LM4930ITLX/NOPB [TI]

具有立体声耳机和单声道扬声器放大器的音频子系统 | YZR | 36 | -30 to 85;
LM4930ITLX/NOPB
型号: LM4930ITLX/NOPB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有立体声耳机和单声道扬声器放大器的音频子系统 | YZR | 36 | -30 to 85

放大器
文件: 总41页 (文件大小:929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
LM4930 Boomer™ Audio Power Amplifier Series Audio Subsystem with Stereo  
Headphone & Mono Speaker Amplifiers  
Check for Samples: LM4930  
1
FEATURES  
DESCRIPTION  
The LM4930 is an integrated audio subsystem that  
supports voice and digital audio functions. The  
LM4930 includes a high quality I2S input stereo DAC,  
a voice band codec, a stereo headphone amplifier  
and a high-power mono speaker amplifier. It is  
primarily designed for demanding applications in  
mobile phones and other portable devices.  
23  
16-bit Resolution 48kHz Stereo DAC  
16-bit Resolution 8kHz Voice Codec  
I2S Digital Audio Data Serial Interface  
Two-wire Serial Control Interface  
PCM Voice Audio Data Serial Interface  
25mW/channel Stereo Headphone Amplifier  
330mW Mono 8Amplifier (at AVDD = 3.0V)  
The LM4930 features an I2S serial interface for full  
range audio,  
a 16-bit PCM bi-directional serial  
32-step Volume Control for Audio Output  
Amplifiers  
interface for the voice band codec and an two-wire  
interface for control. The full range music path  
features an SNR of 86dB with a 16-bit 48kHz input.  
The stereo DAC can also be used while the voice  
codec is in use. The headphone amplifier delivers  
25mWRMS to a 32single-ended stereo load with  
less than 0.5% distortion (THD+N) when AVDD = 3V.  
The mono speaker amplifier delivers up to 330mW  
into an 8load with less than 1% distortion when  
AVDD = 3V.  
No Snubber Networks or Bootstrap Capacitors  
are Required by the Headphone or Hands-free  
Amplifiers  
Digital Sidetone Generation with Adjustable  
Attenuation  
Gain Controllable Headphone Amp, Mono BTL  
Amp, Mic Preamp  
The LM4930 employs advanced techniques to reduce  
power consumption, to reduce controller overhead  
and to eliminate click and pop. Boomer audio power  
amplifiers were designed specifically to provide high  
quality output power with a minimal amount of  
external components. It is, therefore, ideally suited for  
mobile phone and other low voltage applications  
where minimal power consumption is a primary  
requirement.  
Available in the 36–bump DSBGA and 44–lead  
WQFN Packages  
APPLICATIONS  
Mobile Phones  
Mobile/low Power Audio Appliances  
PDAs  
KEY SPECIFICATIONS  
PLS OUT at AVDD = 5.0V, 8Ω 1% THD+N 1W  
(typ)  
PLS OUT at AVDD = 3.0V, 8Ω 1% THD+N  
330mW (typ)  
PH/P OUT at AVDD = 3.0V, 32Ω 0.5% THD+N  
25mW (typ)  
Supply Voltage Range  
DVDD(1) 2.6V to 4.5V  
AVDD(1) 2.6V to 5.5V  
Total Shutdown Current 2μA (typ)  
PSRR at 217Hz, AVDD = 3V 50dB (typ)  
(1) Best operation is achieved by maintaining 3.0V AVDD 5.0  
and 3.0V DVDD 3.6V. AVDD must be equal to or greater  
than DVDD. for proper operation.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Boomer is a trademark of Texas Instruments Incorporated.  
2
3
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2003–2013, Texas Instruments Incorporated  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Typical Application  
IRQ  
DAC_REF  
BYPASS CAP  
MIC_REF  
Click and pop  
suppression and  
REFERENCE  
CIRCUIT  
SDA  
SCL  
power up circuits  
CTRL  
MIC BIAS  
ADDR  
_
XTAL IN  
HP SENSE IN  
XTAL  
OSC  
Power Management and Control  
1M  
HP SENSE OUT  
_
XTAL OUT  
MIC+  
16  
PCMSYNC  
22 pF  
22 pF  
Microphone  
Speaker  
ADC  
MIC-  
LS+  
PCM  
PCMCLK  
8 kHz  
InOut  
LPF  
LPF  
PCMSDI  
DAC  
+
AB  
AB  
AB  
PCMSDO  
LS-  
16  
16  
HPL  
MIXER  
I2S  
STEREO  
DAC  
I2SSDI  
I2SWS  
I2SCLK  
16  
48 kHz  
Input  
Headphones  
2 x 25 mW  
HPR  
Figure 1. Typical I2S + Voice Codec Application Circuit for Mobile Phones  
Connection Diagrams  
Top View  
Top View  
44  
38  
43 42 41 40 39  
37 36 35  
34  
33  
32  
NC  
1
2
DV _D  
DD  
MCLK/XTAL_IN  
XTAL_OUT  
PCM_SYNC  
SCL  
3
DGND_D  
4
31  
30  
29  
28  
27  
26  
25  
24  
23  
SDA  
HPSENSE_IN  
HPSENSE_OUT  
ADDR  
5
BYPASS  
DAC_REF  
6
AV _MIC  
DD  
7
AV _HP  
DD  
8
AV _LS  
DD  
LS+  
LS+  
LS-  
LS-  
MIC_REF  
MIC_P  
9
10  
11  
12  
MIC_N  
MIC_BIAS  
13  
19  
14 15 16 17 18  
20 21 22  
Figure 2. 36 - Bump DSBGA Package  
See Package Number YZR0036KRA  
Figure 3. 44 - Lead WQFN Package  
See Package Number NJN0044A  
2
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
 
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Pin Descriptions  
Pin No.  
A1  
A2  
A3  
A4  
A5  
A6  
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
Pin Name  
MIC_P  
Description  
Microphone positive differential input  
MIC_N  
Microphone negative differential input  
Analog Vdd for microphone preamp  
D/A converter reference voltage  
AVDD_MIC  
DAC_REF  
SDA  
Two-wire control interface serial data pin  
Two-wire control interface serial clock pin  
Analog ground for microphone preamp  
Microphone bias supply output (2V)  
SCL  
AGND_MIC  
MIC_BIAS  
MIC_REF  
ADDR  
Internal fixed-reference bypass capacitor decoupling pin  
Control bus address select pin  
PCM serial data in  
PCM_SDI  
PCM_CLK  
AVDD_HP  
NC  
PCM Serial clock pin  
Analog Vdd for headphone amplifier  
No Connect  
BYPASS  
PCM_SYNC  
I2S_DATA  
DGND_D  
HP_L  
Half-supply bypass capacitor decoupling pin  
PCM Frame sync pin  
I2S serial data input  
Digital ground  
Headphone amplifier connection (Left)  
Headphone amplifier connection (Right)  
Connection for sense pin of headphone jack  
PCM serial data out  
HP_R  
HPSENSE_IN  
PCM_SDO  
I2S_CLK  
DVDD_D  
AGND_HP  
LS-  
I2S serial bit clock  
Digital Vdd  
Analog ground for headphone amplifier  
Loudspeaker amplifier BTL negative out (-)  
HPSENSE_OUT  
Logic output pin to indicate headphone connection status. Outputs logic high when HPSENSE_IN is  
high and outputs logic low when HPSENSE_IN is low. See Figure 50 for suggested application circuit  
E4  
E5  
E6  
F1  
F2  
F3  
F4  
F5  
F6  
IRQ  
LM4930 mode status indicator pin  
I2S word select  
I2S_WS  
XTAL_OUT  
AGND_LS  
LS+  
Negative feedback source for external crystal MCLK  
Analog ground for loudspeaker amplifier  
Loudspeaker amplifier BTL positive out (+)  
Analog VDD for loudspeaker amplifier  
Digital ground  
AVDD_LS  
DGND_X  
DVDD_X  
MCLK/XTAL_IN  
Digital VDD  
12.288MHz or 24.576MHz Master Clock from crystal (via XTAL OUT) or external source  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
System Control Registers  
The LM4930 is controlled with a two-wire serial interface. This interface is used to configure the operating mode,  
digital interfaces, and delta-sigma modulators. The LM4930 is controlled by writing information into a series of  
write-only registers, each with its own unique 7 bit address. The following registers are programmable:  
Table 1. BASIC CONFIGURATION Registers(1)  
BASIC CONFIGURATION (XX1000). (Set = logic 1, Clear = logic 0)  
BIT  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
RESET  
Address  
Register  
Description  
3:0  
MODE  
The LM4930 can be placed in one of several modes that dictate the basic operation. When a new  
mode is selected the LM4930 will change operation silently and will re-configure the power  
management profile automatically. The modes are described as follows:(2)  
Mode  
Mono Speaker  
Amplifier Source  
Headphone Left  
Source  
Headphone Right Comment  
Source  
0000  
0001  
0010  
None  
None  
Voice  
None  
None  
None  
None  
None  
None  
Powerdown mode  
Standby mode  
Mono speaker  
mode  
0011  
0100  
0101  
0110  
0111  
None  
Voice  
Voice  
Headphone call  
mode  
Voice  
Voice  
Voice  
Conference call  
mode  
Audio (L+R)  
None  
None  
None  
L+R mixed to mono  
speaker  
Audio (Left)  
Audio (Left)  
Audio (Right)  
Audio (Right)  
Headphone stereo  
audio  
Audio (L+R)  
L+R mixed to mono  
speaker + stereo  
headphone audio  
1000  
1001  
1010  
Audio (Left)  
Voice  
Voice  
Mixed Mode  
Mixed mode  
Mixed Mode  
Voice + Audio (Left) Voice  
Voice Audio (Left)  
Voice  
Audio (Left)  
4
SOFT_RESET  
PCM_LONG  
Resets the LM4930, excluding the control registers  
If set the PCM interface uses a long frame sync.(3)  
5
6
PCM_COMPANDED  
PCM_LAW  
If set the 8 MSBs are presumed to be companded data and the 8 LSBs are ignored.(3)  
If set, the companded G711 data is set to be A-law, else µ-law is assumed(3)  
7
8:9  
PCM_SYNC_MODE  
Sets 1 (00h), 2 (01h) or 4(10h) 16 bit frames per sync. The PCM_SDO pin is tri-stated during the  
latter frames.(3)  
10  
PCM_ALWAYS_ON  
This bit should be set if another codec is using the PCM bus. When set, the LM4930 will drive the  
clock and sync signals in all modes except Powerdown(3)  
11  
12  
13  
14  
15  
I2S_M/S  
I2S_RES  
RSVD  
I2S master or slave select. If set then I2S = master. Cleared = slave  
I2S resolution select. If set then 32 bits per frame. If cleared then 16 bits per frame  
RESERVED(4)  
RESERVED(4)  
RESERVED(4)  
RSVD  
RSVD  
(1) This register is used to configure the I2S and PCM interfaces as well as the 48kHz DAC module. The 7 bit address for the  
BASICCONFIG register is XX10000.  
(X = 0 if ADDR is set to logic 0)  
(X = 1 if ADDR is set to logic 1)  
(2) With the exception of Standby Mode, rapid switching between modes should be avoided. Rapid switching between modes will not  
ensure that the desired mode will be activated.  
(3) It is recommended to alter this bit only while the part is in Powerdown Mode.  
(4) Reserved bits should be set to zero when programming the associated register.  
4
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
 
