LM4562MA/NOPB [TI]

2 通道、55MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85;
LM4562MA/NOPB
型号: LM4562MA/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

2 通道、55MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85

放大器 光电二极管 运算放大器 放大器电路
文件: 总41页 (文件大小:1624K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
LM4562 Dual High-Performance, High-Fidelity Audio Operational Amplifier  
Check for Samples: LM4562  
1
FEATURES  
DESCRIPTION  
The LM4562 is part of the ultra-low distortion, low-  
noise, high-slew-rate operational amplifier series  
optimized and fully specified for high-performance,  
high-fidelity applications. Combining advanced  
leading-edge process technology with state-of-the-art  
circuit design, the LM4562 audio operational  
amplifiers deliver superior audio signal amplification  
for outstanding audio performance. The LM4562  
combines extremely low voltage noise density  
(2.7nV/Hz) with vanishingly low THD+N (0.00003%)  
to easily satisfy the most demanding audio  
applications. To ensure that the most challenging  
loads are driven without compromise, the LM4562  
has a high slew rate of ±20V/μs and an output current  
capability of ±26mA. Further, dynamic range is  
maximized by an output stage that drives 2kloads  
to within 1V of either power supply voltage and to  
within 1.4V when driving 600loads.  
2
Easily Drives 600Loads  
Optimized for Superior Audio Signal Fidelity  
Output Short Circuit Protection  
PSRR and CMRR Exceed 120dB (Typ)  
SOIC, PDIP, and TO-99 Packages  
APPLICATIONS  
Ultra High-Quality Audio Amplification  
High-Fidelity Preamplifiers  
High-Fidelity Multimedia  
State-of-the-Art Phono Pre Amps  
High-Performance Professional Audio  
High-Fidelity Equalization and Crossover  
Networks  
High-Performance Line Drivers  
High-Performance Line Receivers  
High-Fidelity Active Filters  
The LM4562's outstanding CMRR (120dB), PSRR  
(120dB), and VOS (0.1mV) give the amplifier excellent  
operational amplifier DC performance.  
The LM4562 has a wide supply range of ±2.5V to  
±17V. Over this supply range the LM4562’s input  
circuitry maintains excellent common-mode and  
power supply rejection, as well as maintaining its low  
input bias current. The LM4562 is unity gain stable.  
KEY SPECIFICATIONS  
Power Supply Voltage Range: ±2.5V to ± 17V  
THD+N (AV = 1, VOUT = 3VRMS, fIN = 1kHz)  
RL = 2k: 0.00003% (typ)  
RL = 600: 0.00003% (typ)  
This  
Audio  
Operational  
Amplifier  
achieves  
outstanding AC performance while driving complex  
loads with values as high as 100pF.  
Input Noise Density: 2.7nV/Hz (typ)  
Slew Rate: ±20V/μs (typ)  
The LM4562 is available in an 8-lead narrow body  
SOIC, an 8-lead PDIP, and an 8-lead TO-99.  
Demonstration boards are available for each  
package.  
Gain Bandwidth Product: 55MHz (typ)  
Open Loop Gain (RL = 600): 140dB (typ)  
Input Bias Current: 10nA (typ)  
Input Offset Voltage: 0.1mV (typ)  
DC Gain Linearity Error: 0.000009%  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
All trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2006–2013, Texas Instruments Incorporated  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL APPLICATION  
150W  
3320W  
3320W  
150W  
26.1 kW  
+
909W  
-
-
LM4562  
LM4562  
+
+
3.83 kW  
+
100W  
OUTPUT  
22 nF//4.7 nF//500 pF  
10pF  
INPUT  
47 kW  
47 nF//33 nF  
A. 1% metal film resistors, 5% polypropylene capacitors  
Figure 1. Passively Equalized RIAA Phono Preamplifier  
CONNECTION DIAGRAMS  
Dual-In-Line Package  
1
2
3
4
8
7
6
5
+
OUTPUT A  
V
INVERTING INPUT A  
OUTPUT B  
A
B
-
+
+
-
NON-INVERTING  
INPUT A  
INVERTING INPUT B  
NON-INVERTING  
INPUT B  
-
V
Figure 2. 8-Lead SOIC (D Package)  
8-Lead PDIP (P Package)  
2
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
+
V
8
OUTPUT A  
OUTPUT B  
1
3
7
5
INVERTING  
INPUT A  
INVERTING  
INPUT B  
2
6
NON-INVERTING  
INPUT A  
NON-INVERTING  
INPUT B  
4
-
V
Figure 3. 8-Lead TO-99 (LMC Package)  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
ABSOLUTE MAXIMUM RATINGS(1)(2)(3)  
Power Supply Voltage (VS = V+ - V-)  
Storage Temperature  
Input Voltage  
36V  
65°C to 150°C  
(V-) - 0.7V to (V+) + 0.7V  
Continuous  
Output Short Circuit(4)  
Power Dissipation  
Internally Limited  
2000V  
ESD Susceptibility(5)  
