LM4862MX/NOPB [TI]

675mW 单声道、模拟输入 AB 类音频放大器 | D | 8 | -40 to 85;
LM4862MX/NOPB
型号: LM4862MX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

675mW 单声道、模拟输入 AB 类音频放大器 | D | 8 | -40 to 85

放大器 光电二极管 商用集成电路 音频放大器
文件: 总21页 (文件大小:1210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM4862  
www.ti.com  
SNAS102F MAY 1997REVISED MAY 2013  
LM4862  
675 mW Audio Power Amplifier with Shutdown  
Mode  
Check for Samples: LM4862  
1
FEATURES  
DESCRIPTION  
The LM4862 is a bridge-connected audio power  
amplifier capable of delivering typically 675mW of  
continuous average power to an 8Ω load with 1%  
THD+N from a 5V power supply.  
2
No Output Coupling Capacitors, Bootstrap  
Capacitors or Snubber Circuits are Necessary  
Small Outline or PDIP Packaging  
Unity-Gain Stable  
Boomer audio power amplifiers were designed  
specifically to provide high quality output power with a  
minimal amount of external components. Since the  
LM4862 does not require output coupling capacitors,  
bootstrap capacitors, or snubber networks, it is  
optimally suited for low-power portable systems.  
External Gain Configuration Capability  
Pin Compatible with LM4861  
APPLICATIONS  
Portable Computers  
Cellular Phones  
The LM4862 features an externally controlled, low-  
power consumption shutdown mode, as well as an  
internal thermal shutdown protection mechanism.  
Toys and Games  
The unity-gain stable LM4862 can be configured by  
external gain-setting resistors.  
KEY SPECIFICATIONS  
THD+N for 500mW Continuous Average  
Output Power at 1kHz into 81% (max)  
Output Power at 10% THD+N at 1kHz into 8Ω  
825 mW (typ)  
Shutdown Current 0.7μA (typ)  
Typical Application  
Connection Diagram  
*Refer to Application Information for information concerning proper  
selection of the input coupling capacitor.  
Figure 1. Typical Audio Amplifier Application  
Circuit  
Figure 2. Small Outline and PDIP Package-Top  
View  
See Package Number D0008A or P0008E  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 1997–2013, Texas Instruments Incorporated  
 
LM4862  
SNAS102F MAY 1997REVISED MAY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)  
Supply Voltage  
6.0V  
65°C to +150°C  
0.3V to VDD + 0.3V  
Internally limited  
2000V  
Storage Temperature  
Input Voltage  
Power Dissipation(3)  
ESD Susceptibility(4)  
ESD Susceptibility(5)  
Junction Temperature  
Soldering Information  
200V  
150°C  
Small Outline Package  
Vapor Phase (60 sec.)  
Infrared (15 sec.)  
215°C  
220°C  
Thermal Resistance  
θJC (typ)—D0008A  
θJA (typ)—D0008A  
θJC (typ)—P0008E  
θJA (typ)—P0008E  
35°C/W  
170°C/W  
37°C/W  
107°C/W  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical  
specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the  
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication  
of device performance.  
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications  
(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature  
TA. The maximum allowable power dissipation is PDMAX = (TMAX TA)/θJA. For the LM4862, TJMAX = 150°C. The typical junction-to-  
ambient thermal resistance, when board mounted, is 170°C/W for package number D0008A and is 107°C/W for package number  
P0008E.  
(4) Human body model, 100 pF discharged through a 1.5 kΩ resistor.  
(5) Machine Model, 200 pF–240 pF discharged through all pins.  
Operating Ratings  
Temperature Range  
TMIN TA TMAX  
40°C TA 85°C  
2.7V VDD 5.5V  
Supply Voltage  
2
Submit Documentation Feedback  
Copyright © 1997–2013, Texas Instruments Incorporated  
Product Folder Links: LM4862  
LM4862  
www.ti.com  
SNAS102F MAY 1997REVISED MAY 2013  
Electrical Characteristics(1)(2)  
The following specifications apply for VDD = 5V unless otherwise specified. Limits apply for TA = 25°C.  
Symbol  
Parameter  
Conditions  
LM4862  
Units  
(Limits)  
Typical(3)  
Limit(4)  
VDD  
Supply Voltage  
2.7  
5.5  
6.0  
5
V (min)  
V (max)  
mA (max)  
μA (max)  
mV (max)  
mW (min)  
mW  
IDD  
ISD  
VOS  
PO  
Quiescent Power Supply Current  
Shutdown Current  
VIN = 0V, IO = 0A(5)  
3.6  
0.7  
5
VPIN1 = VDD  
Output Offset Voltage  
Output Power  
VIN = 0V  
50  
THD = 1% (max); f = 1 kHz; RL = 8Ω  
THD + N = 10%; f = 1 kHz; RL = 8Ω  
675  
825  
0.55  
500  
THD + N  
PSRR  
Total Harmonic Distortion + Noise  
Power Supply Rejection Ratio  
PO = 500 mWrms; RL = 8Ω  
AVD = 2; 20 Hz f 20 kHz  
%
VDD = 4.9V to 5.1V  
50  
dB  
(1) All voltages are measured with respect to the ground pin, unless otherwise specified.  
(2) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional, but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical  
specifications under particular test conditions which ensure specific performance limits. This assumes that the device is within the  
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication  
of device performance.  
(3) Typicals are measured at 25°C and represent the parametric norm.  
(4) Limits are ensured to TI's AOQL (Average Outgoing Quality Level).  
(5) The quiescent power supply current depends on the offset voltage when a practical load is connected to the amplifier.  
Automatic Switching Circuit  
Figure 3. Automatic Switching Circuit  
Copyright © 1997–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM4862  
 