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Table 2. VOICE/TEST CONFIG Registers(1)  
VOICETESTCONFIG (XX10001). (Set = logic 1, Clear = logic 0)  
BIT  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
RESET  
Address  
Register  
Description  
0
CLASS  
If set, configures the chip for use with an external class D or linear amplifier and turns the BTL  
speaker output into a buffer.(2)  
4:1  
SIDESTONE_ATTEN  
Programs the attenuation of the digital sidetone. Attenuation is set as follows:  
4:1  
Sidetone  
4:1  
Sidetone Attenuation  
Attenuation  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Mute  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
-9dB  
-6dB  
-3dB  
0dB  
-30dB  
-27dB  
-24dB  
-21dB  
-18dB  
-15dB  
-12dB  
Mute  
Mute  
Mute  
Mute  
5
AUTOSIDE  
This feature is included for use with the mono speaker in hands-free applications where sidetones  
may not be desirable. If set, the sidetone is always muted in modes when voice is played on the  
mono speaker (0010, 0100, 1001, and 1010), otherwise the sidetone is present at whatever level is  
set in the attenuation conrol register  
6
7
CLOCK_DIV  
If set, allows for the use of a 24.576MHz crystal. Default setting is for 12.288MHz crystal.(2)  
ZXD_DISABLE  
Disables the zero crossing detect in the stereo DAC to ensure immediate mode changes rather than  
waiting for a zero cross.(3)  
8:9  
RSVD  
RESERVED(4)  
10:11  
CAP_SIZE  
Set to accomodate different bypass capacitor values to give correct turn-off delay and click/pop  
performance. Value is set as follows:(2)  
10:11  
00  
Delay  
Bypass Capacitor Size  
25ms  
0.1µF  
01  
50ms  
0.39µF  
1µF  
10  
85ms  
11  
RESERVED  
RESERVED  
12  
13  
14  
15  
ZXDS_SLOW  
MUTE_LS  
If set, this forces the stereo DAC outputs to wait for a zero crossing before powering down  
If set, mutes the loudspeaker amplifier in any mode where it is not already muted  
If set, mutes the headphone amplifier in any mode where it is not already muted  
If set, mutes the microphone preamp  
MUTE_HP  
MUTE_MIC  
(1) This register configures the voiceband codec, sidetone attenuation, and selected control functions. The 7 bit address for the VOICE  
TESTCONFIG register is XX10001.  
(X = 0 if ADDR is set to logic 0)  
(X = 1 if ADDR is set to logic 1)  
(2) It is recommended to alter this bit only while the part is in Powerdown Mode.  
(3) To ensure a successful transistion into Powerdown Mode, ZXD_DISABLE must be set whenever there is no audio input signal present.  
(4) Reserved bits should be set to zero when programming the associated register.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Table 3. GAIN CONFIG Registers(1)  
GAINCONFIG (XX10010). (Set = logic 1, Clear = logic 0)  
BIT  
15  
0
14  
0
13  
0
12  
0
11  
0
10  
0
9
0
8
0
7
0
6
0
5
0
4
0
3
0
2
0
1
0
0
0
RESET  
Address  
Register  
Description  
Programs the gain of the loudspeaker amplifier. Gain is set as follows:  
4:0  
LOUDSPKR_GAIN  
4:0  
Loudspeaker Gain 4:0  
Loudspeaker Gain  
-10.5dB  
-9dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
-34.5dB  
-33dB  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
-31.5dB  
-30dB  
-7.5dB  
-6dB  
-28.5dB  
-27dB  
-4.5dB  
-3dB  
-25.5dB  
-24dB  
-1.5dB  
0dB  
-22.5dB  
-21dB  
1.5dB  
3dB  
-19.5dB  
-18dB  
4.5dB  
6dB  
-16.5dB  
-15dB  
7.5dB  
9dB  
-13.5dB  
-12dB  
10.5dB  
12dB  
9:5  
HP_GAIN  
Programs the gain of the headphone amplifier. Gain is set as follows:  
9:5  
Headphone Gain  
-46dB  
9:5  
Headphone Gain  
-22.5dB  
-21dB  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
11001  
11010  
11011  
11100  
11101  
11110  
11111  
-45dB  
-43.5dB  
-42db  
-19.5dB  
-18dB  
-40.5dB  
-39dB  
-16.5dB  
-15dB  
-37.5dB  
-36dB  
-13.5dB  
-12dB  
-34.5dB  
-33dB  
-10.5dB  
-9dB  
-31.5dB  
-30dB  
-7.5dB  
-6dB  
-28.5dB  
-27dB  
-4.5dB  
-3dB  
-25.5dB  
-24dB  
-1.5dB  
0dB  
13:10  
MIC_GAIN  
Programs the gain of the microphone amplifier. Gain is set as follows:  
(1) This register is used to control the gain of the headphone amplifier, the loudspeaker amplifier, and the microphone preamplifier. The 7  
bit address for the GAINCONFIG register is XX10010.  
(X = 0 if ADDR is set to logic 0)  
(X = 1 if ADDR is set to logic 1)  
6
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Table 3. GAIN CONFIG Registers(1) (continued)  
13:10  
0000  
Mic Preamp Gain  
17dB  
0001  
19dB  
0010  
21dB  
0011  
23dB  
0100  
25dB  
0101  
27dB  
0110  
29dB  
0111  
31dB  
1000  
33dB  
1001  
35dB  
1010  
37dB  
1011  
39dB  
1100  
41dB  
1101  
43dB  
1110  
45dB  
1111  
47dB  
15:14  
RSVD  
RESERVED(2)  
(2) Reserved bits should be set to zero when programming the associated register.  
Timing Diagrams  
Figure 4. Two-Wire Control Interface Timing Diagram  
Figure 5. PCM Receive Timing Diagram  
Figure 6. I2S Transmit Timing Diagram  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: LM4930  
 
 
 
