Memory Address (FMA)  
Base 0x400F.D000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OFFSET  
Type  
Reset  
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:13  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
12:0  
OFFSET  
R/W  
0x0  
Address Offset  
Address offset in flash where operation is performed.  
July 24, 2012  
191  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Internal Memory  
Register 2: Flash Memory Data (FMD), offset 0x004  
This register contains the data to be written during the programming cycle or read during the read  
cycle. Note that the contents of this register are undefined for a read access of an execute-only  
block. This register is not used during the erase cycles.  
Flash Memory Data (FMD)  
Base 0x400F.D000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DATA  
DATA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
DATA  
Type  
R/W  
Reset  
0x0  
Description  
Data Value  
Data value for write operation.  
192  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 3: Flash Memory Control (FMC), offset 0x008  
When this register is written, the flash controller initiates the appropriate access cycle for the location  
specified by the Flash Memory Address (FMA) register (see page 191). If the access is a write  
access, the data contained in the Flash Memory Data (FMD) register (see page 192) is written.  
This is the final register written and initiates the memory operation. There are four control bits in the  
lower byte of this register that, when set, initiate the memory operation. The most used of these  
register bits are the ERASE and WRITE bits.  
It is a programming error to write multiple control bits and the results of such an operation are  
unpredictable.  
Flash Memory Control (FMC)  
Base 0x400F.D000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WRKEY  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
COMT MERASE ERASE  
WRITE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
WRKEY  
Type  
WO  
Reset  
0x0  
Description  
Flash Write Key  
This field contains a write key, which is used to minimize the incidence  
of accidental flash writes. The value 0xA442 must be written into this  
field for a write to occur. Writes to the FMC register without this WRKEY  
value are ignored. A read of this field returns the value 0.  
15:4  
3
reserved  
COMT  
RO  
0x0  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Commit Register Value  
Commit (write) of register value to nonvolatile storage. A write of 0 has  
no effect on the state of this bit.  
If read, the state of the previous commit access is provided. If the  
previous commit access is complete, a 0 is returned; otherwise, if the  
commit access is not complete, a 1 is returned.  
This can take up to 50 μs.  
2
MERASE  
R/W  
0
Mass Erase Flash Memory  
If this bit is set, the flash main memory of the device is all erased. A  
write of 0 has no effect on the state of this bit.  
If read, the state of the previous mass erase access is provided. If the  
previous mass erase access is complete, a 0 is returned; otherwise, if  
the previous mass erase access is not complete, a 1 is returned.  
This can take up to 250 ms.  
July 24, 2012  
193  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Internal Memory  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
ERASE  
Erase a Page of Flash Memory  
If this bit is set, the page of flash main memory as specified by the  
contents of FMA is erased. A write of 0 has no effect on the state of this  
bit.  
If read, the state of the previous erase access is provided. If the previous  
erase access is complete, a 0 is returned; otherwise, if the previous  
erase access is not complete, a 1 is returned.  
This can take up to 25 ms.  
0
WRITE  
R/W  
0
Write a Word into Flash Memory  
If this bit is set, the data stored in FMD is written into the location as  
specified by the contents of FMA. A write of 0 has no effect on the state  
of this bit.  
If read, the state of the previous write update is provided. If the previous  
write access is complete, a 0 is returned; otherwise, if the write access  
is not complete, a 1 is returned.  
This can take up to 50 µs.  
194  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C  
This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled  
if the corresponding FCIM register bit is set.  
Flash Controller Raw Interrupt Status (FCRIS)  
Base 0x400F.D000  
Offset 0x00C  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PRIS  
ARIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
PRIS  
RO  
0
Programming Raw Interrupt Status  
This bit provides status on programming cycles which are write or erase  
actions generated through the FMC register bits (see page 193).  
Value Description  
1
0
The programming cycle has completed.  
The programming cycle has not completed.  
This status is sent to the interrupt controller when the PMASK bit in the  
FCIM register is set.  
This bit is cleared by writing a 1 to the PMISC bit in the FCMISC register.  
0
ARIS  
RO  
0
Access Raw Interrupt Status  
Value Description  
1
A program or erase action was attempted on a block of Flash  
memory that contradicts the protection policy for that block as  
set in the FMPPEn registers.  
0
No access has tried to improperly program or erase the Flash  
memory.  
This status is sent to the interrupt controller when the AMASK bit in the  
FCIM register is set.  
This bit is cleared by writing a 1 to the AMISC bit in the FCMISC register.  
July 24, 2012  
195  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Internal Memory  
Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010  
This register controls whether the flash controller generates interrupts to the controller.  
Flash Controller Interrupt Mask (FCIM)  
Base 0x400F.D000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PMASK AMASK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
PMASK  
R/W  
0
Programming Interrupt Mask  
This bit controls the reporting of the programming raw interrupt status  
to the interrupt controller.  
Value Description  
1
An interrupt is sent to the interrupt controller when the PRIS bit  
is set.  
0
The PRIS interrupt is suppressed and not sent to the interrupt  
controller.  
0
AMASK  
R/W  
0
Access Interrupt Mask  
This bit controls the reporting of the access raw interrupt status to the  
interrupt controller.  
Value Description  
1
An interrupt is sent to the interrupt controller when the ARIS bit  
is set.  
0
The ARIS interrupt is suppressed and not sent to the interrupt  
controller.  
196  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC),  
offset 0x014  
This register provides two functions. First, it reports the cause of an interrupt by indicating which  
interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the  
interrupt reporting.  
Flash Controller Masked Interrupt Status and Clear (FCMISC)  
Base 0x400F.D000  
Offset 0x014  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PMISC  
AMISC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
R/W1C  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
PMISC  
R/W1C  
0
Programming Masked Interrupt Status and Clear  
Value Description  
1
When read, a 1 indicates that an unmasked interrupt was  
signaled because a programming cycle completed.  
Writing a 1 to this bit clears PMISC and also the PRIS bit in the  
FCRIS register (see page 195).  
0
When read, a 0 indicates that a programming cycle complete  
interrupt has not occurred.  
A write of 0 has no effect on the state of this bit.  
0
AMISC  
R/W1C  
0
Access Masked Interrupt Status and Clear  
Value Description  
1
When read, a 1 indicates that an unmasked interrupt was  
signaled because a program or erase action was attempted on  
a block of Flash memory that contradicts the protection policy  
for that block as set in the FMPPEn registers.  
Writing a 1 to this bit clears AMISC and also the ARIS bit in the  
FCRIS register (see page 195).  
0
When read, a 0 indicates that no improper accesses have  
occurred.  
A write of 0 has no effect on the state of this bit.  
July 24, 2012  
197  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Internal Memory  
6.6  
Flash Register Descriptions (System Control Offset)  
The remainder of this section lists and describes the Flash Memory registers, in numerical order by  
address offset. Registers in this section are relative to the System Control base address of  
0x400F.E000.  
198  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 7: USec Reload (USECRL), offset 0x140  
Note: Offset is relative to System Control base address of 0x400F.E000  
This register is provided as a means of creating a 1-μs tick divider reload value for the flash controller.  
The internal flash has specific minimum and maximum requirements on the length of time the high  
voltage write pulse can be applied. It is required that this register contain the operating frequency  
(in MHz -1) whenever the flash is being erased or programmed. The user is required to change this  
value if the clocking conditions are changed for a flash erase/program operation.  
USec Reload (USECRL)  
Base 0x400F.E000  
Offset 0x140  
Type R/W, reset 0x13  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
USEC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x0  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
USEC  
R/W  
0x13  
Microsecond Reload Value  
MHz -1 of the controller clock when the flash is being erased or  
programmed.  
If the maximum system frequency is being used, USEC should be set to  
0x13 (19 MHz) whenever the flash is being erased or programmed.  
July 24, 2012  
199  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Internal Memory  
Register 8: Flash Memory Protection Read Enable (FMPRE), offset 0x130  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the read-only protection bits for each 2-KB flash block (see the FMPPE registers  
for the execute-only protection bits). This register is loaded during the power-on reset sequence.  
The factory settingsare a value of 1 for all implemented banks. This implements a policy of open  
access and programmability. The register bits may be changed by writing the specific register bit.  
However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may  
NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at  
which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it  
may be restored by executing a power-on reset sequence. For additional information, see the “Flash  
Memory Protection” section.  
Flash Memory Protection Read Enable (FMPRE)  
Base 0x400F.E000  
Offset 0x130  
Type R/W, reset 0x8000.000F  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
DBG  
READ_ENABLE  
Type  
Reset  
R/W  
1
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
READ_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:30  
Name  
DBG  
Type  
R/W  
Reset  
0x2  
Description  
User Controlled Debug Enable  
Each bit position maps 2 Kbytes of Flash to be read-enabled.  
Value Description  
0x2 Debug access allowed  
29:0  
READ_ENABLE  
R/W  
0x0000000F Flash Read Enable  
Each bit position maps 2 Kbytes of Flash to be read-enabled.  
Value  
Description  
0x0000000F Enables 8 KB of flash.  
200  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 9: Flash Memory Protection Program Enable (FMPPE), offset 0x134  
Note: Offset is relative to System Control base address of 0x400FE000.  
This register stores the execute-only protection bits for each 2-KB flash block (see the FMPRE  
registers for the read-only protection bits). This register is loaded during the power-on reset sequence.  
The factory settings are a value of 1 for all implemented banks. This implements a policy of open  
access and programmability. The register bits may be changed by writing the specific register bit.  
However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may  
NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at  
which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it  
may be restored by executing a power-on reset sequence. For additional information, see the “Flash  
Memory Protection” section.  
Flash Memory Protection Program Enable (FMPPE)  
Base 0x400F.E000  
Offset 0x134  
Type R/W, reset 0x0000.000F  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
PROG_ENABLE  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:0  
Name  
PROG_ENABLE  
Type  
R/W  
Reset  
Description  
0x0000000F Flash Programming Enable  
Each bit position maps 2 Kbytes of Flash to be write-enabled.  
Value  
Description  
0x0000000F Enables 8 KB of flash.  
July 24, 2012  
201  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
7
General-Purpose Input/Outputs (GPIOs)  
The GPIO module is composed of three physical GPIO blocks, each corresponding to an individual  
GPIO port (Port A, Port B, Port C). The GPIO module supports 0-18 programmable input/output  
pins, depending on the peripherals being used.  
The GPIO module has the following features:  
■ 0-18 GPIOs, depending on configuration  
■ 5-V-tolerant in input configuration  
■ Fast toggle capable of a change every two clock cycles  
■ Programmable control for GPIO interrupts  
Interrupt generation masking  
Edge-triggered on rising, falling, or both  
Level-sensitive on High or Low values  
■ Bit masking in both read and write operations through address lines  
■ Pins configured as digital inputs are Schmitt-triggered.  
■ Programmable control for GPIO pad configuration  
Weak pull-up or pull-down resistors  
2-mA, 4-mA, and 8-mA pad drive for digital communication  
Slew rate control for the 8-mA drive  
Open drain enables  
Digital input enables  
202  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
7.1  
Block Diagram  
Figure 7-1. GPIO Module Block Diagram  
U0Rx  
U0Tx  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
UART0  
SSI  
SSIClk  
SSIFss  
SSIRx  
SSITx  
CCP1  
CCP0  
Timer 0  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
32KHz  
Timer 1  
I2CSCL  
I2CSDA  
I2C  
C0-  
Analog  
Comparator  
C0o  
C0+  
TCK/SWCLK  
TMS/SWDIO  
TRST  
PC0  
PC1  
PC2  
PC3  
JTAG  
TDI  
TDO/SWO  
7.2  
Signal Description  
GPIO signals have alternate hardware functions. Table 7-4 on page 205 and Table 7-5 on page 205  
list the GPIO pins and their digital alternate functions. Other analog signals are 5-V tolerant and are  
connected directly to their circuitry (C0-, C0+). These signals are configured by clearing the DEN  
bit in the GPIO Digital Enable (GPIODEN) register. The digital alternate hardware functions are  
enabled by setting the appropriate bit in the GPIO Alternate Function Select (GPIOAFSEL) and  
GPIODEN registers and configuring the PMCx bit field in the GPIO Port Control (GPIOPCTL)  
register to the numeric enoding shown in the table below. Note that each pin must be programmed  
individually; no type of grouping is implied by the columns in the table.  
Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0,  
GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the  
July 24, 2012  
203  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting  
RST puts the pins back to their default state.  
Table 7-1. GPIO Pins With Non-Zero Reset Values  
GPIO Pins  
PA[1:0]  
Default State  
UART0  
GPIOAFSEL GPIODEN GPIOPDR GPIOPUR GPIOPCTL  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
0x1  
0x1  
0x1  
0x3  
PA[5:2]  
SSI0  
PB[3:2]  
PC[3:0]  
I2C0  
JTAG/SWD  
Table 7-2. GPIO Pins and Alternate Functions (28SOIC)  
IO  
Pin Number  
Multiplexed Function  
U0Rx  
Multiplexed Function  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
11  
12  
13  
14  
15  
16  
19  
20  
23  
24  
4
U0Tx  
SSIClk  
SSIFss  
SSIRx  
SSITx  
CCP0  
32KHz  
I2CSCL  
I2CSDA  
C0-  
3
C0o  
2
C0+  
CCP1  
1
TRST  
28  
27  
26  
25  
TCK  
SWCLK  
SWDIO  
TMS  
TDI  
TDO  
SWO  
Table 7-3. GPIO Pins and Alternate Functions (48QFP)  
IO  
Pin Number  
Multiplexed Function  
U0Rx  
Multiplexed Function  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
17  
18  
19  
20  
21  
22  
29  
30  
33  
34  
U0Tx  
SSIClk  
SSIFss  
SSIRx  
SSITx  
CCP0  
32KHz  
I2CSCL  
I2CSDA  
204  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 7-3. GPIO Pins and Alternate Functions (48QFP) (continued)  
IO  
Pin Number  
Multiplexed Function  
Multiplexed Function  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
44  
43  
42  
41  
40  
39  
38  
37  
C0-  
C0o  
C0+  
TRST  
TCK  
TMS  
TDI  
TDO  
CCP1  
SWCLK  
SWDIO  
SWO  
Table 7-4. GPIO Signals (28SOIC)  
Pin Name  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
Pin Number  
Pin Type  
I/O  
Buffer Typea Description  
11  
12  
13  
14  
15  
16  
19  
20  
23  
24  
4
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port A bit 0.  
GPIO port A bit 1.  
GPIO port A bit 2.  
GPIO port A bit 3.  
GPIO port A bit 4.  
GPIO port A bit 5.  
GPIO port B bit 0.  
GPIO port B bit 1.  
GPIO port B bit 2.  
GPIO port B bit 3.  
GPIO port B bit 4.  
GPIO port B bit 5.  
GPIO port B bit 6.  
GPIO port B bit 7.  
GPIO port C bit 0.  
GPIO port C bit 1.  
GPIO port C bit 2.  
GPIO port C bit 3.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
3
I/O  
2
I/O  
1
I/O  
28  
27  
26  
25  
I/O  
I/O  
I/O  
I/O  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
Table 7-5. GPIO Signals (48QFP)  
Pin Name  
PA0  
Pin Number  
Pin Type  
I/O  
Buffer Typea Description  
17  
18  
19  
20  
21  
22  
29  
30  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port A bit 0.  
GPIO port A bit 1.  
GPIO port A bit 2.  
GPIO port A bit 3.  
GPIO port A bit 4.  
GPIO port A bit 5.  
GPIO port B bit 0.  
GPIO port B bit 1.  
PA1  
I/O  
PA2  
I/O  
PA3  
I/O  
PA4  
I/O  
PA5  
I/O  
PB0  
I/O  
PB1  
I/O  
July 24, 2012  
205  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Table 7-5. GPIO Signals (48QFP) (continued)  
Pin Name  
PB2  
Pin Number  
Pin Type  
I/O  
Buffer Typea Description  
33  
34  
44  
43  
42  
41  
40  
39  
38  
37  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port B bit 2.  
PB3  
I/O  
GPIO port B bit 3.  
GPIO port B bit 4.  
GPIO port B bit 5.  
GPIO port B bit 6.  
GPIO port B bit 7.  
GPIO port C bit 0.  
GPIO port C bit 1.  
GPIO port C bit 2.  
GPIO port C bit 3.  
PB4  
I/O  
PB5  
I/O  
PB6  
I/O  
PB7  
I/O  
PC0  
I/O  
PC1  
I/O  
PC2  
I/O  
PC3  
I/O  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
7.3  
Functional Description  
Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception  
of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG  
functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset  
(RST) puts both groups of pins back to their default state.  
While debugging systems where PB7 is being used as a GPIO, care must be taken to  
ensure that a Low value is not applied to the pin when the part is reset. Because PB7  
reverts to the TRST function after reset, a Low value on the pin causes the JTAG  
controller to be reset, resulting in a loss of JTAG communication.  
Each GPIO port is a separate hardware instantiation of the same physical block (see Figure  
7-2 on page 207). The LM3S102 microcontroller contains three ports and thus three of these physical  
GPIO blocks.  
206  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 7-2. GPIO Port Block Diagram  
Mode  
Control  
GPIOAFSEL  
Alternate Input  
Pad Input  
Alternate Output  
Alternate Output Enable  
Digital  
I/O Pad  
Pad Output  
Package I/O Pin  
GPIO Input  
Data  
Control  
GPIO Output  
GPIODATA  
GPIODIR  
Pad Output Enable  
GPIO Output Enable  
Interrupt  
Control  
Pad  
Control  
GPIODR2R  
GPIODR4R  
GPIODR8R  
GPIOSLR  
GPIOPUR  
GPIOPDR  
GPIOODR  
GPIODEN  
GPIOIS  
Interrupt  
GPIOIBE  
GPIOIEV  
GPIOIM  
GPIORIS  
GPIOMIS  
GPIOICR  
Identification Registers  
GPIOPeriphID0 GPIOPeriphID4  
GPIOPeriphID1 GPIOPeriphID5  
GPIOPeriphID2 GPIOPeriphID6  
GPIOPeriphID3 GPIOPeriphID7  
GPIOPCellID0  
GPIOPCellID1  
GPIOPCellID2  
GPIOPCellID3  
7.3.1  
Data Control  
The data control registers allow software to configure the operational modes of the GPIOs. The data  
direction register configures the GPIO as an input or an output while the data register either captures  
incoming data or drives it out to the pads.  
7.3.1.1  
Data Direction Operation  
The GPIO Direction (GPIODIR) register (see page 214) is used to configure each individual pin as  
an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and  
the corresponding data register bit will capture and store the value on the GPIO port. When the data  
direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit  
will be driven out on the GPIO port.  
7.3.1.2  
Data Register Operation  
To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the  
GPIO Data (GPIODATA) register (see page 213) by using bits [9:2] of the address bus as a mask.  
This allows software drivers to modify individual GPIO pins in a single instruction, without affecting  
the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write  
operation to set or clear an individual GPIO pin. To accommodate this feature, the GPIODATA  
register covers 256 locations in the memory map.  
July 24, 2012  
207  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
During a write, if the address bit associated with that data bit is set to 1, the value of the GPIODATA  
register is altered. If it is cleared to 0, it is left unchanged.  
For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in  
Figure 7-3 on page 208, where u is data unchanged by the write.  
Figure 7-3. GPIODATA Write Example  
9
0
8
0
7
1
6
0
5
0
4
1
3
1
2
0
1
0
0
0
ADDR[9:2]  
0x098  
1
1
1
0
1
0
1
1
0xEB  
u
7
u
6
1
5
u
4
u
3
0
2
1
1
u
0
GPIODATA  
During a read, if the address bit associated with the data bit is set to 1, the value is read. If the  
address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value.  
For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 7-4 on page 208.  
Figure 7-4. GPIODATA Read Example  
9
0
8
0
7
1
6
1
5
0
4
0
3
0
2
1
1
0
0
0
ADDR[9:2]  
0x0C4  
1
0
1
1
1
1
1
0
GPIODATA  
0
7
0
6
1
5
1
4
0
3
0
2
0
1
0
0
Returned Value  
7.3.2  
Interrupt Control  
The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these  
registers, it is possible to select the source of the interrupt, its polarity, and the edge properties.  
When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt  
controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt  
to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source  
holds the level constant for the interrupt to be recognized by the controller.  
Three registers are required to define the edge or sense that causes interrupts:  
GPIO Interrupt Sense (GPIOIS) register (see page 215)  
GPIO Interrupt Both Edges (GPIOIBE) register (see page 216)  
GPIO Interrupt Event (GPIOIEV) register (see page 217)  
Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 218).  
When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations:  
the GPIO Raw Interrupt Status (GPIORIS) and GPIO Masked Interrupt Status (GPIOMIS) registers  
(see page 219 and page 220). As the name implies, the GPIOMIS register only shows interrupt  
208  
July 24, 2012  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
conditions that are allowed to be passed to the controller. The GPIORIS register indicates that a  
GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.  
Interrupts are cleared by writing a 1 to the appropriate bit of the GPIO Interrupt Clear (GPIOICR)  
register (see page 221).  
When programming the following interrupt control registers, the interrupts should be masked (GPIOIM  
set to 0). Writing any value to an interrupt control register (GPIOIS, GPIOIBE, or GPIOIEV) can  
generate a spurious interrupt if the corresponding bits are enabled.  
7.3.3  
7.3.4  
Mode Control  
The GPIO pins can be controlled by either hardware or software. When hardware control is enabled  
via the GPIO Alternate Function Select (GPIOAFSEL) register (see page 222), the pin state is  
controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO  
mode, where the GPIODATA register is used to read/write the corresponding pins.  
Pad Control  
The pad control registers allow for GPIO pad configuration by software based on the application  
requirements. The pad control registers include the GPIODR2R, GPIODR4R, GPIODR8R, GPIOODR,  
GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers. These registers control drive strength,  
open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital enable.  
7.3.5  
Identification  
The identification registers configured at reset allow software to detect and identify the module as  
a GPIO block. The identification registers include the GPIOPeriphID0-GPIOPeriphID7 registers as  
well as the GPIOPCellID0-GPIOPCellID3 registers.  
7.4  
Initialization and Configuration  
To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit  
field (GPIOn) in the RCGC2 register.  
On reset, all GPIO pins (except for the five JTAG pins) default to general-purpose input mode  
(GPIODIR=0 and GPIOAFSEL=0). Table 7-6 on page 209 shows all possible configurations of the  
GPIO pads and the control register settings required to achieve them. Table 7-7 on page 210 shows  
how a rising edge interrupt would be configured for pin 2 of a GPIO port.  
Table 7-6. GPIO Pad Configuration Examples  
GPIO Register Bit Valuea  
Configuration  
AFSEL  
DIR  
ODR  
DEN  
PUR  
PDR  
DR2R  
DR4R  
DR8R  
SLR  
Digital Input (GPIO)  
Digital Output (GPIO)  
0
0
0
0
1
1
0
1
?
?
X
?
?
X
?
?
X
?
?
X
0
1
1
1
?
?
?
?
Open Drain Output  
(GPIO)  
X
X
Open Drain  
1
1
1
X
X
X
1
0
0
1
1
1
X
?
?
X
?
?
?
X
?
?
X
?
?
X
?
?
X
?
Input/Output (I2C)  
Digital Input (Timer  
CCP)  
Digital Output (Timer  
PWM)  
July 24, 2012  
209  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Table 7-6. GPIO Pad Configuration Examples (continued)  
GPIO Register Bit Valuea  
Configuration  
AFSEL  
DIR  
ODR  
DEN  
PUR  
PDR  
DR2R  
DR4R  
DR8R  
SLR  
Digital Input/Output  
(SSI)  
1
X
X
0
0
1
?
?
?
?
?
?
?
Digital Input/Output  
(UART)  
1
0
1
0
0
0
1
0
1
?
0
?
?
0
?
?
X
?
?
X
?
?
X
?
Analog Input  
(Comparator)  
X
?
Digital Output  
(Comparator)  
X
a. X=Ignored (don’t care bit)  
?=Can be either 0 or 1, depending on the configuration  
Table 7-7. GPIO Interrupt Configuration Example  
Desired  
Interrupt  
Event  
Pin 2 Bit Valuea  
7
6
5
4
3
2
1
0
Register  
Trigger  
GPIOIS  
0=edge  
1=level  
X
X
X
X
X
X
X
X
X
0
0
X
X
X
GPIOIBE  
0=single  
edge  
X
X
1=both  
edges  
GPIOIEV  
GPIOIM  
0=Low level,  
or negative  
edge  
X
0
X
0
X
0
X
X
0
1
1
X
0
X
1=High level,  
or positive  
edge  
0=masked  
0
0
1=not  
masked  
a. X=Ignored (don’t care bit)  
7.5  
Register Map  
Table 7-8 on page 211 lists the GPIO registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that GPIO port’s base address:  
■ GPIO Port A: 0x4000.4000  
■ GPIO Port B: 0x4000.5000  
■ GPIO Port C: 0x4000.6000  
Note that the GPIO module clock must be enabled before the registers can be programmed (see  
page 179). There must be a delay of 3 system clocks after the GPIO module clock is enabled before  
any GPIO module registers are accessed.  
Important: The GPIO registers in this chapter are duplicated in each GPIO block; however,  
depending on the block, all eight bits may not be connected to a GPIO pad. In those  
210  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
cases, writing to those unconnected bits has no effect, and reading those unconnected  
bits returns no meaningful data.  
Note: The default reset value for the GPIOAFSEL register is 0x0000.0000 for all GPIO pins, with  
the exception of the five JTAG pins (PB7 and PC[3:0]). These five pins default to JTAG  
functionality. Because of this, the default reset value of GPIOAFSEL for GPIO Port B is  
0x0000.0080 while the default reset value for Port C is 0x0000.000F.  
Table 7-8. GPIO Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x400  
0x404  
0x408  
0x40C  
0x410  
0x414  
0x418  
0x41C  
0x420  
0x500  
0x504  
0x508  
0x50C  
0x510  
0x514  
0x518  
0x51C  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
GPIODATA  
GPIODIR  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
-
GPIO Data  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
238  
239  
240  
GPIO Direction  
GPIOIS  
GPIO Interrupt Sense  
GPIOIBE  
GPIO Interrupt Both Edges  
GPIO Interrupt Event  
GPIOIEV  
GPIOIM  
GPIO Interrupt Mask  
GPIORIS  
GPIO Raw Interrupt Status  
GPIO Masked Interrupt Status  
GPIO Interrupt Clear  
GPIOMIS  
RO  
GPIOICR  
W1C  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
GPIOAFSEL  
GPIODR2R  
GPIODR4R  
GPIODR8R  
GPIOODR  
GPIO Alternate Function Select  
GPIO 2-mA Drive Select  
GPIO 4-mA Drive Select  
GPIO 8-mA Drive Select  
GPIO Open Drain Select  
GPIO Pull-Up Select  
0x0000.00FF  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.00FF  
0x0000.0000  
0x0000.0000  
0x0000.00FF  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0061  
0x0000.0000  
0x0000.0018  
0x0000.0001  
0x0000.000D  
GPIOPUR  
GPIOPDR  
GPIO Pull-Down Select  
GPIOSLR  
GPIO Slew Rate Control Select  
GPIO Digital Enable  
GPIODEN  
GPIOPeriphID4  
GPIOPeriphID5  
GPIOPeriphID6  
GPIOPeriphID7  
GPIOPeriphID0  
GPIOPeriphID1  
GPIOPeriphID2  
GPIOPeriphID3  
GPIOPCellID0  
GPIO Peripheral Identification 4  
GPIO Peripheral Identification 5  
GPIO Peripheral Identification 6  
GPIO Peripheral Identification 7  
GPIO Peripheral Identification 0  
GPIO Peripheral Identification 1  
GPIO Peripheral Identification 2  
GPIO Peripheral Identification 3  
GPIO PrimeCell Identification 0  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
July 24, 2012  
211  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Table 7-8. GPIO Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0xFF4  
0xFF8  
0xFFC  
GPIOPCellID1  
GPIOPCellID2  
GPIOPCellID3  
RO  
RO  
RO  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
GPIO PrimeCell Identification 1  
GPIO PrimeCell Identification 2  
GPIO PrimeCell Identification 3  
241  
242  
243  
7.6  
Register Descriptions  
The remainder of this section lists and describes the GPIO registers, in numerical order by address  
offset.  
212  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 1: GPIO Data (GPIODATA), offset 0x000  
The GPIODATA register is the data register. In software control mode, values written in the  
GPIODATA register are transferred onto the GPIO port pins if the respective pins have been  
configured as outputs through the GPIO Direction (GPIODIR) register (see page 214).  
In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus  
bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.  
Similarly, the values read from this register are determined for each bit by the mask bit derived from  
the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause  
the corresponding bits in GPIODATA to be read, and bits that are 0 in the address mask cause the  
corresponding bits in GPIODATA to be read as 0, regardless of their value.  
A read from GPIODATA returns the last bit value written if the respective pins are configured as  
outputs, or it returns the value on the corresponding input pin when these are configured as inputs.  
All bits are cleared by a reset.  
GPIO Data (GPIODATA)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
R/W  
0x00  
GPIO Data  
This register is virtually mapped to 256 locations in the address space.  
To facilitate the reading and writing of data to these registers by  
independent drivers, the data read from and the data written to the  
registers are masked by the eight address lines ipaddr[9:2]. Reads  
from this register return its current state. Writes to this register only affect  
bits that are not masked by ipaddr[9:2] and are configured as  
outputs. See “Data Register Operation” on page 207 for examples of  
reads and writes.  
July 24, 2012  
213  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 2: GPIO Direction (GPIODIR), offset 0x400  
The GPIODIR register is the data direction register. Bits set to 1 in the GPIODIR register configure  
the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are  
cleared by a reset, meaning all GPIO pins are inputs by default.  
GPIO Direction (GPIODIR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x400  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DIR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DIR  
R/W  
0x00  
GPIO Data Direction  
The DIR values are defined as follows:  
Value Description  
0
1
Pins are inputs.  
Pins are outputs.  
214  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404  
The GPIOIS register is the interrupt sense register. Bits set to 1 in GPIOIS configure the  
corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits  
are cleared by a reset.  
GPIO Interrupt Sense (GPIOIS)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x404  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IS  
R/W  
0x00  
GPIO Interrupt Sense  
The IS values are defined as follows:  
Value Description  
0
1
Edge on corresponding pin is detected (edge-sensitive).  
Level on corresponding pin is detected (level-sensitive).  
July 24, 2012  
215  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408  
The GPIOIBE register is the interrupt both-edges register. When the corresponding bit in the GPIO  
Interrupt Sense (GPIOIS) register (see page 215) is set to detect edges, bits set to High in GPIOIBE  
configure the corresponding pin to detect both rising and falling edges, regardless of the  
corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 217). Clearing a bit  
configures the pin to be controlled by GPIOIEV. All bits are cleared by a reset.  
GPIO Interrupt Both Edges (GPIOIBE)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x408  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IBE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IBE  
R/W  
0x00  
GPIO Interrupt Both Edges  
The IBE values are defined as follows:  
Value Description  
0
Interrupt generation is controlled by the GPIO Interrupt Event  
(GPIOIEV) register (see page 217).  
1
Both edges on the corresponding pin trigger an interrupt.  
Note:  
Single edge is determined by the corresponding bit  
in GPIOIEV.  
216  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C  
The GPIOIEV register is the interrupt event register. Bits set to High in GPIOIEV configure the  
corresponding pin to detect rising edges or high levels, depending on the corresponding bit value  
in the GPIO Interrupt Sense (GPIOIS) register (see page 215). Clearing a bit configures the pin to  
detect falling edges or low levels, depending on the corresponding bit value in GPIOIS. All bits are  
cleared by a reset.  
GPIO Interrupt Event (GPIOIEV)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x40C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IEV  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IEV  
R/W  
0x00  
GPIO Interrupt Event  
The IEV values are defined as follows:  
Value Description  
0
Falling edge or Low levels on corresponding pins trigger  
interrupts.  
1
Rising edge or High levels on corresponding pins trigger  
interrupts.  
July 24, 2012  
217  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410  
The GPIOIM register is the interrupt mask register. Bits set to High in GPIOIM allow the corresponding  
pins to trigger their individual interrupts and the combined GPIOINTR line. Clearing a bit disables  
interrupt triggering on that pin. All bits are cleared by a reset.  
GPIO Interrupt Mask (GPIOIM)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x410  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IME  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IME  
R/W  
0x00  
GPIO Interrupt Mask Enable  
The IME values are defined as follows:  
Value Description  
0
1
Corresponding pin interrupt is masked.  
Corresponding pin interrupt is not masked.  
218  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414  
The GPIORIS register is the raw interrupt status register. Bits read High in GPIORIS reflect the  
status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the  
requirements have been met, before they are finally allowed to trigger by the GPIO Interrupt Mask  
(GPIOIM) register (see page 218). Bits read as zero indicate that corresponding input pins have not  
initiated an interrupt. All bits are cleared by a reset.  
GPIO Raw Interrupt Status (GPIORIS)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x414  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
RIS  
RO  
0x00  
GPIO Interrupt Raw Status  
Reflects the status of interrupt trigger condition detection on pins (raw,  
prior to masking).  
The RIS values are defined as follows:  
Value Description  
0
1
Corresponding pin interrupt requirements not met.  
Corresponding pin interrupt has met requirements.  
July 24, 2012  
219  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418  
The GPIOMIS register is the masked interrupt status register. Bits read High in GPIOMIS reflect  
the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has  
been generated, or the interrupt is masked.  
GPIOMIS is the state of the interrupt after masking.  
GPIO Masked Interrupt Status (GPIOMIS)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x418  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
MIS  
RO  
0x00  
GPIO Masked Interrupt Status  
Masked value of interrupt due to corresponding pin.  
The MIS values are defined as follows:  
Value Description  
0
1
Corresponding GPIO line interrupt not active.  
Corresponding GPIO line asserting interrupt.  
220  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C  
The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the  
corresponding interrupt edge detection logic register. Writing a 0 has no effect.  
GPIO Interrupt Clear (GPIOICR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x41C  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
IC  
W1C  
0x00  
GPIO Interrupt Clear  
The IC values are defined as follows:  
Value Description  
0
1
Corresponding interrupt is unaffected.  
Corresponding interrupt is cleared.  
July 24, 2012  
221  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420  
The GPIOAFSEL register is the mode control select register. Writing a 1 to any bit in this register  
selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore  
no GPIO line is set to hardware control by default.  
Important: All GPIO pins are inputs by default (GPIODIR=0 and GPIOAFSEL=0), with the exception  
of the five JTAG pins (PB7 and PC[3:0]). The JTAG pins default to their JTAG  
functionality (GPIOAFSEL=1). A Power-On-Reset (POR) or asserting an external reset  
(RST) puts both groups of pins back to their default state.  
While debugging systems where PB7 is being used as a GPIO, care must be taken to  
ensure that a Low value is not applied to the pin when the part is reset. Because PB7  
reverts to the TRST function after reset, a Low value on the pin causes the JTAG  
controller to be reset, resulting in a loss of JTAG communication.  
Caution – If the JTAG pins are used as GPIOs in a design, PB7 and PC2 cannot have external pull-down  
resistors connected to both of them at the same time. If both pins are pulled Low during reset, the  
controller has unpredictable behavior. If this happens, remove one or both of the pull-down resistors,  
and apply RST or power-cycle the part.  
It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris®  
microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their  
GPIO functionality, the debugger may not have enough time to connect and halt the controller before  
the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided  
with a software routine that restores JTAG functionality based on an external or software trigger.  
GPIO Alternate Function Select (GPIOAFSEL)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x420  
Type R/W, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
AFSEL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
Bit/Field  
31:8  
Name  
reserved  
Type  
RO  
Reset  
0x00  
Description  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
222  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
7:0  
Name  
Type  
R/W  
Reset  
-
Description  
AFSEL  
GPIO Alternate Function Select  
The AFSEL values are defined as follows:  
Value Description  
0
1
Software control of corresponding GPIO line (GPIO mode).  
Hardware control of corresponding GPIO line (alternate  
hardware function).  
Note:  
The default reset value for the GPIOAFSEL register  
is 0x0000.0000 for all GPIO pins, with the exception  
of the five JTAG pins (PB7 and PC[3:0]). These five  
pins default to JTAG functionality. Because of this,  
the default reset value of GPIOAFSEL for GPIO Port  
B is 0x0000.0080 while the default reset value for  
Port C is 0x0000.000F.  
July 24, 2012  
223  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500  
The GPIODR2R register is the 2-mA drive control register. It allows for each GPIO signal in the port  
to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO  
signal, the corresponding DRV4 bit in the GPIODR4R register and the DRV8 bit in the GPIODR8R  
register are automatically cleared by hardware.  
GPIO 2-mA Drive Select (GPIODR2R)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x500  
Type R/W, reset 0x0000.00FF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DRV2  
R/W  
0xFF  
Output Pad 2-mA Drive Enable  
A write of 1 to either GPIODR4[n] or GPIODR8[n] clears the  
corresponding 2-mA enable bit. The change is effective on the second  
clock cycle after the write.  
224  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504  
The GPIODR4R register is the 4-mA drive control register. It allows for each GPIO signal in the port  
to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO  
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV8 bit in the GPIODR8R  
register are automatically cleared by hardware.  
GPIO 4-mA Drive Select (GPIODR4R)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x504  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DRV4  
R/W  
0x00  
Output Pad 4-mA Drive Enable  
A write of 1 to either GPIODR2[n] or GPIODR8[n] clears the  
corresponding 4-mA enable bit. The change is effective on the second  
clock cycle after the write.  
July 24, 2012  
225  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508  
The GPIODR8R register is the 8-mA drive control register. It allows for each GPIO signal in the port  
to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO  
signal, the corresponding DRV2 bit in the GPIODR2R register and the DRV4 bit in the GPIODR4R  
register are automatically cleared by hardware.  
GPIO 8-mA Drive Select (GPIODR8R)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x508  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DRV8  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DRV8  
R/W  
0x00  
Output Pad 8-mA Drive Enable  
A write of 1 to either GPIODR2[n] or GPIODR4[n] clears the  
corresponding 8-mA enable bit. The change is effective on the second  
clock cycle after the write.  
226  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C  
The GPIOODR register is the open drain control register. Setting a bit in this register enables the  
open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the  
corresponding bit should also be set in the GPIO Digital Enable (GPIODEN) register (see page 231).  
Corresponding bits in the drive strength registers (GPIODR2R, GPIODR4R, GPIODR8R, and  
GPIOSLR ) can be set to achieve the desired rise and fall times. The GPIO acts as an open-drain  
input if the corresponding bit in the GPIODIR register is cleared. If open drain is selected while the  
GPIO is configured as an input, the GPIO will remain an input and the open-drain selection has no  
effect until the GPIO is changed to an output.  
When using the I2C module, in addition to configuring the pin to open drain, the GPIO Alternate  
Function Select (GPIOAFSEL) register bits for the I2C clock and data pins should be set to 1 (see  
examples in “Initialization and Configuration” on page 209).  
GPIO Open Drain Select (GPIOODR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x50C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ODE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
ODE  
R/W  
0x00  
Output Pad Open Drain Enable  
The ODE values are defined as follows:  
Value Description  
0
1
Open drain configuration is disabled.  
Open drain configuration is enabled.  
July 24, 2012  
227  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510  
The GPIOPUR register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up  
resistor on the corresponding GPIO signal. Setting a bit in GPIOPUR automatically clears the  
corresponding bit in the GPIO Pull-Down Select (GPIOPDR) register (see page 229).  
GPIO Pull-Up Select (GPIOPUR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x510  
Type R/W, reset 0x0000.00FF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PUE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PUE  
R/W  
0xFF  
Pad Weak Pull-Up Enable  
Value Description  
0
1
The corresponding pin's weak pull-up resistor is disabled.  
The corresponding pin's weak pull-up resistor is enabled.  
A write of 1 to GPIOPDR[n] clears the corresponding GPIOPUR[n]  
enables. The change is effective on the second clock cycle after the  
write.  
228  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514  
The GPIOPDR register is the pull-down control register. When a bit is set to 1, it enables a weak  
pull-down resistor on the corresponding GPIO signal. Setting a bit in GPIOPDR automatically clears  
the corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 228).  
GPIO Pull-Down Select (GPIOPDR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x514  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PDE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PDE  
R/W  
0x00  
Pad Weak Pull-Down Enable  
Value Description  
0
1
The corresponding pin's weak pull-down resistor is disabled.  
The corresponding pin's weak pull-down resistor is enabled.  
A write of 1 to GPIOPUR[n] clears the corresponding GPIOPDR[n]  
enables. The change is effective on the second clock cycle after the  
write.  
July 24, 2012  
229  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518  
The GPIOSLR register is the slew rate control register. Slew rate control is only available when  
using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see  
page 226).  
GPIO Slew Rate Control Select (GPIOSLR)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x518  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SRL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
SRL  
R/W  
0x00  
Slew Rate Limit Enable (8-mA drive only)  
The SRL values are defined as follows:  
Value Description  
0
1
Slew rate control disabled.  
Slew rate control enabled.  
230  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C  
Note: Pins configured as digital inputs are Schmitt-triggered.  
The GPIODEN register is the digital enable register. By default, all GPIO signals are configured as  
digital inputs at reset. If a pin is being used as a GPIO or its Alternate Hardware Function, it should  
be configured as a digital input. The only time that a pin should not be configured as a digital input  
is when the GPIO pin is configured to be one of the analog input signals for the analog comparators.  
GPIO Digital Enable (GPIODEN)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0x51C  
Type R/W, reset 0x0000.00FF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DEN  
R/W  
0xFF  
Digital Enable  
The DEN values are defined as follows:  
Value Description  
0
1
Digital functions disabled.  
Digital functions enabled.  
July 24, 2012  
231  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 19: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 4 (GPIOPeriphID4)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x00  
GPIO Peripheral ID Register[7:0]  
232  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 20: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 5 (GPIOPeriphID5)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x00  
GPIO Peripheral ID Register[15:8]  
July 24, 2012  
233  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 21: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 6 (GPIOPeriphID6)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x00  
GPIO Peripheral ID Register[23:16]  
234  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 22: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC  
The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 7 (GPIOPeriphID7)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x00  
GPIO Peripheral ID Register[31:24]  
July 24, 2012  
235  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 23: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 0 (GPIOPeriphID0)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFE0  
Type RO, reset 0x0000.0061  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x61  
GPIO Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
236  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 24: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 1 (GPIOPeriphID1)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFE4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x00  
GPIO Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
237  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 25: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 2 (GPIOPeriphID2)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
GPIO Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
238  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 26: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC  
The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can  
conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register,  
used by software to identify the peripheral.  
GPIO Peripheral Identification 3 (GPIOPeriphID3)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
GPIO Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
239  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 27: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 0 (GPIOPCellID0)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
GPIO PrimeCell ID Register[7:0]  
Provides software a standard cross-peripheral identification system.  
240  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 28: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 1 (GPIOPCellID1)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
GPIO PrimeCell ID Register[15:8]  
Provides software a standard cross-peripheral identification system.  
July 24, 2012  
241  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Input/Outputs (GPIOs)  
Register 29: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 2 (GPIOPCellID2)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
GPIO PrimeCell ID Register[23:16]  
Provides software a standard cross-peripheral identification system.  
242  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 30: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC  
The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide  
registers, that can conceptually be treated as one 32-bit register. The register is used as a standard  
cross-peripheral identification system.  
GPIO PrimeCell Identification 3 (GPIOPCellID3)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
GPIO PrimeCell ID Register[31:24]  
Provides software a standard cross-peripheral identification system.  
July 24, 2012  
243  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
8
General-Purpose Timers  
Programmable timers can be used to count or time external events that drive the Timer input pins.  
The Stellaris® General-Purpose Timer Module (GPTM) contains two GPTM blocks (Timer0 and  
Timer1). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and TimerB)  
that can be configured to operate independently as timers or event counters, or configured to operate  
as one 32-bit timer or one 32-bit Real-Time Clock (RTC).  
The GPT Module is one timing resource available on the Stellaris microcontrollers. Other timer  
resources include the System Timer (SysTick) (see 81).  
The General-Purpose Timers provide the following features:  
■ Two General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers/counters.  
Each GPTM can be configured to operate independently:  
As a single 32-bit timer  
As one 32-bit Real-Time Clock (RTC) to event capture  
For Pulse Width Modulation (PWM)  
■ 32-bit Timer modes  
Programmable one-shot timer  
Programmable periodic timer  
Real-Time Clock when using an external 32.768-KHz clock as the input  
User-enabled stalling when the controller asserts CPU Halt flag during debug  
■ 16-bit Timer modes  
General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)  
Programmable one-shot timer  
Programmable periodic timer  
User-enabled stalling when the controller asserts CPU Halt flag during debug  
■ 16-bit Input Capture modes  
Input edge count capture  
Input edge time capture  
■ 16-bit PWM mode  
Simple PWM mode with software-programmable output inversion of the PWM signal  
8.1  
Block Diagram  
Note: In Figure 8-1 on page 245, the specific CCP pins available depend on the Stellaris device.  
See Table 8-1 on page 245 for the available CCPs.  
244  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 8-1. GPTM Module Block Diagram  
0x0000 (Down Counter Modes)  
TimerA Control  
GPTMTAPMR  
GPTMTAPR  
TA Comparator  
GPTMAR En  
Clock / Edge  
Detect  
GPTMTAMATCHR  
GPTMTAILR  
Interrupt / Config  
32 KHz or  
Even CCP Pin  
GPTMTAMR  
GPTMCFG  
GPTMCTL  
GPTMIMR  
GPTMRIS  
GPTMMIS  
GPTMICR  
TimerA  
Interrupt  
RTC Divider  
TimerB  
Interrupt  
TimerB Control  
GPTMTBR En  
TB Comparator  
GPTMTBPMR  
GPTMTBPR  
Clock / Edge  
Detect  
Odd CCP Pin  
GPTMTBMATCHR  
GPTMTBILR  
GPTMTBMR  
0x0000 (Down Counter Modes)  
System  
Clock  
Table 8-1. Available CCP Pins  
Timer  
16-Bit Up/Down Counter  
Even CCP Pin  
Odd CCP Pin  
Timer 0  
TimerA  
TimerB  
TimerA  
TimerB  
CCP0  
-
-
-
-
CCP1  
Timer 1  
-
-
8.2  
Signal Description  
Table 8-2 on page 245 and Table 8-3 on page 246list the external signals of the GP Timer module  
and describe the function of each. The GP Timer signals are alternate functions for some GPIO  
signals and default to be GPIO signals at reset. The column in the table below titled "Pin Assignment"  
lists the possible GPIO pin placements for these GP Timer signals. The AFSEL bit in the GPIO  
Alternate Function Select (GPIOAFSEL) register (page 222) should be set to choose the GP Timer  
function. For more information on configuring GPIOs, see “General-Purpose Input/Outputs  
(GPIOs)” on page 202.  
Table 8-2. General-Purpose Timers Signals (28SOIC)  
Pin Name  
32KHz  
CCP0  
Pin Number  
Pin Type  
Buffer Typea Description  
20  
19  
2
I
TTL  
TTL  
TTL  
32-KHz input to the timer.  
I/O  
I/O  
Capture/Compare/PWM 0.  
Capture/Compare/PWM 1.  
CCP1  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
July 24, 2012  
245  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Table 8-3. General-Purpose Timers Signals (48QFP)  
Pin Name  
32KHz  
CCP0  
Pin Number  
Pin Type  
Buffer Typea Description  
30  
29  
42  
I
TTL  
TTL  
TTL  
32-KHz input to the timer.  
I/O  
I/O  
Capture/Compare/PWM 0.  
Capture/Compare/PWM 1.  
CCP1  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
8.3  
Functional Description  
The main components of each GPTM block are two free-running 16-bit up/down counters (referred  
to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit  
load/initialization registers and their associated control functions. The exact functionality of each  
GPTM is controlled by software and configured through the register interface.  
Software configures the GPTM using the GPTM Configuration (GPTMCFG) register (see page 256),  
the GPTM TimerA Mode (GPTMTAMR) register (see page 257), and the GPTM TimerB Mode  
(GPTMTBMR) register (see page 259). When in one of the 32-bit modes, the timer can only act as  
a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers  
configured in any combination of the 16-bit modes.  
8.3.1  
8.3.2  
GPTM Reset Conditions  
After reset has been applied to the GPTM module, the module is in an inactive state, and all control  
registers are cleared and in their default states. Counters TimerA and TimerB are initialized to  
0xFFFF, along with their corresponding load registers: the GPTM TimerA Interval Load  
(GPTMTAILR) register (see page 270) and the GPTM TimerB Interval Load (GPTMTBILR) register  
(see page 271). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale  
(GPTMTAPR) register (see page 274) and the GPTM TimerB Prescale (GPTMTBPR) register (see  
page 275).  
32-Bit Timer Operating Modes  
This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their  
configuration.  
The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1  
(RTC mode) to the GPTM Configuration (GPTMCFG) register. In both configurations, certain GPTM  
registers are concatenated to form pseudo 32-bit registers. These registers include:  
GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 270  
GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 271  
GPTM TimerA (GPTMTAR) register [15:0], see page 278  
GPTM TimerB (GPTMTBR) register [15:0], see page 279  
In the 32-bit modes, the GPTM translates a 32-bit write access to GPTMTAILR into a write access  
to both GPTMTAILR and GPTMTBILR. The resulting word ordering for such a write operation is:  
GPTMTBILR[15:0]:GPTMTAILR[15:0]  
Likewise, a read access to GPTMTAR returns the value:  
GPTMTBR[15:0]:GPTMTAR[15:0]  
246  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
8.3.2.1  
32-Bit One-Shot/Periodic Timer Mode  
In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB  
registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is  
determined by the value written to the TAMR field of the GPTM TimerA Mode (GPTMTAMR) register  
(see page 257), and there is no need to write to the GPTM TimerB Mode (GPTMTBMR) register.  
When software writes the TAEN bit in the GPTM Control (GPTMCTL) register (see page 261), the  
timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the  
timer reloads its start value from the concatenated GPTMTAILR on the next cycle. If configured to  
be a one-shot timer, the timer stops counting and clears the TAEN bit in the GPTMCTL register. If  
configured as a periodic timer, it continues counting.  
In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches  
the 0x000.0000 state. The GPTM sets the TATORIS bit in the GPTM Raw Interrupt Status  
(GPTMRIS) register (see page 266), and holds it until it is cleared by writing the GPTM Interrupt  
Clear (GPTMICR) register (see page 268). If the time-out interrupt is enabled in the GPTM Interrupt  
Mask (GPTMIMR) register (see page 264), the GPTM also sets the TATOMIS bit in the GPTM Masked  
Interrupt Status (GPTMMIS) register (see page 267).  
If software reloads the GPTMTAILR register while the counter is running, the counter loads the new  
value on the next clock cycle and continues counting from the new value.  
If the TASTALL bit in the GPTMCTL register is set, the timer freezes counting while the processor  
is halted by the debugger. The timer resumes counting when the processor resumes execution.  
8.3.2.2  
32-Bit Real-Time Clock Timer Mode  
In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers  
are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is  
loaded with a value of 0x0000.0001. All subsequent load values must be written to the GPTM TimerA  
Match (GPTMTAMATCHR) register (see page 272) by the controller.  
The input clock on an even CCP input is required to be 32.768 KHz in RTC mode. The clock signal  
is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.  
The 32KHz pin is dedicated to the 32-bit RTC function, and the input clock is 32.768 KHz.  
When software writes the TAEN bit inthe GPTMCTL register, the counter starts counting up from its  
preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the  
GPTMTAMATCHR register, it rolls over to a value of 0x0000.0000 and continues counting until  
either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs,  
the GPTM asserts the RTCRIS bit in GPTMRIS. If the RTC interrupt is enabled in GPTMIMR, the  
GPTM also sets the RTCMIS bit in GPTMMIS and generates a controller interrupt. The status flags  
are cleared by writing the RTCCINT bit in GPTMICR.  
If the TASTALL and/or TBSTALL bits in the GPTMCTL register are set, the timer does not freeze if  
the RTCEN bit is set in GPTMCTL.  
8.3.3  
16-Bit Timer Operating Modes  
The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the GPTM Configuration  
(GPTMCFG) register (see page 256). This section describes each of the GPTM 16-bit modes of  
operation. TimerA and TimerB have identical modes, so a single description is given using an n to  
reference both.  
July 24, 2012  
247  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Timers  
8.3.3.1  
16-Bit One-Shot/Periodic Timer Mode  
In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with  
an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The  
selection of one-shot or periodic mode is determined by the value written to the TnMR field of the  
GPTMTnMR register. The optional prescaler is loaded into the GPTM Timern Prescale (GPTMTnPR)  
register.  
When software writes the TnEN bit in the GPTMCTL register, the timer begins counting down from  
its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from  
GPTMTnILR and GPTMTnPR on the next cycle. If configured to be a one-shot timer, the timer stops  
counting and clears the TnEN bit in the GPTMCTL register. If configured as a periodic timer, it  
continues counting.  
In addition to reloading the count value, the timer generates interrupts and triggers when it reaches  
the 0x0000 state. The GPTM sets the TnTORIS bit in the GPTMRIS register, and holds it until it is  
cleared by writing the GPTMICR register. If the time-out interrupt is enabled in GPTMIMR, the GPTM  
also sets the TnTOMIS bit in GPTMISR and generates a controller interrupt.  
If software reloads the GPTMTAILR register while the counter is running, the counter loads the new  
value on the next clock cycle and continues counting from the new value.  
If the TnSTALL bit in the GPTMCTL register is set, the timer freezes counting while the processor  
is halted by the debugger. The timer resumes counting when the processor resumes execution.  
The following example shows a variety of configurations for a 16-bit free running timer while using  
the prescaler. All values assume a 20-MHz clock with Tc=20 ns (clock period).  
Table 8-4. 16-Bit Timer With Prescaler Configurations  
Prescale  
00000000  
#Clock (T c)a  
Max Time  
3.2768  
6.554  
Units  
mS  
mS  
mS  
--  
1
2
00000001  
00000010  
3
9.8302  
--  
------------  
--  
11111101  
254  
255  
256  
832.3073  
835.584  
838.8608  
mS  
mS  
mS  
11111110  
11111111  
a. Tc is the clock period.  
8.3.3.2  
16-Bit Input Edge Count Mode  
Note: For rising-edge detection, the input signal must be High for at least two system clock periods  
following the rising edge. Similarly, for falling-edge detection, the input signal must be Low  
for at least two system clock periods following the falling edge. Based on this criteria, the  
maximum input frequency for edge detection is 1/4 of the system frequency.  
Note: The prescaler is not available in 16-Bit Input Edge Count mode.  
In Edge Count mode, the timer is configured as a down-counter capable of capturing three types  
of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit  
of the GPTMTnMR register must be set to 0. The type of edge that the timer counts is determined  
by the TnEVENT fields of the GPTMCTL register. During initialization, the GPTM Timern Match  
(GPTMTnMATCHR) register is configured so that the difference between the value in the  
GPTMTnILR register and the GPTMTnMATCHR register equals the number of edge events that  
must be counted.  
248  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
When software writes the TnEN bit in the GPTM Control (GPTMCTL) register, the timer is enabled  
for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count  
matches GPTMTnMATCHR. When the counts match, the GPTM asserts the CnMRIS bit in the  
GPTMRIS register (and the CnMMIS bit, if the interrupt is not masked).  
The counter is then reloaded using the value in GPTMTnILR, and stopped since the GPTM  
automatically clears the TnEN bit in the GPTMCTL register. Once the event count has been reached,  
all further events are ignored until TnEN is re-enabled by software.  
Figure 8-2 on page 249 shows how input edge count mode works. In this case, the timer start value  
is set to GPTMTnILR =0x000A and the match value is set to GPTMTnMATCHR =0x0006 so that  
four edge events are counted. The counter is configured to detect both edges of the input signal.  
Note that the last two edges are not counted since the timer automatically clears the TnEN bit after  
the current count matches the value in the GPTMTnMATCHR register.  
Figure 8-2. 16-Bit Input Edge Count Mode Example  
Timer stops,  
flags  
asserted  
Timer reload  
on next cycle  
Ignored  
Ignored  
Count  
0x000A  
0x0009  
0x0008  
0x0007  
0x0006  
Input Signal  
8.3.3.3  
16-Bit Input Edge Time Mode  
Note: For rising-edge detection, the input signal must be High for at least two system clock periods  
following the rising edge. Similarly, for falling edge detection, the input signal must be Low  
for at least two system clock periods following the falling edge. Based on this criteria, the  
maximum input frequency for edge detection is 1/4 of the system frequency.  
Note: The prescaler is not available in 16-Bit Input Edge Time mode.  
In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value  
loaded in the GPTMTnILR register (or 0xFFFF at reset). The timer is capable of capturing three  
types of events: rising edge, falling edge, or both. The timer is placed into Edge Time mode by  
setting the TnCMR bit in the GPTMTnMR register, and the type of event that the timer captures is  
determined by the TnEVENT fields of the GPTMCTL register.  
When software writes the TnEN bit in the GPTMCTL register, the timer is enabled for event capture.  
When the selected input event is detected, the current Tn counter value is captured in the GPTMTnR  
July 24, 2012  
249  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and  
the CnEMIS bit, if the interrupt is not masked).  
After an event has been captured, the timer does not stop counting. It continues to count until the  
TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the  
GPTMTnILR register.  
Figure 8-3 on page 250 shows how input edge timing mode works. In the diagram, it is assumed that  
the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture  
rising edge events.  
Each time a rising edge event is detected, the current count value is loaded into the GPTMTnR  
register, and is held there until another rising edge is detected (at which point the new count value  
is loaded into GPTMTnR).  
Figure 8-3. 16-Bit Input Edge Time Mode Example  
Count  
0xFFFF  
GPTMTnR=X  
GPTMTnR=Y  
GPTMTnR=Z  
Z
X
Y
Time  
Input Signal  
8.3.3.4  
16-Bit PWM Mode  
Note: The prescaler is not available in 16-Bit PWM mode.  
The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a  
down-counter with a start value (and thus period) defined by GPTMTnILR. In this mode, the PWM  
frequency and period are synchronous events and therefore guaranteed to be glitch free. PWM  
mode is enabled with the GPTMTnMR register by setting the TnAMS bit to 0x1, the TnCMR bit to  
0x0, and the TnMR field to 0x2.  
When software writes the TnEN bit in the GPTMCTL register, the counter begins counting down  
until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from  
GPTMTnILR and continues counting until disabled by software clearing the TnEN bit in the GPTMCTL  
register. No interrupts or status bits are asserted in PWM mode.  
The output PWM signal asserts when the counter is at the value of the GPTMTnILR register (its  
start state), and is deasserted when the counter value equals the value in the GPTM Timern Match  
Register (GPTMTnMATCHR). Software has the capability of inverting the output PWM signal by  
setting the TnPWML bit in the GPTMCTL register.  
250  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 8-4 on page 251 shows how to generate an output PWM with a 1-ms period and a 66% duty  
cycle assuming a 50-MHz input clock and TnPWML =0 (duty cycle would be 33% for the TnPWML  
=1 configuration). For this example, the start value is GPTMTnIRL=0xC350 and the match value is  
GPTMTnMATCHR=0x411A.  
Figure 8-4. 16-Bit PWM Mode Example  
GPTMTnR=GPTMnMR  
GPTMTnR=GPTMnMR  
Count  
0xC350  
0x411A  
Time  
TnEN set  
TnPWML = 0  
TnPWML = 1  
Output  
Signal  
8.4  
Initialization and Configuration  
To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMER0  
and TIMER1 bits in the RCGC1 register.  
This section shows module initialization and configuration examples for each of the supported timer  
modes.  
8.4.1  
32-Bit One-Shot/Periodic Timer Mode  
The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:  
1. Ensure the timer is disabled (the TAEN bit in the GPTMCTL register is cleared) before making  
any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.  
3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):  
a. Write a value of 0x1 for One-Shot mode.  
b. Write a value of 0x2 for Periodic mode.  
4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).  
July 24, 2012  
251  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).  
6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.  
7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM  
Interrupt Clear Register (GPTMICR).  
In One-Shot mode, the timer stops counting after step 7 on page 252. To re-enable the timer, repeat  
the sequence. A timer configured in Periodic mode does not stop counting after it times out.  
8.4.2  
32-Bit Real-Time Clock (RTC) Mode  
To use the RTC mode, the timer must have a 32.768-KHz input signal on an even CCP input. To  
enable the RTC feature, follow these steps:  
1. Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.  
3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).  
4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.  
5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).  
6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.  
When the timer count equals the value in the GPTMTAMATCHR register, the GPTM asserts the  
RTCRIS bit in the GPTMRIS register and continues counting until Timer A is disabled or a hardware  
reset. The interrupt is cleared by writing the RTCCINT bit in the GPTMICR register.  
8.4.3  
16-Bit One-Shot/Periodic Timer Mode  
A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.  
3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:  
a. Write a value of 0x1 for One-Shot mode.  
b. Write a value of 0x2 for Periodic mode.  
4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register  
(GPTMTnPR).  
5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).  
6. If interrupts are required, set the TnTOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).  
7. Set the TnEN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start  
counting.  
252  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
8. Poll the TnTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the TnTOCINT bit of the GPTM  
Interrupt Clear Register (GPTMICR).  
In One-Shot mode, the timer stops counting after step 8 on page 253. To re-enable the timer, repeat  
the sequence. A timer configured in Periodic mode does not stop counting after it times out.  
8.4.4  
16-Bit Input Edge Count Mode  
A timer is configured to Input Edge Count mode by the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR  
field to 0x3.  
4. Configure the type of event(s) that the timer captures by writing the TnEVENT field of the GPTM  
Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.  
7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.  
8. Set the TnEN bit in the GPTMCTL register to enable the timer and begin waiting for edge events.  
9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM  
Interrupt Clear (GPTMICR) register.  
In Input Edge Count Mode, the timer stops after the desired number of edge events has been  
detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 253  
through step 9 on page 253.  
8.4.5  
16-Bit Input Edge Timing Mode  
A timer is configured to Input Edge Timing mode by the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR  
field to 0x3.  
4. Configure the type of event that the timer captures by writing the TnEVENT field of the GPTM  
Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.  
7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.  
July 24, 2012  
253  
Texas Instruments-Production Data  
 