 
LM4862  
SNAS102F MAY 1997REVISED MAY 2013  
www.ti.com  
External Components Description  
(Figure 1)  
Components  
Functional Description  
1.  
Ri  
Inverting input resistance which sets the closed-loop gain in conjunction with Rf. This resistor also forms a high pass filter  
with Ci at fc = 1/(2πRiCI).  
2.  
Ci  
Input coupling capacitor which blocks the DC voltage at the amplifier's input terminals. Also creates a highpass filter with Ri  
at fc = 1/(2πRiCi). Refer to PROPER SELECTION OF EXTERNAL COMPONENTS for an explanation of how to determine  
the value of Ci.  
3.  
4.  
RF  
CS  
Feedback resistance which sets the closed-loop gain in conjunction with Ri.  
Supply bypass capacitor which provides power supply filtering. Refer to POWER SUPPLY BYPASSING for proper  
placement and selection of the supply bypass capacitor.  
5.  
CB  
Bypass pin capacitor which provides half-supply filtering. Refer to PROPER SELECTION OF EXTERNAL COMPONENTS  
for proper placement and selection of the half-supply bypass capacitor.  
4
Submit Documentation Feedback  
Copyright © 1997–2013, Texas Instruments Incorporated  
Product Folder Links: LM4862  
 
LM4862  
www.ti.com  
SNAS102F MAY 1997REVISED MAY 2013  
Typical Performance Characteristics  
THD+N  
vs  
Frequency  
THD+N  
vs  
Frequency  
Figure 4.  
Figure 5.  
THD+N  
vs  
Frequency  
THD+N  
vs  
Output Power  
Figure 6.  
Figure 7.  
THD+N  
vs  
Output Power  
THD+N  
vs  
Output Power  
Figure 8.  
Figure 9.  
Copyright © 1997–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM4862  
 
 
LM4862  
SNAS102F MAY 1997REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics (continued)  
Output Power vs  
Supply Voltage  
Output Power vs  
Supply Voltage  
Figure 10.  
Figure 11.  
Output Power vs  
Supply Voltage  
Output Power vs  
Load Resistance  
Figure 12.  
Figure 13.  
Power Dissipation vs  
Output Power  
Power Derating Curve  
Figure 14.  
Figure 15.  
6
Submit Documentation Feedback  
Copyright © 1997–2013, Texas Instruments Incorporated  
Product Folder Links: LM4862  
 