 
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
Absolute Maximum Ratings(1)(2)(3)  
Analog Supply Voltage  
Digital Storage Supply Voltage  
Storage temperature  
Power Dissipation(4)  
6.0V  
6.0V  
-65°C to +150°C  
Internally Limited  
2000V  
ESD Susceptibility  
Human Body Model(5)  
Machine Model(6)  
200V  
Junction temperature  
Thermal Resistance  
150°C  
θJA - YZR0036KRA  
θJA - NJN0044A(7)  
105°C/W  
27°C/W  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical  
specifications under particular test conditions which specifies specific performance limits. This assumes that the device is within the  
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication  
of device performance.  
(2) All voltages are measured with respect to the relevant GND pin unless otherwise specified.  
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and  
specifications.  
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX ,θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation is PDMAX = (TJMAX – TA) / θJA or the number given in Absolute Maximum Ratings,  
whichever is lower. For the LM4930, see power derating currents for more information.  
(5) Human body model: 100pF discharged through a 1.5kresistor.  
(6) Machine model: 220pF - 240pF discharged through all pins.  
(7) The given θA is for an LM4930 packaged in an NJN0044A with the Exposed-DAP soldered to an exposed 2in2 area of 1oz printed circuit  
board copper with 16 thermal vias as described in AN-1187.  
Operating Ratings(1)  
Temperature Range  
T
MIN TA TMAX  
30°C TA +85°C  
2.6V - 4.5V  
(2)  
Supply Voltage  
DVDD  
AVDD  
(2)  
2.6V - 5.5V  
(1) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX ,θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation is PDMAX = (TJMAX – TA) / θJA or the number given in Absolute Maximum Ratings,  
whichever is lower. For the LM4930, see power derating currents for more information.  
(2) Best operation is achieved by maintaining 3.0V AVDD 5.0 and 3.0V DVDD 3.6V. AVDD must be equal to or greater than DVDD. for  
proper operation.  
8
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Electrical Characteristics DVDD = 3.3V, AVDD = 5V, RLHP = 32, RLHF = 8(1)(2)(3)  
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for TA= 25°C.  
LM4930  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(4)  
Limits(5)(6)  
fMCLK = 12.288MHz  
Output Mode = "0010"  
Output Mode = "0011"  
Output Mode = "0100"  
2
Output Mode = "0101"  
Output Mode = "0110"  
Output Mode = "0111"  
DIDD  
Digital Power Supply Current  
4.4  
4.9  
Output Mode = "1000"  
Output Mode = "1001"  
Output Mode = "1010"  
8
mA (max)  
fMCLK = 12.288MHz; No Load  
Output Mode = "0010"  
Output Mode = "0011"  
Output Mode = "0100"  
Output Mode = "0101"  
Output Mode = "0110"  
Output Mode = "0111"  
7.0  
6.3  
8.0  
8.2  
7.4  
8.7  
Analog Power Supply Quiescent  
Current  
AIDD  
Output Mode = "1000"  
Output Mode = "1001"  
Output Mode = "1010"  
9.5  
1
14  
7
mA (max)  
µA (max)  
DISD  
Digital Powerdown Current  
Analog Powerdown Current  
Digital Standby Current  
Analog Standby Current  
fMCLK = 12.288MHz  
Output Mode = "0000" Powerdown Mode  
AISD  
fMCLK = 12.288MHz  
Output Mode = "0000" Powerdown Mode  
1
2
2
µA (max)  
mA (max)  
DIST  
fMCLK = 12.288MHz  
Output Mode = "0001" Standby Mode  
1.4  
AIST  
fMCLK = 12.288MHz  
Output Mode = "0001" Standby Mode  
CLASS = 0; 0dB gain setting; 8BTL load(7)  
0dB gain setting; 32Stereo Load(7)  
230  
2.5  
1000  
µA (max)  
VP-P  
VFS_LS  
VFS_HP  
Full-Scale Output Voltage  
(Mono speaker amplifier)  
Full-Scale Output Voltage  
(Headphone amplifier)  
2.5  
VP-P  
VMIC_BIAS Mic Bias Voltage  
2.0  
V
THD+N  
Headphone Amplifier Total  
Harmonic Motion Distortion + Noise  
fIN = 1 kHz, POUT = 7.5mW; 32Stereo Load  
0.07  
%
POHP  
POLS  
Headphone Amplifier Output Power THD+N = 0.5%, fOUT = 1kHz  
27  
1
20  
45  
mW (min)  
W
Mono Speaker Amplifier Output  
Power  
THD+N = 1%, fOUT = 1kHz  
PSRR  
Power Supply Rejection Ratio  
CBYPASS = 1.0µF  
55  
dB (min)  
CDAC_REF = 1.0µF  
VRIPPLE = 200mVP-P @ 217Hz, MIC_P,  
MIC_N terminated with 10to ground  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical  
specifications under particular test conditions which specifies specific performance limits. This assumes that the device is within the  
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication  
of device performance.  
(2) All voltages are measured with respect to the relevant GND pin unless otherwise specified.  
(3) Best operation is achieved by maintaining 3.0V AVDD 5.0 and 3.0V DVDD 3.6V. AVDD must be equal to or greater than DVDD. for  
proper operation.  
(4) Typicals are measured at 25°C and represent the parametric norm.  
(5) Limits are specified to Texas Instrument’s AOQL (Average Outgoing Quality Level).  
(6) Datasheet min/max specification limits are ensured by design, test, or statistical analysis.  
(7) This value represents the 0dB output level of the given amplifier for the given analog supply voltage. Gain values given in the  
GAINCONFIG register are relative to these full-scale values for each output amplifier.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: LM4930  
 