ESD Susceptibility(6)  
Pins 1, 4, 7 and 8  
Pins 2, 3, 5 and 6  
200V  
100V  
Junction Temperature  
Thermal Resistance  
150°C  
θJA (D)  
145°C/W  
θJA (P)  
102°C/W  
θJA (LMC)  
θJC (LMC)  
150°C/W  
35°C/W  
Temperature Range (TMIN TA TMAX  
)
–40°C TA 85°C  
±2.5V VS ± 17V  
Supply Voltage Range  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.  
(2) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/Distributors for availability and  
specifications.  
(4) Amplifier output connected to GND, any number of amplifiers within a package.  
(5) Human body model, 100pF discharged through a 1.5kresistor.  
(6) Machine Model ESD test is covered by specification EIAJ IC-121-1981. A 200pF cap is charged to the specified voltage and then  
discharged directly into the IC with no external series resistor (resistance of discharge path must be under 50).  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
ELECTRICAL CHARACTERISTICS FOR THE LM4562(1)(2)  
The specifications apply for VS = ±15V, RL = 2k, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LM4562  
Typical(3)  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Limit(4)  
AV = 1, VOUT = 3Vrms  
THD+N  
Total Harmonic Distortion + Noise  
Intermodulation Distortion  
RL = 2kΩ  
RL = 600Ω  
0.00003  
0.00003  
% (max)  
0.00009  
AV = 1, VOUT = 3VRMS  
Two-tone, 60Hz & 7kHz 4:1  
IMD  
0.00005  
%
GBWP  
SR  
Gain Bandwidth Product  
Slew Rate  
55  
45  
MHz (min)  
±20  
±15  
V/μs (min)  
VOUT = 1VP-P, –3dB  
referenced to output magnitude  
at f = 1kHz  
FPBW  
ts  
Full Power Bandwidth  
10  
MHz  
AV = –1, 10V step, CL = 100pF  
0.1% error range  
Settling time  
1.2  
μs  
Equivalent Input Noise Voltage  
fBW = 20Hz to 20kHz  
0.34  
0.65  
4.7  
μVRMS  
(max)  
en  
f = 1kHz  
f = 10Hz  
2.7  
6.4  
nV/Hz  
(max)  
Equivalent Input Noise Density  
in  
f = 1kHz  
f = 10Hz  
1.6  
3.1  
Current Noise Density  
Offset Voltage  
pA/Hz  
mV (max)  
μV/°C  
VOS  
±0.1  
±0.7  
110  
Average Input Offset Voltage Drift vs  
Temperature  
ΔVOS/ΔTemp  
–40°C TA 85°C  
ΔVS = 20V(5)  
0.2  
Average Input Offset Voltage Shift vs  
Power Supply Voltage  
PSRR  
120  
dB (min)  
fIN = 1kHz  
fIN = 20kHz  
118  
112  
ISOCH-CH  
IB  
Channel-to-Channel Isolation  
Input Bias Current  
dB  
VCM = 0V  
10  
0.1  
11  
72  
65  
nA (max)  
nA/°C  
Input Bias Current Drift vs  
Temperature  
ΔIOS/ΔTemp  
IOS  
–40°C TA 85°C  
VCM = 0V  
Input Offset Current  
nA (max)  
V (min)  
Common-Mode Input Voltage Range  
+14.1  
–13.9  
(V+) – 2.0  
(V-) + 2.0  
VIN-CM  
CMRR  
Common-Mode Rejection  
–10V<Vcm<10V  
120  
30  
110  
125  
dB (min)  
kΩ  
Differential Input Impedance  
Common Mode Input Impedance  
ZIN  
–10V<Vcm<10V  
1000  
140  
MΩ  
–10V<Vout<10V, RL = 600Ω  
–10V<Vout<10V, RL = 2kΩ  
–10V<Vout<10V, RL = 10kΩ  
RL = 600Ω  
AVOL  
Open Loop Voltage Gain  
140  
dB (min)  
V (min)  
140  
±13.6  
±14.0  
±14.1  
±26  
±12.5  
±23  
VOUTMAX  
Maximum Output Voltage Swing  
RL = 2kΩ  
RL = 10kΩ  
IOUT  
Output Current  
RL = 600, VS = ±17V  
mA (min)  
mA  
+53  
–42  
IOUT-CC  
Instantaneous Short Circuit Current  
fIN = 10kHz  
Closed-Loop  
Open-Loop  
ROUT  
Output Impedance  
0.01  
13  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.  
(2) Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured  
specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed.  
Some performance characteristics may degrade when the device is not operated under the listed test conditions.  
(3) Typical specifications are specified at +25ºC and represent the most likely parametric norm.  
(4) Tested limits are specified to AOQL (Average Outgoing Quality Level).  
(5) PSRR is measured as follows: VOS is measured at two supply voltages, ±5V and ±15V. PSRR = | 20log(ΔVOS/ΔVS) |.  
4
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
ELECTRICAL CHARACTERISTICS FOR THE LM4562(1)(2) (continued)  
The specifications apply for VS = ±15V, RL = 2k, fIN = 1kHz, TA = 25°C, unless otherwise specified.  
LM4562  
Typical(3)  
Units  
(Limits)  
Symbol  
Parameter  
Conditions  
Limit(4)  
CLOAD  
IS  
Capacitive Load Drive Overshoot  
Total Quiescent Current  
100pF  
16  
10  
%
IOUT = 0mA  
12  
mA (max)  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM4562  
 