 
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
8. Poll the CnERIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled).  
In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the GPTM  
Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained  
by reading the GPTM Timern (GPTMTnR) register.  
In Input Edge Timing mode, the timer continues running after an edge event has been detected,  
but the timer interval can be changed at any time by writing the GPTMTnILR register. The change  
takes effect at the next cycle after the write.  
8.4.6  
16-Bit PWM Mode  
A timer is configured to PWM mode using the following sequence:  
1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.  
2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.  
3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to  
0x0, and the TnMR field to 0x2.  
4. Configure the output state of the PWM signal (whether or not it is inverted) in the TnPWML field  
of the GPTM Control (GPTMCTL) register.  
5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.  
6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.  
7. Set the TnEN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin  
generation of the output PWM signal.  
In PWM Timing mode, the timer continues running after the PWM signal has been generated. The  
PWM period can be adjusted at any time by writing the GPTMTnILR register, and the change takes  
effect at the next cycle after the write.  
8.5  
Register Map  
Table 8-5 on page 254 lists the GPTM registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that timer’s base address:  
■ Timer0: 0x4003.0000  
■ Timer1: 0x4003.1000  
Note that the Timer module clock must be enabled before the registers can be programmed (see  
page 173). There must be a delay of 3 system clocks after the Timer module clock is enabled before  
any Timer module registers are accessed.  
Table 8-5. Timers Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
GPTMCFG  
GPTMTAMR  
GPTMTBMR  
R/W  
R/W  
R/W  
0x0000.0000  
0x0000.0000  
0x0000.0000  
GPTM Configuration  
GPTM TimerA Mode  
GPTM TimerB Mode  
256  
257  
259  
254  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 8-5. Timers Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x00C  
0x018  
0x01C  
0x020  
0x024  
0x028  
0x02C  
0x030  
0x034  
0x038  
0x03C  
0x040  
0x044  
0x048  
0x04C  
GPTMCTL  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0xFFFF.FFFF  
0x0000.FFFF  
0xFFFF.FFFF  
0x0000.FFFF  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0xFFFF.FFFF  
0x0000.FFFF  
GPTM Control  
261  
264  
266  
267  
268  
270  
271  
272  
273  
274  
275  
276  
277  
278  
279  
GPTMIMR  
GPTM Interrupt Mask  
GPTM Raw Interrupt Status  
GPTM Masked Interrupt Status  
GPTM Interrupt Clear  
GPTM TimerA Interval Load  
GPTM TimerB Interval Load  
GPTM TimerA Match  
GPTMRIS  
GPTMMIS  
RO  
GPTMICR  
W1C  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
GPTMTAILR  
GPTMTBILR  
GPTMTAMATCHR  
GPTMTBMATCHR  
GPTMTAPR  
GPTMTBPR  
GPTMTAPMR  
GPTMTBPMR  
GPTMTAR  
GPTM TimerB Match  
GPTM TimerA Prescale  
GPTM TimerB Prescale  
GPTM TimerA Prescale Match  
GPTM TimerB Prescale Match  
GPTM TimerA  
GPTMTBR  
RO  
GPTM TimerB  
8.6  
Register Descriptions  
The remainder of this section lists and describes the GPTM registers, in numerical order by address  
offset.  
July 24, 2012  
255  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 1: GPTM Configuration (GPTMCFG), offset 0x000  
This register configures the global operation of the GPTM module. The value written to this register  
determines whether the GPTM is in 32- or 16-bit mode.  
GPTM Configuration (GPTMCFG)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
GPTMCFG  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2:0  
GPTMCFG  
R/W  
0x0  
GPTM Configuration  
The GPTMCFG values are defined as follows:  
Value Description  
0x0 32-bit timer configuration.  
0x1 32-bit real-time clock (RTC) counter configuration.  
0x2 Reserved  
0x3 Reserved  
0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of  
GPTMTAMR and GPTMTBMR.  
256  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004  
This register configures the GPTM based on the configuration selected in the GPTMCFG register.  
When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to  
0x2.  
GPTM TimerA Mode (GPTMTAMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAAMS TACMR  
TAMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
TAAMS  
R/W  
0
GPTM TimerA Alternate Mode Select  
The TAAMS values are defined as follows:  
Value Description  
0
1
Capture mode is enabled.  
PWM mode is enabled.  
Note:  
To enable PWM mode, you must also clear the TACMR  
bit and set the TAMR field to 0x2.  
2
TACMR  
R/W  
0
GPTM TimerA Capture Mode  
The TACMR values are defined as follows:  
Value Description  
0
1
Edge-Count mode  
Edge-Time mode  
July 24, 2012  
257  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Bit/Field  
1:0  
Name  
TAMR  
Type  
R/W  
Reset  
0x0  
Description  
GPTM TimerA Mode  
The TAMR values are defined as follows:  
Value Description  
0x0 Reserved  
0x1 One-Shot Timer mode  
0x2 Periodic Timer mode  
0x3 Capture mode  
The Timer mode is based on the timer configuration defined by bits 2:0  
in the GPTMCFG register (16-or 32-bit).  
In 16-bit timer configuration, TAMR controls the 16-bit timer modes for  
TimerA.  
In 32-bit timer configuration, this register controls the mode and the  
contents of GPTMTBMR are ignored.  
258  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008  
This register configures the GPTM based on the configuration selected in the GPTMCFG register.  
When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to  
0x2.  
GPTM TimerB Mode (GPTMTBMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBAMS TBCMR  
TBMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
TBAMS  
R/W  
0
GPTM TimerB Alternate Mode Select  
The TBAMS values are defined as follows:  
Value Description  
0
1
Capture mode is enabled.  
PWM mode is enabled.  
Note:  
To enable PWM mode, you must also clear the TBCMR  
bit and set the TBMR field to 0x2.  
2
TBCMR  
R/W  
0
GPTM TimerB Capture Mode  
The TBCMR values are defined as follows:  
Value Description  
0
1
Edge-Count mode  
Edge-Time mode  
July 24, 2012  
259  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Bit/Field  
1:0  
Name  
TBMR  
Type  
R/W  
Reset  
0x0  
Description  
GPTM TimerB Mode  
The TBMR values are defined as follows:  
Value Description  
0x0 Reserved  
0x1 One-Shot Timer mode  
0x2 Periodic Timer mode  
0x3 Capture mode  
The timer mode is based on the timer configuration defined by bits 2:0  
in the GPTMCFG register.  
In 16-bit timer configuration, these bits control the 16-bit timer modes  
for TimerB.  
In 32-bit timer configuration, this register’s contents are ignored and  
GPTMTAMR is used.  
260  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 4: GPTM Control (GPTMCTL), offset 0x00C  
This register is used alongside the GPTMCFG and GMTMTnMR registers to fine-tune the timer  
configuration, and to enable other features such as timer stall.  
GPTM Control (GPTMCTL)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x00C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
reserved  
TBPWML  
reserved  
TBEVENT  
TBSTALL TBEN  
TAPWML  
RTCEN  
TAEVENT  
TASTALL  
TAEN  
Type  
Reset  
RO  
0
R/W  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
R/W  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:15  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
14  
TBPWML  
R/W  
0
GPTM TimerB PWM Output Level  
The TBPWML values are defined as follows:  
Value Description  
0
1
Output is unaffected.  
Output is inverted.  
13:12  
11:10  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
TBEVENT  
R/W  
0x0  
GPTM TimerB Event Mode  
The TBEVENT values are defined as follows:  
Value Description  
0x0 Positive edge  
0x1 Negative edge  
0x2 Reserved  
0x3 Both edges  
July 24, 2012  
261  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Bit/Field  
9
Name  
TBSTALL  
Type  
R/W  
Reset  
0
Description  
GPTM Timer B Stall Enable  
The TBSTALL values are defined as follows:  
Value Description  
0
Timer B continues counting while the processor is halted by the  
debugger.  
1
Timer B freezes counting while the processor is halted by the  
debugger.  
If the processor is executing normally, the TBSTALL bit is ignored.  
8
TBEN  
R/W  
0
GPTM TimerB Enable  
The TBEN values are defined as follows:  
Value Description  
0
1
TimerB is disabled.  
TimerB is enabled and begins counting or the capture logic is  
enabled based on the GPTMCFG register.  
7
6
reserved  
TAPWML  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
GPTM TimerA PWM Output Level  
The TAPWML values are defined as follows:  
Value Description  
0
1
Output is unaffected.  
Output is inverted.  
5
4
reserved  
RTCEN  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
GPTM RTC Enable  
The RTCEN values are defined as follows:  
Value Description  
0
1
RTC counting is disabled.  
RTC counting is enabled.  
3:2  
TAEVENT  
R/W  
0x0  
GPTM TimerA Event Mode  
The TAEVENT values are defined as follows:  
Value Description  
0x0 Positive edge  
0x1 Negative edge  
0x2 Reserved  
0x3 Both edges  
262  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
1
Name  
Type  
R/W  
Reset  
0
Description  
TASTALL  
GPTM Timer A Stall Enable  
The TASTALL values are defined as follows:  
Value Description  
0
Timer A continues counting while the processor is halted by the  
debugger.  
1
Timer A freezes counting while the processor is halted by the  
debugger.  
If the processor is executing normally, the TASTALL bit is ignored.  
0
TAEN  
R/W  
0
GPTM TimerA Enable  
The TAEN values are defined as follows:  
Value Description  
0
1
TimerA is disabled.  
TimerA is enabled and begins counting or the capture logic is  
enabled based on the GPTMCFG register.  
July 24, 2012  
263  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018  
This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables  
the interrupt, while writing a 0 disables it.  
GPTM Interrupt Mask (GPTMIMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x018  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBEIM  
CBMIM TBTOIM  
reserved  
RTCIM  
CAEIM  
CAMIM TATOIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:11  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
CBEIM  
R/W  
0
0
0
0
GPTM CaptureB Event Interrupt Mask  
The CBEIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
9
CBMIM  
TBTOIM  
reserved  
R/W  
R/W  
RO  
GPTM CaptureB Match Interrupt Mask  
The CBMIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
8
GPTM TimerB Time-Out Interrupt Mask  
The TBTOIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
7:4  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
264  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
3
Name  
Type  
R/W  
Reset  
0
Description  
RTCIM  
GPTM RTC Interrupt Mask  
The RTCIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
2
1
0
CAEIM  
CAMIM  
TATOIM  
R/W  
R/W  
R/W  
0
0
0
GPTM CaptureA Event Interrupt Mask  
The CAEIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
GPTM CaptureA Match Interrupt Mask  
The CAMIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
GPTM TimerA Time-Out Interrupt Mask  
The TATOIM values are defined as follows:  
Value Description  
0
1
Interrupt is disabled.  
Interrupt is enabled.  
July 24, 2012  
265  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C  
This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or  
not the interrupt is masked in the GPTMIMR register. Each bit can be cleared by writing a 1 to its  
corresponding bit in GPTMICR.  
GPTM Raw Interrupt Status (GPTMRIS)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x01C  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBERIS CBMRIS TBTORIS  
reserved  
RTCRIS CAERIS CAMRIS TATORIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
CBERIS  
CBMRIS  
TBTORIS  
reserved  
RO  
RO  
RO  
RO  
0
0
GPTM CaptureB Event Raw Interrupt  
This is the CaptureB Event interrupt status prior to masking.  
GPTM CaptureB Match Raw Interrupt  
This is the CaptureB Match interrupt status prior to masking.  
8
0
GPTM TimerB Time-Out Raw Interrupt  
This is the TimerB time-out interrupt status prior to masking.  
7:4  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
RTCRIS  
CAERIS  
CAMRIS  
TATORIS  
RO  
RO  
RO  
RO  
0
0
0
0
GPTM RTC Raw Interrupt  
This is the RTC Event interrupt status prior to masking.  
GPTM CaptureA Event Raw Interrupt  
This is the CaptureA Event interrupt status prior to masking.  
GPTM CaptureA Match Raw Interrupt  
This is the CaptureA Match interrupt status prior to masking.  
GPTM TimerA Time-Out Raw Interrupt  
This the TimerA time-out interrupt status prior to masking.  
266  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020  
This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in  
GPTMIMR, and there is an event that causes the interrupt to be asserted, the corresponding bit is  
set in this register. All bits are cleared by writing a 1 to the corresponding bit in GPTMICR.  
GPTM Masked Interrupt Status (GPTMMIS)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x020  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CBEMIS CBMMIS TBTOMIS  
reserved  
RTCMIS CAEMIS CAMMIS TATOMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
CBEMIS  
CBMMIS  
TBTOMIS  
reserved  
RO  
RO  
RO  
RO  
0
0
GPTM CaptureB Event Masked Interrupt  
This is the CaptureB event interrupt status after masking.  
GPTM CaptureB Match Masked Interrupt  
This is the CaptureB match interrupt status after masking.  
8
0
GPTM TimerB Time-Out Masked Interrupt  
This is the TimerB time-out interrupt status after masking.  
7:4  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
RTCMIS  
CAEMIS  
CAMMIS  
TATOMIS  
RO  
RO  
RO  
RO  
0
0
0
0
GPTM RTC Masked Interrupt  
This is the RTC event interrupt status after masking.  
GPTM CaptureA Event Masked Interrupt  
This is the CaptureA event interrupt status after masking.  
GPTM CaptureA Match Masked Interrupt  
This is the CaptureA match interrupt status after masking.  
GPTM TimerA Time-Out Masked Interrupt  
This is the TimerA time-out interrupt status after masking.  
July 24, 2012  
267  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024  
This register is used to clear the status bits in the GPTMRIS and GPTMMIS registers. Writing a 1  
to a bit clears the corresponding bit in the GPTMRIS and GPTMMIS registers.  
GPTM Interrupt Clear (GPTMICR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x024  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBTOCINT  
TATOCINT  
RTCCINT CAECINT CAMCINT  
reserved  
CBECINT CBMCINT  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
CBECINT  
W1C  
W1C  
W1C  
RO  
0
GPTM CaptureB Event Interrupt Clear  
The CBECINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
9
CBMCINT  
TBTOCINT  
reserved  
0
GPTM CaptureB Match Interrupt Clear  
The CBMCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
8
0
GPTM TimerB Time-Out Interrupt Clear  
The TBTOCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
7:4  
0x0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
268  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
3
Name  
Type  
W1C  
Reset  
0
Description  
RTCCINT  
GPTM RTC Interrupt Clear  
The RTCCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
2
1
0
CAECINT  
CAMCINT  
TATOCINT  
W1C  
W1C  
W1C  
0
0
0
GPTM CaptureA Event Interrupt Clear  
The CAECINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
GPTM CaptureA Match Interrupt Clear  
The CAMCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
GPTM TimerA Time-Out Interrupt Clear  
The TATOCINT values are defined as follows:  
Value Description  
0
1
The interrupt is unaffected.  
The interrupt is cleared.  
July 24, 2012  
269  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028  
This register is used to load the starting count value into the timer. When GPTM is configured to  
one of the 32-bit modes, GPTMTAILR appears as a 32-bit register (the upper 16-bits correspond  
to the contents of the GPTM TimerB Interval Load (GPTMTBILR) register). In 16-bit mode, the  
upper 16 bits of this register read as 0s and have no effect on the state of GPTMTBILR.  
GPTM TimerA Interval Load (GPTMTAILR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x028  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TAILRH  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TAILRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
R/W  
Reset  
Description  
GPTM TimerA Interval Load Register High  
TAILRH  
TAILRL  
0xFFFF  
When configured for 32-bit mode via the GPTMCFG register, the GPTM  
TimerB Interval Load (GPTMTBILR) register loads this value on a  
write. A read returns the current value of GPTMTBILR.  
In 16-bit mode, this field reads as 0 and does not have an effect on the  
state of GPTMTBILR.  
15:0  
R/W  
0xFFFF  
GPTM TimerA Interval Load Register Low  
For both 16- and 32-bit modes, writing this field loads the counter for  
TimerA. A read returns the current value of GPTMTAILR.  
270  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C  
This register is used to load the starting count value into TimerB. When the GPTM is configured to  
a 32-bit mode, GPTMTBILR returns the current value of TimerB and ignores writes.  
GPTM TimerB Interval Load (GPTMTBILR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x02C  
Type R/W, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBILRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
TBILRL  
R/W  
0xFFFF  
GPTM TimerB Interval Load Register  
When the GPTM is not configured as a 32-bit timer, a write to this field  
updates GPTMTBILR. In 32-bit mode, writes are ignored, and reads  
return the current value of GPTMTBILR.  
July 24, 2012  
271  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030  
This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.  
GPTM TimerA Match (GPTMTAMATCHR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x030  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TAMRH  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TAMRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
R/W  
Reset  
Description  
GPTM TimerA Match Register High  
TAMRH  
TAMRL  
0xFFFF  
When configured for 32-bit Real-Time Clock (RTC) mode via the  
GPTMCFG register, this value is compared to the upper half of  
GPTMTAR, to determine match events.  
In 16-bit mode, this field reads as 0 and does not have an effect on the  
state of GPTMTBMATCHR.  
15:0  
R/W  
0xFFFF  
GPTM TimerA Match Register Low  
When configured for 32-bit Real-Time Clock (RTC) mode via the  
GPTMCFG register, this value is compared to the lower half of  
GPTMTAR, to determine match events.  
When configured for PWM mode, this value along with GPTMTAILR,  
determines the duty cycle of the output PWM signal.  
When configured for Edge Count mode, this value along with  
GPTMTAILR, determines how many edge events are counted. The total  
number of edge events counted is equal to the value in GPTMTAILR  
minus this value.  
272  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034  
This register is used in 16-bit PWM and Input Edge Count modes.  
GPTM TimerB Match (GPTMTBMATCHR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x034  
Type R/W, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBMRL  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
TBMRL  
R/W  
0xFFFF  
GPTM TimerB Match Register Low  
When configured for PWM mode, this value along with GPTMTBILR,  
determines the duty cycle of the output PWM signal.  
When configured for Edge Count mode, this value along with  
GPTMTBILR, determines how many edge events are counted. The total  
number of edge events counted is equal to the value in GPTMTBILR  
minus this value.  
July 24, 2012  
273  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038  
This register allows software to extend the range of the 16-bit timers when operating in one-shot or  
periodic mode.  
GPTM TimerA Prescale (GPTMTAPR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x038  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAPSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TAPSR  
R/W  
0x00  
GPTM TimerA Prescale  
The register loads this value on a write. A read returns the current value  
of the register.  
Refer to Table 8-4 on page 248 for more details and an example.  
274  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C  
This register allows software to extend the range of the 16-bit timers when operating in one-shot or  
periodic mode.  
GPTM TimerB Prescale (GPTMTBPR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x03C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBPSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TBPSR  
R/W  
0x00  
GPTM TimerB Prescale  
The register loads this value on a write. A read returns the current value  
of this register.  
Refer to Table 8-4 on page 248 for more details and an example.  
July 24, 2012  
275  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040  
This register effectively extends the range of GPTMTAMATCHR to 24 bits when operating in 16-bit  
one-shot or periodic mode.  
GPTM TimerA Prescale Match (GPTMTAPMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x040  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TAPSMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TAPSMR  
R/W  
0x00  
GPTM TimerA Prescale Match  
This value is used alongside GPTMTAMATCHR to detect timer match  
events while using a prescaler.  
276  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044  
This register effectively extends the range of GPTMTBMATCHR to 24 bits when operating in 16-bit  
one-shot or periodic mode.  
GPTM TimerB Prescale Match (GPTMTBPMR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x044  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TBPSMR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
TBPSMR  
R/W  
0x00  
GPTM TimerB Prescale Match  
This value is used alongside GPTMTBMATCHR to detect timer match  
events while using a prescaler.  
July 24, 2012  
277  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
General-Purpose Timers  
Register 17: GPTM TimerA (GPTMTAR), offset 0x048  
This register shows the current value of the TimerA counter in all cases except for Input Edge Count  
mode. When in this mode, this register contains the number of edges that have occurred.  
GPTM TimerA (GPTMTAR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x048  
Type RO, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
TARH  
TARL  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
GPTM TimerA Register High  
TARH  
0xFFFF  
If the GPTMCFG is in a 32-bit mode, TimerB value is read. If the  
GPTMCFG is in a 16-bit mode, this is read as zero.  
15:0  
TARL  
RO  
0xFFFF  
GPTM TimerA Register Low  
A read returns the current value of the GPTM TimerA Count Register,  
except in Input Edge-Count mode, when it returns the number of edges  
that have occurred.  
278  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C  
This register shows the current value of the TimerB counter in all cases except for Input Edge Count  
mode. When in this mode, this register contains the number of edges that have occurred.  
GPTM TimerB (GPTMTBR)  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
Offset 0x04C  
Type RO, reset 0x0000.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
TBRL  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
TBRL  
RO  
0xFFFF  
GPTM TimerB  
A read returns the current value of the GPTM TimerB Count Register,  
except in Input Edge-Count mode, when it returns the number of edges  
that have occurred.  
July 24, 2012  
279  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
9
Watchdog Timer  
A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is  
reached. The watchdog timer is used to regain control when a system has failed due to a software  
error or due to the failure of an external device to respond in the expected way.  
The Stellaris® Watchdog Timer module has the following features:  
■ 32-bit down counter with a programmable load register  
■ Separate watchdog clock with an enable  
■ Programmable interrupt generation logic with interrupt masking  
■ Lock register protection from runaway software  
■ Reset generation logic with an enable/disable  
■ User-enabled stalling when the controller asserts the CPU Halt flag during debug  
The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out,  
and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured,  
the lock register can be written to prevent the timer configuration from being inadvertently altered.  
280  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
9.1  
Block Diagram  
Figure 9-1. WDT Module Block Diagram  
WDTLOAD  
Control / Clock /  
Interrupt  
Generation  
WDTCTL  
WDTICR  
Interrupt  
WDTRIS  
WDTMIS  
32-Bit Down  
Counter  
0x00000000  
WDTLOCK  
WDTTEST  
System Clock  
Comparator  
WDTVALUE  
Identification Registers  
WDTPCellID0 WDTPeriphID0 WDTPeriphID4  
WDTPCellID1 WDTPeriphID1 WDTPeriphID5  
WDTPCellID2 WDTPeriphID2 WDTPeriphID6  
WDTPCellID3 WDTPeriphID3 WDTPeriphID7  
9.2  
Functional Description  
The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches  
the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt.  
After the first time-out event, the 32-bit counter is re-loaded with the value of the Watchdog Timer  
Load (WDTLOAD) register, and the timer resumes counting down from that value. Once the  
Watchdog Timer has been configured, the Watchdog Timer Lock (WDTLOCK) register is written,  
which prevents the timer configuration from being inadvertently altered by software.  
If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the  
reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer  
asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its  
second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting  
resumes from that value.  
If WDTLOAD is written with a new value while the Watchdog Timer counter is counting, then the  
counter is loaded with the new value and continues counting.  
July 24, 2012  
281  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Watchdog Timer  
Writing to WDTLOAD does not clear an active interrupt. An interrupt must be specifically cleared  
by writing to the Watchdog Interrupt Clear (WDTICR) register.  
The Watchdog module interrupt and reset generation can be enabled or disabled as required. When  
the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its  
last state.  
9.3  
Initialization and Configuration  
To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the RCGC0 register.  
The Watchdog Timer is configured using the following sequence:  
1. Load the WDTLOAD register with the desired timer load value.  
2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.  
3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.  
If software requires that all of the watchdog registers are locked, the Watchdog Timer module can  
be fully locked by writing any value to the WDTLOCK register. To unlock the Watchdog Timer, write  
a value of 0x1ACC.E551.  
9.4  
Register Map  
Table 9-1 on page 282 lists the Watchdog registers. The offset listed is a hexadecimal increment to  
the register’s address, relative to the Watchdog Timer base address of 0x4000.0000.  
Table 9-1. Watchdog Timer Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x418  
0xC00  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
WDTLOAD  
R/W  
RO  
R/W  
WO  
RO  
RO  
R/W  
R/W  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0xFFFF.FFFF  
0xFFFF.FFFF  
0x0000.0000  
-
Watchdog Load  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
WDTVALUE  
WDTCTL  
Watchdog Value  
Watchdog Control  
WDTICR  
Watchdog Interrupt Clear  
WDTRIS  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0005  
0x0000.0018  
0x0000.0018  
Watchdog Raw Interrupt Status  
Watchdog Masked Interrupt Status  
Watchdog Test  
WDTMIS  
WDTTEST  
WDTLOCK  
Watchdog Lock  
WDTPeriphID4  
WDTPeriphID5  
WDTPeriphID6  
WDTPeriphID7  
WDTPeriphID0  
WDTPeriphID1  
WDTPeriphID2  
Watchdog Peripheral Identification 4  
Watchdog Peripheral Identification 5  
Watchdog Peripheral Identification 6  
Watchdog Peripheral Identification 7  
Watchdog Peripheral Identification 0  
Watchdog Peripheral Identification 1  
Watchdog Peripheral Identification 2  
282  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 9-1. Watchdog Timer Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
WDTPeriphID3  
WDTPCellID0  
WDTPCellID1  
WDTPCellID2  
WDTPCellID3  
RO  
RO  
RO  
RO  
RO  
0x0000.0001  
0x0000.000D  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
Watchdog Peripheral Identification 3  
Watchdog PrimeCell Identification 0  
Watchdog PrimeCell Identification 1  
Watchdog PrimeCell Identification 2  
Watchdog PrimeCell Identification 3  
299  
300  
301  
302  
303  
9.5  
Register Descriptions  
The remainder of this section lists and describes the WDT registers, in numerical order by address  
offset.  
July 24, 2012  
283  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 1: Watchdog Load (WDTLOAD), offset 0x000  
This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the  
value is immediately loaded and the counter restarts counting down from the new value. If the  
WDTLOAD register is loaded with 0x0000.0000, an interrupt is immediately generated.  
Watchdog Load (WDTLOAD)  
Base 0x4000.0000  
Offset 0x000  
Type R/W, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTLoad  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTLoad  
Type  
Reset  
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
R/W  
1
Bit/Field  
31:0  
Name  
WDTLoad  
Type  
R/W  
Reset  
Description  
0xFFFF.FFFF Watchdog Load Value  
284  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 2: Watchdog Value (WDTVALUE), offset 0x004  
This register contains the current count value of the timer.  
Watchdog Value (WDTVALUE)  
Base 0x4000.0000  
Offset 0x004  
Type RO, reset 0xFFFF.FFFF  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTValue  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTValue  
Type  
Reset  
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:0  
Name  
WDTValue  
Type  
RO  
Reset  
Description  
0xFFFF.FFFF Watchdog Value  
Current value of the 32-bit down counter.  
July 24, 2012  
285  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 3: Watchdog Control (WDTCTL), offset 0x008  
This register is the watchdog control register. The watchdog timer can be configured to generate a  
reset signal (on second time-out) or an interrupt on time-out.  
When the watchdog interrupt has been enabled, all subsequent writes to the control register are  
ignored. The only mechanism that can re-enable writes is a hardware reset.  
Watchdog Control (WDTCTL)  
Base 0x4000.0000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RESEN  
INTEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
RESEN  
R/W  
0
Watchdog Reset Enable  
The RESEN values are defined as follows:  
Value Description  
0
1
Disabled.  
Enable the Watchdog module reset output.  
0
INTEN  
R/W  
0
Watchdog Interrupt Enable  
The INTEN values are defined as follows:  
Value Description  
0
Interrupt event disabled (once this bit is set, it can only be  
cleared by a hardware reset).  
1
Interrupt event enabled. Once enabled, all writes are ignored.  
286  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C  
This register is the interrupt clear register. A write of any value to this register clears the Watchdog  
interrupt and reloads the 32-bit counter from the WDTLOAD register. Value for a read or reset is  
indeterminate.  
Watchdog Interrupt Clear (WDTICR)  
Base 0x4000.0000  
Offset 0x00C  
Type WO, reset -  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTIntClr  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTIntClr  
Type  
Reset  
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
WO  
-
Bit/Field  
31:0  
Name  
WDTIntClr  
Type  
WO  
Reset  
-
Description  
Watchdog Interrupt Clear  
July 24, 2012  
287  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010  
This register is the raw interrupt status register. Watchdog interrupt events can be monitored via  
this register if the controller interrupt is masked.  
Watchdog Raw Interrupt Status (WDTRIS)  
Base 0x4000.0000  
Offset 0x010  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDTRIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
WDTRIS  
RO  
0
Watchdog Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of WDTINTR.  
288  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014  
This register is the masked interrupt status register. The value of this register is the logical AND of  
the raw interrupt bit and the Watchdog interrupt enable bit.  
Watchdog Masked Interrupt Status (WDTMIS)  
Base 0x4000.0000  
Offset 0x014  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
WDTMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
WDTMIS  
RO  
0
Watchdog Masked Interrupt Status  
Gives the masked interrupt state (after masking) of the WDTINTR  
interrupt.  
July 24, 2012  
289  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 7: Watchdog Test (WDTTEST), offset 0x418  
This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag  
during debug.  
Watchdog Test (WDTTEST)  
Base 0x4000.0000  
Offset 0x418  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
STALL  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:9  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
8
STALL  
R/W  
RO  
0
Watchdog Stall Enable  
When set to 1, if the Stellaris microcontroller is stopped with a debugger,  
the watchdog timer stops counting. Once the microcontroller is restarted,  
the watchdog timer resumes counting.  
7:0  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
290  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 8: Watchdog Lock (WDTLOCK), offset 0xC00  
Writing 0x1ACC.E551 to the WDTLOCK register enables write access to all other registers. Writing  
any other value to the WDTLOCK register re-enables the locked state for register writes to all the  
other registers. Reading the WDTLOCK register returns the lock status rather than the 32-bit value  
written. Therefore, when write accesses are disabled, reading the WDTLOCK register returns  
0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).  
Watchdog Lock (WDTLOCK)  
Base 0x4000.0000  
Offset 0xC00  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
WDTLock  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
WDTLock  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:0  
Name  
WDTLock  
Type  
R/W  
Reset  
Description  
Watchdog Lock  
0x0000  
A write of the value 0x1ACC.E551 unlocks the watchdog registers for  
write access. A write of any other value reapplies the lock, preventing  
any register updates.  
A read of this register returns the following values:  
Value  
Description  
0x0000.0001 Locked  
0x0000.0000 Unlocked  
July 24, 2012  
291  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 4 (WDTPeriphID4)  
Base 0x4000.0000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x00  
WDT Peripheral ID Register[7:0]  
292  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset  
0xFD4  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 5 (WDTPeriphID5)  
Base 0x4000.0000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x00  
WDT Peripheral ID Register[15:8]  
July 24, 2012  
293  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset  
0xFD8  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 6 (WDTPeriphID6)  
Base 0x4000.0000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x00  
WDT Peripheral ID Register[23:16]  
294  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset  
0xFDC  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 7 (WDTPeriphID7)  
Base 0x4000.0000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x00  
WDT Peripheral ID Register[31:24]  
July 24, 2012  
295  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset  
0xFE0  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 0 (WDTPeriphID0)  
Base 0x4000.0000  
Offset 0xFE0  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x05  
Watchdog Peripheral ID Register[7:0]  
296  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset  
0xFE4  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 1 (WDTPeriphID1)  
Base 0x4000.0000  
Offset 0xFE4  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x18  
Watchdog Peripheral ID Register[15:8]  
July 24, 2012  
297  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset  
0xFE8  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 2 (WDTPeriphID2)  
Base 0x4000.0000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
Watchdog Peripheral ID Register[23:16]  
298  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset  
0xFEC  
The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog Peripheral Identification 3 (WDTPeriphID3)  
Base 0x4000.0000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
Watchdog Peripheral ID Register[31:24]  
July 24, 2012  
299  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 0 (WDTPCellID0)  
Base 0x4000.0000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
Watchdog PrimeCell ID Register[7:0]  
300  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 1 (WDTPCellID1)  
Base 0x4000.0000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
Watchdog PrimeCell ID Register[15:8]  
July 24, 2012  
301  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Watchdog Timer  
Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 2 (WDTPCellID2)  
Base 0x4000.0000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
Watchdog PrimeCell ID Register[23:16]  
302  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC  
The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset  
value.  
Watchdog PrimeCell Identification 3 (WDTPCellID3)  
Base 0x4000.0000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
Watchdog PrimeCell ID Register[31:24]  
July 24, 2012  
303  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
10  
Universal Asynchronous Receivers/Transmitters  
(UARTs)  
The Stellaris® Universal Asynchronous Receiver/Transmitter (UART) has the following features:  
■ Fully programmable 16C550-type UART  
■ Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading  
■ Programmable baud-rate generator allowing speeds up to 1.25 Mbps  
■ Programmable FIFO length, including 1-byte deep operation providing conventional  
double-buffered interface  
■ FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8  
■ Standard asynchronous communication bits for start, stop, and parity  
■ Line-break generation and detection  
■ Fully programmable serial interface characteristics  
5, 6, 7, or 8 data bits  
Even, odd, stick, or no-parity bit generation/detection  
1 or 2 stop bit generation  
304  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
10.1  
Block Diagram  
Figure 10-1. UART Module Block Diagram  
System Clock  
Interrupt  
Interrupt Control  
TxFIFO  
16 x 8  
UARTIFLS  
UARTIM  
UARTMIS  
UARTRIS  
UARTICR  
.
.
.
Identification  
Registers  
UnTx  
UARTPCellID0  
UARTPCellID1  
UARTPCellID2  
UARTPCellID3  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
UARTPeriphID3  
UARTPeriphID4  
UARTPeriphID5  
UARTPeriphID6  
UARTPeriphID7  
Transmitter  
Baud Rate  
Generator  
UARTIBRD  
UARTFBRD  
UARTDR  
UnRx  
Receiver  
Control/Status  
RxFIFO  
16 x 8  
UARTRSR/ECR  
UARTFR  
.
.
.
UARTLCRH  
UARTCTL  
UARTILPR  
10.2  
Signal Description  
Table 10-1 on page 305 and Table 10-2 on page 305 list the external signals of the UART module  
and describe the function of each. The UART signals are alternate functions for some GPIO signals  
and default to be GPIO signals at reset, with the exception of the U0Rx and U0Tx pins which default  
to the UART function. The column in the table below titled "Pin Assignment" lists the possible GPIO  
pin placements for these UART signals. The AFSEL bit in the GPIO Alternate Function Select  
(GPIOAFSEL) register (page 222) should be set to choose the UART function. For more information  
on configuring GPIOs, see “General-Purpose Input/Outputs (GPIOs)” on page 202.  
Table 10-1. UART Signals (28SOIC)  
Pin Name  
U0Rx  
Pin Number  
Pin Type  
Buffer Typea Description  
11  
12  
I
TTL  
TTL  
UART module 0 receive.  
UART module 0 transmit.  
U0Tx  
O
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
Table 10-2. UART Signals (48QFP)  
Pin Name  
Pin Number  
Pin Type  
Buffer Typea Description  
TTL UART module 0 receive.  
U0Rx  
17  
I
July 24, 2012  
305  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Table 10-2. UART Signals (48QFP) (continued)  
Pin Name  
Pin Number  
Pin Type  
Buffer Typea Description  
TTL UART module 0 transmit.  
U0Tx  
18  
O
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
10.3  
Functional Description  
Each Stellaris UART performs the functions of parallel-to-serial and serial-to-parallel conversions.  
It is similar in functionality to a 16C550 UART, but is not register compatible.  
The UART is configured for transmit and/or receive via the TXE and RXE bits of the UART Control  
(UARTCTL) register (see page 322). Transmit and receive are both enabled out of reset. Before any  
control registers are programmed, the UART must be disabled by clearing the UARTEN bit in  
UARTCTL. If the UART is disabled during a TX or RX operation, the current transaction is completed  
prior to the UART stopping.  
10.3.1  
Transmit/Receive Logic  
The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO.  
The control logic outputs the serial bit stream beginning with a start bit, and followed by the data  
bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control  
registers. See Figure 10-2 on page 306 for details.  
The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start  
pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also  
performed, and their status accompanies the data that is written to the receive FIFO.  
Figure 10-2. UART Character Frame  
UnTX  
1
1-2  
stop bits  
LSB  
MSB  
5-8 data bits  
0
n
Parity bit  
if enabled  
Start  
10.3.2  
Baud-Rate Generation  
The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part.  
The number formed by these two values is used by the baud-rate generator to determine the bit  
period. Having a fractional baud-rate divider allows the UART to generate all the standard baud  
rates.  
The 16-bit integer is loaded through the UART Integer Baud-Rate Divisor (UARTIBRD) register  
(see page 318) and the 6-bit fractional part is loaded with the UART Fractional Baud-Rate Divisor  
(UARTFBRD) register (see page 319). The baud-rate divisor (BRD) has the following relationship  
to the system clock (where BRDI is the integer part of the BRD and BRDF is the fractional part,  
separated by a decimal place.)  
BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)  
where UARTSysClk is the system clock connected to the UART.  
The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the UARTFBRD register)  
can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and  
adding 0.5 to account for rounding errors:  
306  
July 24, 2012  
Texas Instruments-Production Data  
 