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Electrical Characteristics DVDD = 3.3V, AVDD = 5V, RLHP = 32, RLHF = 8(1)(2)(3) (continued)  
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for TA= 25°C.  
LM4930  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(4)  
Limits(5)(6)  
SNR  
(Voice)  
Signal-to-Noise Ratio  
(Voice DAC Path)  
Signal = Vo at f = 1kHz @1% THD+N, 32Ω  
Stereo Load; Noise = digital zero, A-  
weighted, 0dB gain setting  
72  
86  
72  
86  
75  
dB  
dB  
dB  
dB  
dB  
SNR  
(Music)  
Signal-to-Noise Ratio (Music Audio  
Path)  
Signal = Vo at f = 1kHz @1% THD+N, 32Ω  
Stereo Load; Noise = digital zero, A-  
weighted; 0dB gain setting  
DR  
(Voice)  
Dynamic Range (Voice DAC Path)  
Signal = Vo at f = 1kHz @1% THD+N, 32Ω  
Stereo Load; Noise for -60dBFS digital input;  
A-weighted; 0dB gain setting  
DR  
(Music)  
Dynamic Range (Music Audio Path) Signal = Vo at f=1kHz @1% THD+N, 32Ω  
Stereo Load; Noise for -60dBFS digital input;  
A-weighted, 0dB gain setting  
SNRADC Signal-to-Noise Ratio  
(Voice ADC Path)  
Reference signal = 0dBFS  
MIC_P, MIC_N terminated with 10to  
ground;  
A-weighted; 47dB MIC preamp gain setting  
DRADC  
Dynamic Range  
Reference signal = 0dBFS  
75  
dB  
(Voice ADC Path)  
Noise for -60dBFS digital input;  
A-weighted; 47dB MIC preamp gain setting  
XTALK  
Stereo Channel-to-Channel  
Crosstalk  
fS = 48kHz, fIN = 1kHz sinewave at -3dBFS  
75  
dB  
VMIC-IN  
Maximum Differential MIC Input  
Voltage  
17dB MIC Preamp gain setting  
570  
mVP-P  
RVDAC  
RVADC  
PBVDAC  
Voice DAC Ripple  
Voice ADC Ripple  
Voice DAC Passband  
300Hz - 3.3kHz through head-phone output.  
300Hz - 3.3kHz through head-phone output.  
-3dB Point  
+/-0.15  
+/-0.25  
3.46  
+/-0.2  
+/-0.3  
dB (max)  
dB (max)  
kHz  
SBAVDAC Voice DAC Stopband Attenuation  
Above 4kHz  
72  
dB  
UPBVADC Voice ADC Upper Passband Cutoff  
Frequency.  
Upper -3dB Point  
3.47  
kHz  
LPBVADC Voice ADC Lower Passband Cutoff  
Frequency.  
Lower -3dB Point  
0.230  
kHz  
SBAVADC Voice ADC Stopband Attenuation  
Above 4kHz  
65  
58  
dB  
dB  
SBANOTC Voice ADC Notch Attenuation  
H
Centered on 55Hz, figure gives worst case  
attenuation for 50Hz & 60Hz.  
RDAC  
Audio DAC Ripple  
20Hz - 20kHz through head-phone output.  
+/-0.1  
22.7  
76  
+/-0.2  
dB (max)  
kHz  
PBDAC  
SBADAC  
DRDAC  
Audio DAC Passband Width  
Audio DAC Stopband Attenuation  
-3dB point  
Above 24kHz  
dB  
Audio DAC Dynamic Range Digital  
Filter Section  
Signal = VO at f = 1kHz @ 1% THD+N;  
f = 1kHz; Noise for -60dBFS digital input;  
0dB gain; A-weighted  
97  
dB  
SNRDAC Audio DAC SNR Digital Filter  
Section  
Signal = VO at f = 1kHz @ 1% THD+N;  
f = 1kHz; Noise for -60dBFS digital input;  
0dB gain; A-weighted  
97  
dB  
ΔACH-CH Stereo Channel-to-Channel Gain  
0.3  
0.4  
1.4  
dB  
V
Mismatch  
VIL  
VIH  
Digital Input: Logic Low Voltage  
Level  
Digital Input: Logic High Voltage  
Level  
V
Volume Control Range (Headphone Maximum Attenuation  
-46.5  
0
dB  
dB  
amplifiers)  
Minimum Attenuation  
Volume Control Range (Mono  
speaker amplifier)  
Minimum Gain  
Maximum Gain  
-34.5  
12  
dB  
dB  
10  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Electrical Characteristics DVDD = 3.3V, AVDD = 5V, RLHP = 32, RLHF = 8(1)(2)(3) (continued)  
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for TA= 25°C.  
LM4930  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(4)  
Limits(5)(6)  
Volume Control Step Size (Output  
amplifiers)  
1.5  
dB  
Volume Control Range (Microphone Minimum Gain  
17  
47  
dB  
dB  
Preamp)  
Maximum Gain  
Volume Control Step Size  
(Microphone Preamp)  
2
dB  
Side Tone Attenuation Range  
Maximum Attenuation  
Minimum Attenuation  
-30  
0
dB  
dB  
Side Tone Attenuation Step Size  
MCLK frequency  
3
dB  
fMCLK  
CLOCK_DIV = 0  
CLOCK_DIV = 1  
12.288  
24.576  
MHz  
MHz  
MCLK Duty Cycle  
50  
40  
60  
% (min)  
% (max)  
fCONV  
Sampling Clock Frequency(8)  
SCL_CLK Frequency  
48  
kHz  
kHz  
ns  
fCLKSCL  
tRISESCL  
tFALLSCL  
tSDAH  
400  
300  
300  
500  
500  
SCL_CLK, SCL_DATA Rise Time  
SCL_CLK, SDA_DATA Fall Time  
SDA_DATA Hold Time  
ns  
ns  
tSDAS  
SDA_DATA Setup Time  
ns  
fCLKPCM  
PCM_CLK Frequency  
PCM_SYNC_MODE = 00  
PCM_SYNC_MODE = 01  
PCM_SYNC_MODE = 10  
128  
256  
512  
kHz  
PCM_CLK Duty Cycle  
I2S_CLK Frequency  
I2S_CLK Duty Cycle  
50  
40  
60  
% (min)  
% (max)  
fCLKI2S  
I2S_RES = 0  
I2S_RES = 1  
1.536  
3.072  
MHz  
50  
40  
60  
% (min)  
% (max)  
(8) The sampling clock frequency is equal to the master clock frequency divided by 256. (fconv = fMCLK/256)  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Electrical Characteristics DVDD = 3V, AVDD = 3V, RLHP = 32, RLHF = 8(1)(2)(3)  
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for TA= 25°C.  
LM4930  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(4)  
Limits(5)(6)  
fMCLK = 12.288MHz  
Output Mode = "0010"  
Output Mode = "0011"  
Output Mode = "0100"  
1.6  
3.8  
4.2  
Output Mode = "0101"  
Output Mode = "0110"  
Output Mode = "0111"  
DIDD  
Digital Power Supply Current  
Output Mode = "1000"  
Output Mode = "1001"  
Output Mode = "1010"  
7
mA (max)  
fMCLK = 12.288MHz; No Load  
Output Mode = "0010"  
Output Mode = "0011"  
Output Mode = "0100"  
Output Mode = "0101"  
Output Mode = "0110"  
Output Mode = "0111"  
5.8  
5.1  
6.5  
6.4  
5.8  
7.0  
Analog Power Supply Quiescent  
Current  
AIDD  
Output Mode = "1000"  
Output Mode = "1001"  
Output Mode = "1010"  
7.5  
1
12  
7
mA (max)  
µA (max)  
DISD  
Digital Powerdown Current  
Analog Powerdown Current  
Digital Standby Current  
Analog Standby Current  
fMCLK = 12.288MHz  
Output Mode = "0000" Powerdown Mode  
AISD  
fMCLK = 12.288MHz  
Output Mode = "0000" Powerdown Mode  
0.6  
1.1  
1.5  
1.7  
300  
µA (max)  
mA (max)  
DIST  
fMCLK = 12.288MHz  
Output Mode = "0001" Standby Mode  
AIST  
fMCLK = 12.288MHz  
Output Mode = "0001" Standby Mode  
CLASS = 0; 0dB gain setting; 8BTL load(7)  
0dB gain setting; 32Stereo Load(7)  
100  
2.5  
µA (max)  
VP-P  
VFS_LS  
VFS_HP  
Full-Scale Output Voltage  
(Mono speaker amplifier)  
Full-Scale Output Voltage  
(Headphone amplifier)  
2.5  
VP-P  
VMIC_BIAS Mic Bias Voltage  
2
V
THD+N  
Headphone Amplifier Total  
Harmonic Distortion + Noise  
fIN = 1kHz, POUT = 7.5mW  
0.07  
%
POHP  
POLS  
Headphone Amplifier Output Power THD+N = 0.5%, fOUT = 1kHz  
25  
15  
mW (min)  
mW (min)  
Mono Speaker Amplifier Output  
Power  
THD+N = 1%, fOUT = 1kHz  
330  
270  
PSRR  
Power Supply Rejection Ratio  
CBYPASS = 1.0µF  
50  
42  
dB (min)  
CDAC_REF = 1.0µF  
VRIPPLE = 200mVP-P @ 217Hz  
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for  
which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical  
specifications under particular test conditions which specifies specific performance limits. This assumes that the device is within the  
Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication  
of device performance.  
(2) All voltages are measured with respect to the relevant GND pin unless otherwise specified.  
(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX ,θJA, and the ambient temperature,  
TA. The maximum allowable power dissipation is PDMAX = (TJMAX – TA) / θJA or the number given in Absolute Maximum Ratings,  
whichever is lower. For the LM4930, see power derating currents for more information.  
(4) Typicals are measured at 25°C and represent the parametric norm.  
(5) Limits are specified to Texas Instrument’s AOQL (Average Outgoing Quality Level).  
(6) Datasheet min/max specification limits are ensured by design, test, or statistical analysis.  
(7) This value represents the 0dB output level of the given amplifier for the given analog supply voltage. Gain values given in the  
GAINCONFIG register are relative to these full-scale values for each output amplifier.  
12  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Electrical Characteristics DVDD = 3V, AVDD = 3V, RLHP = 32, RLHF = 8(1)(2)(3) (continued)  
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for TA= 25°C.  
LM4930  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(4)  
Limits(5)(6)  
SNR  
(Voice)  
Signal-to-Noise Ratio  
(Voice DAC Path)  
Signal = Vo at f = 1kHz @1% THD+N, 32Ω  
Stereo Load; Noise = digital zero, A-  
weighted; 0dB gain setting  
72  
86  
72  
86  
75  
dB  
dB  
dB  
dB  
dB  
SNR  
(Music)  
Signal-to-Noise Ratio (Music Audio  
Path)  
Signal = Vo at f = 1kHz @1% THD+N, 32Ω  
Stereo Load; Noise = digital zero, A-  
weighted; 0dB gain setting  
DR  
(Voice)  
Dynamic Range (Voice DAC Path)  
Signal = Vo at f = 1kHz @1% THD+N, 32Ω  
Stereo Load; Noise for -60dBFS digital input;  
A-weighted, 0dB gain setting  
DR  
(Music)  
Dynamic Range (Music Audio Path) Signal = Vo at f=1kHz @1% THD+N, 32Ω  
Stereo Load; Noise for -60dBFS digital input;  
A-weighted, 0dB gain setting  
SNRADC Signal-to-Noise Ratio  
(Voice ADC Path)  
Reference signal = 0dBFS  
MIC_P, MIC_N terminated with 10to  
ground;  
A-weighted; 47dB MIC preamp gain setting  
DRADC  
Dynamic Range  
Reference signal = 0dBFS  
75  
dB  
(Voice ADC Path)  
Noise for -60dBFS digital input;  
A-weighted; 47dB MIC preamp gain setting  
XTALK  
Stereo Channel-to-Channel  
Crosstalk  
fS = 48kHz, fIN = 1kHz sinewave at -3dBFS  
73  
dB  
VMIC-IN  
Maximum Differential MIC Input  
Voltage  
17dB MIC Preamp gain setting  
570  
mVP-P  
RVDAC  
RVADC  
PBVDAC  
Voice DAC Ripple  
Voice ADC Ripple  
Voice DAC Passband  
300Hz - 3.3kHz through head-phone output.  
300Hz - 3.3kHz through head-phone output.  
-3dB Point  
+/-0.15  
+/-0.25  
3.46  
+/-0.2  
+/-0.3  
dB (max)  
dB (max)  
kHz  
SBAVDAC Voice DAC Stopband Attenuation  
Above 4kHz  
72  
dB  
UPBVADC Voice ADC Upper Passband Cutoff  
Frequency.  
Upper -3dB Point  
3.47  
kHz  
LPBVADC Voice ADC Lower Passband Cutoff  
Frequency.  
Lower -3dB Point  
0.230  
kHz  
SBAVADC Voice ADC Stopband Attenuation  
Above 4kHz  
65  
58  
dB  
dB  
SBANOTC Voice ADC Notch Attenuation  
H
Centered on 55Hz, figure gives worst case  
attenuation for 50Hz & 60Hz.  
RDAC  
Audio DAC Ripple  
20Hz - 20kHz through head-phone output.  
+/-0.1  
22.7  
76  
+/-0.2  
dB (max)  
kHz  
PBDAC  
SBADAC  
DRDAC  
Audio DAC Passband Width  
Audio DAC Stopband Attenuation  
-3dB point  
Above 24kHz  
dB  
Audio DAC Dynamic Range Digital  
Filter Section  
Signal = VO at f = 1kHz @ 1% THD+N;  
f = 1kHz; Noise for -60dBFS digital input;  
0dB gain; A-weighted  
97  
dB  
SNRDAC Audio DAC SNR Digital Filter  
Section  
Signal = VO at f = 1kHz @ 1% THD+N;  
f = 1kHz; Noise for -60dBFS digital input;  
0dB gain; A-weighted  
97  
dB  
ΔACH-CH Stereo Channel-to-Channel Gain  
0.3  
0.4  
1.4  
dB  
V
Mismatch  
VIL  
VIH  
Digital Input: Logic Low Voltage  
Level  
Digital Input: Logic High Voltage  
Level  
V
Volume Control Range (Headphone Maximum Attenuation  
-46.5  
0
dB  
dB  
amplifiers)  
Minimum Attenuation  
Volume Control Range (Mono  
speaker amplifier)  
Minimum Gain  
Maximum Gain  
-34.5  
12  
dB  
dB  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Electrical Characteristics DVDD = 3V, AVDD = 3V, RLHP = 32, RLHF = 8(1)(2)(3) (continued)  
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for TA= 25°C.  
LM4930  
Units  
(Limits)  
Parameter  
Test Conditions  
Typ(4)  
Limits(5)(6)  
Volume Control Step Size (Output  
amplifiers)  
1.5  
dB  
dB  
dB  
Volume Control Range (Microphone Minimum Gain  
Preamp)  
17  
47  
Maximum Gain  
Volume Control Step Size  
(Microphone Preamp)  
2
Side Tone Attenuation Range  
Maximum Attenuation  
Minimum Attenuation  
-30  
0
dB  
dB  
Side Tone Attenuation Step Size  
MCLK frequency  
3
dB  
fMCLK  
CLOCK_DIV = 0  
CLOCK_DIV = 1  
12.288  
24.576  
MHz  
MHz  
40  
60  
% (min)  
% (max)  
MCLK Duty Cycle  
50  
fCONV  
Sampling Clock Frequency  
SCL_CLK Frequency  
See(8)  
48  
kHz  
kHz  
ns  
fCLKSCL  
tRISESCL  
tFALLSCL  
tSDAH  
400  
300  
300  
500  
500  
SCL_CLK, SCL_DATA Rise Time  
SCL_CLK, SDA_DATA Fall Time  
SDA_DATA Hold Time  
ns  
ns  
tSDAS  
SDA_DATA Setup Time  
PCM_CLK Frequency  
ns  
fCLKPCM  
PCM_SYNC_MODE = 00  
PCM_SYNC_MODE = 01  
PCM_SYNC_MODE = 10  
128  
256  
512  
kHz  
kHz  
kHz  
40  
60  
% (min)  
% (max)  
PCM_CLK Duty Cycle  
I2S_CLK Frequency  
50  
fCLKI2S  
I2S_RES = 0  
I2S_RES = 1  
1.536  
3.072  
MHz  
MHz  
40  
60  
% (min)  
% (max)  
I2S_CLK Duty Cycle  
50  
(8) The sampling clock frequency is equal to the master clock frequency divided by 256. (fconv = fMCLK/256)  
14  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
 