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 2k  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
20  
10  
1
10m  
20  
10  
100m  
1
100m  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 4.  
Figure 5.  
THD+N vs Output Voltage  
VCC = 17V, VEE = –17V  
RL = 2kΩ  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
20  
10  
100m  
1
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 6.  
Figure 7.  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 600Ω  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
1
10  
20  
10m  
10m  
20  
1
10  
100m  
100m  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 8.  
Figure 9.  
6
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Output Voltage  
VCC = 17V, VEE = –17V  
RL = 600Ω  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10  
10m  
20  
100m  
1
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 10.  
Figure 11.  
THD+N vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 10kΩ  
THD+N vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
10m  
20  
100m  
1
10  
100m  
1
20  
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 12.  
Figure 13.  
THD+N vs Output Voltage  
VCC = 17V, VEE = –17V  
RL = 10kΩ  
THD+N vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
10m  
20  
10  
100m  
1
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 14.  
Figure 15.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 2kΩ  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 16.  
Figure 17.  
THD+N vs Frequency  
THD+N vs Frequency  
VCC = 17V, VEE = –17V, VOUT = 3VRMS  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 2kΩ  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 18.  
Figure 19.  
THD+N vs Frequency  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
VCC = 17V, VEE = –17V, VOUT = 3VRMS  
RL = 600Ω  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 20.  
Figure 21.  
8
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
THD+N vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
RL = 10kΩ  
THD+N vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00001  
0.00002  
0.00001  
20 50 100 200 500 1k 2k 5k 10k 20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
Hz  
Hz  
Figure 22.  
Figure 23.  
THD+N vs Frequency  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 2kΩ  
VCC = 17V, VEE = –17V, VOUT = 3VRMS  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000007  
20 50 100 200 500 1k 2k 5k 10k 20k  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
Hz  
Figure 24.  
Figure 25.  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000007  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 26.  
Figure 27.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
IMD vs Output Voltage  
VCC = 17V, VEE = –17V  
RL = 2kΩ  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000007  
0.000006  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
10  
10  
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 28.  
Figure 29.  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 600Ω  
IMD vs Output Voltage  
VCC = 17V, VEE = –17V  
RL = 600Ω  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000007  
0.000006  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 30.  
Figure 31.  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
IMD vs Output Voltage  
VCC = 15V, VEE = –15V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000006  
100m  
300m  
500m 700m  
1
100m 200m 500m  
1
2
5
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 32.  
Figure 33.  
10  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
IMD vs Output Voltage  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
IMD vs Output Voltage  
VCC = 17V, VEE = –17V  
RL = 10kΩ  
0.01  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.0005  
0.0005  
0.0002  
0.0001  
0.0002  
0.0001  
0.00005  
0.00005  
0.00002  
0.00002  
0.00001  
0.00001  
0.000006  
0.000006  
100m 200m 500m  
1
2
5
10  
100m 200m 500m  
1
2
5
10  
OUTPUT VOLTAGE (V)  
OUTPUT VOLTAGE (V)  
Figure 34.  
Figure 35.  
IMD vs Output Voltage  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
Voltage Noise Density vs Frequency  
100  
10  
1
100  
0.01  
V
V
= 30V  
S
0.005  
= 15V  
CM  
0.002  
0.001  
0.0005  
10  
0.0002  
0.0001  
2.7 nV/ Hz  
0.00005  
0.00002  
0.00001  
1
100000  
1000 10000  
1
10  
100  
100m  
300m  
500m 700m  
1
FREQUENCY (Hz)  
OUTPUT VOLTAGE (V)  
Figure 36.  
Figure 37.  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
Current Noise Density vs Frequency  
AV = 0dB, RL = 2kΩ  
100  
10  
1
100  
+0  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
V
V
= 30V  
S
= 15V  
CM  
10  
-100  
-110  
-120  
-130  
1.6 pA/ Hz  
100000  
1000 10000  
1
1
10  
100  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 38.  
Figure 39.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
AV = 0dB, RL = 2kΩ  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 2kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 40.  
Figure 41.  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
AV = 0dB, RL = 2kΩ  
Crosstalk vs Frequency  
VCC = 17V, VEE = –17V, VOUT = 3VRMS  
AV = 0dB, RL = 2kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 42.  
Figure 43.  
Crosstalk vs Frequency  