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)  
The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as  
Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error  
detection during receive operations.  
Along with the UART Line Control, High Byte (UARTLCRH) register (see page 320), the UARTIBRD  
and UARTFBRD registers form an internal 30-bit register. This internal register is only updated  
when a write operation to UARTLCRH is performed, so any changes to the baud-rate divisor must  
be followed by a write to the UARTLCRH register for the changes to take effect.  
To update the baud-rate registers, there are four possible sequences:  
UARTIBRD write, UARTFBRD write, and UARTLCRH write  
UARTFBRD write, UARTIBRD write, and UARTLCRH write  
UARTIBRD write and UARTLCRH write  
UARTFBRD write and UARTLCRH write  
10.3.3  
Data Transmission  
Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra  
four bits per character for status information. For transmission, data is written into the transmit FIFO.  
If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated  
in the UARTLCRH register. Data continues to be transmitted until there is no data left in the transmit  
FIFO. The BUSY bit in the UART Flag (UARTFR) register (see page 316) is asserted as soon as  
data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while  
data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the  
last character has been transmitted from the shift register, including the stop bits. The UART can  
indicate that it is busy even though the UART may no longer be enabled.  
When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has  
been received), the receive counter begins running and data is sampled on the eighth cycle of  
Baud16 (described in “Transmit/Receive Logic” on page 306).  
The start bit is valid and recognized if UnRx is still low on the eighth cycle of Baud16, otherwise it  
is ignored. After a valid start bit is detected, successive data bits are sampled on every 16th cycle  
of Baud16 (that is, one bit period later) according to the programmed length of the data characters.  
The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the  
UARTLCRH register.  
Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When  
a full word is received, the data is stored in the receive FIFO, with any error bits associated with  
that word.  
10.3.4  
FIFO Operation  
The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed  
via the UART Data (UARTDR) register (see page 312). Read operations of the UARTDR register  
return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data  
in the transmit FIFO.  
Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are  
enabled by setting the FEN bit in UARTLCRH (page 320).  
July 24, 2012  
307  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
FIFO status can be monitored via the UART Flag (UARTFR) register (see page 316) and the UART  
Receive Status (UARTRSR) register. Hardware monitors empty, full and overrun conditions. The  
UARTFR register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the  
UARTRSR register shows overrun status via the OE bit.  
The trigger points at which the FIFOs generate interrupts is controlled via the UART Interrupt FIFO  
Level Select (UARTIFLS) register (see page 324). Both FIFOs can be individually configured to  
trigger interrupts at different levels. Available configurations include 1/8, ¼, ½, ¾, and 7/8. For  
example, if the ¼ option is selected for the receive FIFO, the UART generates a receive interrupt  
after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the  
½ mark.  
10.3.5  
Interrupts  
The UART can generate interrupts when the following conditions are observed:  
■ Overrun Error  
■ Break Error  
■ Parity Error  
■ Framing Error  
■ Receive Timeout  
■ Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)  
■ Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)  
All of the interrupt events are ORed together before being sent to the interrupt controller, so the  
UART can only generate a single interrupt request to the controller at any given time. Software can  
service multiple interrupt events in a single interrupt service routine by reading the UART Masked  
Interrupt Status (UARTMIS) register (see page 329).  
The interrupt events that can trigger a controller-level interrupt are defined in the UART Interrupt  
Mask (UARTIM ) register (see page 326) by setting the corresponding IM bit to 1. If interrupts are  
not used, the raw interrupt status is always visible via the UART Raw Interrupt Status (UARTRIS)  
register (see page 328).  
Interrupts are always cleared (for both the UARTMIS and UARTRIS registers) by setting the  
corresponding bit in the UART Interrupt Clear (UARTICR) register (see page 330).  
The receive interrupt changes state when one of the following events occurs:  
■ If the FIFOs are enabled and the receive FIFO reaches the programmed trigger level, the RXRIS  
bit is set. The receive interrupt is cleared by reading data from the receive FIFO until it becomes  
less than the trigger level, or by clearing the interrupt by writing a 1 to the RXIC bit.  
■ If the FIFOs are disabled (have a depth of one location) and data is received thereby filling the  
location, the RXRIS bit is set. The receive interrupt is cleared by performing a single read of the  
receive FIFO, or by clearing the interrupt by writing a 1 to the RXIC bit.  
The transmit interrupt changes state when one of the following events occurs:  
308  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
■ If the FIFOs are enabled and the transmit FIFO reaches the programmed trigger level, the TXRIS  
bit is set. The transmit interrupt is cleared by writing data to the transmit FIFO until it becomes  
greater than the trigger level, or by clearing the interrupt by writing a 1 to the TXIC bit.  
■ If the FIFOs are disabled (have a depth of one location) and there is no data present in the  
transmitters single location, the TXRIS bit is set. It is cleared by performing a single write to the  
transmit FIFO, or by clearing the interrupt by writing a 1 to the TXIC bit.  
10.3.6  
Loopback Operation  
The UART can be placed into an internal loopback mode for diagnostic or debug work. This is  
accomplished by setting the LBE bit in the UARTCTL register (see page 322). In loopback mode,  
data transmitted on UnTx is received on the UnRx input.  
10.4  
Initialization and Configuration  
To use the UART, the peripheral clock must be enabled by setting the UART0 bit in the RCGC1  
register.  
This section discusses the steps that are required to use a UART module. For this example, the  
UART clock is assumed to be 20 MHz and the desired UART configuration is:  
■ 115200 baud rate  
■ Data length of 8 bits  
■ One stop bit  
■ No parity  
■ FIFOs disabled  
■ No interrupts  
The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the  
UARTIBRD and UARTFBRD registers must be written before the UARTLCRH register. Using the  
equation described in “Baud-Rate Generation” on page 306, the BRD can be calculated:  
BRD = 20,000,000 / (16 * 115,200) = 10.8507  
which means that the DIVINT field of the UARTIBRD register (see page 318) should be set to 10.  
The value to be loaded into the UARTFBRD register (see page 319) is calculated by the equation:  
UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54  
With the BRD values in hand, the UART configuration is written to the module in the following order:  
1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.  
2. Write the integer portion of the BRD to the UARTIBRD register.  
3. Write the fractional portion of the BRD to the UARTFBRD register.  
4. Write the desired serial parameters to the UARTLCRH register (in this case, a value of  
0x0000.0060).  
July 24, 2012  
309  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
5. Enable the UART by setting the UARTEN bit in the UARTCTL register.  
10.5  
Register Map  
Table 10-3 on page 310 lists the UART registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that UART’s base address:  
■ UART0: 0x4000.C000  
Note that the UART module clock must be enabled before the registers can be programmed (see  
page 173). There must be a delay of 3 system clocks after the UART module clock is enabled before  
any UART module registers are accessed.  
Note: The UART must be disabled (see the UARTEN bit in the UARTCTL register on page 322)  
before any of the control registers are reprogrammed. When the UART is disabled during  
a TX or RX operation, the current transaction is completed prior to the UART stopping.  
Table 10-3. UART Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x018  
0x024  
0x028  
0x02C  
0x030  
0x034  
0x038  
0x03C  
0x040  
0x044  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
UARTDR  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0090  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0300  
0x0000.0012  
0x0000.0000  
0x0000.000F  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0011  
0x0000.0000  
0x0000.0018  
0x0000.0001  
0x0000.000D  
UART Data  
312  
314  
316  
318  
319  
320  
322  
324  
326  
328  
329  
330  
332  
333  
334  
335  
336  
337  
338  
339  
340  
UARTRSR/UARTECR  
UARTFR  
UART Receive Status/Error Clear  
UART Flag  
UARTIBRD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
UART Integer Baud-Rate Divisor  
UART Fractional Baud-Rate Divisor  
UART Line Control  
UARTFBRD  
UARTLCRH  
UARTCTL  
UART Control  
UARTIFLS  
UART Interrupt FIFO Level Select  
UART Interrupt Mask  
UARTIM  
UARTRIS  
UART Raw Interrupt Status  
UART Masked Interrupt Status  
UART Interrupt Clear  
UARTMIS  
RO  
UARTICR  
W1C  
RO  
UARTPeriphID4  
UARTPeriphID5  
UARTPeriphID6  
UARTPeriphID7  
UARTPeriphID0  
UARTPeriphID1  
UARTPeriphID2  
UARTPeriphID3  
UARTPCellID0  
UART Peripheral Identification 4  
UART Peripheral Identification 5  
UART Peripheral Identification 6  
UART Peripheral Identification 7  
UART Peripheral Identification 0  
UART Peripheral Identification 1  
UART Peripheral Identification 2  
UART Peripheral Identification 3  
UART PrimeCell Identification 0  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
310  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 10-3. UART Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0xFF4  
0xFF8  
0xFFC  
UARTPCellID1  
UARTPCellID2  
UARTPCellID3  
RO  
RO  
RO  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
UART PrimeCell Identification 1  
UART PrimeCell Identification 2  
UART PrimeCell Identification 3  
341  
342  
343  
10.6  
Register Descriptions  
The remainder of this section lists and describes the UART registers, in numerical order by address  
offset.  
July 24, 2012  
311  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 1: UART Data (UARTDR), offset 0x000  
Important: This register is read-sensitive. See the register description for details.  
This register is the data register (the interface to the FIFOs).  
When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs  
are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO).  
A write to this register initiates a transmission from the UART.  
For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity,  
and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and  
status are stored in the receiving holding register (the bottom word of the receive FIFO). The received  
data can be retrieved by reading this register.  
UART Data (UARTDR)  
UART0 base: 0x4000.C000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OE  
BE  
PE  
FE  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:12  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
11  
OE  
RO  
0
UART Overrun Error  
The OE values are defined as follows:  
Value Description  
0
1
There has been no data loss due to a FIFO overrun.  
New data was received when the FIFO was full, resulting in  
data loss.  
10  
BE  
RO  
0
UART Break Error  
This bit is set to 1 when a break condition is detected, indicating that  
the receive data input was held Low for longer than a full-word  
transmission time (defined as start, data, parity, and stop bits).  
In FIFO mode, this error is associated with the character at the top of  
the FIFO. When a break occurs, only one 0 character is loaded into the  
FIFO. The next character is only enabled after the received data input  
goes to a 1 (marking state) and the next valid start bit is received.  
312  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
9
Name  
PE  
Type  
RO  
Reset  
0
Description  
UART Parity Error  
This bit is set to 1 when the parity of the received data character does  
not match the parity defined by bits 2 and 7 of the UARTLCRH register.  
In FIFO mode, this error is associated with the character at the top of  
the FIFO.  
8
FE  
RO  
0
0
UART Framing Error  
This bit is set to 1 when the received character does not have a valid  
stop bit (a valid stop bit is 1).  
7:0  
DATA  
R/W  
Data Transmitted or Received  
When written, the data that is to be transmitted via the UART. When  
read, the data that was received by the UART.  
July 24, 2012  
313  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset  
0x004  
The UARTRSR/UARTECR register is the receive status register/error clear register.  
In addition to the UARTDR register, receive status can also be read from the UARTRSR register.  
If the status is read from this register, then the status information corresponds to the entry read from  
UARTDR prior to reading UARTRSR. The status information for overrun is set immediately when  
an overrun condition occurs.  
The UARTRSR register cannot be written.  
A write of any value to the UARTECR register clears the framing, parity, break, and overrun errors.  
All the bits are cleared to 0 on reset.  
Reads  
UART Receive Status/Error Clear (UARTRSR/UARTECR)  
UART0 base: 0x4000.C000  
Offset 0x004  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OE  
BE  
PE  
FE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
OE  
RO  
0
UART Overrun Error  
When this bit is set to 1, data is received and the FIFO is already full.  
This bit is cleared to 0 by a write to UARTECR.  
The FIFO contents remain valid since no further data is written when  
the FIFO is full, only the contents of the shift register are overwritten.  
The CPU must now read the data in order to empty the FIFO.  
2
BE  
RO  
0
UART Break Error  
This bit is set to 1 when a break condition is detected, indicating that  
the received data input was held Low for longer than a full-word  
transmission time (defined as start, data, parity, and stop bits).  
This bit is cleared to 0 by a write to UARTECR.  
In FIFO mode, this error is associated with the character at the top of  
the FIFO. When a break occurs, only one 0 character is loaded into the  
FIFO. The next character is only enabled after the receive data input  
goes to a 1 (marking state) and the next valid start bit is received.  
314  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
1
Name  
PE  
Type  
RO  
Reset  
0
Description  
UART Parity Error  
This bit is set to 1 when the parity of the received data character does  
not match the parity defined by bits 2 and 7 of the UARTLCRH register.  
This bit is cleared to 0 by a write to UARTECR.  
0
FE  
RO  
0
UART Framing Error  
This bit is set to 1 when the received character does not have a valid  
stop bit (a valid stop bit is 1).  
This bit is cleared to 0 by a write to UARTECR.  
In FIFO mode, this error is associated with the character at the top of  
the FIFO.  
Writes  
UART Receive Status/Error Clear (UARTRSR/UARTECR)  
UART0 base: 0x4000.C000  
Offset 0x004  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
31:8  
Name  
Type  
WO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
WO  
0
Error Clear  
A write to this register of any data clears the framing, parity, break, and  
overrun flags.  
July 24, 2012  
315  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 3: UART Flag (UARTFR), offset 0x018  
The UARTFR register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and  
TXFE and RXFE bits are 1.  
UART Flag (UARTFR)  
UART0 base: 0x4000.C000  
Offset 0x018  
Type RO, reset 0x0000.0090  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXFE  
RXFF  
TXFF  
RXFE  
BUSY  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
TXFE  
RO  
1
UART Transmit FIFO Empty  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled (FEN is 0), this bit is set when the transmit holding  
register is empty.  
If the FIFO is enabled (FEN is 1), this bit is set when the transmit FIFO  
is empty.  
6
5
4
RXFF  
TXFF  
RXFE  
RO  
RO  
RO  
0
0
1
UART Receive FIFO Full  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the receive holding register  
is full.  
If the FIFO is enabled, this bit is set when the receive FIFO is full.  
UART Transmit FIFO Full  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the transmit holding register  
is full.  
If the FIFO is enabled, this bit is set when the transmit FIFO is full.  
UART Receive FIFO Empty  
The meaning of this bit depends on the state of the FEN bit in the  
UARTLCRH register.  
If the FIFO is disabled, this bit is set when the receive holding register  
is empty.  
If the FIFO is enabled, this bit is set when the receive FIFO is empty.  
316  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
3
Name  
BUSY  
Type  
RO  
Reset  
0
Description  
UART Busy  
When this bit is 1, the UART is busy transmitting data. This bit remains  
set until the complete byte, including all stop bits, has been sent from  
the shift register.  
This bit is set as soon as the transmit FIFO becomes non-empty  
(regardless of whether UART is enabled).  
2:0  
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
317  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 4: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024  
The UARTIBRD register is the integer part of the baud-rate divisor value. All the bits are cleared  
on reset. The minimum possible divide ratio is 1 (when UARTIBRD=0), in which case the UARTFBRD  
register is ignored. When changing the UARTIBRD register, the new value does not take effect until  
transmission/reception of the current character is complete. Any changes to the baud-rate divisor  
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 306  
for configuration details.  
UART Integer Baud-Rate Divisor (UARTIBRD)  
UART0 base: 0x4000.C000  
Offset 0x024  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DIVINT  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
DIVINT  
R/W  
0x0000  
Integer Baud-Rate Divisor  
318  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 5: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028  
The UARTFBRD register is the fractional part of the baud-rate divisor value. All the bits are cleared  
on reset. When changing the UARTFBRD register, the new value does not take effect until  
transmission/reception of the current character is complete. Any changes to the baud-rate divisor  
must be followed by a write to the UARTLCRH register. See “Baud-Rate Generation” on page 306  
for configuration details.  
UART Fractional Baud-Rate Divisor (UARTFBRD)  
UART0 base: 0x4000.C000  
Offset 0x028  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DIVFRAC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5:0  
DIVFRAC  
R/W  
0x000  
Fractional Baud-Rate Divisor  
July 24, 2012  
319  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 6: UART Line Control (UARTLCRH), offset 0x02C  
The UARTLCRH register is the line control register. Serial parameters such as data length, parity,  
and stop bit selection are implemented in this register.  
When updating the baud-rate divisor (UARTIBRD and/or UARTIFRD), the UARTLCRH register  
must also be written. The write strobe for the baud-rate divisor registers is tied to the UARTLCRH  
register.  
UART Line Control (UARTLCRH)  
UART0 base: 0x4000.C000  
Offset 0x02C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SPS  
WLEN  
FEN  
STP2  
EPS  
PEN  
BRK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7
SPS  
R/W  
R/W  
0
0
UART Stick Parity Select  
When bits 1, 2, and 7 of UARTLCRH are set, the parity bit is transmitted  
and checked as a 0. When bits 1 and 7 are set and 2 is cleared, the  
parity bit is transmitted and checked as a 1.  
When this bit is cleared, stick parity is disabled.  
6:5  
WLEN  
UART Word Length  
The bits indicate the number of data bits transmitted or received in a  
frame as follows:  
Value Description  
0x3 8 bits  
0x2 7 bits  
0x1 6 bits  
0x0 5 bits (default)  
4
3
FEN  
R/W  
R/W  
0
0
UART Enable FIFOs  
If this bit is set to 1, transmit and receive FIFO buffers are enabled (FIFO  
mode).  
When cleared to 0, FIFOs are disabled (Character mode). The FIFOs  
become 1-byte-deep holding registers.  
STP2  
UART Two Stop Bits Select  
If this bit is set to 1, two stop bits are transmitted at the end of a frame.  
The receive logic does not check for two stop bits being received.  
320  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
2
Name  
EPS  
Type  
R/W  
Reset  
0
Description  
UART Even Parity Select  
If this bit is set to 1, even parity generation and checking is performed  
during transmission and reception, which checks for an even number  
of 1s in data and parity bits.  
When cleared to 0, then odd parity is performed, which checks for an  
odd number of 1s.  
This bit has no effect when parity is disabled by the PEN bit.  
1
0
PEN  
BRK  
R/W  
R/W  
0
0
UART Parity Enable  
If this bit is set to 1, parity checking and generation is enabled; otherwise,  
parity is disabled and no parity bit is added to the data frame.  
UART Send Break  
If this bit is set to 1, a Low level is continually output on the UnTX output,  
after completing transmission of the current character. For the proper  
execution of the break command, the software must set this bit for at  
least two frames (character periods). For normal use, this bit must be  
cleared to 0.  
July 24, 2012  
321  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 7: UART Control (UARTCTL), offset 0x030  
The UARTCTL register is the control register. All the bits are cleared on reset except for the  
Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.  
To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration  
change in the module, the UARTEN bit must be cleared before the configuration changes are written.  
If the UART is disabled during a transmit or receive operation, the current transaction is completed  
prior to the UART stopping.  
Note: The UARTCTL register should not be changed while the UART is enabled or else the results  
are unpredictable. The following sequence is recommended for making changes to the  
UARTCTL register.  
1. Disable the UART.  
2. Wait for the end of transmission or reception of the current character.  
3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).  
4. Reprogram the control register.  
5. Enable the UART.  
UART Control (UARTCTL)  
UART0 base: 0x4000.C000  
Offset 0x030  
Type R/W, reset 0x0000.0300  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RXE  
TXE  
LBE  
reserved  
UARTEN  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
1
R/W  
1
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
9
8
RXE  
R/W  
R/W  
1
1
UART Receive Enable  
If this bit is set to 1, the receive section of the UART is enabled. When  
the UART is disabled in the middle of a receive, it completes the current  
character before stopping.  
Note:  
To enable reception, the UARTEN bit must also be set.  
TXE  
UART Transmit Enable  
If this bit is set to 1, the transmit section of the UART is enabled. When  
the UART is disabled in the middle of a transmission, it completes the  
current character before stopping.  
Note:  
To enable transmission, the UARTEN bit must also be set.  
322  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
7
Name  
LBE  
Type  
R/W  
Reset  
0
Description  
UART Loop Back Enable  
If this bit is set to 1, the UnTX path is fed through the UnRX path.  
6:1  
0
reserved  
UARTEN  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
UART Enable  
If this bit is set to 1, the UART is enabled. When the UART is disabled  
in the middle of transmission or reception, it completes the current  
character before stopping.  
July 24, 2012  
323  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 8: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034  
The UARTIFLS register is the interrupt FIFO level select register. You can use this register to define  
the FIFO level at which the TXRIS and RXRIS bits in the UARTRIS register are triggered.  
The interrupts are generated based on a transition through a level rather than being based on the  
level. That is, the interrupts are generated when the fill level progresses through the trigger level.  
For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the  
module is receiving the 9th character.  
Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt  
at the half-way mark.  
UART Interrupt FIFO Level Select (UARTIFLS)  
UART0 base: 0x4000.C000  
Offset 0x034  
Type R/W, reset 0x0000.0012  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RXIFLSEL  
TXIFLSEL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
1
R/W  
0
R/W  
0
R/W  
1
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5:3  
RXIFLSEL  
R/W  
0x2  
UART Receive Interrupt FIFO Level Select  
The trigger points for the receive interrupt are as follows:  
Value Description  
0x0  
0x1  
0x2  
0x3  
0x4  
RX FIFO ≥ ⅛ full  
RX FIFO ≥ ¼ full  
RX FIFO ≥ ½ full (default)  
RX FIFO ≥ ¾ full  
RX FIFO ≥ ⅞ full  
0x5-0x7 Reserved  
324  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
2:0  
Name  
Type  
R/W  
Reset  
0x2  
Description  
TXIFLSEL  
UART Transmit Interrupt FIFO Level Select  
The trigger points for the transmit interrupt are as follows:  
Value  
0x0  
0x1  
0x2  
0x3  
0x4  
Description  
TX FIFO ≤ ⅞ empty  
TX FIFO ≤ ¾ empty  
TX FIFO ≤ ½ empty (default)  
TX FIFO ≤ ¼ empty  
TX FIFO ≤ ⅛ empty  
0x5-0x7 Reserved  
July 24, 2012  
325  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 9: UART Interrupt Mask (UARTIM), offset 0x038  
The UARTIM register is the interrupt mask set/clear register.  
On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to  
a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a  
0 prevents the raw interrupt signal from being sent to the interrupt controller.  
UART Interrupt Mask (UARTIM)  
UART0 base: 0x4000.C000  
Offset 0x038  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEIM  
BEIM  
PEIM  
FEIM  
RTIM  
TXIM  
RXIM  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
OEIM  
R/W  
0
0
0
0
0
0
0
UART Overrun Error Interrupt Mask  
On a read, the current mask for the OEIM interrupt is returned.  
Setting this bit to 1 promotes the OEIM interrupt to the interrupt controller.  
BEIM  
PEIM  
FEIM  
RTIM  
TXIM  
RXIM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
UART Break Error Interrupt Mask  
On a read, the current mask for the BEIM interrupt is returned.  
Setting this bit to 1 promotes the BEIM interrupt to the interrupt controller.  
8
UART Parity Error Interrupt Mask  
On a read, the current mask for the PEIM interrupt is returned.  
Setting this bit to 1 promotes the PEIM interrupt to the interrupt controller.  
7
UART Framing Error Interrupt Mask  
On a read, the current mask for the FEIM interrupt is returned.  
Setting this bit to 1 promotes the FEIM interrupt to the interrupt controller.  
6
UART Receive Time-Out Interrupt Mask  
On a read, the current mask for the RTIM interrupt is returned.  
Setting this bit to 1 promotes the RTIM interrupt to the interrupt controller.  
5
UART Transmit Interrupt Mask  
On a read, the current mask for the TXIM interrupt is returned.  
Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.  
4
UART Receive Interrupt Mask  
On a read, the current mask for the RXIM interrupt is returned.  
Setting this bit to 1 promotes the RXIM interrupt to the interrupt controller.  
326  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
3:0  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
327  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 10: UART Raw Interrupt Status (UARTRIS), offset 0x03C  
The UARTRIS register is the raw interrupt status register. On a read, this register gives the current  
raw status value of the corresponding interrupt. A write has no effect.  
UART Raw Interrupt Status (UARTRIS)  
UART0 base: 0x4000.C000  
Offset 0x03C  
Type RO, reset 0x0000.000F  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OERIS  
BERIS  
PERIS  
FERIS  
RTRIS  
TXRIS  
RXRIS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
Bit/Field  
31:11  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
OERIS  
BERIS  
PERIS  
FERIS  
RTRIS  
TXRIS  
RXRIS  
reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
UART Overrun Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
UART Break Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
8
0
UART Parity Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
7
0
UART Framing Error Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
6
0
UART Receive Time-Out Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
5
0
UART Transmit Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
4
0
UART Receive Raw Interrupt Status  
Gives the raw interrupt state (prior to masking) of this interrupt.  
3:0  
0xF  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
328  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 11: UART Masked Interrupt Status (UARTMIS), offset 0x040  
The UARTMIS register is the masked interrupt status register. On a read, this register gives the  
current masked status value of the corresponding interrupt. A write has no effect.  
UART Masked Interrupt Status (UARTMIS)  
UART0 base: 0x4000.C000  
Offset 0x040  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEMIS  
BEMIS  
PEMIS  
FEMIS  
RTMIS  
TXMIS  
RXMIS  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
9
OEMIS  
BEMIS  
PEMIS  
FEMIS  
RTMIS  
TXMIS  
RXMIS  
reserved  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0
0
0
0
0
0
0
0
UART Overrun Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
UART Break Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
8
UART Parity Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
7
UART Framing Error Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
6
UART Receive Time-Out Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
5
UART Transmit Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
4
UART Receive Masked Interrupt Status  
Gives the masked interrupt state of this interrupt.  
3:0  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
329  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 12: UART Interrupt Clear (UARTICR), offset 0x044  
The UARTICR register is the interrupt clear register. On a write of 1, the corresponding interrupt  
(both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.  
UART Interrupt Clear (UARTICR)  
UART0 base: 0x4000.C000  
Offset 0x044  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OEIC  
BEIC  
PEIC  
FEIC  
RTIC  
TXIC  
RXIC  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
W1C  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10  
OEIC  
W1C  
0
0
0
0
Overrun Error Interrupt Clear  
The OEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
9
BEIC  
PEIC  
FEIC  
W1C  
W1C  
W1C  
Break Error Interrupt Clear  
The BEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
8
Parity Error Interrupt Clear  
The PEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
7
Framing Error Interrupt Clear  
The FEIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
330  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
6
Name  
RTIC  
Type  
W1C  
Reset  
0
Description  
Receive Time-Out Interrupt Clear  
The RTIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
5
TXIC  
W1C  
W1C  
RO  
0
Transmit Interrupt Clear  
The TXIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
4
RXIC  
0
Receive Interrupt Clear  
The RXIC values are defined as follows:  
Value Description  
0
1
No effect on the interrupt.  
Clears interrupt.  
3:0  
reserved  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
331  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 13: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 4 (UARTPeriphID4)  
UART0 base: 0x4000.C000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x0000  
UART Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
332  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 14: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 5 (UARTPeriphID5)  
UART0 base: 0x4000.C000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x0000  
UART Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
333  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 15: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 6 (UARTPeriphID6)  
UART0 base: 0x4000.C000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x0000  
UART Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
334  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 16: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 7 (UARTPeriphID7)  
UART0 base: 0x4000.C000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x0000  
UART Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
335  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 17: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 0 (UARTPeriphID0)  
UART0 base: 0x4000.C000  
Offset 0xFE0  
Type RO, reset 0x0000.0011  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x11  
UART Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
336  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 18: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 1 (UARTPeriphID1)  
UART0 base: 0x4000.C000  
Offset 0xFE4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x00  
UART Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
337  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 19: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 2 (UARTPeriphID2)  
UART0 base: 0x4000.C000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
UART Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
338  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 20: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC  
The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the  
reset values.  
UART Peripheral Identification 3 (UARTPeriphID3)  
UART0 base: 0x4000.C000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
UART Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
339  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 21: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 0 (UARTPCellID0)  
UART0 base: 0x4000.C000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
UART PrimeCell ID Register[7:0]  
Provides software a standard cross-peripheral identification system.  
340  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 22: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 1 (UARTPCellID1)  
UART0 base: 0x4000.C000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
UART PrimeCell ID Register[15:8]  
Provides software a standard cross-peripheral identification system.  
July 24, 2012  
341  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Universal Asynchronous Receivers/Transmitters (UARTs)  
Register 23: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 2 (UARTPCellID2)  
UART0 base: 0x4000.C000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
UART PrimeCell ID Register[23:16]  
Provides software a standard cross-peripheral identification system.  
342  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 24: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC  
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset  
values.  
UART PrimeCell Identification 3 (UARTPCellID3)  
UART0 base: 0x4000.C000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
UART PrimeCell ID Register[31:24]  
Provides software a standard cross-peripheral identification system.  
July 24, 2012  
343  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
11  
Synchronous Serial Interface (SSI)  
The Stellaris® Synchronous Serial Interface (SSI) is a master or slave interface for synchronous  
serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas  
Instruments synchronous serial interfaces.  
The Stellaris SSI module has the following features:  
■ Master or slave operation  
■ Programmable clock bit rate and prescale  
■ Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep  
■ Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments  
synchronous serial interfaces  
■ Programmable data frame size from 4 to 16 bits  
■ Internal loopback test mode for diagnostic/debug testing  
11.1  
Block Diagram  
Figure 11-1. SSI Module Block Diagram  
Interrupt  
Interrupt Control  
SSIIM  
TxFIFO  
8 x16  
SSIMIS  
SSIRIS  
SSIICR  
Control/ Status  
.
.
.
SSICR0  
SSICR1  
SSISR  
SSITx  
SSIRx  
SSIClk  
SSIFss  
Transmit/  
Receive  
Logic  
SSIDR  
RxFIFO  
8 x16  
System Clock  
.
.
.
Clock  
Prescaler  
Identification  
Registers  
SSICPSR  
SSIPCellID0  
SSIPCellID1  
SSIPCellID2  
0
SSIPeriphID4  
SSIPeriphID 5  
SSIPeriphID 6  
SSIPeriphID  
1
2
SSIPeriphID  
SSIPeriphID  
SSIPCellID3 SSIPeriphID 3 SSIPeriphID7  
11.2  
Signal Description  
Table 11-1 on page 345 and Table 11-2 on page 345 list the external signals of the SSI module and  
describe the function of each. The SSI signals are alternate functions for some GPIO signals and  
344  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
default to be GPIO signals at reset., with the exception of the SSI0Clk, SSI0Fss, SSI0Rx, and  
SSI0Tx pins which default to the SSI function. The column in the table below titled "Pin Assignment"  
lists the possible GPIO pin placements for the SSI signals. The AFSEL bit in the GPIO Alternate  
Function Select (GPIOAFSEL) register (page 222) should be set to choose the SSI function. For  
more information on configuring GPIOs, see “General-Purpose Input/Outputs (GPIOs)” on page 202.  
Table 11-1. SSI Signals (28SOIC)  
Pin Name  
SSIClk  
SSIFss  
SSIRx  
Pin Number  
Pin Type  
Buffer Typea Description  
13  
14  
15  
16  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
SSI clock.  
SSI frame.  
SSI receive.  
SSI transmit.  
SSITx  
O
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
Table 11-2. SSI Signals (48QFP)  
Pin Name  
SSIClk  
SSIFss  
SSIRx  
Pin Number  
Pin Type  
Buffer Typea Description  
19  
20  
21  
22  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
SSI clock.  
SSI frame.  
SSI receive.  
SSI transmit.  
SSITx  
O
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
11.3  
Functional Description  
The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU  
accesses data, control, and status information. The transmit and receive paths are buffered with  
internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit  
and receive modes.  
11.3.1  
Bit Rate Generation  
The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output  
clock. Bit rates are supported to 1.5 MHz and higher, although maximum bit rate is determined by  
peripheral devices.  
The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided  
by an even prescale value CPSDVSR from 2 to 254, which is programmed in the SSI Clock Prescale  
(SSICPSR) register (see page 364). The clock is further divided by a value from 1 to 256, which is  
1 + SCR, where SCR is the value programmed in the SSI Control0 (SSICR0) register (see page 357).  
The frequency of the output clock SSIClk is defined by:  
SSIClk = FSysClk / (CPSDVSR * (1 + SCR))  
Note: For master mode, the system clock must be at least two times faster than the SSIClk. For  
slave mode, the system clock must be at least 12 times faster than the SSIClk.  
See “Synchronous Serial Interface (SSI)” on page 452 to view SSI timing parameters.  
July 24, 2012  
345  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
11.3.2  
FIFO Operation  
11.3.2.1 Transmit FIFO  
The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The  
CPU writes data to the FIFO by writing the SSI Data (SSIDR) register (see page 361), and data is  
stored in the FIFO until it is read out by the transmission logic.  
When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial  
conversion and transmission to the attached slave or master, respectively, through the SSITx pin.  
In slave mode, the SSI transmits data each time the master initiates a transaction. If the transmit  
FIFO is empty and the master initiates, the slave transmits the 8th most recent value in the transmit  
FIFO. If less than 8 values have been written to the transmit FIFO since the SSI module clock was  
enabled using the SSI bit in the RGCG1 register, then 0 is transmitted. Care should be taken to  
ensure that valid data is in the FIFO as needed. The SSI can be configured to generate an interrupt  
or a µDMA request when the FIFO is empty.  
11.3.2.2 Receive FIFO  
The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer.  
Received data from the serial interface is stored in the buffer until read out by the CPU, which  
accesses the read FIFO by reading the SSIDR register.  
When configured as a master or slave, serial data received through the SSIRx pin is registered  
prior to parallel loading into the attached slave or master receive FIFO, respectively.  
11.3.3  
Interrupts  
The SSI can generate interrupts when the following conditions are observed:  
■ Transmit FIFO service  
■ Receive FIFO service  
■ Receive FIFO time-out  
■ Receive FIFO overrun  
All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI  
can only generate a single interrupt request to the controller at any given time. You can mask each  
of the four individual maskable interrupts by setting the appropriate bits in the SSI Interrupt Mask  
(SSIIM) register (see page 365). Setting the appropriate mask bit to 1 enables the interrupt.  
Provision of the individual outputs, as well as a combined interrupt output, allows use of either a  
global interrupt service routine, or modular device drivers to handle interrupts. The transmit and  
receive dynamic dataflow interrupts have been separated from the status interrupts so that data  
can be read or written in response to the FIFO trigger levels. The status of the individual interrupt  
sources can be read from the SSI Raw Interrupt Status (SSIRIS) and SSI Masked Interrupt Status  
(SSIMIS) registers (see page 367 and page 368, respectively).  
11.3.4  
Frame Formats  
Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is  
transmitted starting with the MSB. There are three basic frame types that can be selected:  
Texas Instruments synchronous serial  
346  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
■ Freescale SPI  
■ MICROWIRE  
For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk  