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
(1)  
Typical Performance Characteristics  
MIC PreAmp + ADC Frequency Response  
(MIC Gain = 17dB)  
MIC PreAmp + ADC Frequency Response Zoom  
(MIC Gain = 17dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
20  
50 100 200  
500 1k 2k 4k  
500 1k 1.5k 2k 2.5k 3k 3.5k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 7.  
Figure 8.  
MIC PreAmp + ADC Frequency Response  
(MIC Gain = 47dB)  
MIC PreAmp + ADC Frequency Response Zoom  
(MIC Gain = 47dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0.4  
0.3  
0.2  
0.1  
0
-0.1  
-0.2  
-0.3  
-0.4  
20  
50 100 200 500 1k  
2k 4k  
500 1k 1.5k 2k 2.5k 3k 3.5k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9.  
Figure 10.  
MIC PreAmp + ADC Frequency Response High Cutoff  
(MIC Gain = 17dB)  
MIC PreAmp + ADC Frequency Response High Cutoff  
(MIC Gain = 47dB)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-
10  
-
20  
-
30  
-
40  
-
50  
-
60  
-
70  
-
80  
3k  
3.5k  
4k  
4.5k  
5k  
3k  
3.5k  
4k  
4.5k  
5k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11.  
Figure 12.  
(1) 0dBm0 = -3dBFS for the PCM voice codec and 0dBm0 = -1dBFS for the I2S DAC, unless otherwise specified.  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
15  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics (1) (continued)  
MIC PreAmp + ADC Frequency Response Low Cutoff  
(MIC Gain = 17dB)  
MIC PreAmp + ADC Frequency Response Low Cutoff  
(MIC Gain = 47dB)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
100  
200  
300  
400  
500  
100  
200  
300  
400  
500  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13.  
Figure 14.  
ADC THD+N  
vs  
MIC Input Voltage  
(MIC Gain = 17dB)  
ADC THD+N  
vs  
MIC Input Voltage  
(MIC Gain = 47dB)  
10  
10  
5
5
2
1
0.5  
2
1
0.5  
0.2  
0.1  
0.05  
0.2  
0.1  
0.02  
0.01  
0.05  
0.005  
0.02  
0.01  
0.002  
0.001  
600m 1m 2m  
5m 10m 20m 50m  
1m 2m 5m10m 20m 50m100m 500m 1  
MIC INPUT VOLTAGE (V )  
PP  
MIC INPUT VOLTAGE (V  
)
PP  
Figure 15.  
Figure 16.  
MIC PreAmp + ADC PSRR  
vs  
Frequency  
Headphone Sense In Hysteresis Loop  
(AVDD = 3V)  
Top Trace = 47dB MIC Gain, Bottom Trace = 17dB MIC Gain  
0
3
2.5  
2
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
1.5  
1
0.5  
0
200 300 500 800 1k  
2k 3k  
0
0.5  
1
1.5  
2
2.5  
3
HEADPHONE SENSE IN (V)  
FREQUENCY (Hz)  
Figure 17.  
Figure 18.  
16  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Typical Performance Characteristics (1) (continued)  
Headphone Sense In Hysteresis Loop  
I2S DAC Frequency Response  
( Handsfree Output)  
(AVDD = 5V)  
5
1
0
4
3
2
1
0
-1  
-2  
-3  
-4  
-5  
-6  
0
1
2
3
4
5
20 50 100 200 500 1k 2k 5k 10k 20k  
HEADPHONE SENSE IN (V)  
FREQUENCY (Hz)  
Figure 19.  
Figure 20.  
I2S DAC Frequency Response Zoom  
I2S DAC Frequency Response Zoom  
(Handsfree Output)  
(Headphone Output)  
0.4  
1
0.3  
0.2  
0.1  
0
0
-1  
-2  
-3  
-4  
-5  
-0.1  
-0.2  
-0.3  
-0.4  
-6  
5k  
10k  
15k  
20k  
20 50 100 200 500 1k 2k 5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 21.  
Figure 22.  
THD+N  
vs  
I2S DAC Frequency Response Zoom  
I2S Input Voltage  
(Headphone Output)  
(Handsfree Output, 0dB Handsfree Gain)  
0.4  
10  
5
0.3  
0.2  
0.1  
0
2
1
0.5  
0.2  
0.1  
0.05  
-0.1  
-0.2  
-0.3  
-0.4  
0.02  
0.01  
0.005  
0.002  
0.001  
5k  
10k  
15k  
20k  
1m 2m 5m10m 20m50m100m 500m 1  
FREQUENCY (Hz)  
2
I S INPUT VOLTAGE (FFS)  
Figure 23.  
Figure 24.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics (1) (continued)  
THD+N  
vs  
I2S Input Voltage  
I2S DAC Crosstalk  
(Headphone Output, 0dB Headphone Gain)  
(Top Trace = Left to Right, Bottom Trace = Right to Left)  
0
10  
5
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
-90  
20 50 100 200 500 1k 2k 5k 10k 20k  
1m 2m 5m10m 20m 50m100m 500m 1  
2
FREQUENCY (Hz)  
I S INPUT VOLTAGE (FFS)  
Figure 25.  
Figure 26.  
MIC Bias Dropout Voltage vs  
MIC Bias Current  
PCM DAC Frequency Response  
(Handsfree Output)  
2.5  
2
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
1.5  
1
0.5  
0
20  
50 100 200 500 1k  
2k 4k  
0
2
4
6
8
10 12 14 16 18  
FREQUENCY (Hz)  
MIC BIAS CURRENT (mA)  
Figure 27.  
Figure 28.  
PCM DAC Frequency Response Zoom  
PCM DAC Frequency Response  
(Headphone Output)  
0
(Handsfree Output)  
0.  
4
0.  
3
0.  
2
0.  
1
0
-
0.1  
-
0.2  
-
0.3  
-
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0.4  
20  
50 100 200 500 1k 2k 4k  
FREQUENCY (Hz)  
2
0
5
0
10 20  
50  
0
1
k
2
k
4
k
0
0
FREQUENCY (Hz)  
Figure 29.  
Figure 30.  
18  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Typical Performance Characteristics (1) (continued)  
THD+N  
vs  
PCM DAC Frequency Response Zoom  
PCM Input Voltage  
(Headphone Output)  
(Handsfree Output, 0dB Handsfree Gain)  
0.4  
10  
5
0.3  
0.2  
0.1  
0
2
1
0.5  
0.2  
0.1  
0.05  
-0.1  
-0.2  
-0.3  
-0.4  
0.02  
0.01  
0.005  
0.002  
0.001  
1k  
2k  
3k  
4k  
1m 2m 5m10m 20m 50m100m 500m 1  
FREQUENCY (Hz)  
PCM INPUT VOLTAGE (FFS)  
Figure 31.  
Figure 32.  
THD+N  
vs  
PCM Input Voltage  
Crosstalk  
(Headphone Output, 0dB Headphone Gain)  
(AVDD = 5V and AVDD = 3V, Headphone Output)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.005  
0.002  
0.001  
20  
100  
1k  
10k 20k  
1m 2m 5m10m 20m 50m100m 500m 1  
FREQUENCY (Hz)  
PCM INPUT VOLTAGE (FFS)  
Figure 33.  
Figure 34.  
PSRR  
PSRR  
vs  
vs  
Frequency  
(AVDD = 3V, RL = 16, Headphone Output)  
Frequency  
(AVDD = 3V, RL = 32, Headphone Output)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
20  
100  
1k  
10k  
100k  
20  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 35.  
Figure 36.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics (1) (continued)  
PSRR  
PSRR  
vs  
vs  
Frequency  
(AVDD = 3V, RL = 8, Handsfree Output)  
Frequency  
(AVDD = 5V, RL = 16, Headphone Output)  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
20  
100  
1k  
10k  
100k  
20  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 37.  
Figure 38.  
PSRR  
vs  
PSRR  
vs  
Frequency  
Frequency  
(AVDD = 5V, RL = 32, Headphone Output)  
(AVDD = 5V, RL = 8, Handsfree Output)  
0
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
20  
100  
1k  
10k  
100k  
20  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 39.  
Figure 40.  
THD+N  
vs  
THD+N  
vs  
Frequency  
Frequency  
(AVDD = 5V and AVDD = 3V, RL = 16, PO = 15mW,  
(AVDD = 3V, RL = 8, PO = 150mW, Handsfree Output)  
Headphone Output)  
10  
10  
5
2
1
1
0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
0.01  
20  
100  
1k  
10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 41.  
Figure 42.  
20  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Typical Performance Characteristics (1) (continued)  
THD+N  
THD+N  
vs  
Frequency  
vs  
Frequency  
(AVDD = 5V and AVDD = 3V, RL = 32, PO = 7.5mW,  
Headphone Output)  
(AVDD = 5V, RL = 8, PO = 250mW, Handsfree Output)  
10  
10  
5
2
1
1
0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
0.01  
20  
100  
1k  
10k 20k  
20 50 100 200 500 1k 2k  
5k 10k 20k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 43.  
Figure 44.  
THD+N  
vs  
THD+N  
vs  
Output Power  
Output Power  
AVDD = 3V, RL = 16, f = 1kHz, Headphone Output)  
(AVDD = 3V, RL = 8, f = 1kHz, Handsfree Output)  
10  
10  
5
2
1
1
0.1  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.01  
1
10  
100  
10m 20m  
50m 100m 200m 500m  
1
OUTPUT POWER (mW)  
OUTPUT POWER (W)  
Figure 45.  
Figure 46.  
THD+N  
vs  
THD+N  
vs  
Output Power  
Output Power  
(AVDD = 5V and AVDD = 3V, RL = 32, f = 1kHz, Headphone  
(AVDD = 5V and AVDD = 3V, RL = 16, f = 1kHz, Headphone  
Output)  
Output)  
10  
10  
1
1
0.1  
0.01  
0.1  
0.01  
1
10  
OUTPUT POWER (mW)  
Figure 47.  
50  
1
10  
100  
OUTPUT POWER (mW)  
Figure 48.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Typical Performance Characteristics (1) (continued)  
THD+N  
vs  
Output Power  
(AVDD = 5V, RL = 8, f = 1kHz, Handsfree Output)  
10  
5
2
1
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
10m 20m 50m 100m 200m 500m  
1
2
OUTPUT POWER (W)  
Figure 49.  
22  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
APPLICATION INFORMATION  
REFERENCE DESIGN BOARD AND LAYOUT  
LM4930ITL Board Layout  
Figure 50. LM4930ITL Demo Board Schematic  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: LM4930  
 