VCC = 17V, VEE = –17V, VOUT = 10VRMS  
AV = 0dB, RL = 2kΩ  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 2kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 44.  
Figure 45.  
12  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 46.  
Figure 47.  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 48.  
Figure 49.  
Crosstalk vs Frequency  
VCC = 17V, VEE = –17V, VOUT = 3VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 17V, VEE = –17V, VOUT = 10VRMS  
AV = 0dB, RL = 600Ω  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 50.  
Figure 51.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 600Ω  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
20 50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52.  
Figure 53.  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
VCC = 15V, VEE = –15V, VOUT = 10VRMS  
VCC = 12V, VEE = –12V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-10  
-20  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54.  
Figure 55.  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
VCC = 12V, VEE = –12V, VOUT = 10VRMS  
VCC = 17V, VEE = –17V, VOUT = 3VRMS  
AV = 0dB, RL = 10kΩ  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
FREQUENCY (Hz)  
Figure 56.  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
Figure 57.  
14  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Crosstalk vs Frequency  
VCC = 17V, VEE = –17V, VOUT = 10VRMS  
AV = 0dB, RL = 10kΩ  
Crosstalk vs Frequency  
VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS  
AV = 0dB, RL = 10kΩ  
+0  
+0  
-10  
-20  
-10  
-20  
-30  
-30  
-40  
-40  
-50  
-50  
-60  
-60  
-70  
-70  
-80  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
20  
50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 58.  
Figure 59.  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 60.  
Figure 61.  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-90  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 62.  
Figure 63.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
PSRR- vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 64.  
Figure 65.  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
PSRR– vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 66.  
Figure 67.  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
PSRR– vs Frequency  
VCC = 12V, VEE = –12V  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-90  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 68.  
Figure 69.  
16  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
PSRR– vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 70.  
Figure 71.  
PSRR+ vs Frequency  
VCC = 17V, VEE = –17V  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
PSRR– vs Frequency  
VCC = 17V, VEE = –17V  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 72.  
Figure 73.  
PSRR+ vs Frequency  
VCC = 17V, VEE = –17V  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
PSRR– vs Frequency  
VCC = 17V, VEE = –17V  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-90  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 74.  
Figure 75.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 17V, VEE = –17V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
PSRR– vs Frequency  
VCC = 17V, VEE = –17V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 76.  
Figure 77.  
PSRR+ vs Frequency  
PSRR– vs Frequency  
VCC = 2.5V, VEE = –2.5V  
VCC = 2.5V, VEE = –2.5V  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
RL = 10k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-50  
-60  
-30  
-40  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-110  
-120  
-130  
-140  
-100  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 78.  
Figure 79.  
PSRR+ vs Frequency  
PSRR– vs Frequency  
VCC = 2.5V, VEE = –2.5V  
VCC = 2.5V, VEE = –2.5V  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
RL = 2k, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-90  
-70  
-80  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 80.  
Figure 81.  
18  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
PSRR+ vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
PSRR– vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600, f = 200kHz, VRIPPLE = 200mVpp  
0
0
-10  
-20  
-10  
-20  
-30  
-40  
-30  
-40  
-50  
-60  
-50  
-60  
-70  
-80  
-70  
-80  
-90  
-90  
-100  
-100  
-110  
-120  
-130  
-140  
-110  
-120  
-130  
-140  
20  
100  
1k  
10k  
100k 200k  
20  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 82.  
Figure 83.  
CMRR vs Frequency  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
VCC = 12V, VEE = –12V  
RL = 2kΩ  
RL = 2kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 84.  
Figure 85.  
CMRR vs Frequency  
VCC = 17V, VEE = –17V  
RL = 2kΩ  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 2kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 86.  
Figure 87.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
RL = 600Ω  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
RL = 600Ω  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 88.  
Figure 89.  
CMRR vs Frequency  
VCC = 17V, VEE = –17V  
RL = 600Ω  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 600Ω  
0
-20  
-40  
-60  
-80  
0
-20  
-40  