 
LM4862  
www.ti.com  
SNAS102F MAY 1997REVISED MAY 2013  
Typical Performance Characteristics (continued)  
Dropout Voltage vs  
Power Supply  
Noise Floor  
Figure 16.  
Figure 17.  
Frequency Response vs  
Input Capacitor Size  
Power Supply  
Rejection Ratio  
Figure 18.  
Figure 19.  
Open Loop  
Frequency Response  
Supply Current vs  
Supply Voltage  
Figure 20.  
Figure 21.  
Copyright © 1997–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM4862  
LM4862  
SNAS102F MAY 1997REVISED MAY 2013  
www.ti.com  
APPLICATION INFORMATION  
BRIDGE CONFIGURATION EXPLANATION  
As shown in Figure 1, the LM4862 has two operational amplifiers internally, allowing for a few different amplifier  
configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in  
a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to  
Ri while the second amplifier's gain is fixed by the two internal 10 kΩ resistors. Figure 1 shows that the output of  
amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in  
magnitude, but out of phase 180°. Consequently, the differential gain for the IC is  
AVD = 2*(Rf/Ri)  
(1)  
By driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as  
“bridged mode” is established. Bridged mode operation is different from the classical single-ended amplifier  
configuration where one side of the load is connected to ground.  
A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides  
differential drive to the load, thus doubling output swing for a specified supply voltage. Consequently, four times  
the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in  
attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an  
amplifier's closed-loop gain without causing excessive clipping which will damage high frequency transducers  
used in loudspeaker systems, please refer to AUDIO POWER AMPLIFIER DESIGN.  
A bridge configuration, such as the one used in LM4862, also creates a second advantage over single-ended  
amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at half-supply, no net DC voltage exists across  
the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-  
ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would  
result in both increased internal lC power dissipation and also permanent loudspeaker damage.  
POWER DISSIPATION  
Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or  
single-ended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an  
increase in internal power dissipation. Equation 2 states the maximum power dissipation point for a bridge  
amplifier operating at a given supply voltage and driving a specified output load.  
PDMAX = 4*(VDD)2/(2π2RL)  
(2)  
Since the LM4862 has two operational amplifiers in one package, the maximum internal power dissipation is 4  
times that of a single-ended amplifier. Even with this substantial increase in power dissipation, the LM4862 does  
not require heatsinking. From Equation 2, assuming a 5V power supply and an 8Ω load, the maximum power  
dissipation point is 625 mW. The maximum power dissipation point obtained from Equation 2 must not be greater  
than the power dissipation that results from Equation 3:  
PDMAX = (TJMAX–TA)/θJA  
(3)  
For package D0008A, θJA = 170°C/W and for package P0008E, θJA = 107°C/W. TJMAX = 150°C for the LM4862.  
Depending on the ambient temperature, TA, of the system surroundings, Equation 3 can be used to find the  
maximum internal power dissipation supported by the IC packaging. If the result of Equation 2 is greater than  
that of Equation 3, then either the supply voltage must be decreased, the load impedance increased, or the  
ambient temperature reduced. For the typical application of a 5V power supply, with an 8Ω load, the maximum  
ambient temperature possible without violating the maximum junction temperature is approximately 44°C  
provided that device operation is around the maximum power dissipation point. Power dissipation is a function of  
output power and thus, if typical operation is not around the maximum power dissipation point, the ambient  
temperature can be increased. Refer to Typical Performance Characteristics for power dissipation information for  
lower output powers.  
8
Submit Documentation Feedback  
Copyright © 1997–2013, Texas Instruments Incorporated  
Product Folder Links: LM4862  
 
 
 