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Figure 51. LM4930ITL Demo Board Composite View  
Figure 52. LM4930ITL Demo Board Silkscreen  
24  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Figure 53. LM4930ITL Demo Board Top Layer  
Figure 54. LM4930ITL Demo Board Bottom Layer  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Figure 55. LM4930ITL Demo Board Inner Layer 1  
Figure 56. LM4930ITL Demo Board Inner Layer 2  
26  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Figure 57. Pin Markings for LM4930ITL demo board  
BILL OF MATERIALS FOR LM4930  
Table 4. LM4930 Demo Board Bill Of Materials  
Comment  
1k  
Footprint  
0805  
0805  
0805  
0805  
0805  
1210  
1210  
1210  
1210  
7243  
7243  
Designators  
R6, R7  
2k  
R2, R3  
20k  
R1  
100k  
R5  
1M  
R4  
22pF  
C6, C7  
0.01µF cer  
0.1µF cer  
1µF  
C16, C17  
C14, C15  
C1, C2, C3, C4, C5, C10, C11, C12, C13  
220µF  
CRYSTAL  
C8, C9  
Y1  
PHONE JACK STEREO SW STEREO HEADPHONE JACK (3.5MM) J8  
Table 5. Two-Wire Control Interface (J1)  
Pin  
1
Function  
DVDD  
SCL  
2
3
DGND  
NC  
4
5
DGND  
SDA  
6
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Table 6. PCM Interface (P4, P3, P1, P2)  
Header  
P1  
Function  
PCM_SDI  
PCM_CLK  
PCM_SYNC  
PCM_SDO  
P2  
P3  
P4  
Table 7. I2S Interface (J2)  
Pin  
1
Function  
MCLK  
2
I2S-CLK  
I2S-DATA  
I2S-WS  
DGND  
3
4
5
6
DGND  
7
DGND  
8
DGND  
9
DGND  
10  
DGND  
Table 8. MIC Jack  
Pin  
1
Function  
AGND  
MIC-  
2
3
MIC+  
Table 9. Misc Jumpers and Headers  
DVDD/DGND (J10)  
Pin  
1
Function  
DGND  
2
AVDD  
Table 10. Misc Jumpers and Headers  
AVDD/AGND (J9)  
Pin  
1
Function  
AGND  
2
AVDD  
Table 11. Misc Jumpers and Headers  
MCLK/XTAL_IN (P5)  
Pin  
1
Function  
DGND  
2
MCLK/XTAL_IN  
28  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
ADR SELECT (S1)  
Jumper IN = LOW  
Control interface responds to addresses 001000b (BASICCONFIG), 0010001b (VOICETESTCONFIG)), and  
0010010b (GAINCONFIG)  
Jumper OUT = HIGH  
Control interface responds to addresses 111000b (BASICCONFIG), 1110001b (VOICETESTCONFIG)), and  
1110010b (GAINCONFIG)  
Table 12. HP Sense Out (J6)  
Pin  
1
Function  
AGND  
2
HPSense_Out  
Table 13. IRQ (J4)  
Pin  
1
Function  
DGND  
IRQ  
2
Onboard MCLK Select (S2)  
Jumper IN = Onboard MCLK  
Jumper OUT = External MCLK  
LM4930ITL DEMO BOARD OPERATION  
The LM4930ITL demo board is a complete evaluation platform, designed to give easy access to the control pins  
of the part and comprise all the necessary external passive components. Besides the separate analog (J9) and  
digital (J10) supply connectors, the board features seven other major input and control blocks: a two wire  
interface bus (J1) for the control lines, a PCM interface bus (P1-P4) for voiceband digital audio, an I2S interface  
bus (J2) for full-range digital audio, an analog mic jack input (J3) for connection to an external microphone, a  
BTL mono output (J7) for connection to an external speaker, a stereo headphone output (J8), and an external  
MCLK input (P5) for use in place of the crystal on the demoboard.  
Two-wire Interface Bus (J1)  
This is the main control bus for the LM4930. It is a two-wire interface with an SDA line (data) and SCL line  
(clock). Each transmission from the baseband controller to the LM4930 is given MSB first and must follow the  
timing intervals given in the Electrical Characteristics section of the datasheet to create the start and stop  
conditions for a proper transmission. The start condition is detected if SCL is high on the falling edge of SDA.  
The stop condition is detected if SCL is high on the rising edge of SDA. Repeated start signals are handled  
correctly. Data is then transmitted as shown in Figure 4. After the start condition has been achieved the chip  
address is sent, followed by a set write bit, wait for ack (SDA will be pulled low by LM4930), data bits 15-8, wait  
for ACK (SDA will be pulled low by LM4930), data bits 7-0, wait for ACK (SDA will be pulled low by LM4930)and  
finally the stop condition is given.  
This same sequence follows for any control bus transmission to the LM4930. The chip address is hardwire  
selected by the ADR Select pin which may be jumpered high or low with its application at S1 on the demo board.  
The chip address is then given as a combination of the identifying bits for the LM4930 plus the 2-bit address of  
the desired control register (00b = BasicConfig, 01b = VoicetestConfig, 10b = GainConfig). Acceptable addresses  
are shown here in Table 14.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
Table 14. LM4930 Control Bus Addresses  
Address Bits  
ADR = 0  
Register Address  
6
5
0
0
0
4
1
1
1
3
0
0
0
2
0
0
0
1
0
0
0
0
1
0
1
0
0
0
ADR = 1  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
0
1
0
Data is sampled only if the address is in range and the R/W bit is clear. Data for each register is given in the  
System Control Registers section of the datasheet. Texas Instruments also features a special control board for  
quick evaluation of the LM4930 demo board with your PC. This is a serial control interface board, complete with  
header compatible with the interface header (J1) on the LM4930 board. This also features demonstration  
software to allow for complete control and evaluation of the various modes and functions of the LM4930 through  
the bus.  
Pullup resistors are required to achieve reliable operation. 750pullup resistors on the SDA and SCL lines  
achieves best results when used with TI's parallel-to-serial interface board. Lower value pullup resistors will  
decrease the rise and fall times on the bus which will in turn decrease susceptibility to bus noise that may cause  
a false trigger. The cost comes at extra current use. Control bus reliability will thus depend largely on bus noise  
and may vary from design to design. Low noise is critical for reliable operation.  
PCM Bus Interface (P1, P2, P3, P4)  
PCM_SDO (P4), PCM_SYNC (P3), PCM_SDI (P1), and PCM_CLK (P2) form the PCM interface bus for simple  
communication with most baseband ICs with voiceband communications and follow the PCM-1900  
communications standard. The PCM interface features frame lengths of 16, 32, or 64 bits, A-law and u-law  
companding, linear mode, short or long frame sync, an energy-saving power down mode, and master only  
operation.  
The PCM bus does not support a slave mode. It operates as a master only. Thus PCM_SYNC and PCM_CLK  
are solely generated by the LM4930. PCM_SYNC is the word sync line for the bus. It operates at a fixed  
frequency of 8kHz and may be set in the BASICCONFIG register (bit 5 PCM_LONG) for short or long frame  
sync. A short frame sync is 1 PCM_CLK cycle (PCM_LONG=0), a long frame sync is 2 PCM_CLK cycles long  
(PCM_LONG=1). A long sync pulse is also delayed one clock cycle relative to a short sync pulse. This is  
illustrated in Figure 5. PCM_CLK is the bit clock for the bus. It's frequency depends on the number of 16-bit  
frames per sync pulse and can be 128kHz, 256kHz, 512kHz.  
The other two lines, PCM_SDO and PCM_SDI, are for serial data out and serial data in, respectively. The type of  
data may also be set in the BASICCONFIG register by bits 6 and 7. Bit 6 controls whether the data is linear or  
companded. If set to 1, the 8 MSBs are presumed to be companded data and the 8 LSBs are ignored. If cleared  
to 0, the data is treated as 2's complement PCM data. Bit 7 controls which PCM law is used if Bit 6 is set for  
companded (G711) data. If set to 1, the companded data is assumed to be A-law. If cleared to 0, the companded  
data is treated as µ-law.  
Bits 8:9 of the BASICCONFIG register set the PCM_SYNC_MODE settings. This controls the number of 16 bit  
frames per sync pulse. The feature allows the LM4930 to function harmoniously with other devices or channels  
on the PCM bus by adjusting the number of 16 bit frames per sync pulse to 1 (00b), 2 (01b), or 4 (10b). The  
LM4930 will transmit PCM data in the first frame and then tri-state the PCM_SDO pin on later frames.  
In addition, the LM4930 provides control to allow the PCM_CLK and PCM_SYNC clocks to continue functioning  
even when the LM4930 is in Standby mode. By setting bit 10 of the BASICCONFIG register to 1  
PCM_ALWAYS_ON is enabled and the LM4930 will continue to drive the PCM clock and sync lines when in  
Standby mode. This bit should be set if another codec is using the PCM bus. Powerdown mode will disable these  
outputs.  
30  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
I2S Interface Bus (J2)  
The I2S standard provides a uni-directional serial interface designed specifically for digital audio. For the  
LM4930, the interface provides access to a 48kHz, 16 bit full-range stereo audio DAC. This interface uses a  
three port system of clock (I2S_CLK), data (I2S_DATA), and word (I2S_WS). The clock and word lines can be  
either master or slave as set by bit 11 in the BASICCONFIG register.  
A bit clock (I2S_CLK) at 32 or 64 times the sample frequency is established by the I2S system master and a  
word select (I2S_WS) line is driven at a frequency equal to the sampling rate of the audio data, in this case  
48kHz. The word line is registered to change on the negative edge of the bit clock. The serial data (I2S_DATA) is  
sent MSB first, again registered on the negative edge of the bit clock, delayed by 1 bit clock cycle relative to the  
changing of the word line (typical I2S format - see Figure 6).  
The resolution of the I2S interface may be set by modifying the I2S_RES bit (bit 12) in the BASICCONFIG  
register. If set to 1, the LM4930 operates at 32 bits per frame (3.072MHz). If cleared to 0, then 16 bits per frame  
is selected (1.536MHz). This has a corresponding effect on the bit clock.  
The I2S Interface Bus also provides for an additional MCLK connection to an external device from the LM4930  
demo board. This may be used in conjunction with Texas Instruments' SPDIF->I2S Conversion Board for quick  
evaluation. This board features a connection header that interfaces with pins 1-5 of the I2S Interface Bus. Pins 6-  
10 are provided as digital ground references for the case of discrete connections.  
MCLK/XTAL_IN (P5)  
This is the input for an external Master Clock. The jumper at S2 must be removed (disconnecting the onboard  
crystal from the circuit) when using an external Master Clock.  
BTL Mono Out (J7)  
This is the mono speaker output, designed for use with an 8 ohm speaker. The outputs are driven in bridge-tied-  
load (BTL) mode, so both sides have signal. Outputs are normally biased at one half AVDD when the LM4930 is  
in active mode.  
Additionally, if the CLASS bit is set to 1 in the VOICETESTCONFIG register (bit 0) the BTL mono output is  
internally configured as a buffer amplifier designed for use with an external class D amp.  
Stereo Headphone Out (J8)  
This is the stereo headphone output. Each channel is single-ended, with 220uF DC blocking capacitors mounted  
on the demo board. The jack features a typical stereo headphone pinout.  
A headphone sense pin is provided at J6. This pin provides a clean logic high or low output to indicate the  
presence of headphones in the headphone jack. A common application circuit for this is given in the Reference  
Board Schematic shown in Figure 50. In this application HPSENSE_IN is pulled low by the 1k ohm resistor when  
no headphone is present. This gives a corresponding logic low output on the HPSENSE_OUT pin. When a  
headphone is placed in the jack the 1k ohm pull-down is disconnected and a 100k ohm pull-up resistor creates a  
high voltage condition on HPSENSE_IN. This in turn creates a logic high on HPSENSE_OUT. This output may  
be used to reliably drive an external microcontroller with headphone status.  
MIC Jack (J3)  
This jack is for connection to an external microphone like the kind typically found in mobile phones. Pin 1 is  
GND, pin 2 is the negative input pin, and pin 3 is the positive pin, with phantom voltage supplied by MIC_BIAS  
on the LM4930.  
IRQ (J4)  
This pin provides simple status updates from the LM4930 to an external microcontroller if desired. IRQ is logic  
high when the LM4930 is in a stable state and changes to low when changing modes. This can also be useful for  
simple software/driver development to monitor mode changes, or as a simple debugging tool.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: LM4930  
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
BASIC OPERATION  
The LM4930 is a highly integrated audio subsystem with many different operating modes available. These  
modes may be controlled in the BASICCONFIG register in bits 3:0. These mode settings are shown in the  
BASICCONFIG register table and are described here below:  
Powerdown Mode (0000b)  
Part is powered down, analog outputs are not biased. This is a minimum current mode. All part features are shut  
down.  
Standby Mode (0001b)  
The LM4930 is powered down, but outputs are still biased at one half AVDD. This comes at some current cost,  
but provides a much faster turn-on time with zero "click and pop" transients on the headphone out. Standby  
mode can be toggled into and out of rapidly and is ideal for saving power whenever continuous audio is not a  
requirement. All other part functions are suspended unless PCM_ALWAYS_ON (bit 10 in BASICCONFIG  
register) is enabled, in which case PCM_CLK and PCM_SYNC will continue to function.  
Mono Speaker Mode (0010b)  
Part is active. All analog outputs are biased. Audio from the voiceband codec is routed to the mono speaker out.  
Stereo headphone out is silent.  
Headphone Call Mode (0011b)  
Part is active. All analog outputs are biased. Audio from voiceband codec is routed to the stereo headphones.  
Both left and right channels are the same. Mono speaker out is silent.  
Conference Call Mode (0100b)  
Part is active. All analog outputs are biased. Audio from the voiceband codec is routed to the mono speaker out  
and to the stereo headphones.  
L+R Mixed to Mono Speaker (0101b)  
Part is active. All analog outputs are biased. Full-range audio from the 16bit/48kHz audio DAC is mixed together  
and routed to the mono speaker out. Stereo headphones are silent.  
Headphone Stereo Audio (0110b)  
Part is active. All analog outputs are biased. Full-range audio from the 16bit/48kHz audio DAC is sent to the  
stereo headphone jack. Each channel is heard discretely. The mono speaker is silent.  
L+R Mixed to Mono Speaker + Stereo Headphone Audio (0111b)  
Part is active. All analog outputs are biased. Full-range audio from the 16bit/48kHz audio DAC is sent discretely  
to the stereo headphone jack and also mixed together and sent to the mono speaker out.  
Mixed Mode (1000b)  
Part is active. All analog outputs are biased. This provides one channel (the left channel) of full range audio to  
the mono speaker out. Audio from the voiceband codec is then sent to the stereo headphones, the same on  
each channel.  
Mixed Mode (1001b)  
Part is active. All analog outputs are biased. Mixed voiceband and full-range audio (left channel only) is sent to  
the mono speaker out. Audio from the voiceband codec only is sent to the stereo headphones, the same on each  
channel.  
32  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
LM4930  
www.ti.com  
SNAS212C JULY 2003REVISED MAY 2013  
Mixed Mode (1010b)  
Part is active. All analog outputs are biased. Audio from the voiceband codec is sent to the mono speaker out.  
The left channel only of the full range audio is then sent to both the left and right channels of the stereo  
headphone out.  
REGISTERS  
The LM4930 starts on power-up with all registers cleared in Powerdown mode. Powerdown mode is the  
recommended time to make setup changes to the digital interfaces (PCM bus, I2S bus). Although the  
configuration registers can be changed in any mode, changes made during Standby or Powerdown prevent  
unwanted audio artifacts that may occur during rapid mode changes with the outputs active. The LM4930 also  
features a soft reset. This reset is enabled by setting bit 4 of the BASICCONFIG register.  
The VOICETESTCONFIG register is used to set various configuration parameters on the voiceband and full-  
range audio codecs. SIDETONE_ATTEN (bits 4:1) refers to the level of signal from the MIC input that is fed back  
into the analog audio output path (commonly used in headphone applications and killed in hands-free  
applications). Setting the AUTOSIDE bit (bit 5) automatically mutes the sidetone in voice over mono speaker  
modes so feedback isn't an issue.  
Quick mute functions are also located in this register, with bits 13:15 muting the mono speaker amp, the  
headphone amp, and the mic preamp respectively.  
This register also has a CLOCK_DIV bit (bit 6) which, if set, allows for the use of a 24.576MHz clock instead of  
the default 12.288MHz.  
The GAINCONFIG register is used to control the gain of the mono speaker amp , the headphone amp, and the  
mic preamp. This allows flexible mono speaker gains from -34.5dB to +12dB in 1.5dB steps, headphone amp  
gains of -46.5dB to 0dB in 1.5dB steps, and mic preamp gains of 17dB to 47dB in 2dB steps. Gain levels may be  
modified in any mode, but may wait for a zero cross detect in the DAC to eliminate volume control artifacts. This  
wait for zero cross may be disabled by setting the ZXD_DISABLE bit (bit 7) in the VOICETESTCONFIG register  
to allow immediate changes.  
ANALOG INPUTS AND OUTPUTS  
The LM4930 features an analog mono BTL output for connection to an 8external speaker. This output can  
provide up to 1W of power into an 8load with a 5V analog supply. A single-ended stereo headphone output is  
also featured, providing up to 30mW of power per channel into 32with a 5V analog supply.  
A Headphone Sense output is provided on J6 for connection to an external controller. This pin goes high when a  
heaphone is present (when used as shown in Figure 50) and will function in all modes independent of other  
operations the LM4930 may be currently processing.  
The MIC Jack input (J3) provides for a low level analog input. Pin 3 provides the power to the MIC and the  
positive input of the LM4930. Gain for the MIC preamp is set in the GAINCONFIG register.  
Copyright © 2003–2013, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: LM4930  
 