-60  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 90.  
Figure 91.  
CMRR vs Frequency  
VCC = 15V, VEE = –15V  
RL = 10kΩ  
CMRR vs Frequency  
VCC = 12V, VEE = –12V  
RL = 10kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 92.  
Figure 93.  
20  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
CMRR vs Frequency  
VCC = 17V, VEE = –17V  
RL = 10kΩ  
CMRR vs Frequency  
VCC = 2.5V, VEE = –2.5V  
RL = 10kΩ  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
-120  
10  
100  
1k  
10k  
100k 200k  
10  
100  
1k  
10k  
100k 200k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 94.  
Figure 95.  
Output Voltage vs Load Resistance  
VDD = 15V, VEE = –15V  
THD+N = 1%  
Output Voltage vs Load Resistance  
VDD = 12V, VEE = –12V  
THD+N = 1%  
11.5  
11.0  
10.5  
9.5  
9.0  
8.5  
8.0  
10.0  
9.5  
7.5  
7.0  
9.0  
500  
600  
800  
2k  
5k  
10k  
500  
600  
800  
2k  
5k  
10k  
LOAD RESISTANCE (W)  
LOAD RESISTANCE (W)  
Figure 96.  
Figure 97.  
Output Voltage vs Load Resistance  
VDD = 17V, VEE = –17V  
THD+N = 1%  
Output Voltage vs Load Resistance  
VDD = 2.5V, VEE = –2.5V  
THD+N = 1%  
1.25  
13.5  
13.0  
12.5  
12.0  
1.00  
0.75  
11.5  
11.0  
10.5  
10.0  
0.25  
0.50  
0.00  
500  
600  
800  
2k  
5k  
10k  
500  
600  
800  
2k  
5k  
10k  
LOAD RESISTANCE (W)  
LOAD RESISTANCE (W)  
Figure 98.  
Figure 99.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Output Voltage vs Supply Voltage  
Output Voltage vs Supply Voltage  
RL = 2k, THD+N = 1%  
RL = 600, THD+N = 1%  
14  
12  
10  
8
12  
10  
8
6
6
4
4
2
0
2
0
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 100.  
Figure 101.  
Output Voltage vs Supply Voltage  
Supply Current vs Supply Voltage  
RL = 10k, THD+N = 1%  
RL = 2kΩ  
14  
10.5  
12  
10  
8
10.0  
9.5  
6
9.0  
8.5  
4
2
8.0  
0
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 102.  
Figure 103.  
Supply Current vs Supply Voltage  
Supply Current vs Supply Voltage  
RL = 600Ω  
RL = 10kΩ  
10.5  
10.0  
9.5  
10.5  
10.0  
9.5  
9.0  
8.5  
9.0  
8.5  
8.0  
8.0  
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
2.5 4.5 6.5 8.5 10.5 12.5 14.5 16.5 18.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
Figure 104.  
Figure 105.  
22  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Full Power Bandwidth vs Frequency  
Gain Phase vs Frequency  
2
0
180  
160  
-2  
-4  
140  
120  
100  
80  
0 dB = 1 V  
P-P  
-6  
-8  
-10  
60  
-12  
-14  
-16  
-18  
40  
20  
0
-20  
10  
1000  
100000  
10000000  
1000000 100000000  
1
10 100 1k 10k 100k 1M 10M 100M  
FREQUENCY (Hz)  
100  
10000  
FREQUENCY (Hz)  
Figure 106.  
Figure 107.  
Small-Signal Transient Response  
AV = 1, CL = 10pF  
Small-Signal Transient Response  
AV = 1, CL = 100pF  
D: 0.00s  
D: 0.00V  
D: 0.00s  
D: 0.00V  
@: -1.01 ms @: -80.0 mV  
@: -1.01 ms @: -80.0 mV  
1
1
Ch1 50.0 mV  
M 200 ns  
A
Ch1 2.00 mV  
Ch1 50.0 mV  
M 200 ns  
A Ch1 2.00 mV  
50.40%  
50.40%  
Figure 108.  
Figure 109.  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
APPLICATION INFORMATION  
DISTORTION MEASUREMENTS  
The vanishingly low residual distortion produced by LM4562 is below the capabilities of all commercially available  
equipment. This makes distortion measurements just slightly more difficult than simply connecting a distortion  
meter to the amplifier’s inputs and outputs. The solution, however, is quite simple: an additional resistor. Adding  
this resistor extends the resolution of the distortion measurement equipment.  
The LM4562’s low residual distortion is an input referred internal error. As shown in Figure 110, adding the 10Ω  
resistor connected between the amplifier’s inverting and non-inverting inputs changes the amplifier’s noise gain.  
The result is that the error signal (distortion) is amplified by a factor of 101. Although the amplifier’s closed-loop  
gain is unaltered, the feedback available to correct distortion errors is reduced by 101, which means that  
measurement resolution increases by 101. To ensure minimum effects on distortion measurements, keep the  
value of R1 low as shown in Figure 110.  
This technique is verified by duplicating the measurements with high closed loop gain and/or making the  
measurements at high frequencies. Doing so produces distortion components that are within the measurement  
equipment’s capabilities. This datasheet’s THD+N and IMD values were generated using the above described  
circuit connected to an Audio Precision System Two Cascade.  
R2  
1000W  
-
LM4562  
R1  
10W  
Distortion Signal Gain = 1+(R2/R1)  
+
Analyzer Input  
Generator Output  
Audio Precision  
System Two  
Cascade  
Actual Distortion = AP Value/100  
Figure 110. THD+N and IMD Distortion Test Circuit  
The LM4562 is a high-speed op amp with excellent phase margin and stability. Capacitive loads up to 100pF will  
cause little change in the phase characteristics of the amplifiers and are therefore allowable.  
Capacitive loads greater than 100pF must be isolated from the output. The most straightforward way to do this is  
to put a resistor in series with the output. This resistor will also prevent excess power dissipation if the output is  
accidentally shorted.  
24  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
 