LM4862  
www.ti.com  
SNAS102F MAY 1997REVISED MAY 2013  
POWER SUPPLY BYPASSING  
As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply  
rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as  
possible. As displayed in Typical Performance Characteristics, the effect of a larger half supply bypass capacitor  
is improved PSSR due to increased half-supply stability. Typical applications employ a 5V regulator with 10 μF  
and a 0.1 μF bypass capacitors which aid in supply stability, but do not eliminate the need for bypassing the  
supply nodes of the LM4862. The selection of bypass capacitors, especially CB, is thus dependant upon desired  
PSSR requirements, click and pop performance as explained in PROPER SELECTION OF EXTERNAL  
COMPONENTS, system cost, and size constraints.  
SHUTDOWN FUNCTION  
In order to reduce power consumption while not in use, the LM4862 contains a shutdown pin to externally turn off  
the amplifier's bias circuitry. The shutdown feature turns the amplifier off when a logic high is placed on the  
shutdown pin. The trigger point between a logic low and logic high level is typically half supply. It is best to switch  
between ground and supply to provide maximum device performance. By switching the shutdown pin to VDD, the  
LM4862 supply current draw will be minimized in idle mode. While the device will be disabled with shutdown pin  
voltages less than VDD, the idle current may be greater than the typical value of 0.7 μA. In either case, the  
shutdown pin should be tied to a definite voltage because leaving the pin floating may result in an unwanted  
shutdown condition.  
In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry which  
provides a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch  
that when closed, is connected to ground and enables the amplifier. If the switch is open, then a soft pull-up  
resistor of 47 kΩ will disable the LM4862. There are no soft pull-down resistors inside the LM4862, so a definite  
shutdown pin voltage must be applied externally, or the internal logic gate will be left floating which could disable  
the amplifier unexpectedly.  
AUTOMATIC SWITCHING CIRCUIT  
As shown in Figure 3, the LM4862 and the LM4880 can be set up to automatically switch on and off depending  
on whether headphones are plugged in. The LM4880 is used to drive a stereo single ended load, while the  
LM4862 drives a bridged internal speaker.  
The Automatic Switching Circuit is based upon a single control pin common in many headphone jacks which  
forms a normally closed switch with one of the output pins. The output of this circuit (the voltage on pin 5 of the  
LM4880) has two states based on the position of the switch. When the switch inside the headphone jack is open,  
the LM4880 is enabled and the LM4862 is disabled since the NMOS inverter is on. If a headphone jack is not  
present, it is assumed that the internal speakers should be on and the external speakers should be off. Thus the  
voltage on the LM4862 shutdown pin is low and the voltage on the LM4880 shutdown pin is high.  
The operation of this circuit is rather simple. With the switch closed, RP and RO form a resistor divider which  
produces a gate voltage of less than 50 mV. The gate voltage keeps the NMOS inverter off and RSD pulls the  
shutdown pin of the LM4880 to the supply voltage. This shuts down the LM4880 and places the LM4862 in its  
normal mode of operation. When the switch is open, the opposite condition is produced. Resistor RP pulls the  
gate of the NMOS high which turns on the inverter and produces a logic low signal on the shutdown pin of the  
LM4880. This state enables the LM4880 and places the LM4862 in shutdown mode.  
Only one channel of this circuit is shown in Figure 3 to keep the drawing simple but a typical application would be  
a LM4880 driving a stereo headphone jack and two LM4862's driving a pair of internal speakers. If a single  
internal speaker is required, one LM4862 can be used as a summer to mix the left and right inputs into a mono  
channel.  
PROPER SELECTION OF EXTERNAL COMPONENTS  
Proper selection of external components in applications using integrated power amplifiers is critical to optimize  
device and system performance. While the LM4862 is tolerant of external component combinations,  
consideration to component values must be used to maximize overall system quality.  
Copyright © 1997–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM4862  
 