transitions at the programmed frequency only during active transmission or reception of data. The  
idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive  
FIFO still contains data after a timeout period.  
For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFss ) pin is active Low,  
and is asserted (pulled down) during the entire transmission of the frame.  
For Texas Instruments synchronous serial frame format, the SSIFss pin is pulsed for one serial  
clock period starting at its rising edge, prior to the transmission of each frame. For this frame format,  
both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and  
latch data from the other device on the falling edge.  
Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a  
special master-slave messaging technique, which operates at half-duplex. In this mode, when a  
frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no  
incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes  
it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent,  
responds with the requested data. The returned data can be 4 to 16 bits in length, making the total  
frame length anywhere from 13 to 25 bits.  
11.3.4.1 Texas Instruments Synchronous Serial Frame Format  
Figure 11-2 on page 347 shows the Texas Instruments synchronous serial frame format for a single  
transmitted frame.  
Figure 11-2. TI Synchronous Serial Frame Format (Single Transfer)  
SSIClk  
SSIFss  
SSITx/SSIRx  
MSB  
LSB  
4 to 16 bits  
In this mode, SSIClk and SSIFss are forced Low, and the transmit data line SSITx is tristated  
whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFss is  
pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit  
FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB  
of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data  
is shifted onto the SSIRx pin by the off-chip serial slave device.  
Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on  
the falling edge of each SSIClk. The received data is transferred from the serial shifter to the receive  
FIFO on the first rising edge of SSIClk after the LSB has been latched.  
Figure 11-3 on page 348 shows the Texas Instruments synchronous serial frame format when  
back-to-back frames are transmitted.  
July 24, 2012  
347  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Figure 11-3. TI Synchronous Serial Frame Format (Continuous Transfer)  
SSIClk  
SSIFss  
SSITx/SSIRx  
MSB  
LSB  
4 to 16 bits  
11.3.4.2 Freescale SPI Frame Format  
The Freescale SPI interface is a four-wire interface where the SSIFss signal behaves as a slave  
select. The main feature of the Freescale SPI format is that the inactive state and phase of the  
SSIClk signal are programmable through the SPO and SPH bits within the SSISCR0 control register.  
SPO Clock Polarity Bit  
When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk  
pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not  
being transferred.  
SPH Phase Control Bit  
The SPH phase control bit selects the clock edge that captures data and allows it to change state.  
It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition  
before the first data capture edge. When the SPH phase control bit is Low, data is captured on the  
first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.  
11.3.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0  
Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and  
SPH=0 are shown in Figure 11-4 on page 348 and Figure 11-5 on page 349.  
Figure 11-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
SSITx  
LSB  
LSB  
Q
MSB  
4 to 16 bits  
MSB  
Note:  
Q is undefined.  
348  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 11-5. Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
SSITx  
LSB  
LSB  
MSB  
MSB  
LSB  
LSB  
MSB  
4 to16 bits  
MSB  
In this configuration, during idle periods:  
SSIClk is forced Low  
SSIFss is forced High  
■ The transmit data line SSITx is arbitrarily forced Low  
■ When the SSI is configured as a master, it enables the SSIClk pad  
■ When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto  
the SSIRx input line of the master. The master SSITx output pad is enabled.  
One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the  
master and slave data have been set, the SSIClk master clock pin goes High after one further half  
SSIClk period.  
The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.  
In the case of a single word transmission, after all bits of the data word have been transferred, the  
SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.  
However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed  
High between each data word transfer. This is because the slave select pin freezes the data in its  
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,  
the master device must raise the SSIFss pin of the slave device between each data transfer to  
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin  
is returned to its idle state one SSIClk period after the last bit has been captured.  
11.3.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1  
The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure  
11-6 on page 350, which covers both single and continuous transfers.  
July 24, 2012  
349  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Figure 11-6. Freescale SPI Frame Format with SPO=0 and SPH=1  
SSIClk  
SSIFss  
SSIRx  
SSITx  
Q
MSB  
LSB  
LSB  
Q
4 to 16 bits  
MSB  
Note:  
Q is undefined.  
In this configuration, during idle periods:  
SSIClk is forced Low  
SSIFss is forced High  
■ The transmit data line SSITx is arbitrarily forced Low  
■ When the SSI is configured as a master, it enables the SSIClk pad  
■ When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After  
a further one half SSIClk period, both master and slave valid data is enabled onto their respective  
transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.  
Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.  
In the case of a single word transfer, after all bits have been transferred, the SSIFss line is returned  
to its idle High state one SSIClk period after the last bit has been captured.  
For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words  
and termination is the same as that of the single word transfer.  
11.3.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0  
Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and  
SPH=0 are shown in Figure 11-7 on page 350 and Figure 11-8 on page 351.  
Figure 11-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0  
SSIClk  
SSIFss  
SSIRx  
SSITx  
MSB  
LSB  
LSB  
Q
4 to 16 bits  
MSB  
Note:  
Q is undefined.  
350  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 11-8. Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0  
SSIClk  
SSIFss  
SSITx/SSIRx  
LSB  
MSB  
LSB  
MSB  
4 to 16 bits  
In this configuration, during idle periods:  
SSIClk is forced High  
SSIFss is forced High  
■ The transmit data line SSITx is arbitrarily forced Low  
■ When the SSI is configured as a master, it enables the SSIClk pad  
■ When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low, which causes slave data to be immediately  
transferred onto the SSIRx line of the master. The master SSITx output pad is enabled.  
One half period later, valid master data is transferred to the SSITx line. Now that both the master  
and slave data have been set, the SSIClk master clock pin becomes Low after one further half  
SSIClk period. This means that data is captured on the falling edges and propagated on the rising  
edges of the SSIClk signal.  
In the case of a single word transmission, after all bits of the data word are transferred, the SSIFss  
line is returned to its idle High state one SSIClk period after the last bit has been captured.  
However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed  
High between each data word transfer. This is because the slave select pin freezes the data in its  
serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore,  
the master device must raise the SSIFss pin of the slave device between each data transfer to  
enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin  
is returned to its idle state one SSIClk period after the last bit has been captured.  
11.3.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1  
The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure  
11-9 on page 352, which covers both single and continuous transfers.  
July 24, 2012  
351  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Figure 11-9. Freescale SPI Frame Format with SPO=1 and SPH=1  
SSIClk  
SSIFss  
SSIRx  
SSITx  
MSB  
MSB  
Q
LSB  
LSB  
Q
4 to 16 bits  
Note:  
Q is undefined.  
In this configuration, during idle periods:  
SSIClk is forced High  
SSIFss is forced High  
■ The transmit data line SSITx is arbitrarily forced Low  
■ When the SSI is configured as a master, it enables the SSIClk pad  
■ When the SSI is configured as a slave, it disables the SSIClk pad  
If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is  
signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled.  
After a further one-half SSIClk period, both master and slave data are enabled onto their respective  
transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then  
captured on the rising edges and propagated on the falling edges of the SSIClk signal.  
After all bits have been transferred, in the case of a single word transmission, the SSIFss line is  
returned to its idle high state one SSIClk period after the last bit has been captured.  
For continuous back-to-back transmissions, the SSIFss pin remains in its active Low state, until  
the final bit of the last word has been captured, and then returns to its idle state as described above.  
For continuous back-to-back transfers, the SSIFss pin is held Low between successive data words  
and termination is the same as that of the single word transfer.  
11.3.4.7 MICROWIRE Frame Format  
Figure 11-10 on page 352 shows the MICROWIRE frame format, again for a single frame. Figure  
11-11 on page 353 shows the same format when back-to-back frames are transmitted.  
Figure 11-10. MICROWIRE Frame Format (Single Frame)  
SSIClk  
SSIFss  
SSITx  
SSIRx  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits  
output data  
352  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of  
full-duplex, using a master-slave message passing technique. Each serial transmission begins with  
an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this  
transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip  
slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has  
been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the  
total frame length anywhere from 13 to 25 bits.  
In this configuration, during idle periods:  
SSIClk is forced Low  
SSIFss is forced High  
■ The transmit data line SSITx is arbitrarily forced Low  
A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFss  
causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial  
shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the  
SSITx pin. SSIFss remains Low for the duration of the frame transmission. The SSIRx pin remains  
tristated during this transmission.  
The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of  
each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a  
one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven  
onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising  
edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one  
clock period after the last bit has been latched in the receive serial shifter, which causes the data  
to be transferred to the receive FIFO.  
Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk  
after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.  
For continuous transfers, data transmission begins and ends in the same manner as a single transfer.  
However, the SSIFss line is continuously asserted (held Low) and transmission of data occurs  
back-to-back. The control byte of the next frame follows directly after the LSB of the received data  
from the current frame. Each of the received values is transferred from the receive shifter on the  
falling edge of SSIClk, after the LSB of the frame has been latched into the SSI.  
Figure 11-11. MICROWIRE Frame Format (Continuous Transfer)  
SSIClk  
SSIFss  
SSITx  
LSB  
MSB  
LSB  
8-bit control  
SSIRx  
0
MSB  
MSB  
LSB  
4 to 16 bits  
output data  
In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of  
SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that  
the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.  
July 24, 2012  
353  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Figure 11-12 on page 354 illustrates these setup and hold time requirements. With respect to the  
SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss  
must have a setup of at least two times the period of SSIClk on which the SSI operates. With  
respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one  
SSIClk period.  
Figure 11-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements  
tSetup=(2*tSSIClk  
)
tHold=tSSIClk  
SSIClk  
SSIFss  
SSIRx  
First RX data to be  
sampled by SSI slave  
11.4  
Initialization and Configuration  
To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.  
For each of the frame formats, the SSI is configured using the following steps:  
1. Ensure that the SSE bit in the SSICR1 register is disabled before making any configuration  
changes.  
2. Select whether the SSI is a master or slave:  
a. For master operations, set the SSICR1 register to 0x0000.0000.  
b. For slave mode (output enabled), set the SSICR1 register to 0x0000.0004.  
c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.  
3. Configure the clock prescale divisor by writing the SSICPSR register.  
4. Write the SSICR0 register with the following configuration:  
■ Serial clock rate (SCR)  
■ Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)  
■ The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)  
■ The data size (DSS)  
5. Enable the SSI by setting the SSE bit in the SSICR1 register.  
As an example, assume the SSI must be configured to operate with the following parameters:  
■ Master operation  
■ Freescale SPI mode (SPO=1, SPH=1)  
354  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
■ 1 Mbps bit rate  
■ 8 data bits  
Assuming the system clock is 20 MHz, the bit rate calculation would be:  
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))  
1x106 = 20x106 / (CPSDVSR * (1 + SCR))  
In this case, if CPSDVSR=2, SCR must be 9.  
The configuration sequence would be as follows:  
1. Ensure that the SSE bit in the SSICR1 register is disabled.  
2. Write the SSICR1 register with a value of 0x0000.0000.  
3. Write the SSICPSR register with a value of 0x0000.0002.  
4. Write the SSICR0 register with a value of 0x0000.09C7.  
5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.  
11.5  
Register Map  
Table 11-3 on page 355 lists the SSI registers. The offset listed is a hexadecimal increment to the  
register’s address, relative to that SSI module’s base address:  
■ SSI0: 0x4000.8000  
Note that the SSI module clock must be enabled before the registers can be programmed (see  
page 173). There must be a delay of 3 system clocks after the SSI module clock is enabled before  
any SSI module registers are accessed.  
Note: The SSI must be disabled (see the SSE bit in the SSICR1 register) before any of the control  
registers are reprogrammed.  
Table 11-3. SSI Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
0x020  
SSICR0  
SSICR1  
SSIDR  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0003  
0x0000.0000  
0x0000.0000  
0x0000.0008  
0x0000.0000  
0x0000.0000  
SSI Control 0  
357  
359  
361  
362  
364  
365  
367  
368  
369  
SSI Control 1  
SSI Data  
SSISR  
SSI Status  
SSICPSR  
SSIIM  
R/W  
R/W  
RO  
SSI Clock Prescale  
SSI Interrupt Mask  
SSI Raw Interrupt Status  
SSI Masked Interrupt Status  
SSI Interrupt Clear  
SSIRIS  
SSIMIS  
SSIICR  
RO  
W1C  
July 24, 2012  
355  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Table 11-3. SSI Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0xFD0  
0xFD4  
0xFD8  
0xFDC  
0xFE0  
0xFE4  
0xFE8  
0xFEC  
0xFF0  
0xFF4  
0xFF8  
0xFFC  
SSIPeriphID4  
SSIPeriphID5  
SSIPeriphID6  
SSIPeriphID7  
SSIPeriphID0  
SSIPeriphID1  
SSIPeriphID2  
SSIPeriphID3  
SSIPCellID0  
SSIPCellID1  
SSIPCellID2  
SSIPCellID3  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0022  
0x0000.0000  
0x0000.0018  
0x0000.0001  
0x0000.000D  
0x0000.00F0  
0x0000.0005  
0x0000.00B1  
SSI Peripheral Identification 4  
SSI Peripheral Identification 5  
SSI Peripheral Identification 6  
SSI Peripheral Identification 7  
SSI Peripheral Identification 0  
SSI Peripheral Identification 1  
SSI Peripheral Identification 2  
SSI Peripheral Identification 3  
SSI PrimeCell Identification 0  
SSI PrimeCell Identification 1  
SSI PrimeCell Identification 2  
SSI PrimeCell Identification 3  
370  
371  
372  
373  
374  
375  
376  
377  
378  
379  
380  
381  
11.6  
Register Descriptions  
The remainder of this section lists and describes the SSI registers, in numerical order by address  
offset.  
356  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 1: SSI Control 0 (SSICR0), offset 0x000  
SSICR0 is control register 0 and contains bit fields that control various functions within the SSI  
module. Functionality such as protocol mode, clock rate, and data size are configured in this register.  
SSI Control 0 (SSICR0)  
SSI0 base: 0x4000.8000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
SCR  
SPH  
SPO  
FRF  
DSS  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:8  
SCR  
R/W  
0x0000  
SSI Serial Clock Rate  
The value SCR is used to generate the transmit and receive bit rate of  
the SSI. The bit rate is:  
BR=FSSIClk/(CPSDVSR * (1 + SCR))  
where CPSDVSR is an even value from 2-254 programmed in the  
SSICPSR register, and SCR is a value from 0-255.  
7
SPH  
R/W  
0
SSI Serial Clock Phase  
This bit is only applicable to the Freescale SPI Format.  
The SPH control bit selects the clock edge that captures data and allows  
it to change state. It has the most impact on the first bit transmitted by  
either allowing or not allowing a clock transition before the first data  
capture edge.  
When the SPH bit is 0, data is captured on the first clock edge transition.  
If SPH is 1, data is captured on the second clock edge transition.  
6
SPO  
FRF  
R/W  
R/W  
0
SSI Serial Clock Polarity  
This bit is only applicable to the Freescale SPI Format.  
When the SPO bit is 0, it produces a steady state Low value on the  
SSIClk pin. If SPO is 1, a steady state High value is placed on the  
SSIClk pin when data is not being transferred.  
5:4  
0x0  
SSI Frame Format Select  
The FRF values are defined as follows:  
Value Frame Format  
0x0 Freescale SPI Frame Format  
0x1 Texas Instruments Synchronous Serial Frame Format  
0x2 MICROWIRE Frame Format  
0x3 Reserved  
July 24, 2012  
357  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Bit/Field  
3:0  
Name  
DSS  
Type  
R/W  
Reset  
0x00  
Description  
SSI Data Size Select  
The DSS values are defined as follows:  
Value  
Data Size  
0x0-0x2 Reserved  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
4-bit data  
5-bit data  
6-bit data  
7-bit data  
8-bit data  
9-bit data  
0x9 10-bit data  
0xA 11-bit data  
0xB 12-bit data  
0xC 13-bit data  
0xD 14-bit data  
0xE 15-bit data  
0xF 16-bit data  
358  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 2: SSI Control 1 (SSICR1), offset 0x004  
SSICR1 is control register 1 and contains bit fields that control various functions within the SSI  
module. Master and slave mode functionality is controlled by this register.  
SSI Control 1 (SSICR1)  
SSI0 base: 0x4000.8000  
Offset 0x004  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SOD  
MS  
SSE  
LBM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
SOD  
R/W  
0
SSI Slave Mode Output Disable  
This bit is relevant only in the Slave mode (MS=1). In multiple-slave  
systems, it is possible for the SSI master to broadcast a message to all  
slaves in the system while ensuring that only one slave drives data onto  
the serial output line. In such systems, the TXD lines from multiple slaves  
could be tied together. To operate in such a system, the SOD bit can be  
configured so that the SSI slave does not drive the SSITx pin.  
The SOD values are defined as follows:  
Value Description  
0
1
SSI can drive SSITx output in Slave Output mode.  
SSI must not drive the SSITx output in Slave mode.  
2
MS  
R/W  
0
SSI Master/Slave Select  
This bit selects Master or Slave mode and can be modified only when  
SSI is disabled (SSE=0).  
The MS values are defined as follows:  
Value Description  
0
1
Device configured as a master.  
Device configured as a slave.  
July 24, 2012  
359  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Bit/Field  
1
Name  
SSE  
Type  
R/W  
Reset  
0
Description  
SSI Synchronous Serial Port Enable  
Setting this bit enables SSI operation.  
The SSE values are defined as follows:  
Value Description  
0
1
SSI operation disabled.  
SSI operation enabled.  
Note:  
This bit must be set to 0 before any control registers  
are reprogrammed.  
0
LBM  
R/W  
0
SSI Loopback Mode  
Setting this bit enables Loopback Test mode.  
The LBM values are defined as follows:  
Value Description  
0
1
Normal serial port operation enabled.  
Output of the transmit serial shift register is connected internally  
to the input of the receive serial shift register.  
360  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 3: SSI Data (SSIDR), offset 0x008  
Important: This register is read-sensitive. See the register description for details.  
SSIDR is the data register and is 16-bits wide. When SSIDR is read, the entry in the receive FIFO  
(pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI  
receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed  
to by the current FIFO write pointer).  
When SSIDR is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written  
to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is  
loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed  
bit rate.  
When a data size of less than 16 bits is selected, the user must right-justify data written to the  
transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is  
automatically right-justified in the receive buffer.  
When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is  
eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer.  
The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the SSICR1  
register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.  
SSI Data (SSIDR)  
SSI0 base: 0x4000.8000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
DATA  
Type  
Reset  
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:16  
Name  
Type  
RO  
Reset  
Description  
reserved  
0x0000  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
15:0  
DATA  
R/W  
0x0000  
SSI Receive/Transmit Data  
A read operation reads the receive FIFO. A write operation writes the  
transmit FIFO.  
Software must right-justify data when the SSI is programmed for a data  
size that is less than 16 bits. Unused bits at the top are ignored by the  
transmit logic. The receive logic automatically right-justifies the data.  
July 24, 2012  
361  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 4: SSI Status (SSISR), offset 0x00C  
SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.  
SSI Status (SSISR)  
SSI0 base: 0x4000.8000  
Offset 0x00C  
Type RO, reset 0x0000.0003  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BSY  
RFF  
RNE  
TNF  
TFE  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
R0  
1
Bit/Field  
31:5  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
4
BSY  
RO  
0
SSI Busy Bit  
The BSY values are defined as follows:  
Value Description  
0
1
SSI is idle.  
SSI is currently transmitting and/or receiving a frame, or the  
transmit FIFO is not empty.  
3
2
1
RFF  
RNE  
TNF  
RO  
RO  
RO  
0
0
1
SSI Receive FIFO Full  
The RFF values are defined as follows:  
Value Description  
0
1
Receive FIFO is not full.  
Receive FIFO is full.  
SSI Receive FIFO Not Empty  
The RNE values are defined as follows:  
Value Description  
0
1
Receive FIFO is empty.  
Receive FIFO is not empty.  
SSI Transmit FIFO Not Full  
The TNF values are defined as follows:  
Value Description  
0
1
Transmit FIFO is full.  
Transmit FIFO is not full.  
362  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
0
Name  
TFE  
Type  
R0  
Reset  
1
Description  
SSI Transmit FIFO Empty  
The TFE values are defined as follows:  
Value Description  
0
1
Transmit FIFO is not empty.  
Transmit FIFO is empty.  
July 24, 2012  
363  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 5: SSI Clock Prescale (SSICPSR), offset 0x010  
SSICPSR is the clock prescale register and specifies the division factor by which the system clock  
must be internally divided before further use.  
The value programmed into this register must be an even number between 2 and 254. The  
least-significant bit of the programmed number is hard-coded to zero. If an odd number is written  
to this register, data read back from this register has the least-significant bit as zero.  
SSI Clock Prescale (SSICPSR)  
SSI0 base: 0x4000.8000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CPSDVSR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CPSDVSR  
R/W  
0x00  
SSI Clock Prescale Divisor  
This value must be an even number from 2 to 254, depending on the  
frequency of SSIClk. The LSB always returns 0 on reads.  
364  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 6: SSI Interrupt Mask (SSIIM), offset 0x014  
The SSIIM register is the interrupt mask set or clear register. It is a read/write register and all bits  
are cleared to 0 on reset.  
On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to  
the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding  
mask.  
SSI Interrupt Mask (SSIIM)  
SSI0 base: 0x4000.8000  
Offset 0x014  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXIM  
RXIM  
RTIM  
RORIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
TXIM  
R/W  
R/W  
R/W  
0
0
0
SSI Transmit FIFO Interrupt Mask  
The TXIM values are defined as follows:  
Value Description  
0
1
TX FIFO half-empty or less condition interrupt is masked.  
TX FIFO half-empty or less condition interrupt is not masked.  
RXIM  
SSI Receive FIFO Interrupt Mask  
The RXIM values are defined as follows:  
Value Description  
0
1
RX FIFO half-full or more condition interrupt is masked.  
RX FIFO half-full or more condition interrupt is not masked.  
RTIM  
SSI Receive Time-Out Interrupt Mask  
The RTIM values are defined as follows:  
Value Description  
0
1
RX FIFO time-out interrupt is masked.  
RX FIFO time-out interrupt is not masked.  
July 24, 2012  
365  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Bit/Field  
0
Name  
Type  
R/W  
Reset  
0
Description  
RORIM  
SSI Receive Overrun Interrupt Mask  
The RORIM values are defined as follows:  
Value Description  
0
1
RX FIFO overrun interrupt is masked.  
RX FIFO overrun interrupt is not masked.  
366  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018  
The SSIRIS register is the raw interrupt status register. On a read, this register gives the current  
raw status value of the corresponding interrupt prior to masking. A write has no effect.  
SSI Raw Interrupt Status (SSIRIS)  
SSI0 base: 0x4000.8000  
Offset 0x018  
Type RO, reset 0x0000.0008  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXRIS  
RXRIS  
RTRIS RORRIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
TXRIS  
RXRIS  
RTRIS  
RO  
RO  
RO  
RO  
1
0
0
0
SSI Transmit FIFO Raw Interrupt Status  
Indicates that the transmit FIFO is half empty or less, when set.  
SSI Receive FIFO Raw Interrupt Status  
Indicates that the receive FIFO is half full or more, when set.  
SSI Receive Time-Out Raw Interrupt Status  
Indicates that the receive time-out has occurred, when set.  
RORRIS  
SSI Receive Overrun Raw Interrupt Status  
Indicates that the receive FIFO has overflowed, when set.  
July 24, 2012  
367  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C  
The SSIMIS register is the masked interrupt status register. On a read, this register gives the current  
masked status value of the corresponding interrupt. A write has no effect.  
SSI Masked Interrupt Status (SSIMIS)  
SSI0 base: 0x4000.8000  
Offset 0x01C  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TXMIS  
RXMIS  
RTMIS RORMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:4  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
0
TXMIS  
RXMIS  
RTMIS  
RO  
RO  
RO  
RO  
0
0
0
0
SSI Transmit FIFO Masked Interrupt Status  
Indicates that the transmit FIFO is half empty or less, when set.  
SSI Receive FIFO Masked Interrupt Status  
Indicates that the receive FIFO is half full or more, when set.  
SSI Receive Time-Out Masked Interrupt Status  
Indicates that the receive time-out has occurred, when set.  
RORMIS  
SSI Receive Overrun Masked Interrupt Status  
Indicates that the receive FIFO has overflowed, when set.  
368  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 9: SSI Interrupt Clear (SSIICR), offset 0x020  
The SSIICR register is the interrupt clear register. On a write of 1, the corresponding interrupt is  
cleared. A write of 0 has no effect.  
SSI Interrupt Clear (SSIICR)  
SSI0 base: 0x4000.8000  
Offset 0x020  
Type W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RTIC  
RORIC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
W1C  
0
W1C  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
RTIC  
W1C  
0
SSI Receive Time-Out Interrupt Clear  
The RTIC values are defined as follows:  
Value Description  
0
1
No effect on interrupt.  
Clears interrupt.  
0
RORIC  
W1C  
0
SSI Receive Overrun Interrupt Clear  
The RORIC values are defined as follows:  
Value Description  
0
1
No effect on interrupt.  
Clears interrupt.  
July 24, 2012  
369  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 4 (SSIPeriphID4)  
SSI0 base: 0x4000.8000  
Offset 0xFD0  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID4  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID4  
RO  
0x00  
SSI Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
370  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 5 (SSIPeriphID5)  
SSI0 base: 0x4000.8000  
Offset 0xFD4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID5  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID5  
RO  
0x00  
SSI Peripheral ID Register[15:8]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
371  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 6 (SSIPeriphID6)  
SSI0 base: 0x4000.8000  
Offset 0xFD8  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID6  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID6  
RO  
0x00  
SSI Peripheral ID Register[23:16]  
Can be used by software to identify the presence of this peripheral.  
372  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 7 (SSIPeriphID7)  
SSI0 base: 0x4000.8000  
Offset 0xFDC  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID7  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID7  
RO  
0x00  
SSI Peripheral ID Register[31:24]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
373  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 0 (SSIPeriphID0)  
SSI0 base: 0x4000.8000  
Offset 0xFE0  
Type RO, reset 0x0000.0022  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID0  
RO  
0x22  
SSI Peripheral ID Register[7:0]  
Can be used by software to identify the presence of this peripheral.  
374  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 1 (SSIPeriphID1)  
SSI0 base: 0x4000.8000  
Offset 0xFE4  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID1  
RO  
0x00  
SSI Peripheral ID Register [15:8]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
375  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 2 (SSIPeriphID2)  
SSI0 base: 0x4000.8000  
Offset 0xFE8  
Type RO, reset 0x0000.0018  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID2  
RO  
0x18  
SSI Peripheral ID Register [23:16]  
Can be used by software to identify the presence of this peripheral.  
376  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC  
The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset  
value.  
SSI Peripheral Identification 3 (SSIPeriphID3)  
SSI0 base: 0x4000.8000  
Offset 0xFEC  
Type RO, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
PID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
PID3  
RO  
0x01  
SSI Peripheral ID Register [31:24]  
Can be used by software to identify the presence of this peripheral.  
July 24, 2012  
377  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0  
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 0 (SSIPCellID0)  
SSI0 base: 0x4000.8000  
Offset 0xFF0  
Type RO, reset 0x0000.000D  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID0  
RO  
0x0D  
SSI PrimeCell ID Register [7:0]  
Provides software a standard cross-peripheral identification system.  
378  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 19: SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4  
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 1 (SSIPCellID1)  
SSI0 base: 0x4000.8000  
Offset 0xFF4  
Type RO, reset 0x0000.00F0  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID1  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
1
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID1  
RO  
0xF0  
SSI PrimeCell ID Register [15:8]  
Provides software a standard cross-peripheral identification system.  
July 24, 2012  
379  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Synchronous Serial Interface (SSI)  
Register 20: SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8  
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 2 (SSIPCellID2)  
SSI0 base: 0x4000.8000  
Offset 0xFF8  
Type RO, reset 0x0000.0005  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID2  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID2  
RO  
0x05  
SSI PrimeCell ID Register [23:16]  
Provides software a standard cross-peripheral identification system.  
380  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC  
The SSIPCellIDn registers are hard-coded, and the fields within the register determine the reset  
value.  
SSI PrimeCell Identification 3 (SSIPCellID3)  
SSI0 base: 0x4000.8000  
Offset 0xFFC  
Type RO, reset 0x0000.00B1  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
CID3  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
1
RO  
0
RO  
1
RO  
1
RO  
0
RO  
0
RO  
0
RO  
1
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
CID3  
RO  
0xB1  
SSI PrimeCell ID Register [31:24]  
Provides software a standard cross-peripheral identification system.  
July 24, 2012  
381  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
12  
Inter-Integrated Circuit (I2C) Interface  
The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design  
(a serial data line SDA and a serial clock line SCL), and interfaces to external I2C devices such as  
serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I2C  
bus may also be used for system testing and diagnostic purposes in product development and  
manufacture. The LM3S102 microcontroller includes one I2C module, providing the ability to interact  
(both send and receive) with other I2C devices on the bus.  
The Stellaris® I2C interface has the following features:  
■ Devices on the I2C bus can be designated as either a master or a slave  
Supports both sending and receiving data as either a master or a slave  
Supports simultaneous master and slave operation  
■ Four I2C modes  
Master transmit  
Master receive  
Slave transmit  
Slave receive  
■ Two transmission speeds: Standard (100 Kbps) and Fast (400 Kbps)  
■ Master and slave interrupt generation  
Master generates interrupts when a transmit or receive operation completes (or aborts due  
to an error)  
Slave generates interrupts when data has been sent or requested by a master  
■ Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing  
mode  
382  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
12.1  
Block Diagram  
Figure 12-1. I2C Block Diagram  
I2CSCL  
I2CSDA  
I2C Control  
I2C Master Core  
I2CMSA  
I2CMCS  
I2CMDR  
I2CMTPR  
I2CMIMR  
I2CMRIS  
I2CMMIS  
I2CMICR  
I2CMCR  
I2CSOAR  
I2CSCSR  
I2CSDR  
I2CSIM  
I2CSCL  
I2CSDA  
Interrupt  
I2C I/O Select  
I2CSRIS  
I2CSMIS  
I2CSICR  
I2CSCL  
I2CSDA  
I2C Slave Core  
12.2  
Signal Description  
Table 12-1 on page 383 and Table 12-2 on page 383 list the external signals of the I2C interface and  
describe the function of each. The I2C interface signals are alternate functions for some GPIO signals  
and default to be GPIO signals at reset., with the exception of the I2C0SCL and I2CSDA pins which  
default to the I2C function. The column in the table below titled "Pin Assignment" lists the possible  
GPIO pin placements for the I2C signals. The AFSEL bit in the GPIO Alternate Function Select  
(GPIOAFSEL) register (page 222) should be set to choose the I2C function. Note that the I2C pins  
should be set to open drain using the GPIO Open Drain Select (GPIOODR) register. For more  
information on configuring GPIOs, see “General-Purpose Input/Outputs (GPIOs)” on page 202.  
Table 12-1. I2C Signals (28SOIC)  
Pin Name  
I2CSCL  
I2CSDA  
Pin Number  
Pin Type  
I/O  
Buffer Typea Description  
23  
24  
OD  
OD  
I2C clock.  
I2C data.  
I/O  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
Table 12-2. I2C Signals (48QFP)  
Pin Name  
I2CSCL  
I2CSDA  
Pin Number  
Pin Type  
I/O  
Buffer Typea Description  
33  
34  
OD  
OD  
I2C clock.  
I2C data.  
I/O  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
12.3  
Functional Description  
I2C module is comprised of both master and slave functions which are implemented as separate  
peripherals. For proper operation, the SDA and SCL pins must be connected to bi-directional  
open-drain pads. A typical I2C bus configuration is shown in Figure 12-2 on page 384.  
See “Inter-Integrated Circuit (I2C) Interface” on page 453 for I2C timing diagrams.  
July 24, 2012  
383  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Figure 12-2. I2C Bus Configuration  
R
R
PUP  
PUP  
SCL  
SDA  
2
I C Bus  
I2CSCL I2CSDA  
SCL  
SDA  
SCL  
SDA  
3rd Party Device  
with I C Interface  
3rd Party Device  
with I C Interface  
TM  
2
2
Stellaris  
12.3.1  
I2C Bus Functional Overview  
The I2C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on Stellaris  
microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock  
line. The bus is considered idle when both lines are High.  
Every transaction on the I2C bus is nine bits long, consisting of eight data bits and a single  
acknowledge bit. The number of bytes per transfer (defined as the time between a valid START  
and STOP condition, described in “START and STOP Conditions” on page 384) is unrestricted, but  
each byte has to be followed by an acknowledge bit, and data must be transferred MSB first. When  
a receiver cannot receive another complete byte, it can hold the clock line SCL Low and force the  
transmitter into a wait state. The data transfer continues when the receiver releases the clock SCL.  
12.3.1.1 START and STOP Conditions  
The protocol of the I2C bus defines two states to begin and end a transaction: START and STOP.  
A High-to-Low transition on the SDA line while the SCL is High is defined as a START condition,  
and a Low-to-High transition on the SDA line while SCL is High is defined as a STOP condition.  
The bus is considered busy after a START condition and free after a STOP condition. See Figure  
12-3 on page 384.  
Figure 12-3. START and STOP Conditions  
SDA  
SCL  
SDA  
SCL  
START  
STOP  
condition  
condition  
12.3.1.2 Data Format with 7-Bit Address  
Data transfers follow the format shown in Figure 12-4 on page 385. After the START condition, a  
slave address is sent. This address is 7-bits long followed by an eighth bit, which is a data direction  
bit (R/S bit in the I2CMSA register). A zero indicates a transmit operation (send), and a one indicates  
a request for data (receive). A data transfer is always terminated by a STOP condition generated  
by the master, however, a master can initiate communications with another device on the bus by  
generating a repeated START condition and addressing another slave without first generating a  
STOP condition. Various combinations of receive/send formats are then possible within a single  
transfer.  
384  
July 24, 2012  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 12-4. Complete Data Transfer with a 7-Bit Address  
SDA  
MSB  
LSB  
R/S  
ACK  
MSB  
LSB  
ACK  
SCL  
1
2
7
8
9
1
2
7
8
9
Slave address  
Data  
The first seven bits of the first byte make up the slave address (see Figure 12-5 on page 385). The  
eighth bit determines the direction of the message. A zero in the R/S position of the first byte means  
that the master will write (send) data to the selected slave, and a one in this position means that  
the master will receive data from the slave.  
Figure 12-5. R/S Bit in First Byte  
MSB  
LSB  
R/S  
Slave address  
12.3.1.3 Data Validity  
The data on the SDA line must be stable during the high period of the clock, and the data line can  
only change when SCL is Low (see Figure 12-6 on page 385).  
Figure 12-6. Data Validity During Bit Transfer on the I2C Bus  
SDA  
SCL  
Change  
of data  
allowed  
Dataline  
stable  
12.3.1.4 Acknowledge  
All bus transactions have a required acknowledge clock cycle that is generated by the master. During  
the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA line.  
To acknowledge the transaction, the receiver must pull down SDA during the acknowledge clock  
cycle. The data sent out by the receiver during the acknowledge cycle must comply with the data  
validity requirements described in “Data Validity” on page 385.  
When a slave receiver does not acknowledge the slave address, SDA must be left High by the slave  
so that the master can generate a STOP condition and abort the current transfer. If the master  
device is acting as a receiver during a transfer, it is responsible for acknowledging each transfer  
made by the slave. Since the master controls the number of bytes in the transfer, it signals the end  
of data to the slave transmitter by not generating an acknowledge on the last data byte. The slave  
transmitter must then release SDA to allow the master to generate the STOP or a repeated START  
condition.  
12.3.1.5 Arbitration  
A master may start a transfer only if the bus is idle. It's possible for two or more masters to generate  
a START condition within minimum hold time of the START condition. In these situations, an  
July 24, 2012  
385  
Texas Instruments-Production Data  
 