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
A. Complete shielding is required to prevent induced pick up from external sources. Always check with oscilloscope for  
power line noise.  
Figure 111. Noise Measurement Circuit  
Total Gain: 115 dB @f = 1 kHz  
Input Referred Noise Voltage: en = V0/560,000 (V)  
Figure 112. RIAA Preamp Voltage Gain, RIAA  
Deviation vs Frequency  
Figure 113. Flat Amp Voltage Gain vs Frequency  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
TYPICAL APPLICATIONS  
AV = 34.5  
F = 1 kHz  
En = 0.38 μV  
A Weighted  
Figure 114. NAB Preamp  
Figure 115. NAB Preamp Voltage Gain vs Frequency  
VO = V1–V2  
Figure 116. Balanced to Single-Ended Converter  
26  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
VO = V1 + V2 V3 V4  
Figure 117. Adder/Subtracter  
Figure 118. Sine Wave Oscillator  
Illustration is f0 = 1 kHz  
Figure 119. Second-Order High-Pass Filter (Butterworth)  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
Illustration is f0 = 1 kHz  
Figure 120. Second-Order Low-Pass Filter (Butterworth)  
Illustration is f0 = 1 kHz, Q = 10, ABP = 1  
Figure 121. State Variable Filter  
28  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
Figure 122. AC/DC Converter  
Figure 123. 2-Channel Panning Circuit (Pan Pot)  
Figure 124. Line Driver  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
1
1
,
,
fL ö  
fLB  
ö
ö
R2C1  
2pR1C1  
2p  
1
1
fHB  
fH ö  
( )  
2p R1 R5 2R3 C2  
+ +  
2pR5C2  
The equations started above are simplifications, providing guidance of general –3dB point values, when the  
potentiometers are at their null position.  
Illustration is:  
f
L 32 Hz, fLB 320 Hz  
H 11 kHz, fHB 1.1 kHz  
f
Figure 125. Tone Control  
30  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
Av = 35 dB  
En = 0.33 μV S/N = 90 dB  
f = 1 kHz  
A Weighted  
A Weighted, VIN = 10 mV  
@f = 1 kHz  
Figure 126. RIAA Preamp  
Illustration is:  
V0 = 101(V2 V1)  
Figure 127. Balanced Input Mic Amp  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM4562  
LM4562  
SNAS326J AUGUST 2006REVISED APRIL 2013  
www.ti.com  
A. See Table 1.  
Figure 128. 10-Band Graphic Equalizer  
Table 1. C1, C2, R1, and R2 Values for Figure 128(1)  
fo (Hz)  
32  
C1  
C2  
R1  
R2  
0.12μF  
0.056μF  
0.033μF  
0.015μF  
8200pF  
3900pF  
2000pF  
1100pF  
510pF  
4.7μF  
75kΩ  
68kΩ  
62kΩ  
68kΩ  
62kΩ  
68kΩ  
68kΩ  
62kΩ  
68kΩ  
51kΩ  
500Ω  
510Ω  
510Ω  
470Ω  
470Ω  
470Ω  
470Ω  
470Ω  
510Ω  
510Ω  
64  
3.3μF  
125  
250  
500  
1k  
1.5μF  
0.82μF  
0.39μF  
0.22μF  
0.1μF  
2k  
4k  
0.056μF  
0.022μF  
0.012μF  
8k  
16k  
330pF  
(1) At volume of change = ±12 dB Q = 1.7  
32  
Submit Documentation Feedback  
Copyright © 2006–2013, Texas Instruments Incorporated  
Product Folder Links: LM4562  
 