LM4930  
SNAS212C JULY 2003REVISED MAY 2013  
www.ti.com  
REVISION HISTORY  
Changes from Revision B (May 2013) to Revision C  
Page  
Changed layout of National Data Sheet to TI format .......................................................................................................... 33  
34  
Submit Documentation Feedback  
Copyright © 2003–2013, Texas Instruments Incorporated  
Product Folder Links: LM4930  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
LM4930ITLX/NOPB  
LM4930LQ/NOPB  
ACTIVE  
DSBGA  
WQFN  
YZR  
36  
44  
1000 RoHS & Green  
250 RoHS & Green  
SNAGCU  
Level-1-260C-UNLIM  
Level-2-260C-1 YEAR  
-30 to 85  
-30 to 85  
G
B6  
ACTIVE  
NJN  
SN  
L4930LQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
LM4930ITLX/NOPB  
LM4930LQ/NOPB  
DSBGA  
WQFN  
YZR  
NJN  
36  
44  
1000  
250  
178.0  
178.0  
12.4  
16.4  
3.43  
7.3  
3.59  
7.3  
0.76  
1.3  
8.0  
12.0  
16.0  
Q1  
Q1  
12.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
LM4930ITLX/NOPB  
LM4930LQ/NOPB  
DSBGA  
WQFN  
YZR  
NJN  
36  
44  
1000  
250  
208.0  
208.0  
191.0  
191.0  
35.0  
35.0  
Pack Materials-Page 2  
MECHANICAL DATA  
NJN0044A  
LQA44A (REV B)  
www.ti.com  
MECHANICAL DATA  
YZR0036xxx  
D
0.600±0.075  
E
TLA36XXX (Rev D)  
D: Max = 3.458 mm, Min =3.397 mm  
E: Max = 3.292 mm, Min =3.232 mm  
4215058/A  
12/12  
A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.  
B. This drawing is subject to change without notice.  
NOTES:  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