LM4862  
SNAS102F MAY 1997REVISED MAY 2013  
www.ti.com  
The LM4862 is unity-gain stable which gives a designer maximum system flexibility. The LM4862 should be used  
in low gain configurations to minimize THD+N values, and maximize the signal to noise ratio. Low gain  
configurations require large input signals to obtain a given output power. Input signals equal to or greater than 1  
Vrms are available from sources such as audio codecs. Please refer to AUDIO POWER AMPLIFIER DESIGN for  
a more complete explanation of proper gain selection.  
Besides gain, one of the major considerations is the closed-loop bandwidth of the amplifier. To a large extent, the  
band-width is dictated by the choice of external components shown in Figure 1. The input coupling capacitor, Ci,  
forms a first order high pass filter which limits low frequency response. This value should be chosen based on  
needed frequency response for a few distinct reasons.  
Selection of Input Capacitor Size  
Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized  
capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers  
used in portable systems, whether internal or external, have little ability to reproduce signals below 100–150 Hz.  
Thus using a large input capacitor may not increase system performance.  
In addition to system cost and size, click and pop performance is effected by the size of the input coupling  
capacitor, Ci. A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally  
½ VDD). This charge comes from the output via the feedback and is apt to create pops upon device enable. Thus,  
by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized.  
Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value.  
Bypass capacitor, CB, is the most critical component to minimize turn-on pops since it determines how fast the  
LM4862 turns on. The slower the LM4862's outputs ramp to their quiescent DC voltage (nominally ½ VDD), the  
smaller the turn-on pop. Choosing CB equal to 1.0 μF along with a small value of Ci (in the range of 0.1 μF to  
0.39 μF), should produce a virtually clickless and popless shutdown function. While the device will function  
properly, (no oscillations or motorboating), with CB equal to 0.1 μF, the device will be much more susceptible to  
turn-on clicks and pops. Thus, a value of CB equal to 1.0 μF or larger is recommended in all but the most cost  
sensitive designs.  
AUDIO POWER AMPLIFIER DESIGN  
Design a 500 mW/8Ω Audio Amplifier  
Given:  
Power Output  
Load Impedance  
Input Level  
500 mWrms  
8Ω  
1 Vrms  
Input Impedance  
Bandwidth  
20 kΩ  
100 Hz–20 kHz ± 0.25 dB  
A designer must first determine the minimum supply rail to obtain the specified output power. By extrapolating  
from Figure 10, Figure 11, and Figure 12 in Typical Performance Characteristics, the supply rail can be easily  
found. A second way to determine the minimum supply rail is to calculate the required Vopeak using Equation 4  
and add the dropout voltage. Using this method, the minimum supply voltage would be (Vopeak + (2*VOD)), where  
VOD is extrapolated from the Figure 16 in Typical Performance Characteristics.  
(4)  
Using the Output Power vs Supply Voltage graph for an 8Ω load, the minimum supply rail is 4.3V. But since 5V is  
a standard supply voltage in most applications, it is chosen for the supply rail. Extra supply voltage creates  
headroom that allows the LM4862 to reproduce peaks in excess of 500 mW without clipping the signal. At this  
time, the designer must make sure that the power supply choice along with the output impedance does not  
violate the conditions explained in POWER DISSIPATION.  
Once the power dissipation equations have been addressed, the required differential gain can be determined  
from Equation 5.  
(5)  
Rf/Ri = AVD/2  
(6)  
10  
Submit Documentation Feedback  
Copyright © 1997–2013, Texas Instruments Incorporated  
Product Folder Links: LM4862  
 
 
 
LM4862  
www.ti.com  
SNAS102F MAY 1997REVISED MAY 2013  
From Equation 5, the minimum AVD is 2; use AVD = 2.  
Since the desired input impedance was 20 kΩ, and with a AVD of 2, a ratio of 1:1 of Rf to Ri results in an  
allocation of Ri = Rf = 20 kΩ. The final design step is to address the bandwidth requirements which must be  
stated as a pair of 3 dB frequency points. Five times away from a –3 dB point is 0.17 dB down from passband  
response which is better than the required ±0.25 dB specified. This fact results in a low and high frequency pole  
of 20 Hz and 100 kHz respectively. As stated in External Components Description , Ri in conjunction with Ci  
create a highpass filter.  
Ci 1/(2π*20 kΩ*20 Hz) = 0.397 μF; use 0.39 μF.  
(7)  
The high frequency pole is determined by the product of the desired high frequency pole, fH, and the differential  
gain, AVD. With an AVD = 2 and fH = 100 kHz, the resulting GBWP = 100 kHz which is much smaller than the  
LM4862 GBWP of 12.5 MHz. This figure displays that if a designer has a need to design an amplifier with a  
higher differential gain, the LM4862 can still be used without running into bandwidth problems.  
Copyright © 1997–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM4862  
 