 
LM4562  
www.ti.com  
SNAS326J AUGUST 2006REVISED APRIL 2013  
REVISION HISTORY  
Rev  
Date  
Description  
1.0  
1.1  
1.2  
1.3  
08/16/06  
08/22/06  
09/12/06  
09/26/06  
Initial release.  
Updated the Instantaneous Short Circuit Current specification.  
Updated the three ±15V CMRR Typical Performance Curves.  
Updated interstage filter capacitor values on page 1 Typical Application  
schematic.  
1.4  
1.5  
1.6  
J
05/03/07  
10/17/07  
01/26/10  
04/04/13  
Added the “general note” under the EC table.  
Replaced all the PSRR curves.  
Edited the equations on page 28 (under Tone Control).  
Changed layout of National Data Sheet to TI format  
Copyright © 2006–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM4562  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Aug-2013  
PACKAGING INFORMATION  
Orderable Device  
LM4562HA/NOPB  
LM4562MA/NOPB  
LM4562MAX/NOPB  
LM4562NA/NOPB  
Status Package Type Package Pins Package  
Eco Plan Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
ACTIVE  
TO-99  
SOIC  
SOIC  
PDIP  
LMC  
8
8
8
8
20  
Green (RoHS POST-PLATE  
& no Sb/Br)  
Level-1-NA-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-NA-UNLIM  
LM4562HA  
ACTIVE  
ACTIVE  
ACTIVE  
D
D
P
95  
2500  
40  
Green (RoHS  
& no Sb/Br)  
CU SN  
CU SN  
CU SN  
-40 to 85  
L4562  
MA  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
L4562  
MA  
Green (RoHS  
& no Sb/Br)  
-40 to 85  
LM  
4562NA  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Aug-2013  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM4562MAX/NOPB  
SOIC  
D
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
8-Apr-2013  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LM4562MAX/NOPB  
D
8
2500  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2013, Texas Instruments Incorporated  