LM4930LQ

IC SPECIALTY CONSUMER CIRCUIT, QCC44, LLP-44, Consumer IC:Other
NSC

LM4930LQ/NOPB

IC SPECIALTY CONSUMER CIRCUIT, QCC44, LLP-44, Consumer IC:Other
NSC

LM4930LQ/NOPB

具有立体声耳机和单声道扬声器放大器的音频子系统 | NJN | 44 | -30 to 85
TI

LM4930LQX/NOPB

IC,AUDIO AMPLIFIER,SINGLE,LLCC,44PIN,PLASTIC
TI

LM4930_04

Audio Subsystem with Stereo Headphone & Mono Speaker Amplifiers
NSC

LM4931

Audio Subsystem with Mono High Efficiency Loudspeaker and Stereo Headphone Amplifiers
NSC

LM4931ITL/NOPB

IC SPECIALTY CONSUMER CIRCUIT, PBGA42, MICRO, SMD-42, Consumer IC:Other
NSC

LM4931ITLX/NOPB

IC,AUDIO AMPLIFIER,SINGLE,BGA,42PIN,PLASTIC
NSC

LM4931_06

Audio Subsystem with Mono High Efficiency Loudsperker and Stereo Headphone Amplifiers
NSC

LM49321

Audio Sub-System with Stereo DAC, Mono Class AB Loudspeaker Amplifier, OCL/SE Stereo Headphone Output and RF Suppression
NSC

LM49321RL

Audio Sub-System with Stereo DAC, Mono Class AB Loudspeaker Amplifier, OCL/SE Stereo Headphone Output and RF Suppression
NSC

LM49321RLX/NOPB

Audio Sub-Sys w/ Stereo DAC Mono Class AB Loudspkr Amp OCL/SE Stereo Headph Output &amp; RF Suppression 36-DSBGA -40 to 85
TI