 
 
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
arbitration scheme takes place on the SDA line, while SCL is High. During arbitration, the first of  
the competing master devices to place a '1' (High) on SDA while another master transmits a '0'  
(Low) will switch off its data output stage and retire until the bus is idle again.  
Arbitration can take place over several bits. Its first stage is a comparison of address bits, and if  
both masters are trying to address the same device, arbitration continues on to the comparison of  
data bits.  
12.3.2  
Available Speed Modes  
The I2C clock rate is determined by the parameters: CLK_PRD, TIMER_PRD, SCL_LP, and SCL_HP.  
where:  
CLK_PRD is the system clock period  
SCL_LP is the low phase of SCL (fixed at 6)  
SCL_HP is the high phase of SCL (fixed at 4)  
TIMER_PRD is the programmed value in the I2C Master Timer Period (I2CMTPR) register (see  
page 403).  
The I2C clock period is calculated as follows:  
SCL_PERIOD = 2*(1 + TIMER_PRD)*(SCL_LP + SCL_HP)*CLK_PRD  
For example:  
CLK_PRD = 50 ns  
TIMER_PRD = 2  
SCL_LP=6  
SCL_HP=4  
yields a SCL frequency of:  
1/T = 333 Khz  
Table 12-3 on page 386 gives examples of timer period, system clock, and speed mode (Standard  
or Fast).  
Table 12-3. Examples of I2C Master Timer Period versus Speed Mode  
System Clock  
4 MHz  
Timer Period  
0x01  
Standard Mode  
100 Kbps  
100 Kbps  
89 Kbps  
Timer Period  
Fast Mode  
-
-
6 MHz  
0x02  
-
-
12.5 MHz  
16.7 MHz  
20 MHz  
0x06  
0x01  
0x02  
0x02  
312 Kbps  
278 Kbps  
333 Kbps  
0x08  
93 Kbps  
0x09  
100 Kbps  
12.3.3  
Interrupts  
The I2C can generate interrupts when the following conditions are observed:  
■ Master transaction completed  
■ Master arbitration lost  
386  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
■ Master transaction error  
■ Slave transaction received  
■ Slave transaction requested  
There is a separate interrupt signal for the I2C master and I2C slave modules. While both modules  
can generate interrupts for multiple conditions, only a single interrupt signal is sent to the interrupt  
controller.  
12.3.3.1 I2C Master Interrupts  
The I2C master module generates an interrupt when a transaction completes (either transmit or  
receive), when arbitration is lost, or when an error occurs during a transaction. To enable the I2C  
master interrupt, software must set the IM bit in the I2C Master Interrupt Mask (I2CMIMR) register.  
When an interrupt condition is met, software must check the ERROR and ARBLST bits in the I2C  
Master Control/Status (I2CMCS) register to verify that an error didn't occur during the last transaction  
and to ensure that arbitration has not been lost. An error condition is asserted if the last transaction  
wasn't acknowledged by the slave. If an error is not detected and the master has not lost arbitration,  
the application can proceed with the transfer. The interrupt is cleared by writing a 1 to the IC bit in  
the I2C Master Interrupt Clear (I2CMICR) register.  
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via  
the I2C Master Raw Interrupt Status (I2CMRIS) register.  
12.3.3.2 I2C Slave Interrupts  
The slave module can generate an interrupt when data has been received or requested. This interrupt  
is enabled by writing a 1 to the DATAIM bit in the I2C Slave Interrupt Mask (I2CSIMR) register.  
Software determines whether the module should write (transmit) or read (receive) data from the I2C  
Slave Data (I2CSDR) register, by checking the RREQ and TREQ bits of the I2C Slave Control/Status  
(I2CSCSR) register. If the slave module is in receive mode and the first byte of a transfer is received,  
the FBR bit is set along with the RREQ bit. The interrupt is cleared by writing a 1 to the DATAIC bit  
in the I2C Slave Interrupt Clear (I2CSICR) register.  
If the application doesn't require the use of interrupts, the raw interrupt status is always visible via  
the I2C Slave Raw Interrupt Status (I2CSRIS) register.  
12.3.4  
12.3.5  
Loopback Operation  
The I2C modules can be placed into an internal loopback mode for diagnostic or debug work. This  
is accomplished by setting the LPBK bit in the I2C Master Configuration (I2CMCR) register. In  
loopback mode, the SDA and SCL signals from the master and slave modules are tied together.  
Command Sequence Flow Charts  
This section details the steps required to perform the various I2C transfer types in both master and  
slave mode.  
12.3.5.1 I2C Master Command Sequences  
The figures that follow show the command sequences available for the I2C master.  
July 24, 2012  
387  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Figure 12-7. Master Single SEND  
Idle  
Write Slave  
Address to  
I2CMSA  
Sequence  
may be  
omitted in a  
Single Master  
system  
Write data to  
I2CMDR  
Read I2CMCS  
NO  
BUSBSY bit=0?  
YES  
Write ---0-111 to  
I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Idle  
388  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 12-8. Master Single RECEIVE  
Idle  
Sequence may be  
omitted in a Single  
Master system  
Write Slave  
Address to  
I2CMSA  
Read I2CMCS  
NO  
BUSBSY bit=0?  
YES  
Write ---00111 to  
I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Read data from  
I2CMDR  
Idle  
July 24, 2012  
389  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Figure 12-9. Master Burst SEND  
Idle  
Write Slave  
Sequence  
Read I2CMCS  
Address to  
may be  
I2CMSA  
omitted in a  
Single Master  
system  
Write data to  
NO  
I2CMDR  
BUSY bit=0?  
YES  
Read I2CMCS  
NO  
ERROR bit=0?  
NO  
BUSBSY bit=0?  
YES  
NO  
Write data to  
I2CMDR  
ARBLST bit=1?  
YES  
Write ---0-011 to  
I2CMCS  
YES  
Write ---0-100 to  
I2CMCS  
NO  
Write ---0-001 to  
I2CMCS  
Index=n?  
Error Service  
YES  
Write ---0-101 to  
I2CMCS  
Idle  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
Error Service  
ERROR bit=0?  
YES  
Idle  
390  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 12-10. Master Burst RECEIVE  
Idle  
Sequence  
may be  
Write Slave  
Address to  
I2CMSA  
omitted in a  
Single Master  
system  
Read I2CMCS  
BUSY bit=0?  
Read I2CMCS  
NO  
YES  
NO  
BUSBSY bit=0?  
NO  
ERROR bit=0?  
YES  
NO  
ARBLST bit=1?  
Write ---01011 to  
I2CMCS  
Read data from  
I2CMDR  
YES  
Write ---0-100 to  
I2CMCS  
NO  
Write ---01001 to  
I2CMCS  
Index=m-1?  
Error Service  
Idle  
YES  
Write ---00101 to  
I2CMCS  
Read I2CMCS  
NO  
BUSY bit=0?  
YES  
NO  
ERROR bit=0?  
YES  
Read data from  
I2CMDR  
Error Service  
Idle  
July 24, 2012  
391  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Figure 12-11. Master Burst RECEIVE after Burst SEND  
Idle  
Master operates in  
Master Transmit mode  
STOP condition is not  
generated  
Write Slave  
Address to  
I2CMSA  
Write ---01011 to  
I2CMCS  
Repeated START  
condition is generated  
with changing data  
direction  
Master operates in  
Master Receive mode  
Idle  
392  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 12-12. Master Burst SEND after Burst RECEIVE  
Idle  
Master operates in  
Master Receive mode  
STOP condition is not  
generated  
Write Slave  
Address to  
I2CMSA  
Write ---0-011 to  
I2CMCS  
Repeated START  
condition is generated  
with changing data  
direction  
Master operates in  
Master Transmit mode  
Idle  
12.3.5.2 I2C Slave Command Sequences  
Figure 12-13 on page 394 presents the command sequence available for the I2C slave.  
July 24, 2012  
393  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Figure 12-13. Slave Command Sequence  
Idle  
Write OWN Slave  
Address to  
I2CSOAR  
Write -------1 to  
I2CSCSR  
Read I2CSCSR  
NO  
NO  
TREQ bit=1?  
RREQ bit=1?  
FBR is  
also valid  
YES  
YES  
Write data to  
I2CSDR  
Read data from  
I2CSDR  
12.4  
Initialization and Configuration  
The following example shows how to configure the I2C module to send a single byte as a master.  
This assumes the system clock is 20 MHz.  
1. Enable the I2C clock by writing a value of 0x0000.1000 to the RCGC1 register in the System  
Control module.  
2. Enable the clock to the appropriate GPIO module via the RCGC2 register in the System Control  
module.  
3. In the GPIO module, enable the appropriate pins for their alternate function using the  
GPIOAFSEL register. Also, be sure to enable the same pins for Open Drain operation.  
4. Initialize the I2C Master by writing the I2CMCR register with a value of 0x0000.0020.  
5. Set the desired SCL clock speed of 100 Kbps by writing the I2CMTPR register with the correct  
value. The value written to the I2CMTPR register represents the number of system clock periods  
in one SCL clock period. The TPR value is determined by the following equation:  
394  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
TPR = (System Clock / (2 * (SCL_LP + SCL_HP) * SCL_CLK)) - 1;  
TPR = (20MHz / (2 * (6 + 4) * 100000)) - 1;  
TPR = 9  
Write the I2CMTPR register with the value of 0x0000.0009.  
6. Specify the slave address of the master and that the next operation will be a Send by writing  
the I2CMSA register with a value of 0x0000.0076. This sets the slave address to 0x3B.  
7. Place data (byte) to be sent in the data register by writing the I2CMDR register with the desired  
data.  
8. Initiate a single byte send of the data from Master to Slave by writing the I2CMCS register with  
a value of 0x0000.0007 (STOP, START, RUN).  
9. Wait until the transmission completes by polling the I2CMCS register’s BUSBSY bit until it has  
been cleared.  
12.5  
Register Map  
Table 12-4 on page 395 lists the I2C registers. All addresses given are relative to the I2C base  
addresses for the master and slave:  
■ I2C 0: 0x4002.0000  
Note that the I2C module clock must be enabled before the registers can be programmed (see  
page 173). There must be a delay of 3 system clocks after the I2C module clock is enabled before  
any I2C module registers are accessed.  
The hw_i2c.h file in the StellarisWare® Driver Library uses a base address of 0x800 for the I2C slave  
registers. Be aware when using registers with offsets between 0x800 and 0x818 that StellarisWare  
uses an offset between 0x000 and 0x018 with the slave base address.  
Table 12-4. Inter-Integrated Circuit (I2C) Interface Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
I2C Master  
0x000  
0x004  
0x008  
0x00C  
0x010  
0x014  
0x018  
0x01C  
0x020  
I2CMSA  
I2CMCS  
I2CMDR  
I2CMTPR  
I2CMIMR  
I2CMRIS  
I2CMMIS  
I2CMICR  
I2CMCR  
R/W  
R/W  
R/W  
R/W  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0001  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
I2C Master Slave Address  
I2C Master Control/Status  
I2C Master Data  
397  
398  
402  
403  
404  
405  
406  
407  
408  
I2C Master Timer Period  
I2C Master Interrupt Mask  
I2C Master Raw Interrupt Status  
I2C Master Masked Interrupt Status  
I2C Master Interrupt Clear  
I2C Master Configuration  
RO  
WO  
R/W  
July 24, 2012  
395  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Table 12-4. Inter-Integrated Circuit (I2C) Interface Register Map (continued)  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
I2C Slave  
0x800  
0x804  
0x808  
0x80C  
0x810  
0x814  
0x818  
I2CSOAR  
I2CSCSR  
I2CSDR  
R/W  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
I2C Slave Own Address  
I2C Slave Control/Status  
I2C Slave Data  
410  
411  
413  
414  
415  
416  
417  
R/W  
R/W  
RO  
I2CSIMR  
I2CSRIS  
I2CSMIS  
I2CSICR  
I2C Slave Interrupt Mask  
I2C Slave Raw Interrupt Status  
I2C Slave Masked Interrupt Status  
I2C Slave Interrupt Clear  
RO  
WO  
12.6  
Register Descriptions (I2C Master)  
The remainder of this section lists and describes the I2C master registers, in numerical order by  
address offset. See also “Register Descriptions (I2C Slave)” on page 409.  
396  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 1: I2C Master Slave Address (I2CMSA), offset 0x000  
This register consists of eight bits: seven address bits (A6-A0), and a Receive/Send bit, which  
determines if the next operation is a Receive (High), or Send (Low).  
I2C Master Slave Address (I2CMSA)  
I2C 0 base: 0x4002.0000  
Offset 0x000  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SA  
R/S  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:1  
0
SA  
R/W  
R/W  
0
0
I2C Slave Address  
This field specifies bits A6 through A0 of the slave address.  
R/S  
Receive/Send  
The R/S bit specifies if the next operation is a Receive (High) or Send  
(Low).  
Value Description  
0
1
Send.  
Receive.  
July 24, 2012  
397  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 2: I2C Master Control/Status (I2CMCS), offset 0x004  
This register accesses four control bits when written, and accesses seven status bits when read.  
The status register consists of seven bits, which when read determine the state of the I2C bus  
controller.  
The control register consists of four bits: the RUN, START, STOP, and ACK bits. The START bit causes  
the generation of the START, or REPEATED START condition.  
The STOP bit determines if the cycle stops at the end of the data cycle, or continues on to a burst.  
To generate a single send cycle, the I2C Master Slave Address (I2CMSA) register is written with  
the desired address, the R/S bit is set to 0, and the Control register is written with ACK=X (0 or 1),  
STOP=1, START=1, and RUN=1 to perform the operation and stop. When the operation is completed  
(or aborted due an error), the interrupt pin becomes active and the data may be read from the  
I2CMDR register. When the I2C module operates in Master receiver mode, the ACK bit must be set  
normally to logic 1. This causes the I2C bus controller to send an acknowledge automatically after  
each byte. This bit must be reset when the I2C bus controller requires no further data to be sent  
from the slave transmitter.  
Reads  
I2C Master Control/Status (I2CMCS)  
I2C 0 base: 0x4002.0000  
Offset 0x004  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
BUSBSY  
IDLE  
ARBLST DATACK ADRACK ERROR  
BUSY  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6
BUSBSY  
RO  
0
Bus Busy  
This bit specifies the state of the I2C bus. If set, the bus is busy;  
otherwise, the bus is idle. The bit changes based on the START and  
STOP conditions.  
5
4
IDLE  
RO  
RO  
0
0
I2C Idle  
This bit specifies the I2C controller state. If set, the controller is idle;  
otherwise the controller is not idle.  
ARBLST  
Arbitration Lost  
This bit specifies the result of bus arbitration. If set, the controller lost  
arbitration; otherwise, the controller won arbitration.  
398  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
3
Name  
Type  
RO  
Reset  
0
Description  
DATACK  
Acknowledge Data  
This bit specifies the result of the last data operation. If set, the  
transmitted data was not acknowledged; otherwise, the data was  
acknowledged.  
2
1
ADRACK  
ERROR  
RO  
RO  
0
0
Acknowledge Address  
This bit specifies the result of the last address operation. If set, the  
transmitted address was not acknowledged; otherwise, the address was  
acknowledged.  
Error  
This bit specifies the result of the last bus operation. If set, an error  
occurred on the last operation; otherwise, no error was detected. The  
error can be from the slave address not being acknowledged or the  
transmit data not being acknowledged.  
0
BUSY  
RO  
0
I2C Busy  
This bit specifies the state of the controller. If set, the controller is busy;  
otherwise, the controller is idle. When the BUSY bit is set, the other status  
bits are not valid.  
Writes  
I2C Master Control/Status (I2CMCS)  
I2C 0 base: 0x4002.0000  
Offset 0x004  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
ACK  
STOP  
START  
RUN  
Type  
Reset  
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
WO  
0
Bit/Field  
31:4  
Name  
Type  
WO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
3
2
1
ACK  
WO  
WO  
WO  
0
0
0
Data Acknowledge Enable  
When set, causes received data byte to be acknowledged automatically  
by the master. See field decoding in Table 12-5 on page 400.  
STOP  
Generate STOP  
When set, causes the generation of the STOP condition. See field  
decoding in Table 12-5 on page 400.  
START  
Generate START  
When set, causes the generation of a START or repeated START  
condition. See field decoding in Table 12-5 on page 400.  
July 24, 2012  
399  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Bit/Field  
0
Name  
RUN  
Type  
WO  
Reset  
0
Description  
I2C Master Enable  
When set, allows the master to send or receive data. See field decoding  
in Table 12-5 on page 400.  
Table 12-5. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3)  
I2CMSA[0]  
I2CMCS[3:0]  
STOP START  
Current  
State  
Description  
R/S  
ACK  
RUN  
0
Xa  
0
1
1
START condition followed by SEND (master goes to the  
Master Transmit state).  
0
1
1
1
1
X
0
0
1
1
1
0
1
0
1
1
1
1
1
1
1
1
1
1
1
START condition followed by a SEND and STOP  
condition (master remains in Idle state).  
START condition followed by RECEIVE operation with  
negative ACK (master goes to the Master Receive state).  
Idle  
START condition followed by RECEIVE and STOP  
condition (master remains in Idle state).  
START condition followed by RECEIVE (master goes  
to the Master Receive state).  
Illegal.  
All other combinations not listed are non-operations. NOP.  
X
X
0
0
1
SEND operation (master remains in Master Transmit  
state).  
X
X
X
X
1
1
0
0
0
1
STOP condition (master goes to Idle state).  
SEND followed by STOP condition (master goes to Idle  
state).  
0
0
1
X
X
0
0
1
0
1
1
1
1
1
1
Repeated START condition followed by a SEND (master  
remains in Master Transmit state).  
Repeated START condition followed by SEND and STOP  
condition (master goes to Idle state).  
Master  
Transmit  
Repeated START condition followed by a RECEIVE  
operation with a negative ACK (master goes to Master  
Receive state).  
1
1
1
0
1
1
1
0
1
1
1
1
1
1
1
Repeated START condition followed by a SEND and  
STOP condition (master goes to Idle state).  
Repeated START condition followed by RECEIVE  
(master goes to Master Receive state).  
Illegal.  
All other combinations not listed are non-operations. NOP.  
400  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 12-5. Write Field Decoding for I2CMCS[3:0] Field (Sheet 1 of 3) (continued)  
I2CMSA[0]  
I2CMCS[3:0]  
STOP START  
Current  
State  
Description  
R/S  
ACK  
RUN  
X
0
0
0
1
RECEIVE operation with negative ACK (master remains  
in Master Receive state).  
X
X
X
0
1
1
0
0
0
1
STOP condition (master goes to Idle state).b  
RECEIVE followed by STOP condition (master goes to  
Idle state).  
X
1
0
0
1
RECEIVE operation (master remains in Master Receive  
state).  
X
1
1
0
1
0
0
1
1
1
Illegal.  
Repeated START condition followed by RECEIVE  
operation with a negative ACK (master remains in Master  
Receive state).  
Master  
Receive  
1
1
0
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
Repeated START condition followed by RECEIVE and  
STOP condition (master goes to Idle state).  
Repeated START condition followed by RECEIVE  
(master remains in Master Receive state).  
X
X
Repeated START condition followed by SEND (master  
goes to Master Transmit state).  
Repeated START condition followed by SEND and STOP  
condition (master goes to Idle state).  
All other combinations not listed are non-operations. NOP.  
a. An X in a table cell indicates the bit can be 0 or 1.  
b. In Master Receive mode, a STOP condition should be generated only after a Data Negative Acknowledge executed by  
the master or an Address Negative Acknowledge executed by the slave.  
July 24, 2012  
401  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 3: I2C Master Data (I2CMDR), offset 0x008  
Important: This register is read-sensitive. See the register description for details.  
This register contains the data to be transmitted when in the Master Transmit state, and the data  
received when in the Master Receive state.  
I2C Master Data (I2CMDR)  
I2C 0 base: 0x4002.0000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
R/W  
0x00  
Data Transferred  
Data transferred during transaction.  
402  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 4: I2C Master Timer Period (I2CMTPR), offset 0x00C  
This register specifies the period of the SCL clock.  
Caution – Take care not to set bit 7 when accessing this register as unpredictable behavior can occur.  
I2C Master Timer Period (I2CMTPR)  
I2C 0 base: 0x4002.0000  
Offset 0x00C  
Type R/W, reset 0x0000.0001  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
TPR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
1
Bit/Field  
31:7  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6:0  
TPR  
R/W  
0x1  
SCL Clock Period  
This field specifies the period of the SCL clock.  
SCL_PRD = 2*(1 + TPR)*(SCL_LP + SCL_HP)*CLK_PRD  
where:  
SCL_PRD is the SCL line period (I2C clock).  
TPR is the Timer Period register value (range of 1 to 127).  
SCL_LP is the SCL Low period (fixed at 6).  
SCL_HP is the SCL High period (fixed at 4).  
July 24, 2012  
403  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 5: I2C Master Interrupt Mask (I2CMIMR), offset 0x010  
This register controls whether a raw interrupt is promoted to a controller interrupt.  
I2C Master Interrupt Mask (I2CMIMR)  
I2C 0 base: 0x4002.0000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IM  
R/W  
0
Interrupt Mask  
This bit controls whether a raw interrupt is promoted to a controller  
interrupt. If set, the interrupt is not masked and the interrupt is promoted;  
otherwise, the interrupt is masked.  
404  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 6: I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014  
This register specifies whether an interrupt is pending.  
I2C Master Raw Interrupt Status (I2CMRIS)  
I2C 0 base: 0x4002.0000  
Offset 0x014  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
RIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
RIS  
RO  
0
Raw Interrupt Status  
This bit specifies the raw interrupt state (prior to masking) of the I2C  
master block. If set, an interrupt is pending; otherwise, an interrupt is  
not pending.  
July 24, 2012  
405  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 7: I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018  
This register specifies whether an interrupt was signaled.  
I2C Master Masked Interrupt Status (I2CMMIS)  
I2C 0 base: 0x4002.0000  
Offset 0x018  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
MIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
MIS  
RO  
0
Masked Interrupt Status  
This bit specifies the raw interrupt state (after masking) of the I2C master  
block. If set, an interrupt was signaled; otherwise, an interrupt has not  
been generated since the bit was last cleared.  
406  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 8: I2C Master Interrupt Clear (I2CMICR), offset 0x01C  
This register clears the raw interrupt.  
I2C Master Interrupt Clear (I2CMICR)  
I2C 0 base: 0x4002.0000  
Offset 0x01C  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IC  
WO  
0
Interrupt Clear  
This bit controls the clearing of the raw interrupt. A write of 1 clears the  
interrupt; otherwise, a write of 0 has no affect on the interrupt state. A  
read of this register returns no meaningful data.  
July 24, 2012  
407  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 9: I2C Master Configuration (I2CMCR), offset 0x020  
This register configures the mode (Master or Slave) and sets the interface for test mode loopback.  
I2C Master Configuration (I2CMCR)  
I2C 0 base: 0x4002.0000  
Offset 0x020  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
SFE  
MFE  
reserved  
LPBK  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:6  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
5
4
SFE  
R/W  
R/W  
0
0
I2C Slave Function Enable  
This bit specifies whether the interface may operate in Slave mode. If  
set, Slave mode is enabled; otherwise, Slave mode is disabled.  
MFE  
I2C Master Function Enable  
This bit specifies whether the interface may operate in Master mode. If  
set, Master mode is enabled; otherwise, Master mode is disabled and  
the interface clock is disabled.  
3:1  
0
reserved  
LPBK  
RO  
0x00  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
I2C Loopback  
This bit specifies whether the interface is operating normally or in  
Loopback mode. If set, the device is put in a test mode loopback  
configuration; otherwise, the device operates normally.  
408  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
12.7  
Register Descriptions (I2C Slave)  
The remainder of this section lists and describes the I2C slave registers, in numerical order by  
address offset. See also “Register Descriptions (I2C Master)” on page 396.  
July 24, 2012  
409  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 10: I2C Slave Own Address (I2CSOAR), offset 0x800  
This register consists of seven address bits that identify the Stellaris I2C device on the I2C bus.  
I2C Slave Own Address (I2CSOAR)  
I2C 0 base: 0x4002.0000  
Offset 0x800  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
OAR  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:7  
Name  
Type  
Reset  
0x00  
Description  
reserved  
RO  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
6:0  
OAR  
R/W  
0x00  
I2C Slave Own Address  
This field specifies bits A6 through A0 of the slave address.  
410  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 11: I2C Slave Control/Status (I2CSCSR), offset 0x804  
This register accesses one control bit when written, and three status bits when read.  
The read-only Status register consists of three bits: the FBR, RREQ, and TREQ bits. The First  
Byte Received (FBR) bit is set only after the Stellaris device detects its own slave address and  
receives the first data byte from the I2C master. The Receive Request (RREQ) bit indicates that  
the Stellaris I2C device has received a data byte from an I2C master. Read one data byte from the  
I2C Slave Data (I2CSDR) register to clear the RREQ bit. The Transmit Request (TREQ) bit  
indicates that the Stellaris I2C device is addressed as a Slave Transmitter. Write one data byte into  
the I2C Slave Data (I2CSDR) register to clear the TREQ bit.  
The write-only Control register consists of one bit: the DA bit. The DA bit enables and disables the  
Stellaris I2C slave operation.  
Reads  
I2C Slave Control/Status (I2CSCSR)  
I2C 0 base: 0x4002.0000  
Offset 0x804  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
FBR  
TREQ  
RREQ  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:3  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
2
1
FBR  
RO  
RO  
0
0
First Byte Received  
Indicates that the first byte following the slave’s own address is received.  
This bit is only valid when the RREQ bit is set, and is automatically cleared  
when data has been read from the I2CSDR register.  
Note:  
This bit is not used for slave transmit operations.  
TREQ  
RREQ  
Transmit Request  
This bit specifies the state of the I2C slave with regards to outstanding  
transmit requests. If set, the I2C unit has been addressed as a slave  
transmitter and uses clock stretching to delay the master until data has  
been written to the I2CSDR register. Otherwise, there is no outstanding  
transmit request.  
0
RO  
0
Receive Request  
This bit specifies the status of the I2C slave with regards to outstanding  
receive requests. If set, the I2C unit has outstanding receive data from  
the I2C master and uses clock stretching to delay the master until the  
data has been read from the I2CSDR register. Otherwise, no receive  
data is outstanding.  
July 24, 2012  
411  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Writes  
I2C Slave Control/Status (I2CSCSR)  
I2C 0 base: 0x4002.0000  
Offset 0x804  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
DA  
WO  
0
Device Active  
Value Description  
0
1
Disables the I2C slave operation.  
Enables the I2C slave operation.  
Once this bit has been set, it should not be set again unless it has been  
cleared by writing a 0 or by a reset, otherwise transfer failures may  
occur.  
412  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 12: I2C Slave Data (I2CSDR), offset 0x808  
Important: This register is read-sensitive. See the register description for details.  
This register contains the data to be transmitted when in the Slave Transmit state, and the data  
received when in the Slave Receive state.  
I2C Slave Data (I2CSDR)  
I2C 0 base: 0x4002.0000  
Offset 0x808  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATA  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:8  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
7:0  
DATA  
R/W  
0x0  
Data for Transfer  
This field contains the data for transfer during a slave receive or transmit  
operation.  
July 24, 2012  
413  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 13: I2C Slave Interrupt Mask (I2CSIMR), offset 0x80C  
This register controls whether a raw interrupt is promoted to a controller interrupt.  
I2C Slave Interrupt Mask (I2CSIMR)  
I2C 0 base: 0x4002.0000  
Offset 0x80C  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATAIM  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
DATAIM  
R/W  
0
Data Interrupt Mask  
This bit controls whether the raw interrupt for data received and data  
requested is promoted to a controller interrupt. If set, the interrupt is not  
masked and the interrupt is promoted; otherwise, the interrupt is masked.  
414  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 14: I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x810  
This register specifies whether an interrupt is pending.  
I2C Slave Raw Interrupt Status (I2CSRIS)  
I2C 0 base: 0x4002.0000  
Offset 0x810  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATARIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
DATARIS  
RO  
0
Data Raw Interrupt Status  
This bit specifies the raw interrupt state for data received and data  
requested (prior to masking) of the I2C slave block. If set, an interrupt  
is pending; otherwise, an interrupt is not pending.  
July 24, 2012  
415  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Inter-Integrated Circuit (I2C) Interface  
Register 15: I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x814  
This register specifies whether an interrupt was signaled.  
I2C Slave Masked Interrupt Status (I2CSMIS)  
I2C 0 base: 0x4002.0000  
Offset 0x814  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATAMIS  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
DATAMIS  
RO  
0
Data Masked Interrupt Status  
This bit specifies the interrupt state for data received and data requested  
(after masking) of the I2C slave block. If set, an interrupt was signaled;  
otherwise, an interrupt has not been generated since the bit was last  
cleared.  
416  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 16: I2C Slave Interrupt Clear (I2CSICR), offset 0x818  
This register clears the raw interrupt. A read of this register returns no meaningful data.  
I2C Slave Interrupt Clear (I2CSICR)  
I2C 0 base: 0x4002.0000  
Offset 0x818  
Type WO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
DATAIC  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
WO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
DATAIC  
WO  
0
Data Interrupt Clear  
This bit controls the clearing of the raw interrupt for data received and  
data requested. When set, it clears the DATARIS interrupt bit; otherwise,  
it has no effect on the DATARIS bit value.  
July 24, 2012  
417  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Analog Comparator  
13  
Analog Comparator  
An analog comparator is a peripheral that compares two analog voltages, and provides a logical  
output that signals the comparison result.  
Note: Not all comparators have the option to drive an output pin. See the Comparator Operating  
Mode tables in “Functional Description” on page 419 for more information.  
The comparator can provide its output to a device pin, acting as a replacement for an analog  
comparator on the board, or it can be used to signal the application via interrupts to cause it to start  
capturing a sample sequence.  
The Stellaris® Analog Comparators module has the following features:  
■ One integrated analog comparator  
■ Configurable for output to drive an output pin or generate an interrupt  
■ Compare external pin input to external pin input or to internal programmable voltage reference  
■ Compare a test voltage against any one of these voltages  
An individual external reference voltage  
A shared single external reference voltage  
A shared internal reference voltage  
13.1  
Block Diagram  
Figure 13-1. Analog Comparator Module Block Diagram  
C0-  
-ve input  
+ve input  
Comparator 0  
output  
C0+  
C0o  
+ve input (alternate)  
ACCTL0  
ACSTAT0  
interrupt  
reference input  
Interrupt Control  
Voltage  
Ref  
ACRIS  
ACMIS  
ACINTEN  
internal  
bus  
ACREFCTL  
interrupt  
13.2  
Signal Description  
Table 13-1 on page 419 and Table 13-2 on page 419 list the external signals of the Analog Comparators  
and describe the function of each. The Analog Comparator output signal is an alternate functions  
for a GPIO signal and default to be a GPIO signal at reset. The column in the table below titled "Pin  
Assignment" lists the possible GPIO pin placements for the Analog Comparator signals. The AFSEL  
bit in the GPIO Alternate Function Select (GPIOAFSEL) register (page 222) should be set to choose  
the Analog Comparator function. The positive and negative input signal are configured by clearing  
418  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
the DEN bit in the GPIO Digital Enable (GPIODEN) register. For more information on configuring  
GPIOs, see “General-Purpose Input/Outputs (GPIOs)” on page 202.  
Table 13-1. Analog Comparators Signals (28SOIC)  
Pin Name  
C0+  
Pin Number  
Pin Type  
Buffer Typea Description  
2
4
3
I
I
Analog  
Analog  
TTL  
Analog comparator 0 positive input.  
C0-  
Analog comparator 0 negative input.  
Analog comparator 0 output.  
C0o  
O
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
Table 13-2. Analog Comparators Signals (48QFP)  
Pin Name  
C0+  
Pin Number  
Pin Type  
Buffer Typea Description  
42  
44  
43  
I
I
Analog  
Analog  
TTL  
Analog comparator 0 positive input.  
Analog comparator 0 negative input.  
Analog comparator 0 output.  
C0-  
C0o  
O
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
13.3  
Functional Description  
Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module)  
for the analog input pin be disabled to prevent excessive current draw from the I/O  
pads.  
The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.  
VIN- < VIN+, VOUT = 1  
VIN- > VIN+, VOUT = 0  
As shown in Figure 13-2 on page 419, the input source for VIN- is an external input. In addition to  
an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.  
Figure 13-2. Structure of Comparator Unit  
-ve input  
0
1
2
output  
+ve input  
CINV  
IntGen  
(alternate)  
+ve input  
reference input  
ACCTL  
ACSTAT  
A comparator is configured through two status/control registers (ACCTL and ACSTAT ). The internal  
reference is configured through one control register (ACREFCTL). Interrupt status and control is  
July 24, 2012  
419  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Analog Comparator  
configured through three registers (ACMIS, ACRIS, and ACINTEN). The operating modes of the  
comparators are shown in the Comparator Operating Mode tables.  
Typically, the comparator output is used internally to generate controller interrupts. It may also be  
used to drive an external pin.  
Important: The ASRCP bits in the ACCTLn register must be set before using the analog  
comparators. The proper pad configuration for the comparator input and output pins  
are described in the Comparator Operating Mode tables.  
Table 13-3. Comparator 0 Operating Modes  
ACCTL0  
ASRCP  
00  
Comparator 0  
VIN-  
C0-  
C0-  
C0-  
C0-  
VIN+  
Output  
Interrupt  
C0+  
C0+  
C0o  
C0o  
C0o  
C0o  
yes  
yes  
yes  
yes  
01  
10  
Vref  
11  
reserved  
13.3.1  
Internal Reference Programming  
The structure of the internal reference is shown in Figure 13-3 on page 420. This is controlled by a  
single configuration register (ACREFCTL). Table 13-4 on page 420 shows the programming options  
to develop specific internal reference values, to compare an external voltage against a particular  
voltage generated internally.  
Figure 13-3. Comparator Internal Reference Structure  
8R  
AVDD  
8R  
R
R
R
•••  
EN  
15  
14  
1
0
•••  
Decoder  
internal  
reference  
VREF  
RNG  
Table 13-4. Internal Reference Voltage and ACREFCTL Field Values  
ACREFCTL Register  
Output Reference Voltage Based on VREF Field Value  
EN Bit Value  
RNG Bit Value  
EN=0  
RNG=X  
0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and  
VREF=0 for the least noisy ground reference.  
420  
July 24, 2012  
Texas Instruments-Production Data  
 