相关型号:

LM4562MAX

暂无描述
TI

LM4562MAX/NOPB

2 通道、55MHz、高保真、高性能音频运算放大器 | D | 8 | -40 to 85
TI

LM4562NA

Dual High Performance, High Fidelity Audio Operational Amplifier
NSC

LM4562NA

LM4562 Dual High-Performance, High-Fidelity Audio Operational Amplifier
TI

LM4562NA/NOPB

Dual High-Performance Audio Operational Amplifier with Ultra Low Distortion 8-PDIP -40 to 85
TI

LM4562_07

Dual High Performance, High Fidelity Audio Operational Amplifier
NSC

LM4565F

Low Noise Operational Amplifier
ROHM

LM4565F-E2

Low Noise Operational Amplifier
ROHM

LM4565FJ

LM4565FJ是高电压增益、宽频带的低噪声运算放大器。等效输入噪声电压(5 HznV/ )及总谐波失真(0.0002%)优异,因此是适用于音响设备、有源滤波器等用途的运算放大器。
ROHM

LM4565FJ-E2

Low Noise Operational Amplifier
ROHM

LM4565FV

LM4565FV是高电压增益、宽频带的低噪声运算放大器。等效输入噪声电压(5 HznV/ )及总谐波失真(0.0002%)优异,因此是适用于音响设备、有源滤波器等用途的运算放大器。
ROHM

LM4565FV-E2

Low Noise Operational Amplifier
ROHM