LM4862  
SNAS102F MAY 1997REVISED MAY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision E (May 2013) to Revision F  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 11  
12  
Submit Documentation Feedback  
Copyright © 1997–2013, Texas Instruments Incorporated  
Product Folder Links: LM4862  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM4862M  
ACTIVE  
SOIC  
SOIC  
SOIC  
D
D
D
8
8
8
95  
Non-RoHS  
& Green  
Call TI  
Level-1-235C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
-40 to 85  
LM  
4862M  
LM4862M/NOPB  
LM4862MX/NOPB  
ACTIVE  
ACTIVE  
95  
RoHS & Green  
SN  
SN  
LM  
4862M  
2500 RoHS & Green  
LM  
4862M  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Sep-2021  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM4862MX/NOPB  
SOIC  
D
8
2500  
330.0  
12.4  
6.5  
5.4  
2.0  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SOIC  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 35.0  
LM4862MX/NOPB  
D
8
2500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
LM4862M  
LM4862M  
D
D
D
SOIC  
SOIC  
SOIC  
8
8
8
95  
95  
95  
495  
495  
495  
8
8
8
4064  
4064  
4064  
3.05  
3.05  
3.05  
LM4862M/NOPB  
Pack Materials-Page 3  
PACKAGE OUTLINE  
D0008A  
SOIC - 1.75 mm max height  
SCALE 2.800  
SMALL OUTLINE INTEGRATED CIRCUIT  
C
SEATING PLANE  
.228-.244 TYP  
[5.80-6.19]  
.004 [0.1] C  
A
PIN 1 ID AREA  
6X .050  
[1.27]  
8
1
2X  
.189-.197  
[4.81-5.00]  
NOTE 3  
.150  
[3.81]  
4X (0 -15 )  
4
5
8X .012-.020  
[0.31-0.51]  
B
.150-.157  
[3.81-3.98]  
NOTE 4  
.069 MAX  
[1.75]  
.010 [0.25]  
C A B  
.005-.010 TYP  
[0.13-0.25]  
4X (0 -15 )  
SEE DETAIL A  
.010  
[0.25]  
.004-.010  
[0.11-0.25]  
0 - 8  
.016-.050  
[0.41-1.27]  
DETAIL A  
TYPICAL  
(.041)  
[1.04]  
4214825/C 02/2019  
NOTES:  
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.  
Dimensioning and tolerancing per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed .006 [0.15] per side.  
4. This dimension does not include interlead flash.  
5. Reference JEDEC registration MS-012, variation AA.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
SEE  
DETAILS  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:8X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
.0028 MAX  
[0.07]  
.0028 MIN  
[0.07]  
ALL AROUND  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4214825/C 02/2019  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
D0008A  
SOIC - 1.75 mm max height  
SMALL OUTLINE INTEGRATED CIRCUIT  
8X (.061 )  
[1.55]  
SYMM  
1
8
8X (.024)  
[0.6]  
SYMM  
(R.002 ) TYP  
[0.05]  
5
4
6X (.050 )  
[1.27]  
(.213)  
[5.4]  
SOLDER PASTE EXAMPLE  
BASED ON .005 INCH [0.125 MM] THICK STENCIL  
SCALE:8X  
4214825/C 02/2019  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LM4862N

675 mW Audio Power Amplifier with Shutdown Mode
NSC

LM4862_15

AUDIO POWER AMPLIFIER WITH SHUTDOWN MODE
UTC

LM4863

Dual 2.2W Audio Amplifier Plus Stereo Headphone Function
NSC

LM4863

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863-D16-T

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863-N20-R

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863-N20-T

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863-S18-R

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863-S18-T

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863G-D16-T

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863G-N20-R

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC

LM4863G-S18-R

DUAL 2.2W AUDIO AMPLIFIER PLUS STEREO HEADPHONE FUNCTION
UTC