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 13-4. Internal Reference Voltage and ACREFCTL Field Values (continued)  
ACREFCTL Register  
Output Reference Voltage Based on VREF Field Value  
EN Bit Value  
RNG Bit Value  
RNG=0  
Total resistance in ladder is 31 R.  
The range of internal reference in this mode is 0.85-2.448 V.  
Total resistance in ladder is 23 R.  
EN=1  
RNG=1  
The range of internal reference for this mode is 0-2.152 V.  
13.4  
Initialization and Configuration  
The following example shows how to configure an analog comparator to read back its output value  
from an internal register.  
1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the RCGC1 register  
in the System Control module.  
2. In the GPIO module, enable the GPIO port/pin associated with C0- as a GPIO input.  
3. Configure the internal voltage reference to 1.65 V by writing the ACREFCTL register with the  
value 0x0000.030C.  
4. Configure comparator 0 to use the internal voltage reference and to not invert the output by  
writing the ACCTL0 register with the value of 0x0000.040C.  
5. Delay for some time.  
6. Read the comparator output value by reading the ACSTAT0 register’s OVAL value.  
Change the level of the signal input on C0- to see the OVAL value change.  
13.5  
Register Map  
Table 13-5 on page 422 lists the comparator registers. The offset listed is a hexadecimal increment  
to the register’s address, relative to the Analog Comparator base address of 0x4003.C000.  
Note that the analog comparator module clock must be enabled before the registers can be  
programmed (see page 173). There must be a delay of 3 system clocks after the ADC module clock  
is enabled before any ADC module registers are accessed.  
July 24, 2012  
421  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Analog Comparator  
Table 13-5. Analog Comparators Register Map  
See  
page  
Offset  
Name  
Type  
Reset  
Description  
0x000  
0x004  
0x008  
0x010  
0x020  
0x024  
ACMIS  
R/W1C  
RO  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
0x0000.0000  
Analog Comparator Masked Interrupt Status  
Analog Comparator Raw Interrupt Status  
Analog Comparator Interrupt Enable  
Analog Comparator Reference Voltage Control  
Analog Comparator Status 0  
423  
424  
425  
426  
427  
428  
ACRIS  
ACINTEN  
ACREFCTL  
ACSTAT0  
ACCTL0  
R/W  
R/W  
RO  
R/W  
Analog Comparator Control 0  
13.6  
Register Descriptions  
The remainder of this section lists and describes the Analog Comparator registers, in numerical  
order by address offset.  
422  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000  
This register provides a summary of the interrupt status (masked) of the comparator.  
Analog Comparator Masked Interrupt Status (ACMIS)  
Base 0x4003.C000  
Offset 0x000  
Type R/W1C, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W1C  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IN0  
R/W1C  
0
Comparator 0 Masked Interrupt Status  
Gives the masked interrupt state of this interrupt. Write 1 to this bit to  
clear the pending interrupt.  
July 24, 2012  
423  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Analog Comparator  
Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004  
This register provides a summary of the interrupt status (raw) of the comparator.  
Analog Comparator Raw Interrupt Status (ACRIS)  
Base 0x4003.C000  
Offset 0x004  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IN0  
RO  
0
Comparator 0 Interrupt Status  
When set, indicates that an interrupt has been generated by comparator  
0.  
424  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008  
This register provides the interrupt enable for the comparator.  
Analog Comparator Interrupt Enable (ACINTEN)  
Base 0x4003.C000  
Offset 0x008  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
IN0  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
Bit/Field  
31:1  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
0
IN0  
R/W  
0
Comparator 0 Interrupt Enable  
When set, enables the controller interrupt from the comparator 0 output.  
July 24, 2012  
425  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Analog Comparator  
Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset  
0x010  
This register specifies whether the resistor ladder is powered on as well as the range and tap.  
Analog Comparator Reference Voltage Control (ACREFCTL)  
Base 0x4003.C000  
Offset 0x010  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
EN  
RNG  
reserved  
VREF  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
Bit/Field  
31:10  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
9
EN  
R/W  
0
Resistor Ladder Enable  
The EN bit specifies whether the resistor ladder is powered on. If 0, the  
resistor ladder is unpowered. If 1, the resistor ladder is connected to  
the analog VDD  
.
This bit is reset to 0 so that the internal reference consumes the least  
amount of power if not used and programmed.  
8
RNG  
R/W  
0
Resistor Ladder Range  
The RNG bit specifies the range of the resistor ladder. If 0, the resistor  
ladder has a total resistance of 31 R. If 1, the resistor ladder has a total  
resistance of 23 R.  
7:4  
3:0  
reserved  
VREF  
RO  
0x00  
0x00  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Resistor Ladder Voltage Ref  
The VREF bit field specifies the resistor ladder tap that is passed through  
an analog multiplexer. The voltage corresponding to the tap position is  
the internal reference voltage available for comparison. See Table  
13-4 on page 420 for some output reference voltage examples.  
426  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020  
This register specifies the current output value of the comparator.  
Analog Comparator Status 0 (ACSTAT0)  
Base 0x4003.C000  
Offset 0x020  
Type RO, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
OVAL  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
Bit/Field  
31:2  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
1
0
OVAL  
RO  
RO  
0
0
Comparator Output Value  
The OVAL bit specifies the current output value of the comparator.  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
427  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Analog Comparator  
Register 6: Analog Comparator Control 0 (ACCTL0), offset 0x024  
This register configures the comparator’s input and output.  
Analog Comparator Control 0 (ACCTL0)  
Base 0x4003.C000  
Offset 0x024  
Type R/W, reset 0x0000.0000  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
reserved  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
reserved  
reserved  
ASRCP  
reserved  
ISLVAL  
ISEN  
CINV  
Type  
Reset  
RO  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
RO  
0
RO  
0
RO  
0
RO  
0
R/W  
0
R/W  
0
R/W  
0
R/W  
0
RO  
0
Bit/Field  
31:11  
Name  
Type  
RO  
Reset  
0x00  
Description  
reserved  
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
10:9  
ASRCP  
R/W  
0x00  
Analog Source Positive  
The ASRCP field specifies the source of input voltage to the VIN+ terminal  
of the comparator. The encodings for this field are as follows:  
Value Function  
0x0 Pin value  
0x1 Pin value of C0+  
0x2 Internal voltage reference  
0x3 Reserved  
8:5  
4
reserved  
ISLVAL  
RO  
0
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
R/W  
Interrupt Sense Level Value  
The ISLVAL bit specifies the sense value of the input that generates  
an interrupt if in Level Sense mode. If 0, an interrupt is generated if the  
comparator output is Low. Otherwise, an interrupt is generated if the  
comparator output is High.  
3:2  
ISEN  
R/W  
0x0  
Interrupt Sense  
The ISEN field specifies the sense of the comparator output that  
generates an interrupt. The sense conditioning is as follows:  
Value Function  
0x0 Level sense, see ISLVAL  
0x1 Falling edge  
0x2 Rising edge  
0x3 Either edge  
428  
July 24, 2012  
Texas Instruments-Production Data  
 
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Bit/Field  
1
Name  
CINV  
Type  
R/W  
Reset  
0
Description  
Comparator Output Invert  
The CINV bit conditionally inverts the output of the comparator. If 0, the  
output of the comparator is unchanged. If 1, the output of the comparator  
is inverted prior to being processed by hardware.  
0
reserved  
RO  
0
Software should not rely on the value of a reserved bit. To provide  
compatibility with future products, the value of a reserved bit should be  
preserved across a read-modify-write operation.  
July 24, 2012  
429  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Pin Diagram  
14  
Pin Diagram  
The LM3S102 microcontroller pin diagrams are shown below.  
Note: The 28-pin SOIC package is OBSOLETE. TI has discontinued production of this device.  
Figure 14-1. 28-Pin SOIC Package Pin Diagram  
430  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 14-2. 48-Pin QFP Package Pin Diagram  
July 24, 2012  
431  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Signal Tables  
15  
Signal Tables  
Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7  
and PC[3:0]) which default to the JTAG functionality.  
The following tables list the signals available for each pin. Functionality is enabled by software with  
the GPIOAFSEL register. All digital inputs are Schmitt triggered.  
■ Signals by Pin Number  
■ Signals by Signal Name  
■ Signals by Function, Except for GPIO  
■ GPIO Pins and Alternate Functions  
■ Connections for Unused Signals  
Important: The 28-pin SOIC package is OBSOLETE. TI has discontinued production of this device.  
15.1  
28-Pin SOIC Package Pin Tables  
15.1.1  
Signals by Pin Number  
Table 15-1. Signals by Pin Number  
Pin Number  
Pin Name  
PB7  
Pin Type  
Buffer Typea Description  
I/O  
I
TTL  
TTL  
GPIO port B bit 7.  
1
TRST  
PB6  
JTAG TRST.  
I/O  
I
TTL  
GPIO port B bit 6.  
2
C0+  
Analog  
TTL  
Analog comparator 0 positive input.  
Capture/Compare/PWM 1.  
GPIO port B bit 5.  
CCP1  
PB5  
I/O  
I/O  
O
I/O  
I
TTL  
3
4
C0o  
TTL  
Analog comparator 0 output.  
GPIO port B bit 4.  
PB4  
TTL  
C0-  
Analog  
TTL  
Analog comparator 0 negative input.  
System reset input.  
5
6
RST  
I
LDO  
-
Power  
Low drop-out regulator output voltage. This pin requires an external  
capacitor between the pin and GND of 1 µF or greater.  
7
8
9
VDD  
GND  
-
-
Power  
Power  
Analog  
Analog  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
OSC0  
OSC1  
I
Main oscillator crystal input or an external clock reference input.  
O
Main oscillator crystal output. Leave unconnected when using a  
single-ended clock source.  
10  
11  
PA0  
U0Rx  
PA1  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port A bit 0.  
UART module 0 receive.  
GPIO port A bit 1.  
UART module 0 transmit.  
GPIO port A bit 2.  
SSI clock.  
I/O  
O
12  
13  
U0Tx  
PA2  
I/O  
I/O  
SSIClk  
432  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 15-1. Signals by Pin Number (continued)  
Pin Number  
Pin Name  
PA3  
Pin Type  
Buffer Typea Description  
I/O  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Power  
Power  
TTL  
TTL  
TTL  
TTL  
Power  
Power  
TTL  
OD  
GPIO port A bit 3.  
14  
SSIFss  
PA4  
SSI frame.  
GPIO port A bit 4.  
SSI receive.  
15  
16  
SSIRx  
PA5  
I/O  
O
GPIO port A bit 5.  
SSI transmit.  
SSITx  
VDD  
17  
18  
-
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
GPIO port B bit 0.  
GND  
-
PB0  
I/O  
I/O  
I/O  
I
19  
20  
CCP0  
PB1  
Capture/Compare/PWM 0.  
GPIO port B bit 1.  
32KHz  
GND  
32-KHz input to the timer.  
Ground reference for logic and I/O pins.  
Positive supply for I/O and some logic.  
GPIO port B bit 2.  
21  
22  
-
VDD  
-
PB2  
I/O  
I/O  
I/O  
I/O  
I/O  
O
23  
24  
I2CSCL  
PB3  
I2C clock.  
TTL  
OD  
GPIO port B bit 3.  
I2CSDA  
PC3  
I2C data.  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port C bit 3.  
25  
26  
27  
SWO  
JTAG TDO and SWO.  
JTAG TDO and SWO.  
GPIO port C bit 2.  
TDO  
O
PC2  
I/O  
I
TDI  
JTAG TDI.  
PC1  
I/O  
I/O  
I/O  
I/O  
I
GPIO port C bit 1.  
SWDIO  
TMS  
JTAG TMS and SWDIO.  
JTAG TMS and SWDIO.  
GPIO port C bit 0.  
PC0  
28  
SWCLK  
TCK  
JTAG/SWD CLK.  
I
JTAG/SWD CLK.  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
15.1.2  
Signals by Signal Name  
Table 15-2. Signals by Signal Name  
Pin Name  
32KHz  
C0+  
Pin Number  
Pin Type  
Buffer Typea Description  
20  
2
I
I
TTL  
Analog  
Analog  
TTL  
32-KHz input to the timer.  
Analog comparator 0 positive input.  
Analog comparator 0 negative input.  
Analog comparator 0 output.  
Capture/Compare/PWM 0.  
C0-  
4
I
C0o  
3
O
I/O  
I/O  
CCP0  
CCP1  
19  
2
TTL  
TTL  
Capture/Compare/PWM 1.  
July 24, 2012  
433  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Signal Tables  
Table 15-2. Signals by Signal Name (continued)  
Pin Name  
Pin Number  
Pin Type  
Buffer Typea Description  
GND  
8
-
Power  
Ground reference for logic and I/O pins.  
18  
21  
I2CSCL  
I2CSDA  
LDO  
23  
24  
6
I/O  
I/O  
-
OD  
OD  
I2C clock.  
I2C data.  
Power  
Low drop-out regulator output voltage. This pin requires an  
external capacitor between the pin and GND of 1 µF or  
greater.  
OSC0  
OSC1  
9
I
Analog  
Analog  
Main oscillator crystal input or an external clock reference  
input.  
10  
O
Main oscillator crystal output. Leave unconnected when using  
a single-ended clock source.  
PA0  
PA1  
11  
12  
13  
14  
15  
16  
19  
20  
23  
24  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port A bit 0.  
GPIO port A bit 1.  
GPIO port A bit 2.  
GPIO port A bit 3.  
GPIO port A bit 4.  
GPIO port A bit 5.  
GPIO port B bit 0.  
GPIO port B bit 1.  
GPIO port B bit 2.  
GPIO port B bit 3.  
GPIO port B bit 4.  
GPIO port B bit 5.  
GPIO port B bit 6.  
GPIO port B bit 7.  
GPIO port C bit 0.  
GPIO port C bit 1.  
GPIO port C bit 2.  
GPIO port C bit 3.  
System reset input.  
SSI clock.  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
3
PB6  
2
PB7  
1
PC0  
28  
27  
26  
25  
5
PC1  
PC2  
PC3  
RST  
SSIClk  
SSIFss  
SSIRx  
SSITx  
SWCLK  
SWDIO  
SWO  
13  
14  
15  
16  
28  
27  
25  
28  
26  
25  
27  
1
I/O  
I/O  
I
SSI frame.  
SSI receive.  
O
SSI transmit.  
I
JTAG/SWD CLK.  
JTAG TMS and SWDIO.  
JTAG TDO and SWO.  
JTAG/SWD CLK.  
JTAG TDI.  
I/O  
O
TCK  
I
TDI  
I
TDO  
O
JTAG TDO and SWO.  
JTAG TMS and SWDIO.  
JTAG TRST.  
TMS  
I/O  
I
TRST  
434  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 15-2. Signals by Signal Name (continued)  
Pin Name  
U0Rx  
Pin Number  
Pin Type  
Buffer Typea Description  
11  
12  
I
O
-
TTL  
TTL  
UART module 0 receive.  
UART module 0 transmit.  
Positive supply for I/O and some logic.  
U0Tx  
VDD  
7
Power  
17  
22  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
15.1.3  
Signals by Function, Except for GPIO  
Table 15-3. Signals by Function, Except for GPIO  
Function  
Pin Name  
C0+  
Pin Number  
Pin Type  
Buffer Typea  
Description  
Analog comparator 0 positive input.  
Analog comparator 0 negative input.  
Analog comparator 0 output.  
32-KHz input to the timer.  
Capture/Compare/PWM 0.  
Capture/Compare/PWM 1.  
I2C clock.  
2
I
I
Analog  
Analog  
TTL  
Analog Comparators C0-  
4
C0o  
3
O
I
32KHz  
20  
19  
2
TTL  
General-Purpose  
Timers  
CCP0  
CCP1  
I2CSCL  
I2CSDA  
SWCLK  
SWDIO  
SWO  
I/O  
I/O  
I/O  
I/O  
I
TTL  
TTL  
23  
24  
28  
27  
25  
28  
26  
25  
27  
1
OD  
I2C  
OD  
I2C data.  
TTL  
JTAG/SWD CLK.  
I/O  
O
I
TTL  
JTAG TMS and SWDIO.  
JTAG TDO and SWO.  
JTAG/SWD CLK.  
TTL  
TCK  
TTL  
JTAG/SWD/SWO  
TDI  
I
TTL  
JTAG TDI.  
TDO  
O
I/O  
I
TTL  
JTAG TDO and SWO.  
JTAG TMS and SWDIO.  
JTAG TRST.  
TMS  
TTL  
TRST  
GND  
TTL  
8
-
Power  
Ground reference for logic and I/O pins.  
18  
21  
LDO  
VDD  
6
-
-
Power  
Power  
Low drop-out regulator output voltage. This pin  
requires an external capacitor between the pin and  
GND of 1 µF or greater.  
Power  
7
Positive supply for I/O and some logic.  
17  
22  
SSIClk  
SSIFss  
SSIRx  
SSITx  
OSC0  
13  
14  
15  
16  
9
I/O  
I/O  
I
TTL  
TTL  
SSI clock.  
SSI frame.  
SSI receive.  
SSI transmit.  
SSI  
TTL  
O
I
TTL  
Analog  
Main oscillator crystal input or an external clock  
reference input.  
System Control &  
Clocks  
OSC1  
RST  
10  
5
O
I
Analog  
TTL  
Main oscillator crystal output. Leave unconnected  
when using a single-ended clock source.  
System reset input.  
July 24, 2012  
435  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Signal Tables  
Table 15-3. Signals by Function, Except for GPIO (continued)  
Function  
Pin Name  
U0Rx  
U0Tx  
Pin Number  
Pin Type  
Buffer Typea  
Description  
UART module 0 receive.  
UART module 0 transmit.  
11  
12  
I
TTL  
UART  
O
TTL  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
15.1.4  
GPIO Pins and Alternate Functions  
Table 15-4. GPIO Pins and Alternate Functions  
IO  
Pin Number  
Multiplexed Function  
Multiplexed Function  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
11  
12  
13  
14  
15  
16  
19  
20  
23  
24  
4
U0Rx  
U0Tx  
SSIClk  
SSIFss  
SSIRx  
SSITx  
CCP0  
32KHz  
I2CSCL  
I2CSDA  
C0-  
3
C0o  
2
C0+  
CCP1  
1
TRST  
TCK  
28  
27  
26  
25  
SWCLK  
SWDIO  
TMS  
TDI  
TDO  
SWO  
15.2  
48-Pin Package Pin Table  
15.2.1  
Signals by Pin Number  
Table 15-5. Signals by Pin Number  
Pin Number  
Pin Name  
NC  
Pin Type  
Buffer Typea Description  
1
2
3
4
5
-
-
-
-
I
-
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
System reset input.  
NC  
-
NC  
-
-
NC  
RST  
TTL  
Power  
LDO  
-
Low drop-out regulator output voltage. This pin requires an external  
capacitor between the pin and GND of 1 µF or greater.  
6
7
8
VDD  
GND  
-
-
Power  
Power  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
436  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 15-5. Signals by Pin Number (continued)  
Pin Number  
Pin Name  
OSC0  
Pin Type  
Buffer Typea Description  
9
I
Analog  
Analog  
Main oscillator crystal input or an external clock reference input.  
OSC1  
O
Main oscillator crystal output. Leave unconnected when using a  
single-ended clock source.  
10  
11  
12  
13  
14  
15  
16  
NC  
NC  
-
-
-
-
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
GPIO port A bit 0.  
NC  
-
-
NC  
-
-
NC  
-
-
NC  
-
-
PA0  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Power  
Power  
-
17  
18  
19  
20  
21  
22  
U0Rx  
PA1  
UART module 0 receive.  
I/O  
O
I/O  
I/O  
I/O  
I/O  
I/O  
I
GPIO port A bit 1.  
U0Tx  
PA2  
UART module 0 transmit.  
GPIO port A bit 2.  
SSIClk  
PA3  
SSI clock.  
GPIO port A bit 3.  
SSIFss  
PA4  
SSI frame.  
GPIO port A bit 4.  
SSIRx  
PA5  
SSI receive.  
I/O  
O
-
GPIO port A bit 5.  
SSITx  
VDD  
SSI transmit.  
23  
24  
25  
26  
27  
28  
Positive supply for I/O and some logic.  
Ground reference for logic and I/O pins.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
GPIO port B bit 0.  
GND  
-
NC  
-
NC  
-
-
NC  
-
-
NC  
-
-
PB0  
I/O  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
Power  
Power  
TTL  
OD  
TTL  
OD  
-
29  
30  
CCP0  
PB1  
Capture/Compare/PWM 0.  
GPIO port B bit 1.  
32KHz  
GND  
32-KHz input to the timer.  
31  
32  
-
Ground reference for logic and I/O pins.  
Positive supply for I/O and some logic.  
GPIO port B bit 2.  
VDD  
-
PB2  
I/O  
I/O  
I/O  
I/O  
-
33  
34  
I2CSCL  
PB3  
I2C clock.  
GPIO port B bit 3.  
I2CSDA  
NC  
I2C data.  
35  
36  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
GPIO port C bit 3.  
NC  
-
-
PC3  
I/O  
O
O
TTL  
TTL  
TTL  
37  
SWO  
JTAG TDO and SWO.  
TDO  
JTAG TDO and SWO.  
July 24, 2012  
437  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Signal Tables  
Table 15-5. Signals by Pin Number (continued)  
Pin Number  
Pin Name  
PC2  
Pin Type  
Buffer Typea Description  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Analog  
TTL  
TTL  
TTL  
TTL  
Analog  
-
GPIO port C bit 2.  
38  
TDI  
JTAG TDI.  
PC1  
I/O  
I/O  
I/O  
I/O  
I
GPIO port C bit 1.  
39  
SWDIO  
TMS  
JTAG TMS and SWDIO.  
JTAG TMS and SWDIO.  
PC0  
GPIO port C bit 0.  
40  
41  
42  
SWCLK  
TCK  
JTAG/SWD CLK.  
I
JTAG/SWD CLK.  
PB7  
I/O  
I
GPIO port B bit 7.  
TRST  
PB6  
JTAG TRST.  
I/O  
I
GPIO port B bit 6.  
C0+  
Analog comparator 0 positive input.  
Capture/Compare/PWM 1.  
GPIO port B bit 5.  
CCP1  
PB5  
I/O  
I/O  
O
I/O  
I
43  
44  
C0o  
Analog comparator 0 output.  
GPIO port B bit 4.  
PB4  
C0-  
Analog comparator 0 negative input.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
No connect. Leave the pin electrically unconnected/isolated.  
45  
46  
47  
48  
NC  
-
NC  
-
-
NC  
-
-
NC  
-
-
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
15.2.2  
Signals by Signal Name  
Table 15-6. Signals by Signal Name  
Pin Name  
32KHz  
C0+  
Pin Number  
Pin Type  
Buffer Typea Description  
30  
42  
44  
43  
29  
42  
I
I
TTL  
Analog  
Analog  
TTL  
32-KHz input to the timer.  
Analog comparator 0 positive input.  
Analog comparator 0 negative input.  
Analog comparator 0 output.  
C0-  
I
C0o  
O
I/O  
I/O  
-
CCP0  
CCP1  
GND  
TTL  
Capture/Compare/PWM 0.  
TTL  
Capture/Compare/PWM 1.  
8
Power  
Ground reference for logic and I/O pins.  
24  
31  
I2CSCL  
I2CSDA  
LDO  
33  
34  
6
I/O  
I/O  
-
OD  
OD  
I2C clock.  
I2C data.  
Power  
Low drop-out regulator output voltage. This pin requires an  
external capacitor between the pin and GND of 1 µF or  
greater.  
438  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 15-6. Signals by Signal Name (continued)  
Pin Name  
Pin Number  
Pin Type  
Buffer Typea Description  
NC  
1
-
-
No connect. Leave the pin electrically unconnected/isolated.  
2
3
4
11  
12  
13  
14  
15  
16  
25  
26  
27  
28  
35  
36  
45  
46  
47  
48  
OSC0  
OSC1  
9
I
Analog  
Analog  
Main oscillator crystal input or an external clock reference  
input.  
10  
O
Main oscillator crystal output. Leave unconnected when using  
a single-ended clock source.  
PA0  
PA1  
17  
18  
19  
20  
21  
22  
29  
30  
33  
34  
44  
43  
42  
41  
40  
39  
38  
37  
5
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
GPIO port A bit 0.  
GPIO port A bit 1.  
GPIO port A bit 2.  
GPIO port A bit 3.  
GPIO port A bit 4.  
GPIO port A bit 5.  
GPIO port B bit 0.  
GPIO port B bit 1.  
GPIO port B bit 2.  
GPIO port B bit 3.  
GPIO port B bit 4.  
GPIO port B bit 5.  
GPIO port B bit 6.  
GPIO port B bit 7.  
GPIO port C bit 0.  
GPIO port C bit 1.  
GPIO port C bit 2.  
GPIO port C bit 3.  
System reset input.  
SSI clock.  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
RST  
SSIClk  
SSIFss  
SSIRx  
SSITx  
SWCLK  
19  
20  
21  
22  
40  
I/O  
I/O  
I
SSI frame.  
SSI receive.  
O
SSI transmit.  
I
JTAG/SWD CLK.  
July 24, 2012  
439  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Signal Tables  
Table 15-6. Signals by Signal Name (continued)  
Pin Name  
SWDIO  
SWO  
Pin Number  
Pin Type  
Buffer Typea Description  
39  
37  
40  
38  
37  
39  
41  
17  
18  
I/O  
O
I
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
TTL  
Power  
JTAG TMS and SWDIO.  
JTAG TDO and SWO.  
JTAG/SWD CLK.  
TCK  
TDI  
I
JTAG TDI.  
TDO  
O
I/O  
I
JTAG TDO and SWO.  
JTAG TMS and SWDIO.  
JTAG TRST.  
TMS  
TRST  
U0Rx  
U0Tx  
VDD  
I
UART module 0 receive.  
UART module 0 transmit.  
Positive supply for I/O and some logic.  
O
-
7
23  
32  
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
15.2.3  
Signals by Function, Except for GPIO  
Table 15-7. Signals by Function, Except for GPIO  
Function  
Pin Name  
C0+  
Pin Number  
Pin Type  
Buffer Typea  
Description  
Analog comparator 0 positive input.  
Analog comparator 0 negative input.  
Analog comparator 0 output.  
32-KHz input to the timer.  
Capture/Compare/PWM 0.  
Capture/Compare/PWM 1.  
I2C clock.  
42  
44  
43  
30  
29  
42  
33  
34  
40  
39  
37  
40  
38  
37  
39  
41  
I
I
Analog  
Analog  
TTL  
Analog Comparators C0-  
C0o  
O
I
32KHz  
TTL  
General-Purpose  
Timers  
CCP0  
CCP1  
I2CSCL  
I2CSDA  
SWCLK  
SWDIO  
SWO  
I/O  
I/O  
I/O  
I/O  
I
TTL  
TTL  
OD  
I2C  
OD  
I2C data.  
TTL  
JTAG/SWD CLK.  
I/O  
O
I
TTL  
JTAG TMS and SWDIO.  
JTAG TDO and SWO.  
JTAG/SWD CLK.  
TTL  
TCK  
TTL  
JTAG/SWD/SWO  
TDI  
I
TTL  
JTAG TDI.  
TDO  
O
I/O  
I
TTL  
JTAG TDO and SWO.  
JTAG TMS and SWDIO.  
JTAG TRST.  
TMS  
TTL  
TRST  
GND  
TTL  
8
-
Power  
Ground reference for logic and I/O pins.  
24  
31  
LDO  
VDD  
6
-
-
Power  
Power  
Low drop-out regulator output voltage. This pin  
requires an external capacitor between the pin and  
GND of 1 µF or greater.  
Power  
7
Positive supply for I/O and some logic.  
23  
32  
440  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Table 15-7. Signals by Function, Except for GPIO (continued)  
Function  
Pin Name  
SSIClk  
Pin Number  
Pin Type  
Buffer Typea  
Description  
19  
20  
21  
22  
9
I/O  
I/O  
I
TTL  
SSI clock.  
SSIFss  
SSIRx  
SSITx  
OSC0  
TTL  
SSI frame.  
SSI receive.  
SSI transmit.  
SSI  
TTL  
O
I
TTL  
Analog  
Main oscillator crystal input or an external clock  
reference input.  
System Control &  
Clocks  
OSC1  
10  
O
Analog  
Main oscillator crystal output. Leave unconnected  
when using a single-ended clock source.  
RST  
5
I
I
TTL  
TTL  
TTL  
System reset input.  
U0Rx  
U0Tx  
17  
18  
UART module 0 receive.  
UART module 0 transmit.  
UART  
O
a. The TTL designation indicates the pin has TTL-compatible voltage levels.  
15.2.4  
GPIO Pins and Alternate Functions  
Table 15-8. GPIO Pins and Alternate Functions  
IO  
Pin Number  
Multiplexed Function  
Multiplexed Function  
PA0  
PA1  
PA2  
PA3  
PA4  
PA5  
PB0  
PB1  
PB2  
PB3  
PB4  
PB5  
PB6  
PB7  
PC0  
PC1  
PC2  
PC3  
17  
18  
19  
20  
21  
22  
29  
30  
33  
34  
44  
43  
42  
41  
40  
39  
38  
37  
U0Rx  
U0Tx  
SSIClk  
SSIFss  
SSIRx  
SSITx  
CCP0  
32KHz  
I2CSCL  
I2CSDA  
C0-  
C0o  
C0+  
CCP1  
TRST  
TCK  
SWCLK  
SWDIO  
TMS  
TDI  
TDO  
SWO  
15.3  
Connections for Unused Signals  
Table 15-9 on page 442 show how to handle signals for functions that are not used in a particular  
system implementation. Two options are shown in the table: an acceptable practice and a preferred  
practice for reduced power consumption and improved EMC characteristics.  
July 24, 2012  
441  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Signal Tables  
Table 15-9. Connections for Unused Signals  
Function  
Signal Name  
All unused GPIOs  
OSC0  
Pin Number  
Acceptable Practice  
Preferred Practice  
GPIO  
-
9
NC  
NC  
NC  
GND  
GND  
NC  
OSC1  
10  
5
System Control  
RST  
Pull up as shown in Figure  
5-1 on page 137  
Connect through a capacitor to  
GND as close to pin as possible  
442  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
16  
Operating Characteristics  
Table 16-1. Temperature Characteristics  
Characteristic  
Symbol  
TA  
Value  
Unit  
Industrial operating temperature range  
Extended operating temperature range  
Unpowered storage temperature range  
-40 to +85  
-40 to +105  
-65 to +150  
°C  
°C  
°C  
TA  
TS  
Table 16-2. Thermal Characteristics  
Characteristic  
Symbol  
Value  
Unit  
Thermal resistance (junction to ambient)a  
ΘJA  
74 (28-pin SOIC)  
50 (48-pin QFP)  
°C/W  
Junction temperatureb  
TJ  
TA + (P • ΘJA  
)
°C  
°C  
Maximum junction temperature  
TJMAX  
115  
c
a. Junction to ambient thermal resistance θJA numbers are determined by a package simulator.  
b. Power dissipation is a function of temperature.  
c. TJMAX calculation is based on power consumption values and conditions as specified in “Power Specifications”.  
Table 16-3. ESD Absolute Maximum Ratingsa  
Parameter Name  
VESDHBM  
Min  
Nom  
Max  
2.0  
Unit  
kV  
kV  
V
-
-
-
-
-
-
VESDCDM  
1.0  
VESDMM  
100  
a. All Stellaris parts are ESD tested following the JEDEC standard.  
July 24, 2012  
443  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Electrical Characteristics  
17  
Electrical Characteristics  
17.1  
DC Characteristics  
17.1.1  
Maximum Ratings  
The maximum ratings are the limits to which the device can be subjected without permanently  
damaging the device.  
Note: The device is not guaranteed to operate properly at the maximum ratings.  
Table 17-1. Maximum Ratings  
Characteristica  
Symbol  
Value  
0.0 to +3.6  
-0.3 to 5.5  
-0.3 to VDD + 0.3  
100  
Unit  
V
Supply voltage range (VDD  
)
VDD  
Input voltage  
V
VIN  
Input voltage for a GPIO configured as an analog input  
Maximum current for pins, excluding pins operating as GPIOs  
Maximum current for GPIO pins  
V
I
I
mA  
mA  
mV  
100  
Maximum input voltage on a non-power pin when the  
microcontroller is unpowered  
VNON  
300  
a. Voltages are measured with respect to GND.  
Important: This device contains circuitry to protect the inputs against damage due to high-static  
voltages or electric fields; however, it is advised that normal precautions be taken to  
avoid application of any voltage higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are  
connected to an appropriate logic voltage level (for example, either GND or VDD).  
17.1.2  
Recommended DC Operating Conditions  
Table 17-2. Recommended DC Operating Conditions  
Parameter Parameter Name  
Min  
3.0  
2.0  
-0.3  
2.4  
-
Nom  
Max  
3.6  
5.0  
1.3  
-
Unit  
V
VDD  
VIH  
Supply voltage  
3.3  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
High-level source current, VOH=2.4 V  
2-mA Drive  
-
-
-
-
V
VIL  
V
VOH  
VOL  
V
0.4  
V
2.0  
4.0  
8.0  
-
-
-
-
-
-
mA  
mA  
mA  
IOH  
4-mA Drive  
8-mA Drive  
Low-level sink current, VOL=0.4 V  
2-mA Drive  
2.0  
4.0  
8.0  
-
-
-
-
-
-
mA  
mA  
mA  
IOL  
4-mA Drive  
8-mA Drive  
444  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
17.1.3  
On-Chip Low Drop-Out (LDO) Regulator Characteristics  
Table 17-3. LDO Regulator Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
Programmable internal (logic) power supply  
output value  
2.25  
-
2.75  
V
VLDOOUT  
Output voltage accuracy  
Power-on time  
-
2%  
-
%
µs  
tPON  
tON  
-
-
-
100  
200  
100  
-
Time on  
-
-
µs  
tOFF  
Time off  
-
µs  
VSTEP  
CLDO  
Step programming incremental voltage  
-
50  
-
mV  
µF  
External filter capacitor size for internal power  
supply  
1.0  
3.0  
17.1.4  
GPIO Module Characteristics  
Table 17-4. GPIO Module DC Characteristics  
Parameter  
RGPIOPU  
RGPIOPD  
ILKG  
Parameter Name  
Min  
50  
55  
-
Nom  
Max  
110  
180  
2
Unit  
kΩ  
GPIO internal pull-up resistor  
GPIO internal pull-down resistor  
GPIO input leakage currenta  
-
-
-
kΩ  
µA  
a. The leakage current is measured with GND or VDD applied to the corresponding pin(s). The leakage of digital port pins is  
measured individually. The port pin is configured as an input and the pullup/pulldown resistor is disabled.  
17.1.5  
Power Specifications  
The power measurements specified in the tables that follow are run on the core processor using  
SRAM with the following specifications (except as noted):  
■ VDD = 3.3 V  
Temperature = 25°C  
July 24, 2012  
445  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Electrical Characteristics  
Table 17-5. Detailed Power Specifications  
Parameter Parameter Name  
Run mode 1 (Flash loop) LDO = 2.50 V  
Code = while(1){} executed out of Flash  
Conditions  
Nom  
Max  
Unit  
45  
50  
mA  
Peripherals = All clock-gated ON  
System Clock = 20 MHz (with PLL)  
Run mode 2 (Flash loop) LDO = 2.50 V  
25  
40  
20  
30  
45  
25  
mA  
mA  
mA  
Code = while(1){} executed out of Flash  
Peripherals = All clock-gated OFF  
System Clock = 20 MHz (with PLL)  
IDD_RUN  
Run mode 1 (SRAM  
loop)  
LDO = 2.50 V  
Code = while(1){} executed in SRAM  
Peripherals = All clock-gated ON  
System Clock = 20 MHz (with PLL)  
Run mode 2 (SRAM  
loop)  
LDO = 2.50 V  
Code = while(1){} executed in SRAM  
Peripherals = All clock-gated OFF  
System Clock = 20 MHz (with PLL)  
IDD_SLEEP  
Sleep mode  
LDO = 2.50 V  
17  
20  
mA  
μA  
Peripherals = All clock-gated OFF  
System Clock = 20 MHz (with PLL)  
IDD_DEEPSLEEP Deep-Sleep mode  
LDO = 2.25 V  
800  
1000  
Peripherals = All OFF  
System Clock = MOSC/16  
17.1.6  
Flash Memory Characteristics  
Table 17-6. Flash Memory Characteristics  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
PECYC  
Number of guaranteed program/erase cycles  
before failurea  
10,000  
100,000  
-
cycles  
TRET  
Data retention at average operating temperature  
of 85˚C (industrial) or 105˚C (extended)  
10  
-
-
years  
TPROG  
TERASE  
TME  
Word program time  
Page erase time  
Mass erase time  
20  
20  
-
-
-
-
-
-
µs  
ms  
ms  
250  
a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.  
17.2  
AC Characteristics  
17.2.1  
Load Conditions  
Unless otherwise specified, the following conditions are true for all timing measurements. Timing  
measurements are for 4-mA drive strength.  
446  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 17-1. Load Conditions  
pin  
CL = 50 pF  
GND  
17.2.2  
Clocks  
Table 17-7. Phase Locked Loop (PLL) Characteristics  
Parameter  
fref_crystal  
fref_ext  
fpll  
Parameter Name  
Crystal referencea  
External clock referencea  
PLL frequencyb  
Min  
Nom  
Max  
8.192  
8.192  
-
Unit  
MHz  
MHz  
MHz  
ms  
3.579545  
-
3.579545  
-
200  
-
-
-
TREADY  
PLL lock time  
0.5  
a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration  
(RCC) register.  
b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.  
Table 17-8. Clock Characteristics  
Parameter  
Parameter Name  
Min  
7
Nom  
Max  
22  
Unit  
MHz  
MHz  
ns  
fIOSC  
Internal oscillator frequency  
Main oscillator frequency  
Main oscillator period  
12  
-
fMOSC  
1
8
tMOSC_per  
fref_crystal_bypass  
125  
1
-
1000  
8
Crystal reference using the main oscillator  
(PLL in BYPASS mode)  
-
MHz  
fref_ext_bypass  
fsystem_clock  
External clock reference (PLL in BYPASS  
mode)  
0
0
-
-
20  
20  
MHz  
MHz  
System clock  
17.2.3  
JTAG and Boundary Scan  
Table 17-9. JTAG Characteristics  
Parameter  
No.  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
fTCK  
tTCK  
TCK operational clock frequency  
TCK operational clock period  
TCK clock Low time  
0
100  
-
-
10  
-
MHz  
ns  
-
tTCK_LOW  
tTCK_HIGH  
tTCK_R  
tTCK/2  
-
ns  
TCK clock High time  
-
tTCK/2  
-
ns  
TCK rise time  
0
-
-
-
-
-
10  
10  
-
ns  
tTCK_F  
TCK fall time  
0
ns  
tTMS_SU  
tTMS_HLD  
tTDI_SU  
TMS setup time to TCK rise  
TMS hold time from TCK rise  
TDI setup time to TCK rise  
20  
20  
25  
ns  
-
ns  
-
ns  
July 24, 2012  
447  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Electrical Characteristics  
Table 17-9. JTAG Characteristics (continued)  
Parameter  
No.  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
J10  
tTDI_HLD  
TDI hold time from TCK rise  
2-mA drive  
25  
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
23  
15  
14  
18  
21  
14  
13  
18  
9
35  
26  
25  
29  
35  
25  
24  
28  
11  
9
4-mA drive  
J11  
TCK fall to Data  
Valid from High-Z  
-
-
-
t TDO_ZDV  
8-mA drive  
8-mA drive with slew rate control  
2-mA drive  
TCK fall to Data  
Valid from Data  
Valid  
4-mA drive  
J12  
t TDO_DV  
8-mA drive  
8-mA drive with slew rate control  
2-mA drive  
4-mA drive  
7
J13  
TCK fall to High-Z  
from Data Valid  
t TDO_DVZ  
8-mA drive  
6
8
8-mA drive with slew rate control  
TRST assertion time  
TRST setup time to TCK rise  
7
9
J14  
J15  
tTRST  
100  
10  
-
-
tTRST_SU  
-
-
Figure 17-2. JTAG Test Clock Input Timing  
J2  
J3  
J4  
TCK  
J6  
J5  
Figure 17-3. JTAG Test Access Port (TAP) Timing  
TCK  
J7  
TMS Input Valid  
J9 J10  
TDI Input Valid  
J8  
J7  
TMS Input Valid  
J9 J10  
TDI Input Valid  
J8  
TMS  
TDI  
J11  
J12  
J13  
TDO Output Valid  
TDO Output Valid  
TDO  
448  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 17-4. JTAG TRST Timing  
TCK  
J14  
J15  
TRST  
17.2.4  
Reset  
Table 17-10. Reset Characteristics  
Parameter  
No.  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
VTH  
VBTH  
Reset threshold  
-
2.85  
-
2.0  
2.9  
10  
500  
-
-
2.95  
-
V
V
Brown-Out threshold  
TPOR  
Power-On Reset timeout  
Brown-Out timeout  
ms  
µs  
ms  
µs  
µs  
TBOR  
-
-
TIRPOR  
TIRBOR  
TIRHWR  
Internal reset timeout after POR  
Internal reset timeout after BORa  
15  
2.5  
2.9  
30  
20  
29  
-
Internal reset timeout after hardware reset  
-
(RST pin)  
R8  
TIRSWR  
Internal reset timeout after  
software-initiated system reset a  
2.5  
-
20  
µs  
R9  
R10  
TIRWDR  
TIRLDOR  
TVDDRISE  
Internal reset timeout after watchdog reseta  
Internal reset timeout after LDO reseta  
Supply voltage (VDD) rise time (0 V-3.3 V)  
2.5  
2.5  
-
-
-
-
20  
20  
µs  
µs  
R11  
100  
ms  
a. 20 * t MOSC_per  
Figure 17-5. External Reset Timing (RST)  
RST  
R7  
/Reset  
(Internal)  
July 24, 2012  
449  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Electrical Characteristics  
Figure 17-6. Power-On Reset Timing  
R1  
VDD  
R3  
/POR  
(Internal)  
R5  
/Reset  
(Internal)  
Figure 17-7. Brown-Out Reset Timing  
R2  
VDD  
R4  
/BOR  
(Internal)  
R6  
/Reset  
(Internal)  
Figure 17-8. Software Reset Timing  
SW Reset  
R8  
/Reset  
(Internal)  
450  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 17-9. Watchdog Reset Timing  
WDOG  
Reset  
(Internal)  
R9  
/Reset  
(Internal)  
Figure 17-10. LDO Reset Timing  
LDO Reset  
(Internal)  
R10  
/Reset  
(Internal)  
17.2.5  
Sleep Modes  
Table 17-11. Sleep Modes AC Characteristicsa  
Parameter No  
Parameter  
Parameter Name  
Min  
Nom  
Max  
Unit  
D1  
tWAKE_S  
Time to wake from interrupt in sleep or  
deep-sleep mode, not using the PLL  
-
-
7
system clocks  
D2  
tWAKE_PLL_S  
Time to wake from interrupt in sleep or  
deep-sleep mode when using the PLL  
-
-
TREADY  
ms  
a. Values in this table assume the IOSC is the clock source during sleep or deep-sleep mode.  
17.2.6  
General-Purpose I/O (GPIO)  
Note: All GPIOs are 5 V-tolerant.  
Table 17-12. GPIO Characteristics  
Parameter Parameter Name Condition  
Min  
Nom  
17  
9
Max  
26  
13  
9
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2-mA drive  
4-mA drive  
GPIO Rise Time  
tGPIOR  
(from 20% to 80%  
of VDD  
-
8-mA drive  
6
)
8-mA drive with slew rate control  
2-mA drive  
10  
17  
8
12  
25  
12  
10  
13  
GPIO Fall Time  
4-mA drive  
tGPIOF  
(from 80% to 20%  
-
8-mA drive  
6
of VDD  
)
8-mA drive with slew rate control  
11  
July 24, 2012  
451  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Electrical Characteristics  
17.2.7  
Synchronous Serial Interface (SSI)  
Table 17-13. SSI Characteristics  
Parameter  
No.  
Parameter Parameter Name  
Min  
Nom  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
tclk_per  
tclk_high  
tclk_low  
tclkrf  
SSIClk cycle time  
2
-
-
65024  
system clocks  
t clk_per  
SSIClk high time  
0.5  
-
-
SSIClk low time  
SSIClk rise/fall timea  
-
0.5  
t clk_per  
-
6
-
10  
1
-
ns  
tDMd  
Data from master valid delay time  
Data from master setup time  
Data from master hold time  
Data from slave setup time  
Data from slave hold time  
0
1
2
1
2
system clocks  
system clocks  
system clocks  
system clocks  
system clocks  
tDMs  
-
tDMh  
-
-
tDSs  
-
-
tDSh  
-
-
a. Note that the delays shown are using 8-mA drive strength.  
Figure 17-11. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement  
S1  
S2  
S4  
SSIClk  
SSIFss  
S3  
SSITx  
SSIRx  
MSB  
LSB  
4 to 16 bits  
452  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Figure 17-12. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer  
S2  
S1  
SSIClk  
SSIFss  
SSITx  
SSIRx  
S3  
MSB  
LSB  
8-bit control  
0
MSB  
LSB  
4 to 16 bits output data  
Figure 17-13. SSI Timing for SPI Frame Format (FRF=00), with SPH=1  
S1  
S4  
S2  
SSIClk  
(SPO=0)  
S3  
SSIClk  
(SPO=1)  
S6  
S7  
S9  
SSITx  
(master)  
MSB  
LSB  
S5  
S8  
SSIRx  
(slave)  
MSB  
LSB  
SSIFss  
17.2.8  
Inter-Integrated Circuit (I2C) Interface  
Table 17-14. I2C Characteristics  
Parameter  
No.  
Parameter Parameter Name  
Min  
Nom  
Max  
Unit  
I1a  
I2a  
I3b  
tSCH  
tLP  
Start condition hold time  
36  
36  
-
-
-
-
-
-
system clocks  
system clocks  
ns  
Clock Low period  
tSRT  
I2CSCL/I2CSDA rise time (VIL =0.5 V  
to V IH =2.4 V)  
(see note  
b)  
July 24, 2012  
453  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Electrical Characteristics  
Table 17-14. I2C Characteristics (continued)  
Parameter  
No.  
Parameter Parameter Name  
Min  
Nom  
Max  
Unit  
I4a  
I5c  
tDH  
Data hold time  
2
-
-
-
system clocks  
ns  
tSFT  
I2CSCL/I2CSDA fall time (VIH =2.4 V  
9
10  
to V IL =0.5 V)  
I6a  
I7a  
I8a  
tHT  
tDS  
Clock High time  
Data setup time  
24  
18  
36  
-
-
-
-
-
-
system clocks  
system clocks  
system clocks  
tSCSR  
Start condition setup time (for repeated  
start condition only)  
I9a  
tSCS  
Stop condition setup time  
24  
-
-
system clocks  
a. Values depend on the value programmed into the TPR bit in the I2C Master Timer Period (I2CMTPR) register; a TPR  
programmed for the maximum I2CSCL frequency (TPR=0x2) results in a minimum output timing as shown in the table  
above. The I 2C interface is designed to scale the actual data transition time to move it to the middle of the I2CSCL Low  
period. The actual position is affected by the value programmed into the TPR; however, the numbers given in the above  
values are minimum values.  
b. Because I2CSCL and I2CSDA are open-drain-type outputs, which the controller can only actively drive Low, the time  
I2CSCL or I2CSDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.  
c. Specified at a nominal 50 pF load.  
Figure 17-14. I2C Timing  
I2  
I6  
I5  
I2CSCL  
I1  
I4  
I7  
I8  
I3  
I9  
I2CSDA  
17.2.9  
Analog Comparator  
Table 17-15. Analog Comparator Characteristics  
Parameter  
VOS  
Parameter Name  
Min  
Nom  
Max  
Unit  
mV  
V
Input offset voltage  
-
0
50  
-
±10  
±25  
VCM  
Input common mode voltage range  
Common mode rejection ratio  
Response time  
-
-
-
-
VDD-1.5  
CMRR  
TRT  
-
dB  
µs  
1
TMC  
Comparator mode change to Output Valid  
-
10  
µs  
Table 17-16. Analog Comparator Voltage Reference Characteristics  
Parameter  
RHR  
Parameter Name  
Min  
Nom  
Max  
-
Unit  
Resolution high range  
Resolution low range  
-
-
-
-
VDD/31  
LSB  
LSB  
LSB  
LSB  
RLR  
VDD/23  
-
AHR  
Absolute accuracy high range  
Absolute accuracy low range  
-
-
±1/2  
±1/4  
ALR  
454  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
A
Serial Flash Loader  
A.1  
Serial Flash Loader  
The Stellaris® serial flash loader is a preprogrammed flash-resident utility used to download code  
to the flash memory of a device without the use of a debug interface. The serial flash loader uses  
a simple packet interface to provide synchronous communication with the device. The flash loader  
runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used.  
The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both  
the data format and communication protocol are identical for both serial interfaces.  
A.2  
Interfaces  
Once communication with the flash loader is established via one of the serial interfaces, that interface  
is used until the flash loader is reset or new code takes over. For example, once you start  
communicating using the SSI port, communications with the flash loader via the UART are disabled  
until the device is reset.  
A.2.1  
UART  
The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial  
format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is  
automatically detected by the flash loader and can be any valid baud rate supported by the host  
and the device. The auto detection sequence requires that the baud rate should be no more than  
1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the  
same as the hardware limitation for the maximum baud rate for any UART on a Stellaris device  
which is calculated as follows:  
Max Baud Rate = System Clock Frequency / 16  
In order to determine the baud rate, the serial flash loader needs to determine the relationship  
between its own crystal frequency and the baud rate. This is enough information for the flash loader  
to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows  
the host to use any valid baud rate that it wants to communicate with the device.  
The method used to perform this automatic synchronization relies on the host sending the flash  
loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can  
use to calculate the ratios needed to program the UART to match the host’s baud rate. After the  
host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader  
returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received  
after at least twice the time required to transfer the two bytes, the host can resend another pattern  
of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has  
received a synchronization pattern correctly. For example, the time to wait for data back from the  
flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate  
of 115200, this time is 2*(20/115200) or 0.35 ms.  
A.2.2  
SSI  
The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications,  
with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See “Frame  
Formats” on page 346 in the SSI chapter for more information on formats for this transfer protocol.  
Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI  
clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running  
July 24, 2012  
455  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Serial Flash Loader  
the flash loader. Since the host device is the master, the SSI on the flash loader device does not  
need to determine the clock as it is provided directly by the host.  
A.3  
Packet Handling  
All communications, with the exception of the UART auto-baud, are done via defined packets that  
are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same  
format for receiving and sending packets, including the method used to acknowledge successful or  
unsuccessful reception of a packet.  
A.3.1  
Packet Format  
All packets sent and received from the device use the following byte-packed format.  
struct  
{
unsigned char ucSize;  
unsigned char ucCheckSum;  
unsigned char Data[];  
};  
ucSize  
The first byte received holds the total size of the transfer including  
the size and checksum bytes.  
ucChecksum  
Data  
This holds a simple checksum of the bytes in the data buffer only.  
The algorithm is Data[0]+Data[1]+…+ Data[ucSize-3].  
This is the raw data intended for the device, which is formatted in  
some form of command interface. There should be ucSize–2  
bytes of data provided in this buffer to or from the device.  
A.3.2  
Sending Packets  
The actual bytes of the packet can be sent individually or all at once; the only limitation is that  
commands that cause flash memory access should limit the download sizes to prevent losing bytes  
during flash programming. This limitation is discussed further in the section that describes the serial  
flash loader command, COMMAND_SEND_DATA (see “COMMAND_SEND_DATA  
(0x24)” on page 458).  
Once the packet has been formatted correctly by the host, it should be sent out over the UART or  
SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned  
from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from  
the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This  
does not indicate that the actual contents of the command issued in the data portion of the packet  
were valid, just that the packet was received correctly.  
A.3.3  
Receiving Packets  
The flash loader sends a packet of data in the same format that it receives a packet. The flash loader  
may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte  
is the size of the packet followed by a checksum byte, and finally followed by the data itself. There  
is no break in the data after the first non-zero byte is sent from the flash loader. Once the device  
communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to  
indicate that the transmission was successful. The appropriate response after sending a NAK to  
the flash loader is to resend the command that failed and request the data again. If needed, the  
host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the  
456  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
flash loader only accepts the first non-zero data as a valid response. This zero padding is needed  
by the SSI interface in order to receive data to or from the flash loader.  
A.4  
Commands  
The next section defines the list of commands that can be sent to the flash loader. The first byte of  
the data should always be one of the defined commands, followed by data or parameters as  
determined by the command that is sent.  
A.4.1  
COMMAND_PING (0X20)  
This command simply accepts the command and sets the global status to success. The format of  
the packet is as follows:  
Byte[0] = 0x03;  
Byte[1] = checksum(Byte[2]);  
Byte[2] = COMMAND_PING;  
The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one  
byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status,  
the receipt of an ACK can be interpreted as a successful ping to the flash loader.  
A.4.2  
COMMAND_GET_STATUS (0x23)  
This command returns the status of the last command that was issued. Typically, this command  
should be sent after every command to ensure that the previous command was successful or to  
properly respond to a failure. The command requires one byte in the data of the packet and should  
be followed by reading a packet with one byte of data that contains a status code. The last step is  
to ACK or NAK the received data so the flash loader knows that the data has been read.  
Byte[0] = 0x03  
Byte[1] = checksum(Byte[2])  
Byte[2] = COMMAND_GET_STATUS  
A.4.3  
COMMAND_DOWNLOAD (0x21)  
This command is sent to the flash loader to indicate where to store data and how many bytes will  
be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit  
values that are both transferred MSB first. The first 32-bit value is the address to start programming  
data into, while the second is the 32-bit size of the data that will be sent. This command also triggers  
an erase of the full area to be programmed so this command takes longer than other commands.  
This results in a longer time to receive the ACK/NAK back from the board. This command should  
be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size  
are valid for the device running the flash loader.  
The format of the packet to send this command is a follows:  
Byte[0] = 11  
Byte[1] = checksum(Bytes[2:10])  
Byte[2] = COMMAND_DOWNLOAD  
Byte[3] = Program Address [31:24]  
Byte[4] = Program Address [23:16]  
Byte[5] = Program Address [15:8]  
Byte[6] = Program Address [7:0]  
Byte[7] = Program Size [31:24]  
July 24, 2012  
457  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Serial Flash Loader  
Byte[8] = Program Size [23:16]  
Byte[9] = Program Size [15:8]  
Byte[10] = Program Size [7:0]  
A.4.4  
COMMAND_SEND_DATA (0x24)  
This command should only follow a COMMAND_DOWNLOAD command or another  
COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands  
automatically increment address and continue programming from the previous location. The caller  
should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program  
successfully and not overflow input buffers of the serial interfaces. The command terminates  
programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been  
received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to  
ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK  
to this command, the flash loader does not increment the current address to allow retransmission  
of the previous data.  
Byte[0] = 11  
Byte[1] = checksum(Bytes[2:10])  
Byte[2] = COMMAND_SEND_DATA  
Byte[3] = Data[0]  
Byte[4] = Data[1]  
Byte[5] = Data[2]  
Byte[6] = Data[3]  
Byte[7] = Data[4]  
Byte[8] = Data[5]  
Byte[9] = Data[6]  
Byte[10] = Data[7]  
A.4.5  
COMMAND_RUN (0x22)  
This command is used to tell the flash loader to execute from the address passed as the parameter  
in this command. This command consists of a single 32-bit value that is interpreted as the address  
to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK  
signal back to the host device before actually executing the code at the given address. This allows  
the host to know that the command was received successfully and the code is now running.  
Byte[0] = 7  
Byte[1] = checksum(Bytes[2:6])  
Byte[2] = COMMAND_RUN  
Byte[3] = Execute Address[31:24]  
Byte[4] = Execute Address[23:16]  
Byte[5] = Execute Address[15:8]  
Byte[6] = Execute Address[7:0]  
A.4.6  
COMMAND_RESET (0x25)  
This command is used to tell the flash loader device to reset. This is useful when downloading a  
new image that overwrote the flash loader and wants to start from a full reset. Unlike the  
COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set  
up for the new code. It can also be used to reset the flash loader if a critical error occurs and the  
host device wants to restart communication with the flash loader.  
458  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
Byte[0] = 3  
Byte[1] = checksum(Byte[2])  
Byte[2] = COMMAND_RESET  
The flash loader responds with an ACK signal back to the host device before actually executing the  
software reset to the device running the flash loader. This allows the host to know that the command  
was received successfully and the part will be reset.  
July 24, 2012  
459  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
B
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
The Cortex-M3 Processor  
R0, type R/W, , reset - (see page 47)  
DATA  
DATA  
R1, type R/W, , reset - (see page 47)  
R2, type R/W, , reset - (see page 47)  
R3, type R/W, , reset - (see page 47)  
R4, type R/W, , reset - (see page 47)  
R5, type R/W, , reset - (see page 47)  
R6, type R/W, , reset - (see page 47)  
R7, type R/W, , reset - (see page 47)  
R8, type R/W, , reset - (see page 47)  
R9, type R/W, , reset - (see page 47)  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
R10, type R/W, , reset - (see page 47)  
R11, type R/W, , reset - (see page 47)  
R12, type R/W, , reset - (see page 47)  
SP, type R/W, , reset - (see page 48)  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
SP  
SP  
LR, type R/W, , reset 0xFFFF.FFFF (see page 49)  
PC, type R/W, , reset - (see page 50)  
LINK  
LINK  
PC  
PC  
460  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
PSR, type R/W, , reset 0x0100.0000 (see page 51)  
N
Z
C
V
Q
ICI / IT  
THUMB  
ICI / IT  
ISRNUM  
PRIMASK, type R/W, , reset 0x0000.0000 (see page 55)  
FAULTMASK, type R/W, , reset 0x0000.0000 (see page 56)  
BASEPRI, type R/W, , reset 0x0000.0000 (see page 57)  
CONTROL, type R/W, , reset 0x0000.0000 (see page 58)  
PRIMASK  
FAULTMASK  
BASEPRI  
ASP  
TMPL  
Cortex-M3 Peripherals  
System Timer (SysTick) Registers  
Base 0xE000.E000  
STCTRL, type R/W, offset 0x010, reset 0x0000.0000  
STRELOAD, type R/W, offset 0x014, reset 0x0000.0000  
STCURRENT, type R/WC, offset 0x018, reset 0x0000.0000  
COUNT  
CLK_SRC INTEN  
ENABLE  
RELOAD  
RELOAD  
CURRENT  
CURRENT  
Cortex-M3 Peripherals  
Nested Vectored Interrupt Controller (NVIC) Registers  
Base 0xE000.E000  
EN0, type R/W, offset 0x100, reset 0x0000.0000  
DIS0, type R/W, offset 0x180, reset 0x0000.0000  
PEND0, type R/W, offset 0x200, reset 0x0000.0000  
UNPEND0, type R/W, offset 0x280, reset 0x0000.0000  
ACTIVE0, type RO, offset 0x300, reset 0x0000.0000  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
INT  
PRI0, type R/W, offset 0x400, reset 0x0000.0000  
INTD  
INTC  
INTA  
INTB  
PRI1, type R/W, offset 0x404, reset 0x0000.0000  
INTD  
INTB  
INTC  
INTA  
July 24, 2012  
461  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
PRI2, type R/W, offset 0x408, reset 0x0000.0000  
INTD  
INTC  
INTA  
INTB  
PRI3, type R/W, offset 0x40C, reset 0x0000.0000  
INTD  
INTC  
INTA  
INTB  
PRI4, type R/W, offset 0x410, reset 0x0000.0000  
INTD  
INTC  
INTA  
INTB  
PRI5, type R/W, offset 0x414, reset 0x0000.0000  
INTD  
INTC  
INTA  
INTB  
PRI6, type R/W, offset 0x418, reset 0x0000.0000  
INTD  
INTC  
INTA  
INTB  
PRI7, type R/W, offset 0x41C, reset 0x0000.0000  
INTD  
INTC  
INTA  
INTB  
SWTRIG, type WO, offset 0xF00, reset 0x0000.0000  
INTID  
Cortex-M3 Peripherals  
System Control Block (SCB) Registers  
Base 0xE000.E000  
CPUID, type RO, offset 0xD00, reset 0x410F.C231  
IMP  
VAR  
CON  
REV  
PARTNO  
INTCTRL, type R/W, offset 0xD04, reset 0x0000.0000  
UNPENDSV PENDSTSET PENDSTCLR  
RETBASE  
NMISET  
PENDSV  
ISRPRE ISRPEND  
OFFSET  
VECPEND  
VECPEND  
VECACT  
VTABLE, type R/W, offset 0xD08, reset 0x0000.0000  
BASE  
OFFSET  
APINT, type R/W, offset 0xD0C, reset 0xFA05.0000  
VECTKEY  
VECTCLRACT  
VECTRESET  
ENDIANESS  
SYSRESREQ  
PRIGROUP  
SYSCTRL, type R/W, offset 0xD10, reset 0x0000.0000  
SEVONPEND  
DIV0  
SLEEPDEEP SLEEPEXIT  
MAINPEND  
CFGCTRL, type R/W, offset 0xD14, reset 0x0000.0000  
SYSPRI1, type R/W, offset 0xD18, reset 0x0000.0000  
STKALIGN BFHFNMIGN  
UNALIGNED  
BASETHR  
USAGE  
BUS  
SYSPRI2, type R/W, offset 0xD1C, reset 0x0000.0000  
SVC  
SYSPRI3, type R/W, offset 0xD20, reset 0x0000.0000  
TICK  
PENDSV  
DEBUG  
462  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
SYSHNDCTRL, type R/W, offset 0xD24, reset 0x0000.0000  
USAGE  
BUS  
MEM  
SVC  
BUSP  
MEMP USAGEP  
TICK  
PNDSV  
MON  
SVCA  
USGA  
NOCP  
BUSA  
MEMA  
FAULTSTAT, type R/W1C, offset 0xD28, reset 0x0000.0000  
DIV0  
UNALIGN  
IBUS  
INVPC INVSTAT UNDEF  
IERR  
BFARV  
HFAULTSTAT, type R/W1C, offset 0xD2C, reset 0x0000.0000  
DBG FORCED  
BSTKE BUSTKE IMPRE PRECISE  
MMARV  
VECT  
MMADDR, type R/W, offset 0xD34, reset -  
FAULTADDR, type R/W, offset 0xD38, reset -  
ADDR  
ADDR  
ADDR  
ADDR  
System Control  
Base 0x400F.E000  
DID0, type RO, offset 0x000, reset - (see page 147)  
VER  
MAJOR  
MINOR  
PBORCTL, type R/W, offset 0x030, reset 0x0000.7FFD (see page 149)  
BORTIM  
BORIOR BORWT  
LDOPCTL, type R/W, offset 0x034, reset 0x0000.0000 (see page 150)  
RIS, type RO, offset 0x050, reset 0x0000.0000 (see page 151)  
IMC, type R/W, offset 0x054, reset 0x0000.0000 (see page 152)  
MISC, type R/W1C, offset 0x058, reset 0x0000.0000 (see page 153)  
RESC, type R/W, offset 0x05C, reset - (see page 154)  
VADJ  
PLLLRIS  
PLLLIM  
CLRIS  
CLIM  
IOFRIS MOFRIS LDORIS BORRIS PLLFRIS  
IOFIM  
MOFIM  
LDOIM  
BORIM  
PLLFIM  
PLLLMIS CLMIS  
IOFMIS MOFMIS LDOMIS BORMIS  
LDO  
SW  
WDT  
BOR  
POR  
EXT  
RCC, type R/W, offset 0x060, reset 0x0780.3AC0 (see page 155)  
USESYSDIV  
ACG  
SYSDIV  
PWRDN  
OEN  
BYPASS PLLVER  
XTAL  
OSCSRC  
IOSCVER MOSCVER IOSCDIS MOSCDIS  
PLLCFG, type RO, offset 0x064, reset - (see page 158)  
OD  
F
R
DSLPCLKCFG, type R/W, offset 0x144, reset 0x0780.0000 (see page 159)  
CLKVCLR, type R/W, offset 0x150, reset 0x0000.0000 (see page 160)  
LDOARST, type R/W, offset 0x160, reset 0x0000.0000 (see page 161)  
IOSC  
VERCLR  
LDOARST  
July 24, 2012  
463  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
DID1, type RO, offset 0x004, reset - (see page 162)  
VER  
FAM  
PARTNO  
PKG  
TEMP  
ROHS  
QUAL  
DC0, type RO, offset 0x008, reset 0x0007.0003 (see page 164)  
DC1, type RO, offset 0x010, reset 0x0000.901F (see page 165)  
SRAMSZ  
FLASHSZ  
MINSYSDIV  
PLL  
WDT  
SWO  
SWD  
JTAG  
DC2, type RO, offset 0x014, reset 0x0103.1011 (see page 166)  
COMP0  
TIMER1 TIMER0  
UART0  
I2C0  
DC3, type RO, offset 0x018, reset 0x8300.01C0 (see page 168)  
32KHZ  
SSI0  
CCP1  
CCP0  
C0O  
C0PLUS C0MINUS  
DC4, type RO, offset 0x01C, reset 0x0000.0007 (see page 169)  
GPIOC  
GPIOB  
GPIOA  
RCGC0, type R/W, offset 0x100, reset 0x00000040 (see page 170)  
SCGC0, type R/W, offset 0x110, reset 0x00000040 (see page 171)  
DCGC0, type R/W, offset 0x120, reset 0x00000040 (see page 172)  
RCGC1, type R/W, offset 0x104, reset 0x00000000 (see page 173)  
WDT  
WDT  
WDT  
COMP0  
COMP0  
COMP0  
TIMER1 TIMER0  
UART0  
I2C0  
SSI0  
SSI0  
SSI0  
SCGC1, type R/W, offset 0x114, reset 0x00000000 (see page 175)  
TIMER1 TIMER0  
UART0  
I2C0  
DCGC1, type R/W, offset 0x124, reset 0x00000000 (see page 177)  
TIMER1 TIMER0  
UART0  
I2C0  
RCGC2, type R/W, offset 0x108, reset 0x00000000 (see page 179)  
GPIOC  
GPIOC  
GPIOC  
GPIOB  
GPIOB  
GPIOB  
GPIOA  
GPIOA  
GPIOA  
SCGC2, type R/W, offset 0x118, reset 0x00000000 (see page 180)  
DCGC2, type R/W, offset 0x128, reset 0x00000000 (see page 181)  
SRCR0, type R/W, offset 0x040, reset 0x00000000 (see page 182)  
WDT  
SRCR1, type R/W, offset 0x044, reset 0x00000000 (see page 183)  
COMP0  
TIMER1 TIMER0  
UART0  
I2C0  
SSI0  
464  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
SRCR2, type R/W, offset 0x048, reset 0x00000000 (see page 184)  
GPIOC  
GPIOB  
GPIOA  
Internal Memory  
Flash Memory Control Registers (Flash Control Offset)  
Base 0x400F.D000  
FMA, type R/W, offset 0x000, reset 0x0000.0000  
FMD, type R/W, offset 0x004, reset 0x0000.0000  
FMC, type R/W, offset 0x008, reset 0x0000.0000  
FCRIS, type RO, offset 0x00C, reset 0x0000.0000  
FCIM, type R/W, offset 0x010, reset 0x0000.0000  
FCMISC, type R/W1C, offset 0x014, reset 0x0000.0000  
OFFSET  
DATA  
DATA  
WRKEY  
COMT MERASE ERASE  
WRITE  
ARIS  
PRIS  
PMASK  
PMISC  
AMASK  
AMISC  
Internal Memory  
Flash Memory Protection Registers (System Control Offset)  
Base 0x400F.E000  
USECRL, type R/W, offset 0x140, reset 0x13  
USEC  
FMPRE, type R/W, offset 0x130, reset 0x8000.000F  
DBG  
READ_ENABLE  
READ_ENABLE  
FMPPE, type R/W, offset 0x134, reset 0x0000.000F  
PROG_ENABLE  
PROG_ENABLE  
General-Purpose Input/Outputs (GPIOs)  
GPIO Port A base: 0x4000.4000  
GPIO Port B base: 0x4000.5000  
GPIO Port C base: 0x4000.6000  
GPIODATA, type R/W, offset 0x000, reset 0x0000.0000 (see page 213)  
GPIODIR, type R/W, offset 0x400, reset 0x0000.0000 (see page 214)  
GPIOIS, type R/W, offset 0x404, reset 0x0000.0000 (see page 215)  
GPIOIBE, type R/W, offset 0x408, reset 0x0000.0000 (see page 216)  
DATA  
DIR  
IS  
IBE  
July 24, 2012  
465  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
GPIOIEV, type R/W, offset 0x40C, reset 0x0000.0000 (see page 217)  
GPIOIM, type R/W, offset 0x410, reset 0x0000.0000 (see page 218)  
GPIORIS, type RO, offset 0x414, reset 0x0000.0000 (see page 219)  
GPIOMIS, type RO, offset 0x418, reset 0x0000.0000 (see page 220)  
GPIOICR, type W1C, offset 0x41C, reset 0x0000.0000 (see page 221)  
GPIOAFSEL, type R/W, offset 0x420, reset - (see page 222)  
IEV  
IME  
RIS  
MIS  
IC  
AFSEL  
DRV2  
DRV4  
DRV8  
ODE  
PUE  
PDE  
SRL  
GPIODR2R, type R/W, offset 0x500, reset 0x0000.00FF (see page 224)  
GPIODR4R, type R/W, offset 0x504, reset 0x0000.0000 (see page 225)  
GPIODR8R, type R/W, offset 0x508, reset 0x0000.0000 (see page 226)  
GPIOODR, type R/W, offset 0x50C, reset 0x0000.0000 (see page 227)  
GPIOPUR, type R/W, offset 0x510, reset 0x0000.00FF (see page 228)  
GPIOPDR, type R/W, offset 0x514, reset 0x0000.0000 (see page 229)  
GPIOSLR, type R/W, offset 0x518, reset 0x0000.0000 (see page 230)  
GPIODEN, type R/W, offset 0x51C, reset 0x0000.00FF (see page 231)  
GPIOPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 (see page 232)  
GPIOPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 (see page 233)  
GPIOPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000 (see page 234)  
DEN  
PID4  
PID5  
PID6  
466  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
GPIOPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000 (see page 235)  
GPIOPeriphID0, type RO, offset 0xFE0, reset 0x0000.0061 (see page 236)  
GPIOPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000 (see page 237)  
GPIOPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018 (see page 238)  
GPIOPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001 (see page 239)  
GPIOPCellID0, type RO, offset 0xFF0, reset 0x0000.000D (see page 240)  
GPIOPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0 (see page 241)  
GPIOPCellID2, type RO, offset 0xFF8, reset 0x0000.0005 (see page 242)  
GPIOPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1 (see page 243)  
PID7  
PID0  
PID1  
PID2  
PID3  
CID0  
CID1  
CID2  
CID3  
General-Purpose Timers  
Timer0 base: 0x4003.0000  
Timer1 base: 0x4003.1000  
GPTMCFG, type R/W, offset 0x000, reset 0x0000.0000 (see page 256)  
GPTMTAMR, type R/W, offset 0x004, reset 0x0000.0000 (see page 257)  
GPTMTBMR, type R/W, offset 0x008, reset 0x0000.0000 (see page 259)  
GPTMCTL, type R/W, offset 0x00C, reset 0x0000.0000 (see page 261)  
GPTMCFG  
TAAMS  
TBAMS  
TACMR  
TBCMR  
TAMR  
TBMR  
TBPWML  
TBEVENT  
TBSTALL  
TBEN  
TAPWML  
RTCEN  
TAEVENT  
TASTALL  
CAMIM  
TAEN  
GPTMIMR, type R/W, offset 0x018, reset 0x0000.0000 (see page 264)  
CBEIM  
CBMIM  
TBTOIM  
RTCIM  
CAEIM  
TATOIM  
GPTMRIS, type RO, offset 0x01C, reset 0x0000.0000 (see page 266)  
CBERIS CBMRIS TBTORIS  
GPTMMIS, type RO, offset 0x020, reset 0x0000.0000 (see page 267)  
RTCRIS CAERIS CAMRIS TATORIS  
RTCMIS CAEMIS CAMMIS TATOMIS  
CBEMIS CBMMIS TBTOMIS  
July 24, 2012  
467  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
GPTMICR, type W1C, offset 0x024, reset 0x0000.0000 (see page 268)  
TBTOCINT  
TATOCINT  
RTCCINT CAECINT CAMCINT  
CBECINT CBMCINT  
GPTMTAILR, type R/W, offset 0x028, reset 0xFFFF.FFFF (see page 270)  
GPTMTBILR, type R/W, offset 0x02C, reset 0x0000.FFFF (see page 271)  
GPTMTAMATCHR, type R/W, offset 0x030, reset 0xFFFF.FFFF (see page 272)  
GPTMTBMATCHR, type R/W, offset 0x034, reset 0x0000.FFFF (see page 273)  
GPTMTAPR, type R/W, offset 0x038, reset 0x0000.0000 (see page 274)  
GPTMTBPR, type R/W, offset 0x03C, reset 0x0000.0000 (see page 275)  
GPTMTAPMR, type R/W, offset 0x040, reset 0x0000.0000 (see page 276)  
GPTMTBPMR, type R/W, offset 0x044, reset 0x0000.0000 (see page 277)  
GPTMTAR, type RO, offset 0x048, reset 0xFFFF.FFFF (see page 278)  
GPTMTBR, type RO, offset 0x04C, reset 0x0000.FFFF (see page 279)  
TAILRH  
TAILRL  
TBILRL  
TAMRH  
TAMRL  
TBMRL  
TAPSR  
TBPSR  
TAPSMR  
TBPSMR  
TARH  
TARL  
TBRL  
Watchdog Timer  
Base 0x4000.0000  
WDTLOAD, type R/W, offset 0x000, reset 0xFFFF.FFFF (see page 284)  
WDTVALUE, type RO, offset 0x004, reset 0xFFFF.FFFF (see page 285)  
WDTCTL, type R/W, offset 0x008, reset 0x0000.0000 (see page 286)  
WDTICR, type WO, offset 0x00C, reset - (see page 287)  
WDTLoad  
WDTLoad  
WDTValue  
WDTValue  
RESEN  
INTEN  
WDTIntClr  
WDTIntClr  
WDTRIS, type RO, offset 0x010, reset 0x0000.0000 (see page 288)  
WDTMIS, type RO, offset 0x014, reset 0x0000.0000 (see page 289)  
WDTRIS  
WDTMIS  
468  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
WDTTEST, type R/W, offset 0x418, reset 0x0000.0000 (see page 290)  
STALL  
WDTLOCK, type R/W, offset 0xC00, reset 0x0000.0000 (see page 291)  
WDTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 (see page 292)  
WDTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 (see page 293)  
WDTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000 (see page 294)  
WDTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000 (see page 295)  
WDTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0005 (see page 296)  
WDTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0018 (see page 297)  
WDTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018 (see page 298)  
WDTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001 (see page 299)  
WDTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D (see page 300)  
WDTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0 (see page 301)  
WDTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005 (see page 302)  
WDTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1 (see page 303)  
WDTLock  
WDTLock  
PID4  
PID5  
PID6  
PID7  
PID0  
PID1  
PID2  
PID3  
CID0  
CID1  
CID2  
CID3  
Universal Asynchronous Receivers/Transmitters (UARTs)  
UART0 base: 0x4000.C000  
UARTDR, type R/W, offset 0x000, reset 0x0000.0000 (see page 312)  
OE  
BE  
PE  
FE  
DATA  
UARTRSR/UARTECR, type RO, offset 0x004, reset 0x0000.0000 (Reads) (see page 314)  
OE  
BE  
PE  
FE  
UARTRSR/UARTECR, type WO, offset 0x004, reset 0x0000.0000 (Writes) (see page 314)  
DATA  
July 24, 2012  
469  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
UARTFR, type RO, offset 0x018, reset 0x0000.0090 (see page 316)  
TXFE  
RXFF  
TXFF  
RXFE  
BUSY  
UARTIBRD, type R/W, offset 0x024, reset 0x0000.0000 (see page 318)  
UARTFBRD, type R/W, offset 0x028, reset 0x0000.0000 (see page 319)  
UARTLCRH, type R/W, offset 0x02C, reset 0x0000.0000 (see page 320)  
UARTCTL, type R/W, offset 0x030, reset 0x0000.0300 (see page 322)  
DIVINT  
DIVFRAC  
SPS  
LBE  
WLEN  
FEN  
STP2  
EPS  
PEN  
BRK  
RXE  
TXE  
UARTEN  
UARTIFLS, type R/W, offset 0x034, reset 0x0000.0012 (see page 324)  
UARTIM, type R/W, offset 0x038, reset 0x0000.0000 (see page 326)  
RXIFLSEL  
RXIM  
TXIFLSEL  
OEIM  
BEIM  
PEIM  
PERIS  
PEMIS  
PEIC  
FEIM  
FERIS  
FEMIS  
FEIC  
RTIM  
RTRIS  
RTMIS  
RTIC  
TXIM  
TXRIS  
TXMIS  
TXIC  
UARTRIS, type RO, offset 0x03C, reset 0x0000.000F (see page 328)  
OERIS  
BERIS  
RXRIS  
RXMIS  
RXIC  
UARTMIS, type RO, offset 0x040, reset 0x0000.0000 (see page 329)  
OEMIS  
BEMIS  
UARTICR, type W1C, offset 0x044, reset 0x0000.0000 (see page 330)  
OEIC  
BEIC  
UARTPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 (see page 332)  
PID4  
UARTPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 (see page 333)  
UARTPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000 (see page 334)  
UARTPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000 (see page 335)  
UARTPeriphID0, type RO, offset 0xFE0, reset 0x0000.0011 (see page 336)  
UARTPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000 (see page 337)  
UARTPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018 (see page 338)  
PID5  
PID6  
PID7  
PID0  
PID1  
PID2  
470  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
UARTPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001 (see page 339)  
UARTPCellID0, type RO, offset 0xFF0, reset 0x0000.000D (see page 340)  
UARTPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0 (see page 341)  
UARTPCellID2, type RO, offset 0xFF8, reset 0x0000.0005 (see page 342)  
UARTPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1 (see page 343)  
PID3  
CID0  
CID1  
CID2  
CID3  
Synchronous Serial Interface (SSI)  
SSI0 base: 0x4000.8000  
SSICR0, type R/W, offset 0x000, reset 0x0000.0000 (see page 357)  
SCR  
SPH  
SPO  
FRF  
DSS  
SSICR1, type R/W, offset 0x004, reset 0x0000.0000 (see page 359)  
SOD  
MS  
SSE  
LBM  
SSIDR, type R/W, offset 0x008, reset 0x0000.0000 (see page 361)  
SSISR, type RO, offset 0x00C, reset 0x0000.0003 (see page 362)  
SSICPSR, type R/W, offset 0x010, reset 0x0000.0000 (see page 364)  
SSIIM, type R/W, offset 0x014, reset 0x0000.0000 (see page 365)  
SSIRIS, type RO, offset 0x018, reset 0x0000.0008 (see page 367)  
SSIMIS, type RO, offset 0x01C, reset 0x0000.0000 (see page 368)  
SSIICR, type W1C, offset 0x020, reset 0x0000.0000 (see page 369)  
SSIPeriphID4, type RO, offset 0xFD0, reset 0x0000.0000 (see page 370)  
SSIPeriphID5, type RO, offset 0xFD4, reset 0x0000.0000 (see page 371)  
SSIPeriphID6, type RO, offset 0xFD8, reset 0x0000.0000 (see page 372)  
DATA  
BSY  
RFF  
RNE  
TNF  
TFE  
CPSDVSR  
TXIM  
RXIM  
RXRIS  
RXMIS  
RTIM  
RTRIS  
RTMIS  
RTIC  
RORIM  
RORRIS  
RORMIS  
RORIC  
TXRIS  
TXMIS  
PID4  
PID5  
PID6  
July 24, 2012  
471  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
SSIPeriphID7, type RO, offset 0xFDC, reset 0x0000.0000 (see page 373)  
SSIPeriphID0, type RO, offset 0xFE0, reset 0x0000.0022 (see page 374)  
SSIPeriphID1, type RO, offset 0xFE4, reset 0x0000.0000 (see page 375)  
SSIPeriphID2, type RO, offset 0xFE8, reset 0x0000.0018 (see page 376)  
SSIPeriphID3, type RO, offset 0xFEC, reset 0x0000.0001 (see page 377)  
SSIPCellID0, type RO, offset 0xFF0, reset 0x0000.000D (see page 378)  
SSIPCellID1, type RO, offset 0xFF4, reset 0x0000.00F0 (see page 379)  
SSIPCellID2, type RO, offset 0xFF8, reset 0x0000.0005 (see page 380)  
SSIPCellID3, type RO, offset 0xFFC, reset 0x0000.00B1 (see page 381)  
PID7  
PID0  
PID1  
PID2  
PID3  
CID0  
CID1  
CID2  
CID3  
Inter-Integrated Circuit (I2C) Interface  
I2C Master  
I2C 0 base: 0x4002.0000  
I2CMSA, type R/W, offset 0x000, reset 0x0000.0000  
I2CMCS, type RO, offset 0x004, reset 0x0000.0000 (Reads)  
I2CMCS, type WO, offset 0x004, reset 0x0000.0000 (Writes)  
I2CMDR, type R/W, offset 0x008, reset 0x0000.0000  
I2CMTPR, type R/W, offset 0x00C, reset 0x0000.0001  
I2CMIMR, type R/W, offset 0x010, reset 0x0000.0000  
I2CMRIS, type RO, offset 0x014, reset 0x0000.0000  
SA  
R/S  
BUSY  
RUN  
BUSBSY  
IDLE  
ARBLST DATACK ADRACK ERROR  
ACK  
STOP  
START  
DATA  
TPR  
IM  
RIS  
472  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
I2CMMIS, type RO, offset 0x018, reset 0x0000.0000  
I2CMICR, type WO, offset 0x01C, reset 0x0000.0000  
I2CMCR, type R/W, offset 0x020, reset 0x0000.0000  
MIS  
IC  
SFE  
MFE  
LPBK  
Inter-Integrated Circuit (I2C) Interface  
I2C Slave  
I2C 0 base: 0x4002.0000  
I2CSOAR, type R/W, offset 0x800, reset 0x0000.0000  
OAR  
I2CSCSR, type RO, offset 0x804, reset 0x0000.0000 (Reads)  
I2CSCSR, type WO, offset 0x804, reset 0x0000.0000 (Writes)  
I2CSDR, type R/W, offset 0x808, reset 0x0000.0000  
I2CSIMR, type R/W, offset 0x80C, reset 0x0000.0000  
I2CSRIS, type RO, offset 0x810, reset 0x0000.0000  
I2CSMIS, type RO, offset 0x814, reset 0x0000.0000  
I2CSICR, type WO, offset 0x818, reset 0x0000.0000  
FBR  
TREQ  
RREQ  
DA  
DATA  
DATAIM  
DATARIS  
DATAMIS  
DATAIC  
Analog Comparator  
Base 0x4003.C000  
ACMIS, type R/W1C, offset 0x000, reset 0x0000.0000 (see page 423)  
ACRIS, type RO, offset 0x004, reset 0x0000.0000 (see page 424)  
ACINTEN, type R/W, offset 0x008, reset 0x0000.0000 (see page 425)  
IN0  
IN0  
IN0  
ACREFCTL, type R/W, offset 0x010, reset 0x0000.0000 (see page 426)  
EN  
RNG  
VREF  
July 24, 2012  
473  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Register Quick Reference  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
ACSTAT0, type RO, offset 0x020, reset 0x0000.0000 (see page 427)  
OVAL  
CINV  
ACCTL0, type R/W, offset 0x024, reset 0x0000.0000 (see page 428)  
ASRCP  
ISLVAL  
ISEN  
474  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
C
Ordering and Contact Information  
C.1  
Ordering Information  
L M 3 S n n n n – g p p s s – r r m  
Part Number  
nnn = Sandstorm-class parts  
nnnn = All other Stellaris® parts  
Shipping Medium  
T = Tape-and-reel  
Omitted = Default shipping (tray or tube)  
Temperature  
E = –40°C to +105°C  
Revision  
I = –40°C to +85°C  
Speed  
Package  
20 = 20 MHz  
25 = 25 MHz  
50 = 50 MHz  
80 = 80 MHz  
BZ = 108-ball BGA  
QC = 100-pin LQFP  
QN = 48-pin LQFP  
QR = 64-pin LQFP  
Table C-1. Part Ordering Information  
Orderable Part Number  
LM3S102-IQN20-C2  
LM3S102-IQN20-C2T  
Description  
Stellaris® LM3S102 Microcontroller Industrial Temperature 48-pin LQFP  
Stellaris LM3S102 Microcontroller Industrial Temperature 48-pin LQFP  
Tape-and-reel  
LM3S102-EQN20-C2  
LM3S102-EQN20-C2T  
Stellaris LM3S102 Microcontroller Extended Temperature 48-pin LQFP  
Stellaris LM3S102 Microcontroller Extended Temperature 48-pin LQFP  
Tape-and-reel  
LM3S102-IRN20-C2a  
LM3S102-IRN20-C2Ta  
Stellaris LM3S102 Microcontroller Industrial Temperature 28-pin SOIC  
Stellaris LM3S102 Microcontroller Industrial Temperature 28-pin SOIC  
Tape-and-reel  
LM3S102-ERN20-C2a  
LM3S102-ERN20-C2Ta  
Stellaris LM3S102 Microcontroller Extended Temperature 28-pin SOIC  
Stellaris LM3S102 Microcontroller Extended Temperature 28-pin SOIC  
Tape-and-reel  
a. OBSOLETE: TI has discontinued production of this device.  
C.2  
Part Markings  
The Stellaris microcontrollers are marked with an identifying number. This code contains the following  
information:  
■ The first line indicates the part number, for example, LM3S9B90.  
■ In the second line, the first eight characters indicate the temperature, package, speed, revision,  
and product status. For example in the figure below, IQC80C0X indicates an Industrial temperature  
(I), 100-pin LQFP package (QC), 80-MHz (80), revision C0 (C0) device. The letter immediately  
following the revision indicates product status. An X indicates experimental and requires a waiver;  
an S indicates the part is fully qualified and released to production.  
■ The remaining characters contain internal tracking numbers.  
July 24, 2012  
475  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Ordering and Contact Information  
C.3  
Kits  
The Stellaris Family provides the hardware and software tools that engineers need to begin  
development quickly.  
■ Reference Design Kits accelerate product development by providing ready-to-run hardware and  
comprehensive documentation including hardware design files  
■ Evaluation Kits provide a low-cost and effective means of evaluating Stellaris microcontrollers  
before purchase  
■ Development Kits provide you with all the tools you need to develop and prototype embedded  
applications right out of the box  
See the website at www.ti.com/stellaris for the latest tools available, or ask your distributor.  
C.4  
Support Information  
For support on Stellaris products, contact the TI Worldwide Product Information Center nearest you:  
http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm.  
476  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
D
Package Information  
D.1  
28-Pin SOIC Package  
D.1.1  
Package Dimensions  
Figure D-1. Stellaris LM3S102 28-Pin SOIC Package1  
Note: The following notes apply to the package drawing.  
1. Dimension "D" does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions,  
and gate burrs shall not exceed .006" (0.15 mm) per side.  
2. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusion  
shall not exceed .010" (0.25 mm) per side.  
3. "L" is the length of terminal for soldering to a substrate.  
4. "N" is the number of terminal positions.  
5. Terminal numbers are shown for reference only.  
6. The lead width "B", as measured .014" (0.36 mm) or greater above the seating plane, shall not  
exceed a maximum value of .024" (0.61 mm).  
7. Reference drawing JEDEC MS013, Variation AE.  
1OBSOLETE: TI has discontinued production of this device.  
July 24, 2012  
477  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Package Information  
Dimension in Inch  
Dimension in mm  
MIN  
Symbol  
MIN  
MAX  
.014  
.012  
.020  
.013  
.713  
.299  
MAX  
2.65  
0.30  
0.51  
.032  
18.10  
7.60  
A
A1  
B
C
D
E
e
.093  
.004  
.013  
.009  
.696  
.291  
0.050 BSC  
.394  
.010  
.016  
.021  
0°  
2.35  
0.10  
0.33  
0.23  
17.70  
7.40  
1.27 BSC  
10.00  
0.25  
H
h
.419  
.029  
.050  
.031  
8°  
10.65  
0.75  
1.27  
.0787  
8°  
L
0.40  
S
α
0.533  
0°  
478  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
D.2  
48-Pin LQFP Package  
D.2.1  
Package Dimensions  
Figure D-2. Stellaris LM3S102 48-Pin LQFP Package  
Note: The following notes apply to the package drawing.  
1. All dimensions are in mm.  
2. Dimensions shown are nominal with tolerances indicated.  
July 24, 2012  
479  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Package Information  
3. Foot length "L" is measured at gage plane 0.25 mm above seating plane.  
4. L/F: Eftec 64T Cu or equivalent, 0.127 mm (0.005") thick.  
Package Type  
Symbol  
48LD LQFP  
Note  
MIN  
MAX  
1.60  
0.15  
1.40  
A
A1  
A2  
D
-
0.05  
-
9.00  
7.00  
9.00  
7.00  
0.60  
0.50  
0.22  
0° - 7°  
0.08  
0.08  
D1  
E
E1  
L
e
b
theta  
ddd  
ccc  
JEDEC Reference Drawing  
Variation Designator  
MS-026  
BBC  
480  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
D.2.2  
Tray Dimensions  
Figure D-3. 48-Pin LQFP Tray Dimensions  
July 24, 2012  
481  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Package Information  
482  
July 24, 2012  
Texas Instruments-Production Data  
NRND: Not recommended for new designs.  
Stellaris® LM3S102 Microcontroller  
D.2.3  
Tape and Reel Dimensions  
Figure D-4. 48-Pin LQFP Tape and Reel Dimensions  
July 24, 2012  
483  
Texas Instruments-Production Data  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM3S102-EQN20-C2

Stellaris LM3S Microcontroller 48-LQFP -40 to 105
TI

LM3S102-ERN20-C2

RISC MICROCONTROLLER, PDSO28, ROHS COMPLIANT, MS-013AE, SOIC-28
TI

LM3S102-IQN20-C2T

Stellaris LM3S Microcontroller 48-LQFP -40 to 85
TI

LM3S102-IRN20

Microcontroller
ETC

LM3S102-IRN20(T)

Microcontroller
ETC

LM3S102-IRN20-C2

RISC MICROCONTROLLER, PDSO28, ROHS COMPLIANT, MS-013AE, SOIC-28
TI

LM3S102-IRN20T

Microcontroller
ETC

LM3S1110

Microcontroller
ETC

LM3S1110-IQC20-A0

Microcontroller
ETC

LM3S1110-IQC20-A0T

Microcontroller
ETC

LM3S1110-IQC20-A1

Microcontroller
ETC

LM3S1110-IQC20-A1T

Microcontroller
ETC